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Versuch einer relativistischen Fassung des Kausalitätsprinzips
(dritte Mitteilung)

von W. Seherrer, Bern.

(19. XI. 37.)

I. Vorbemerkungen.

In der ersten Mitteilung1) habe ich die Grundzüge einer
Wellenmechanik im vierdimensionalen Zeitraum skiziert. In der
zweiten Mitteilung2) bin ich dazu übergegangen, die dieser
Wellenmechanik korrespondierende Weltpunktdynamik zu entwickeln.
Dabei wurde gezeigt, dass man aus dem vierdimensionalen Potential,

welches die Grundlösung der Gleichung 0 — 0 bildet, durch
einen wohl sinngemässen — wenn auch vielleicht etwas hart
anmutenden — Grenzübergang das retardierte Coulombpotential
gewinnen kann. Es ist wohl zu beachten, dass dieses Verfahren
in einer Beziehung eine starke Abweichung von den in der ersten
Mitteilung angegebenen Grundsätzen darstellt. Um dauernd ein
Coulombpotential zur Verfügung zu haben, muss man auch voraussetzen,

dass das Teilchen dauernd existiert. Es muss ihm also
in einem gewissen Umfange eine Trägheit zugeschrieben werden,
welcher die wirkenden Kräfte nichts anzuhaben vermögen. Diesen
schwerwiegenden Kompromiss halte ich aber vorläufig aus heuristischen

Gründen für notwendig, denn nur so erhält man einen
kontinuierlichen Anschluss an die klassische Dynamik und ist damit
in der Lage, die gewohnten Konstanten zu übernehmen. Der
Kompromiss kann aber je nach Bedarf aufgehoben werden, indem
man an Stelle der Weltlinien der Kerne Punkte treten lässt und
das Coulombpotential durch ein vierdimensionales ersetzt.

In dieser dritten Mitteilung soll deshalb die Weltpunktdynamik

unabhängig von der speziellen Natur des Potentials
ausgebaut werden. Die Analyse hat gezeigt, dass es vor allem
notwendig ist, den Ausfall des Vektorpotentials zu kompensieren.
Als geeignetes Mittel dazu erweist sich die Einführung der Zahl
der Wirkungspunkte auf den Weltlinien der Elektronen als Funktion

der Bogenlänge. Es ist eben zu beachten, dass diese Welt-

») Helvetica Physica Acta, Bd. 10, Heft 2, 1937.
2) Helvetica Physica Acta, Bd. 10, Heft 5, 1937.
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linien in der der vierdimensionalen Wellenmechanik korrespondierenden

Dynamik beibehalten werden müssen. Indem wir also
irgendwo auf der Elektronenbahn einen Nullpunkt für die Messung
der Länge und die Zählung der Teilchen wählen, führen wir
folgende Bezeichnungen ein3) :

s Bogenlänge der Elektronenbahn
er Zahl der Wirkungspunkte

lineare Wirkungsdichte (1)
ds

Bei der Aufstellung der dynamischen Gleichungen lassen wir
uns leiten durch folgende Ausdrücke für die Trägheitskraft &t und
die Feldkraft Uf:

ds V ds

®f= — ë grad 0. (2)
Hierbei bedeutet

9i (xx, x2, x3, V-l et) (3)

den Ortsvektor des Elektrons mit der Ladung ê.

Unsere Aufgabe besteht nun darin, die Konstanten mc2 und ê

durch variable Grössen zu ersetzen entsprechend der variablen
Belegungsdichte da/ds. Das Potential 0 braucht nicht explizite
verändert zu werden4). Die in den nächsten Abschnitten
vorzunehmende Berechnung soll so gestaltet werden, dass sie
unabhängig von meinen früheren Mitteilungen verstanden werden kann.
Ich erwähne, hier noch die wichtigsten Ergebnisse der
Untersuchung :

1. Die zu entwickelnde Dynamik gehorcht einem Hamilton'-
schen Prinzip.

2. Die Quantisierung der Wirkung gibt in erster Näherung
die Bohr'sehen und in zweiter Näherung die Sommerfeld'schen
Terme, falls man 0 durch das Coulombpotential ersetzt.

II. Die dynamischen Gleichungen.

Würden wir in (2) &t fâf setzen, so ergäbe sich ein
Widerspruch, da s die Bogenlänge darstellt. Diesen Widerspruch kann
man vermeiden, indem man &f eine Zusatzkraft beifügt. Den

3) In Abänderung der in der zweiten Mitteilung verwendeten Bezeichnung,
wo s als Parameter der Kernbahn erklärt war.

4) Der Einfluss einer variablen Kernbahnbelegung tritt erst in Erscheinung
bei der expliziten Darstellung des Gradienten.
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Ausdruck für die so sich ergebende Totalkraft findet man in
meiner zweiten Mitteilung in den Formeln (24') und (25'), die für
variable Belegung der Quellinie gemäss (22) zu modifizieren sind5).
Führt man die Bahnberechnung gestützt auf (25') durch, so erhält
man auch in zweiter Näherung Übereinstimmung mit der Sommer -

feld'schen Lösung. Doch ergibt sich als unbefriedigender Nebeneffekt

eine leise Variation des Drehimpulses6). Dies zur Illustration
dafür, wie geringe Differenzen auf dem Spiel stehen.

Wir machen jetzt die anschaulich plausible Annahme, dass
sowohl die Massenwirkung als auch die Ladungswirkung proportional

sei zu dajds, d.h. also zur Zahl der Wirkungspunkte pro
Längeneinheit. Wir ersetzen daher mc2 und ë durch die Grössen
mc2 K da/ds und ë K da/ds, wo K so gewählt werden muss, dass
K dajds eine reine Zahl ergibt. Die Dimension von K stellen
wir leicht fest, da a eine Anzahl ist. Es ergeben sich so die
Äquivalenzen

da da hv0

ds cdt hc

c

mc
h

Also gilt:
h da

re;ine Zahl.
mc ds

Die Grösse h/mc ist somit das gesuchte K.
Auf die Grössen mc2 und ë muss demnach folgende Substitution

ausgeübt werden
da

hc
ds

hë da
(5)

me ds

und an Stelle von (2) erhält man:

d f, da doK

ds \ ds ds
ëh da

— — grad 0
mc ds

(6)

5) Dabei ist Anmerkung 3 zu beachten.
6) Eine Aufklärung dieser Verhältnisse erhalten wir am Schluss von

Abschnitt V.
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Jetzt kann man S?« und $/ einander gleich setzen. An Stelle der
aus (2) resultierenden Überbestimmung erhält man nun die
Möglichkeit, die neu eingeführte Funktion a=a(s) zu bestimmen.
Indem wir auf beiden Seiten durch c da/ds dividieren und dQi/ds
durch da/ds. d9C/da ersetzen, gelangen wir zu der Gleichung

d_
da

da\2 d%\
dsi da I

— h
mc

grad 0. (7)

Um den Parameter s vollends zu eliminieren, müssen wir den
Vorzeichen der auftretenden Skalare Rechnung tragen. Es sei A
irgend ein reeller, von Null verschiedener Skalar. Dann wollen
wir unter s g (A) entweder + 1 oder — 1 verstehen, je nachdem A
positiv oder negativ ist. In diesem Sinne setzen wir

sg

d%\2
ST) v

da\2— - m-
ds

if
co*

Nun erhalten wir
da
ds

7]' da

und damit an Stelle von (7)

d

da rfh
d% d%

da da

Da nun aber aus (8) und (9) folgt

d%Y

grad
hë

mc'
0

sg da }

empfiehlt es sich, statt (10) zu schreiben

d

da
rjh d%

da
d^
da

— grad
ëh

rj come'
0

(8)

(9)

(10)

(11)

(12)

Von nun an wollen wir die Ableitung nach a auch mit einem Punkt
bezeichnen. Dann ist

n -, j /come ,—

co \ rjh
(13)

das kinetische Potential zu (12). Der Faktor im Logarithmus ist
so gewählt, dass der Numerus als dimensionslose positive Grösse
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angesehen werden darf. Wir können dann die Gleichungen (12)
als Lagrange'sehe Gleichungen auffassen:

—(da \

' dL\
KdxJ

dL
dxi

0

L JYL
CO

hLg
/come

\ nh l/9r2)-
ëh

rj come2
0

(14)

III. Die Hamilton'sche Funktion.

Wir ermitteln jetzt einen Impulsvektor Sp. Sein Vorbild muss
offenbar der Vektor

d%
mc

ds

aus (2) sein. Er ist gemäss (5) zu ersetzen durch

da d ÎÏh
ds ds

Diesen Vektor wollen wir noch mit einer Einheit multiplizieren
derart, dass sein Quadrat positiv ausfällt. Unter Berücksichtigung
von (8) haben wir also zu setzen

v
h da dÇ(

rjco ds ds

Die Elimination von s gemäss (9) ergibt dann

çn -2- h<X-2 ¦ 9C

In Übereinstimmung mit (14) gilt also

ÖL
SP

dx,
Quadrierung von (16) ergibt

Eingesetzt in (18) :

Çp2=^^2£-2,
ft)2

co

(15)

(16)

(17)

(18)

(19)
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Dafür können wir auch schreiben

d$t n
¦ —- h

da à Pi
W
mc

(20)

Wiederum darf infolge unserer Wahl von SP der Ausdruck im
Logarithmus als dimensionslose positive Grösse angesehen werden.

Setzt man andererseits (16) in (12) ein, so folgt:

dSp

da
h

rj co \d Xi \mc
ëh

0 (21)

Die Gleichungen (20) und (21) können offenbar zusammen
aufgefasst werden als ein Hamilton'sches System:

(22)

Wir vergleichen noch die Hamiltonfunktion H mit der Lagrangefunktion

L. Die Einführung von (18) in (22) ergibt mit Rücksicht
auf (14) unmittelbar*) :

H =-L (23)

Schliesslich führen wir noch die Wirkungsfunktion ein:

dxi dH dp dH
da dp da dx

vy ëh
H h Lg

\ mc rj come

S= / Lda.
o()

(24)

Die Variation von (24) ergibt in bekannter Weise auf Grund von (14)

¦ft grad g. (25)

Wir weisen noch auf folgenden Punkt hin. Bei Durchlaufung einer
wirklichen Bahn ist H konstant, also gilt

11 !— (26)

wo w eine reine Zahl ist. Dann folgt wegen (24) und (23)

H Y*-hw
CO

S — h IV (er — <T0)

co
(27)

*) Diese Beziehung scheint mir bemerkenswert. Bekanntlich ist sie in der
klassischen Dynamik nicht erfüllt.
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Die entwickelte Dynamik passt sich also dem ursprünglichen
geometrischen Bild gut an, insofern der numerische Wert der
Wirkungsfunktion der Zahl der Wirkungspunkte a — cr0

proportional ist.
Die Einsetzung von (25) in (26) ergibt schliesslich die

Hamilton'sehe partielle Differentialgleichung:

H(X;gradS)=^-hw. (28)
co

Es mag noch darauf hingewiesen werden, dass Gleichung (18)
offenbar ein invariantes Analogon zu der de Broglie'sehen Relation

mï=c2, (29)

zwischen der Teilchengeschwindigkeit v und der Wellengeschwindigkeit
u darstellt. Dass in (18) auch der Wellenoperator angedeutet

ist, sieht man, wenn man abgekürzt symbolisch schreibt

p=JLh.± JLh*SL. (30)
co x co d x '

IV. Invariante Quantisierung.

Zum Zwecke der Quantisierung spezialisieren wir 0 auf das

Coulombpotential. Da wir den Kern als unendlich schwer voraussetzen

wollen, handelt es sich darum, den Ausdruck

0 ^- (31)
r

in Analogie zu (5) zu transformieren. Bezeichnen wir Bogenlänge
und Wirkungszahl der Kernbahn mit s und a, so haben wir offenbar
(31) zu ersetzen durch

0.-11 _A_ Eg (82)
r mc ds

Da ein unendlich schwerer Kern keine Rückwirkung erleidet,
muss der hinzugetretene Faktor eine Konstante sein, deren Grundeinheit

natürlich wieder das in (8) eingeführte co ist. Wir setzen
direkt

^4^^ co. (33)
mc ds

Darin steckt die von vorneherein keineswegs erlaubte Annahme,
si
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dass der Betrag der fraglichen Konstanten 1 ist. Doch hat man
immer die Möglichkeit, einen Fehler im Betrag durch passende
Wahl von Z zu kompensieren. Wir setzen also unbedenklich

^ Zeco
0 cp. (34)

r
Weiter soll nun der Geschwindigkeitsvektor d9i/ds als zeitartig
angenommen werden. Gemäss (8) hat man demnach die Wahl

rj i (35)

zu treffen und erhält so an Stelle von (22) die Hamiltonfunktion

ih fVW\ ihë ioa\ff- Lg -^- -cp (36)
co \ mc I come*

oder an Stelle von (26) die „Energiegleichung"

lJVÜ\__£l 1 2^ w- (37)
\ mc I mc*

Nun muss infolge der getroffenen Vorzeichenbestimmungen das

Argument des Logarithmus bei kleinen Geschwindigkeiten in der
Nähe von 1 liegen. Wir entwickeln also

\ mc I \ mc

und erhalten die Näherungsgleichung

VW 1
ë

^ — 1 w +

/V-Pi __ 1

mc

mc mc2
oder

Çp2 m2c2 (l+W+ —^ S. (38)
\ mc2 ]

Gestützt auf (25) und nach Einführung ebener Polarkoordinaten
folgt

dS\2 1 fdS\2 1 /dS\2 2 ,/ ë \2
m2c2 1 + w H -cp (39)

dr I r2 \dtp J c2\ dt \ mc

Entsprechend den Vorschriften der klassischen Quantendynamik
haben wir zu setzen

à S kh ¦
(40)

dtp 2jz y '
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Als weiteres Separationsintegral fügen wir hinzu

dS
dt

(41)

wo u eine reelle Zahl ist. Die Verwendung des Faktors i ist
notwendig, falls für die in Betracht kommenden Grössenordnungen
'•P2 im Sinne unserer früheren Festsetzungen positiv ausfallen soll.

Führen wir schliesslich noch die negative Elektronenladung

ë — e (42)

sowie die Feinstrukturkonstante

_
2ne2

hc

ein, so ergibt die Berechnung des Radialimpulses

(48)

"S ^+»»+-$. (44)

mit
A — [u2 — (1 + w)2] m2c

h
B — (1 + w) mc ¦ • Z

2

h2

àTn2
C= --YLY(k2-Z2co2c.2)

(45)

Für die Auswertung der Quantenbedingung

f dS dr= (n~k)h (46)
dr

haben wir offenbar eine Konstante zuviel. Darin kommt das
Provisorische der Beschränkung auf nicht abbrechende
eindimensionale Ladungsverteilungen zum Ausdruck.

Bei der nun zu treffenden Auswahl kommen wohl in erster
Linie folgende Fälle in Betracht:

I. u=l; w + 0. (47)

Durch (46) sollen also die Werte der invarianten Grösse w
bestimmt werden. In diesem Falle wird man demnach von einer
„invarianten Quantisierung" sprechen können.

II. uJfl; u>=0. (48)

Durch (46) sollen die Werte der relativen Grösse u bestimmt
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werden. Man wird also passend von einer „relativen
Quantisierung" sprechen.

Die weitere Berechnung kann man direkt aus der Literatur
entnehmen7). Dabei erweist sich die Festsetzung

co2 1 (49)

als zulässig. Nach (8) bedeutet dies, dass da/ds als reelle lineare
Dichte aufgefasst werden kann. Der Fall I (invariante
Quantisierung) liefert genau die Sommerfeld'sche Termformel

1
1 + w-

Yi + (n-k+\/W^ZW)2
Fall II dagegen nicht.

Die Verhältnisse bei der relativistischen Wellengleichung
liegen gerade umgekehrt. Dort steht das Potential auf der linken
Seite als ein mit dem Impuls verknüpfter Vektor und deshalb
liefert die „relative Quantisierung" die richtigen Terme. Bei uns
hingegen steht das Potential rechts als skalare Invariante.

V. Beziehung zum elektromagnetischen Feld.

Um die gefundenen dynamischen Gleichungen mit den
Bewegungsgleichungen eines Teilchens im elektromagnetischen Feld
zu vergleichen, gehen wir aus von der Gleichung (7) :

d

da
da \2 dlS.

ds da
— h grad 0 (7)

und eliminieren den Parameter er. Führen wir an Stelle des Symbols

d/ds den üblichen Strich ein, so erhalten wir nach leichter
Umformung :

mc2 9£" =—mc2—— 9£' — ê grade?. (51)
a

Auf Grund von (9), (14), (23) und (26) folgt weiter

mc2 0'. (52)
ct' rj2

Diesen Wert setzen wir unter Beachtung von (8) in (51) ein und
gelangen so zu

mc %" - ë%'~2 (grad 0 ¦ 9t'2 - 0' • 9.'). (53)

') Siehe etwa Sommerfeld: Atombau und Spektrallinien.
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Bringen wir hier schliesslich die Normierung auf zeitartige
Geschwindigkeit

r2 - 1 (54)

zur Geltung, so folgt

mc29T ë (grad 0 ¦ %'2 - 0' ¦ 9C) (55)

wobei (54) innerhalb der Klammer absichtlich nicht eingesetzt
worden ist. Dann kann nämlich Gleichung (55) folgendermassen
geschrieben werden:

mc2 Xi - ë Gik

d0
xk

d0
Gik

dxi
xk

dxk
X-i

(56)

Die formale Analogie zur bekannten Bewegungsgleichung eines
Teilchens im elektromagnetischen Feld liegt auf der Hand.
Dieselbe kann ja bei der von uns benutzten orthogonalen Schreibweise

dargestellt werden in der Form

iTbC X$ — c x £]ç Xjç

d cpk d cpiFt
Cl Xfc

(57)

Sachlich sind natürlich die „Feldstärken" Gik von den Fik sehr
verschieden. Aus unseren Ausführungen geht bis jetzt nur hervor,
dass die Gleichungen (56) beim Einelektronenproblem die
Gleichungen (57) näherungsweise ersetzen können. Ob es möglich
sein wird, mit ihrer Hilfe die magnetischen Wirkungen eines strom-
durchflossenen Leiters darzustellen, ist also eine durchaus offene
Frage. Dies ist vermutlich dann nicht der Fall, wenn man sie in
vollkommener Analogie zu den Gleichungen (57) auswerten wollte.
In erster Linie wird man wohl versuchen müssen, auf Grund von
plausibeln Vorstellungen über die wirkliche Ladungsverteilung
einen geeigneten Ausdruck für 0 zu erhalten.

Nun sind wir auch in der Lage, die zu Beginn von Abschnitt II
kurz geschilderten Verhältnisse aufzuklären. Die daselbst
erwähnte und in Formel (24') der zweiten Mitteilung angegebene
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Totalkraft ist nämlich identisch mit der rechten Seite von (53).
Diese rechte Seite kann ja geschrieben werden als8)

ß -ëgrad 0 + ë0'%'-2-<X'. (58)

Die Zusatzkraft ist gerade diejenige Kraft, welche notwendig ist,
um in widerspruchsfreier Weise den Ansatz

mc22t" U

und die daraus folgende Gleichung

0= Ü2C
zu erfüllen.

Für die resultierende Dynamik ist es also vollkommen gleichgültig,

ob man das Ausgangssystem (2) im Sinne von (58) korrigiert,

oder ob man das System (2) gestützt auf die Vorstellung
der variablen Belegungsdichte durch (6) ersetzt. Trotzdem ist
natürlich das zweite Verfahren vorzuziehen, da es für die einzelnen
Operationen eine inhaltliche Deutung liefert und zwangsläufig
auf den richtigen Impuls führt. Gerade bei der Wahl des Impulses
lässt einen das erste Verfahren im Stich, da ja kein ersichtlicher
Grund besteht, vom Vektor mc 2t' abzugehen.

VI. Schlussbemerkungen.

In den Vorbemerkungen wurde schon erwähnt, dass die in
Abschnitt II und III entwickelte Dynamik unabhängig ist von
der Natur des Potentials 0. Es ist also möglich, Versuche mit
dem in den beiden ersten Mitteilungen in Erwägung gezogenen
Potential k/B2 anzustellen. Die Aussichten sind jetzt insofern
günstiger, als das Auftreten des logarithmischen Gliedes in (22)
gleichbedeutend ist mit der Gleichung

¦s/Cß2 mcEW~ v2mc2 (59)

Die der Gleichung (38) entsprechende Näherung

cp2 m2c2 /i + w i &\ (60)
\ rj2 mc2 l

enthält also gegenüber der in der ersten Mitteilung in Aussicht
genommenen Gleichung (5) ein Zusatzglied.

8) Beachte wiederum Anmerkung 3. Die Zusatzkraft ist unabhängig von der
Parameterwahl.



Relativistische Fassung des Kausalitätsprinzips. 487

Falls man übrigens an der Potentialgleichung 0 0 konsequent

festhalten will, ergeben sich für mehrere Zentren die weiteren
Lösungen

0 2 d Lg Ri

o S ct
(61)

wo mit Bi die Weltdistanz vom iUn Zentrum (Quellpunkt) zum
Aufpunkt bezeichnet ist. Ihre Verwendbarkeit hängt unter
anderem natürlich davon ab, ob die Eindeutigkeitsfrage in
befriedigender Weise beantwortet werden kann.

Zum Schluss möge noch die zentrale Frage nach der Rolle des
Zeitablaufs erörtert werden. Die Erfahrungen an lebendigen
Organismen zwingen uns mit sozusagen praktisch vollkommener Sicherheit,

eine Einsinnigkeit des Zeitablaufs von der Vergangenheit in
die Zukunft anzunehmen. Im Gegensatz dazu bieten alle bis jetzt
aufgestellten Theorien über die leblose Materie nicht die geringste
Handhabe zu einer derartigen Auszeichnung des Zeitablaufs.
Vielmehr bedeutet der Übergang von der klassischen zur relativistischen

Dynamik eine erhöhte Betonung der Symmetrie in Bezug auf
Vergangenheit und Zukunft. Wenn wir in der zweiten Mitteilung
zwecks Gewinnung des retardierten Coulombpotentials den
Zukunftskegel ausgezeichnet haben, so war das eine Angelegenheit
der freien Sinngebung. Bei einem unendlich schweren Kern ist
die Retardierung ohne Einfluss. Man hätte ebensogut von dem
„vordatierten" Potential ausgehen können, resp. von der Summe
beider Potentiale. Beim Übergang von der Darstellung der Materie
durch Weltlinien zur Darstellung durch Weltpunkte wird die

ganze Frage noch drängender, denn eine der Einsinnigkeit des
Zeitablaufs entsprechende Formulierung des dynamischen
Geschehens würde in gewissem Sinne eine Unterdrückung der Gegen-
warts- und Vergangenheitsgebiete, also des grösseren Teils aller
in der Weltmetrik vorgebildeten Möglichkeiten, erfordern.

Man sieht sich daher vor folgende Alternative gestellt:
entweder 1. konsequente Berücksichtigung der Einsinnigkeit des

Zeitablaufs,
oder 2. vollkommen symmetrische Behandlung des vier¬

dimensionalen Zeitraums.

Die Verfolgung der ersten Möglichkeit begegnet aber gleichzeitig
zwei ernsthaften Schwierigkeiten: Weder die bis jetzt in der Physik

bewährten Grundsätze noch ihre formalmathematische
Verfassung lassen eine Einsinnigkeit des Zeitablaufs erkennen. Sie
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ernsthaft erörtern wäre möglicherweise gleichbedeutend mit einer
Abkehr von den Grundsätzen der Weltmetrik, die Zeit musste ja
in entscheidender Weise vor dem Raum ausgezeichnet sein.

Bei der Verfolgung der zweiten Möglichkeit liegen die Dinge
gerade umgekehrt. Die formal mathematische Verfassung der
jetzigen Theorien zwingt uns beinahe, die Konsequenzen in dieser
Richtung zum äussersten zu treiben. Man kann deshalb ganz ernsthaft

die Ansicht vertreten, dass auch für diejenigen, welche die
Einsinnigkeit des Zeitablaufs für unumgänglich halten, die
konsequente Verfolgung der zweiten Möglichkeit den einfachsten Weg
darstellt, um „modo tollendo ponens" eine Entscheidung zu
erzwingen.

Ich möchte daher noch kurz erläutern, dass die Annahme
der vollkommenen raumzeitlichen Symmetrie keineswegs zu
Absurditäten zu führen braucht. Wir denken uns den allerein-
fachsten Fall, indem wir die Hypothese aufstellen, dass genau im
Weltpunkt mit den Koordinaten

(x,y,z, ^/YY\ct) (0,0,0,0)

eine Wirkung auftrete. Zu diesem Zentrum bestimmen wir ein
über den ganzen vierdimensionalen Zeitraum zu erstreckendes
Potential 0 und hierauf eine ebenfalls über dasselbe Gebiet zu
erstreckende Wellenfunktion y>. Nun kann man der Wellen-
funktion ip in Zukunft, Gegenwart und Vergangenheit folgende
anschauliche Deutung geben:

a) ip im Zukunftskegel bedeutet, dass auch später Wirkungen
anzutreffen sein werden.

b) ip im Gegenwärtsgebiet bedeutet, dass jede Wirkung mit
Ausdehnung verbunden ist. Hier müssten also stark abklingende
Lösungen gesucht werden, wie sie schon in der Schrödinger'sehen
Theorie zu finden sind.

c) ip im Vergangenheitskegel bedeutet, dass schon früher
Wirkungen vorhanden waren.

Gerade die wahrscheinlichkeitstheoretische Auffassung
gestattet uns, absurde Vorstellungen zu vermeiden wie etwa die,
dass die Gegenwart auf die Vergangenheit zurück wirke**).

Punkt b) lässt sich übrigens auch dahin formulieren, dass

Wirkungen nie vereinzelt auftreten. Bei dieser Interpretation
bietet sich vielleicht auch eine Möglichkeit, die Rolle der mathe-

**) Übrigens scheint mir rein begrifflieh betrachtet das, was in diesen Dingen
als „vernünftig" oder „absurd" anzusehen ist, keineswegs auf der Hand zu liegen.
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matischen Singularitäten in der Physik zu verstehen9). Die
Annahme einer vereinzelten in einem ganz bestimmten
Weltpunkt vorhandenen Wirkung hat offenbar das Auftreten einer
mathematischen Singularität zur Folge und hängt natürlich mit
der notgedrungen schematisierenden Tätigkeit unseres Verstandes
zusammen. Die Weltpunkte sind gewissermassen die Stellen,
in denen das Schema des idealisierten Koordinatenraumes
überspannt wird.

9) Vgl. dazu Einstein, A.: Vier Vorlesungen über Relativitätstheorie
(Vieweg, Braunschweig 1922), S. 33, Anmerkung 1).
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