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Der senkrechte und schräge Durchtritt einer in einem flüssigen
Medium erzeugten ebenen Dilatations-(Longitudinal)-Welle

durch eine in diesem Medium befindliche planparallele feste Platte
von H. Reissner, Berlin-Charlottenburg.

(17. XII. 37.)

Bei Gelegenheit einer von Herrn Edgar Meyer veranlassten
Besprechung über die Arbeit von Bär und Walti1) „Über die
Bestimmung der Poissonschen Elastizitätskonstante mit Hilfe von
Ultraschallwellen" machte sich eine Lücke bemerkbar inbezug auf
die mathematische Erfassung des Durchtritts einer Schallwelle
durch eine feste Wand.

Verfasser hat es nun im folgenden unternommen, diese
Aufgabe unter gewissen Voraussetzungen exakt durchzurechnen.

Diese Voraussetzungen sind:
Vernachlässigung der inneren Reibung,
Ebenheit des Wellensystems,
Planparallelität der Wand.

Zu diesen Voraussetzungen kam noch von Seiten der
obengenannten Herren hinzu:

Wachsen der Beugung einer quer durch den Schallstrahl
hindurchtretenden Lichtwelle mit der Intensität der Ultraschallwelle.

Bei dieser Durchrechnung verdankt Verfasser dem Schriftwechsel

mit Herrn Bär wichtige Gesichtspunkte.
Die von Herrn Walti sehr sorgfältig durchgeführten Experimente

zeigen durch die gute Übereinstimmung zwischen Experiment

und Theorie (siehe Arbeit von A. Walti in dieser
Zeitschrift), dass diese Vernachlässigungen und Annahmen an den
wesentlichen Zusammenhängen sehr wenig geändert haben.

Die Erfüllung aller Übergangsbedingungen auf den beiden
Seiten der Platte führt, solange keine „totale" Reflexion
stattfindet, entsprechend der Textfigur zu einem ebenen stationären
Wellensystem bestehend aus zwei Wellenpaaren. Das eine Wellenpaar

wird gebildet durch eine Dilatations-(Longitudinal)welle, die
in der durch den Brechungsexponenten, d. h. das Verhältnis der
Fortpflanzungsgeschwindigkeiten bestimmten Richtung fortschrei-

x) R. Bär und A. Walti, Helv. Phys. Acta 7, 658, 1934.
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tet und eine zweite Dilatationswelle, die unter demselben Winkel
zur Plattennormale reflektiert ist. Das zweite Wellenpaar wird
in derselben Weise von zwei Rotations-(Transversal)wellenfeldern
innerhalb der Platte gebildet. Diese beiden Wellenpaare
durchdringen einander und beeinflussen sich nur insoweit, dass ihre
Amplituden und Phasen an den Grenzflächen gleiche Verschiebungen,

gleiche Normalspannungen und verschwindende
Schubspannungen wie die entsprechenden Grössen der aus der umgebenden

Flüssigkeit eintretenden, reflektierten und in die Flüssigkeit
auf der anderen Seite austretenden reinen Dilatations-(Longi-
tudinal)welle haben müssen.

Diese Zustände sind jedoch nur bis zu demjenigen Stellungswinkel

der Platte gegen die auftreffende Strahlrichtung möglich,
bei dem das System der Dilatationswelle um einen rechten Winkel
oder mehr abgelenkt wird.

Man spricht dann von totaler Reflexion, obgleich eine wirklich

totale Reflexion im allgemeinen nur beim Eintritt in einen
Halbraum stattfindet.

Dies Paar unterhalb des Grenzwinkels hin und her laufender
Wellen von räumlich konstanter Amplitude verwandelt sich dann
bei der Platte in zwei den Plattenebenen entlanggerichtete stehende

Wellen, die eine mit einer nach dem Platteninnern exponentiell
abnehmenden, die andere mit einer räumlich exponentiell
zunehmenden Amplitude.

Nur bei unendlicher Dicke der Platte verschwindet die letztere
Welle aus der Bedingung, dass im Unendlichen die Strahlung
verschwinden soll.

Bei endlicher Dicke der Platte dagegen existiert auch die
stehende Welle räumlich zunehmender Amplitude und kann an der
Austrittseite der Platte eine in die Flüssigkeit austretende Welle
mit sich bringen.

Das Entsprechende tritt auch ein, wenn die Rotationswelle
um einen rechten Winkel oder mehr abgebeugt wird.

Das Folgende bringt die zahlenmässigen Zusammenhänge
und stellt insbesondere die Strahlungsdurchlässigkeit der Platte
abhängig von Dicke, Stellungswinkel, Dichte und Elastizitätskonstanten

der Medien durch eine einheitliche auch die Bereiche
totaler Reflexion umfassende Formel dar.

Es möge noch hinzugefügt werden, dass die durchgeführte
Theorie sich vielleicht auch für das Problem der Schalldämmung
gewöhnlicher Schallwellen durch feste Wände bei gradem und
schiefem Durchtritt von Nutzen erweisen könnte. In dieser
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Richtung würde auch eine ergänzende analoge Durchführung der
Theorie des axialsymmetrischen Problems des Durchtritts einer
Kugelwelle aus einem flüssigen Medium durch eine feste Wand
in ein wiederum flüssiges Medium erwünscht sein.

1. Bezeichnungen:

u, v, w Verschiebungen in Richtung der drei Achsen eines

rechtwinkligen Koordinatensystems x, y, z (Fig. 1).
du dv dw

e

CJz

dx dy dz
Dilatation des jeweiligen Mediums.

dv du
dx dz

z Komponente des Rotationsvectors.
X, pi Lamé'sche Elastizitätskonstanten des Plattenmediums.
Xx Lamé'sche Elastizitätskonstante der Flüssigkeit.
ax, Oy, az Normalspannungen.
rvz> rzx> rxy Schubspannungen
q Dichte des Plattenmediums.
qx Dichte der Flüssigkeit.
Kx Amplitude der einfallenden Dilatations-(Longitudinal)-

welle.
K2 komplexe Amplitude der reflektierten Welle.
Ks komplexe Amplitude der aus der Platte austretenden

Welle.
Ai komplexe Amplituden der Dilatationswelle in der Platte.
Bi komplexe Amplituden der Rotationswelle in der Platte.
wx Fortpflanzungsgeschwindigkeit der Dilatationswellen in

der Flüssigkeit.
wd Fortpflanzungsgeschwindigkeit der Dilatationswellen in

der Platte.
wr Fortpflanzungsgeschwindigkeit der Rotationswellen in

der Platte.
p Schwingungsfrequenz.

n p/2n Sehwingungszahl (Hertz).
A w/n Wellenlänge,
fl Einfallswinkel der Strahlung.

cpd bezw. cpr Strahlrichtungswinkel der Dilatations- und der Rota¬
tionswelle in der Platte (Fig. 1).

sin fl sin cpd sin cpr

wx wd wr
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d Dicke der Platte.

pd eos fl d cos fl
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2. Der allgemeine Ansatz für elastisehe Wellen. Das ebene Problem.

Der allgemeinste Schwingungsvorgang in einem vollkommen
elastischen isotropen Körper ohne innere Reibung ist beherrscht
durch die Wellengleichung der Dilatation e und die Wellengleichung
des Rotationsvektors co.

In den drei Verschiebungskomponenten u, v, w drücken sich
bekanntlich die Dilatation und die Rotationskomponenten fol-
gendermassen aus:

du dv dw
dx dy dz

dw dv du dw dv du „,w*==^-^r> °>«=irr--rr- (2)
dy dz dz dx dx dy

Die Normalspannungen a und die Schubspannungen r sind mit
den Verschiebungen und den Laméschen Elastizitätskonstanten X

und u verknüpft durch die Beziehungen
;>„..

(3)

(4)

(5)

~~ n dt2 ^
wo q die Massendichte und A den Operator

d2 d2 d2

~dx^ + "dy2 + lïz2
bedeuten.

Das ebene Problem ist gekennzeichnet durch die Bedingungen :

cox 0, coy 0, rvz 0, rzx 0

woraus folgt:
dv _n du dw

_
dw

_
dz dz dx dy

r, du dv
ox Äe+2 u ——, Oy Xe+2u——,dx dy

r, dw
az Xe+2 w^—dz

i dw dv \ /
1vz /* 1 ~7 1

J
1 j Tzx P1 1

\dy dz 1 \
du dw\

~dz~ + ~dx~)'

/ du du

\ dx dy

die Wellengleichungen lauten dann:

p d2e
Ae - K

X + 2 n dt2

.— p d2<ö
A m —
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wozu man entweder
w 0 (7a)

oder

az 0 (7b)
hinzuzufügen hat.

Die erstere Bedingung setzt voraus, dass der Körper genügend
stark an der Bewegung quer zur Fortpflanzungsrichtung gehindert
ist, die zweite, dass in dieser Querrichtung gar kein Zwang herrscht.

Beide Bedingungen unterscheiden sich in den Folgerungen
nur durch die Verknüpfung zwischen Dilatation e und den

Dehnungen -j— und -,—, nämlich im ersten Falleb dx dy '

du dv
e (la)

dx dy
K '

im zweiten Falle

__
2 pi /du dv

+ ^) (lb)
X + 2 pi \ dx dy

wie man aus (7b) in Verbindung mit der letzten Gleichung (3)
und (1) sieht.

Dieser Unterschied macht sich in den Rand- oder
Übergangsbedingungen für die Spannungen bemerkbar, dagegen nicht in den
Wellengleichungen, welche für den ebenen Fall sich nun vereinfachen

zu:

Ae T~-^—e (5a)
X + 2 /li

A o)z — coz (6a)

3. Die Dilatationswellen in der Flüssigkeit.

Die Wellenfortpflanzung in einer Flüssigkeit ist ein Sonderfall,

der nur Dilatationswellen mit sich bringt, indem mit

/j, 0

coz 0, u 0

dv
e=— (lc)

dy

wird, während die Bedingung az 0 in einer Flüssigkeit nur mit
e 0 verwirklicht ist.

10
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Die Gleichung (5a) liefert für die mit der Frequenz p
einfallende Welle (Index 1) und die reflektierte Welle (Index 2) die
Lösung

ei =K%e l Wl i (8)

wo Ki komplexe Amplituden und

h ]/5 (9a)w,

& • w,-1
(11)

l1+K2)eipV-ax'>. I

die Fortpflanzungsgeschwindigkeit in einer Flüssigkeit mit der
Elastizitätskonstanten Xx und der Dichte qx. Hieraus wird
abgeleitet :

vi ±p~1iKiwxe v M' ;. (10)

Da nun nach Fig. 1

yX2 y cos ê -\- x sin fl

ist, so wird die resultierende Dilatation an der Vorderseite (y 0)
mit der Abkürzung

a sin ê ¦ w,

e ex + e2 (Kx

Die Normalspannung also

oy Xxe w\ qx (Kx + K2) e*«'«-") (8a)

und die y Verschiebung an der Vorderseite

v (i\+v2) cos fl ip-1 wx cos fl (Kx — K2) é1* <'-«*>. (10a)

An der Hinterseite (y b) tritt in die Flüssigkeit nur eine
Dilatationswelle aus und zwar, wie die Erfüllung der Grenzbedingungen
zeigen wird, nur eine in der Einfallsrichtung laufende.

Man erhält dementsprechend aus (8) und (10), wenn zur
Abkürzung gesetzt wird:

cpx pw~l h cos fl

(Gv)y=b «Ï fi K3e^ * e*" «-«*> (8b)

(ü)„=5 ip-1 wx cos fl K3e-'>' eip<*-aa;). (10b)
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4. Die Wellenfortpflanzung im Plattenkörper.

Man führe zunächst die folgenden Bezeichnungen bzw.
Abkürzungen ein:

Y-

n
Q

wa Dilatationsgeschwindigkeit (9b)

o— =f wr Rotationsgeschwindigkeit (9c)
Q

iwd2 — «¦* ß

-\/w~2 — a.2 ô j

qT =p(t — ax^f ßy), rT =p (t — ax=p dy)

(IIa)

Ax, A2, Bx, B2 komplexe Amplituden. Dann lassen sich die
Lösungen der Gleichungen (5a) und (6a) schreiben wie folgt:

e Axe*«- + A2e«+ j
coz Bxeir~ + B2eir+ J

Aus den Exponenten q und r (solange sie reell sind) erkennt man,
dass in der Platte gerade wie im unbegrenzten Körper die
Fortpflanzungsgeschwindigkeiten wd und wr sind und die Brechungszahlen

(Fig. 1)
sin fl wx sin fl wx ,1Q.-: —: (lo)
sm cpd wd sm cpr wr

Auf Grund dieser Beziehungen kann man schreiben

a sin & w~x, ß cos cpd w~x, ô cos cprw~1. (13a)

Ausserdem bedingt die Grenzbedingung (Reflexion) an der
Hinterseite der Platte noch je eine symmetrisch zur Normale
laufende Dilatations- bzw. Rotationswelle, wie es die zweiten
Glieder von (12) angeben.

Aus den Elastizitätskonstanten und Dichtigkeiten der von den
Herren Bär und Walti verwendeten Flüssigkeit und des Glases
kann man nach (9a, b, c) die Dilatationsgeschwindigkeit wx der
Flüssigkeit zu etwa 1500 m/sec, wd des Glases zu 6000 m/sec und
die Rotationsgeschwindigkeit wr im Glase zu 3300 m/sec schätzen.

Der Strahl wird also nach der Normale hin abgelenkt und
zwar für die Dilatationswelle erheblich stärker.

Man sieht ferner, dass im Innern der Platte keine
Fortpflanzung zunächst der Dilatationswelle, sodann der Rotationswelle

stattfindet, wenn der Winkel fl einen gewissen Betrag
überschreitet.
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Man hat also „totale" Reflexion für Dilatation allein bzw.
für beide Wellen, wenn

sin &d > ^L ^500- 0,25 (fl, > 14° 30')
wd 6000 u" ;

bzw.

sin flr > -^- ^500- 0,455 (flr > 27° 3').
wr 3300

v ;

Die Faktoren eTipßv bzw. eTivöy werden dann reell und ergeben
parallel zur Plattenebene (x) verlaufende stehende Wellen mit in
Richtung der Plattennormale (y) veränderlichen Amplituden.

Ob diese stehenden Wellen auch abgesehen von der hier nicht
zu berücksichtigenden inneren Reibung einer Energiezufuhr
bedürfen, d. h., ob man im eigentlichen Sinne von einer totalen
Reflexion sprechen kann, hängt davon ab, ob die stehenden
Schwingungen der Platte eine Wellenfortpflanzung in der Flüssigkeit

hinter der Platte erzeugen, und diese Frage wiederum kann
nur aus den Übergangs-Grenzbedingungen an den beiden
Grenzebenen der Platte beantwortet werden.

In dem Folgenden soll nun ausschliesslich die Bedingung (7a),
w 0 des ebenen Problems durchgeführt werden, da für die
Flüssigkeit nur diese, aber nicht die Alternativbedingung (7b),
oz 0 zu verwirklichen ist.

5. Die vollständige Lösung.

Aus den Lösungen (12) zusammen mit der letzten der
Gleichung (2) und (la) folgen nun zunächst die Verschiebungen in der
Form:

u ip-1 a.wl (Axeiq- + A2ei<2+) — ip-1 òw\ (Bxeir~ — B2eir+)\
(14)

v ip-1 ßw\ (Axeiq- — A2eiq+) + ip-1 u.w\ (Bxeir~ + B2eir+)\ v '

Oder wenn man die Beziehungen (13) und (13a) beachtet und als

Abkürzungen einführt:

pßd^cp, pòd xp, ~=r] (13b)
(X

u eiP<t-ax) r^p-i Wd sm (pä (Aie-i<Pi + A2e+i<en)
— ip-1 wT cos cpr (Bxe~ivn — B2e+i'")]

v eip<'-"> ip-1 [wd cos cpd (Axe~i,pi — A2e+iv">)
+ wr sin cpr (Bxe-i'i"> + B2e+i")]

(14a)
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Die Schubspannungen ergeben sich dann nach der letzten der
Gleichung (4) zu:

t eipV-ax> /i[sm2 (pa(A1e-i,pr> — A2e+i,fri)

— cos 2 <pr (Bxe~iv,J + B4e+i*"»)]. (4a)

Die Normalspannungen senkrecht zur Plattenebene werden nach (3)

oy e**><*-«*> [«j* q cos 2 çy (^e-*«"» + Jae+i«"»)

+ w*rQ sin 2 çv (Bj-*»" — B2e+l ")]. (3a)

Es werden also an der Vorderfläche

die Verschiebung

(»)„_„ «'i'«-«-) i p-1 [«?„ cos Ç9, (^ - ^2) + wr sin cpT (Bx + B2)]

die Schubspannung

(r)y=0 e<p«-^) ^ [sin 2 Ç9d L4X - A2) - cos 2 cpr (Bx + B2)]

die Normalspannung

((t)^0 é**-** K Q cos 2 <pr (^i+^a) +w'rg sin 2 ç?r (Bi — B2)].

An der Hinterfläche (y b, rj 1) erhält man:

(u)>î=i eip(i_aa:)p_1[w(iCos 9^ cos <p(Ax~A2) i+wrsin cprcosip(Bx+B2) i
+ wd cos 99 d sin 9? (Ax+A2) + wr sin cv sin xp (Bx — B2)] (14b)

(t),=1 e^t-^/i [sin 2 9^ cos 99 (Ax — A2) — cos 2 9?,. cos xp (Bx+B2)
— sin 2 cpd sin 9? (^4X + A2) i + cos 2 cpr sin y (Bx— B2) i] (4b)

(or„)^=1= eiî,((-œ:c)[«;^ocos2 cv cos 9? (^1 + ^42)

+ w^e sm 2 9V cos y (Bx - B2) - w\q cos 2 çv sin 99 (^ - A2) i
— wIq sin 2 cv sin y (Bx + B2) i]. (3b)

Die Fälle totalartiger Reflexion sowohl inbezug auf die Dilatation
allein (iß ßx) als inbezug auf beide Wellenarten (iß ßx) und
(id ôx) werden weiter unten behandelt werden.

6. Die Grenzbedingungen:

Es müssen nun die Bedingungen formuliert werden, dass an
den Plattenoberflächen :

1. die Schubspannungen t Null sind,
2. die Verschiebungen v für Flüssigkeit und festen Körper

gleich sind,
3. die Normalspannungen av für Flüssigkeit und festen

Körper gleich sind.
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Dass die Erfüllung dieser Bedingungen überhaupt möglich
ist, erforderte, dass in allen Ausdrücken der Faktor eip(t~ax)
heraustritt.

Um die Bedingungen übersichtlich zu schreiben, ist es

zweckmässig, für die Amplitudensummen- und Differenzen die folgenden
Abkürzungen einzuführen :

AX — A2 CX, i(Ax + A2) C2\
Bx + B2 Dx, i(Bx - B2) D2 (15)

Kze~^ Qs

Dann lassen sich die Grenzbedingungen schreiben wie folgt:

Schubspannungsbedingungen

Cx sin 2 cpd — Dx cos 2 cpr 0 (16)

Cx sin 2 99 d cos 9? — Dx cos 2 çv cos xp

— C2 sin 2 99, sin cp + D2 cos 2 cpr sin xp 0. (17)

Normalspannungsbedingungen

G2w\p cos 2 99,. + T)2w\ q sin 2 99,. i(Kx + K2) w\ qx (18)

C2wl g cos 2 99r cos 99 + D2w2r q sin 2 cv cos xp +
+ Ciwd Q cos 2 cpr sin cp+Dxw2r q sin2 99,. sin y i Q3wl q. (19)

Verschiebungsbedingungen

Cxwd cos cpd + Dxwr sin cpr wx cos fl (Kx — K2) (20)

Cxwd cos 99, cos 99 + Dxwr sin cpr cos xp —

— C2wd cos 99d sin 99 — D2wrsin cprsinxp wx cos fl Q3. (21)

Die Gleichungen (16) und (20) erlauben zunächst, Cx und Dx durch
Kx — K2 und sodann aus den Gleichungen (17) und (21) C2 und
D2 durch Kx—K2 und Qs auszudrücken wie folgt1):

£>i (K1-K2)sin2fl
n IV TT \ ¦ O a C0S 2 frUx (Kx — K2) sin2i> —sin 2 99,

sin xp D2 (Kx — K2) sin 2 fl cos xp — Qs sin 2 fl

n irr pi • o« cos2çv cos2 99r
sm 99 C2 (Kx — K2) sm 2 fl cos 99 ———^— — Q3 sin 2 fl

sin 2 99d sin 2 99,*

1) Man benutze dabei die Brechungsbeziehungen
sin cpd sin <pr sm i
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Führt man nun diese Ergebnisse in (18) und (19) ein, so ist es

zweckmässig die folgenden Abkürzungen festzusetzen:

F q w\ sin 2 fl cos2 2 99,.

qx io\ sin 99 sin 2 cpd

„ p wl sin 2 fl -G — 1 ; sm 2 99,.

qx w\ sin xp

N F + G

M F cos 99 + G cos xp.

Es ergeben sich dann aus (18) und (19) die Gleichungen:

i + M

(22)

Kx-K2
Kx + K2

Q<
N

Q3iN
M-iM2
N

und durch Addition die für die Berechnung der austretenden im
Verhältnis zur eintretenden Amplitude massgebende Beziehung:

Qs Kx
2iN

M2-N2-l + 2iM
Ferner für die reflektierte Amplitude

v - v M2-JV2 + 1
ita — Kx M2 — N2 — 1+2ÌM

Dann für die innere Dilatationswellenamplitude

i

(23)

(24)

Ci — 63 ¦

C2 — 63

N

i + M

M _ „ cos 2 m
sm 2 fl

N
cos 99-

sin 2 99d

sin 2 fl cos 2 9V

sin 99 sin 2 99 ö

(25)

und schliesslich für die Rotationsamplitude:

n n i + M „Dx Q3 ——— sin 2 fl

D2 Q3

N
i + M

N
cos y-

sin2fl
sin xp

(26)

Die Amplitudengrössen sind zunächst alle komplex.
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7. Die Durchlässigkeit.

In den Gleichungen (23) bis (26) können wir in voller
Allgemeinheit voraussetzen, dass die Einfallsamplitude Kx reell ist,
indem wir den Anfangspunkt der Zeit so wählen, dass die
Einfallswelle durch eine Cosinusfunktion dargestellt wird; dagegen
wird Q3 K3 e~( ^ eine komplexe Amplitude vorstellen, und es gilt

Qs Qi + iQs (cos cpx — i sin cpx) (Ki + iK5)

Ki Qi cos <px — Q5 sin cpx

Ks Qi sin cpx + Q5 cos cpx

\K3\2 K\+ Kl Q\ + Q\.

Andererseits ist K2 + Kl die Intensität der austretenden Dila-
4 0

tationswelle und KJK& tg e bestimmt die Phasenverschiebung e

der austretenden gegen die einfallende Welle.
Es ergibt sich nun nach Gleichung (23)

4MN

Qs Kx

(M2-N2-1)2 + 4M2

2N(M2-N2-1)
(M2-N2-1)2+4M2

Die Durchlässigkeit D, d. h. das Verhältnis zwischen austretendem
und eintretendem Amplitudenquadrat, wird also:

IK 12 K2 4- K2 à N*
r2 r/! ¦" /n/ti ATI i\2 i a n/rî V*'tK\ K\ (M2-iV2-l)2 + 4M2

und die Phasenverschiebung

tge

2 M
_

1 2M +

also, wenn
2M

« artg M2 —JV2-1

e x—cpx. (28)

Diese Phasenverschiebung würde sich allerdings nur bei stehenden
Wellen beobachten lassen.
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8. Die Grenzfälle der Reflexion und die Gebiete zwischen den beiden
Grenzfällen und jenseits derselben.

Es ist bekannt, dass ein Grenzfall eintritt, wenn der
eintretende Strahl um einen rechten Winkel abgelenkt wird. Wenn
der Strahl in einen Halbraum eindringt und es gilt die Bedingung,
dass aus dem Unendlichen keine Energie einströmt, dann hat man
von diesem Winkel ab totale Reflexion. Tritt aber der Strahl in
einen begrenzten Körper, hier in eine planparallele Platte, ein,
so braucht der Grenzfall keine totale Reflexion zu bedeuten.

8 a. Der erste Grenzfall tritt ein, wenn

n n a f a -i • a wl
9? 0, <Pd TT, ß -V °> a w7 > sm fl —^.

2 pd a
wd

Es wird dann nach Formel (27), wie man sieht, wenn man mit
sin4 99 sin4 2 cpd durchmultipliziert und beachtet, dass

sin 2 cpd \ 2 wl œ \ 2 wl „11 ¦* smfl—— =——— sin fl
sin 99 \pbwx sin 99/ pbwx

<t>—>-0 <p—>-0

die Durchlässigkeit

D Qx Wx 1

Q pb cos2 2 cv cos fl

Es tritt also keine totale Reflexion im eigentlichen Sinne ein.

8 b. Das Zwischengebiet zwischen dem ersten und zweiten Grenzfall.

Jenseits der totalen Reflexion der Dilatations - (Longitudinal) -

wellen, aber noch vor der totalen Reflexion der Rotations-(Trans-
versal)wellen sind die folgenden Umformungen in der komplexen
Amplitude Q3 und daraus folgend in der Durchlässigkeit D zu
beachten.

Es ist zu setzen:

statt ß: ißV> i ein<Pd_[
w0 £0f „,<D sin & Y"^L s{n (pd

wd
a

wx

cp: icpM ipßWb, wo cos icpM £of ç>(1)

sin i 99(1) % Sin 99(1)

^(1)=l/l sinfl\2_ 1

wx wl
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Es ist dann in M und N zu setzen:

x -n -nn, Q wl sin 2 fl cos2 299« „statt F: F<D " \ -^ ; G unverändert
Qi w, (gin 99W Sin 2 99 ö

Sin cp^is>

statt cos 99: C£of 99(1), 99<n òp I*_

und damit bleibt die Form der Durchlässigkeitsfunktion im
übrigen erhalten.

8 c. Der zweite Grenzfall der totalen Beflexion der Botationswellen.

Der zweite Grenzfall tritt ein, wenn die Rotationswelle um
einen rechten Winkel abgelenkt wird, also wenn

n 1
<Pr ir d 0, xp 0 a

2 wr

wird. Es erscheint dann in der Durchlässigkeitsformel in G der
Quotient

sin 2 cv 2 t<v ô 2 wr
sin ^ sin p d ô pd

und im übrigen bleibt auch dann wieder die Durchlässigkeitsformel

(27) erhalten.

8d. Das Gebiet jenseits der Grenzfälle.

Zu den Beziehungen von (8a) treten noch die ganz entsprechenden
für die Grösse «5 hinzu, nämlich:

statt Ô: i<5<» i @m gj_ wo CCof cpW sin fl -^L.

statt y> : i xp^ ip <5(1) ò wo cos i xp'-1'' £o[ xp^\ sin i y>(1) i (Sin ¦y>(1)

statt sin 99,: <&>f çr»
^ //sinfl\2_ 1

statt cos ç>r : i Sin ç^ J/ \ % / w\

Es tritt dann in den Bezeichnungen (22) nur die folgende
Änderung ein:

statt
sin 2 9V

_
Sin 2 cpW

sin y» Sin y(1)

also statt G: G» AJÌsin2l? @ln 2 ^
px «?* Sin xpw

statt Gcosxp: 67« Sof y(1>
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und im übrigen bleibt die Formel der Durchlässigkeitsfunktion
erhalten.

Die hier erhaltenen Ergebnisse, insbesondere die
Durchlässigkeitsformel (27) sind der gleichzeitig in dieser Zeitschrift
erscheinenden Arbeit von Walti zugrunde gelegt, mathematisch
diskutiert und mit den Messungen verglichen. Die einfache
Darstellung der Durchlässigkeit mit Hilfe der übersichtlichen
Ausdrücke M und N in (22) verdanke ich Herrn V. Bargmann.

Wie man aus der Experimentalarbeit sieht, zeigen die
Messungen im allgemeinen sehr gute Übereinstimmung, nur im
Grenzgebiet grosser Dicken und grosser Einfallswinkel kleine
systematische Abweichungen.

Es ist offenbar zu bedenken, dass die Voraussetzungen ebener
Wellenzüge, Abwesenheit innerer Reibung, eindeutiger Beziehung
zwischen Schallintensität und Beugung der Lichtwellen und
Ersetzung der planparallelen durch eine schwach keilförmige Platte,
kleine systematische Abweichungen hineinbringen können.
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