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Versuch einer relativistischen Fassung des Kausalitdtsprinzips
(dritte Mitteilung)
von W. Scherrer, Bern.
(19. XI. 37.)

I. Vorbemerkungen.

In der ersten Mitteilung!) habe ich die Grundziige einer
Wellenmechanik im vierdimensionalen Zeitraum skiziert, In der
zwelten Mitteilung?) bin ich dazu ibergegangen, die dieser Wellen-
mechanik korrespondierende Weltpunktdynamik zu entwickeln.
Dabel wurde gezeigt, dass man aus dem vierdimensionalen Poten-
tial, welches die Grundlésung der Gleichung T]@® = 0 bildet, durch
einen wohl sinngemé#ssen — wenn auch vielleicht etwas hart an-
mutenden — Grenziibergang das retardierte Coulombpotential
gewinnen kann. Es ist wohl zu beachten, dass dieses Verfahren
in einer Beziehung eine starke Abweichung von den in der ersten
Mitteilung angegebenen Grundsitzen darstellt. Um dauernd ein
Coulombpotential zur Verfiigung zu haben, muss man auch voraus-
setzen, dass das Teilchen dauernd existiert. Es muss ihm also
In einem gewissen Umfange eine Triagheit zugeschrieben werden,
welcher die wirkenden Krifte nichts anzuhaben vermégen. Diesen
schwerwiegenden Kompromiss halte ich aber vorlaufig aus heuristi-
schen Griinden fiir notwendig, denn nur so erhdlt man einen
kontinuierlichen Anschluss an die klassische Dynamik und ist damit
m der Lage, die gewohnten Konstanten zu tibernehmen. Der
Kompromiss kann aber je nach Bedarf aufgehoben werden, indem
man an Stelle der Weltlinien der Kerne Punkte treten ldsst und
~ das Coulombpotential durch ein vierdimensionales ersetzt.

In dieser dritten Mitteilung soll deshalb die Weltpunkt-
dynamik unabhéngig von der speziellen Natur des Potentials
ausgebaut werden. Die Analyse hat gezeigt, dass es vor allem
notwendig 1st, den Ausfall des Vektorpotentials zu kompensieren.
Als geeignetes Mittel dazu erweist sich die Einfiihrung der Zahl
der Wirkungspunkte auf den Weltlinien der Elektronen als Funk-
tion der Bogenlinge. Es ist eben zu beachten, dass diese Welt-

1) Helvetica Physica Acta, Bd. 10, Heft 2, 1937.
?) Helvetica Physica Acta, Bd. 10, Heft 5, 1937.
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linien in der der vierdimensionalen Wellenmechanik korrespon-
dierenden Dynamik beibehalten werden miissen. Indem wir also
irgendwo auf der Elektronenbahn emnen Nullpunkt fir die Messung
der Lénge und die Z&hlung der Teilchen wéhlen, fithren wir fol-
gende Bezeichnungen ein?):

s = Bogenldnge der Elektronenbahn
o = Zahl der Wirkungspunkte
% — lineare Wirkungsdichte (1)
Bei der Aufstellung der dynamischen Gleichungen lassen wir
uns leiten durch folgende Ausdriicke fiir die Tragheitskraft K, und
die Feldkraft R;:

K= ?ds_ (mcz%%—>
R;=—¢ grad D. 2)
Hierber bedeutet
X = (21, Ta, 73, V-1 ¢l) (3)

den Ortsvektor des Elektrons mit der Ladung é.

Unsere Aufgabe besteht nun darin, die Konstanten mc¢? und é
durch wvariable Grossen zu ersetzen entsprechend der variablen
Belegungsdichte do/ds. Das Potential @ braucht nicht explizite
verdndert zu werden?). Die in den n#chsten Abschnitten vor-
zunehmende Berechnung soll so gestaltet werden, dass sie unab-
héngig von meinen fritheren Mitteilungen verstanden werden kann.
Ich erwéhne, hier noch die wichtigsten Ergebnisse der Unter-
suchung:

1. Die zu entwickelnde Dynamik gehorcht einem Hamilton’-
schen Prinzip.

2. Die Quantisierung der Wirkung gibt in erster Naherung
die Bohr’schen und in zweiter Niherung die Sommerfeld’schen
Terme, falls man @ durch das Coulombpotential ersetzt.

II. Die dynamischen Gleichungen.

Wiirden wir in (2) &, = K, setzen, so ergibe sich ein Wider-
spruch, da s die Bogenlinge darstellt. Diesen Widerspruch kann
man vermelden, indem man RK; eine Zusatzkraft beifiigt. Den

8) In Abénderung der in der zweiten Mitteilung verwendeten Bezeichnung,
wo s als Parameter der Kernbahn erklart war.

) Der Einfluss einer variablen Kernbahnbelegung tritt erst in Erscheinung
bei der expliziten Darstellung des Gradienten.
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Ausdruck fir die so sich ergebende Totalkraft findet man in
melner zweiten Mitteilung in den Formeln (24') und (25"), die fiir
variable Belegung der Quellinie gemiiss (22) zu modifizieren sind?5).
Fihrt man die Bahnberechnung gestiitzt auf (25’) durch, so erhélt
man auch in zweiter Naherung Ubereinstimmung mit der Sommer-
feld’schen Losung. Doch ergibt sich als unbefriedigender Neben-
effekt eine leise Variation des Drehimpulses®). Dies zur Illustration
dafir, wie geringe Differenzen auf dem Spiel stehen.

Wir machen jetzt die anschaulich plausible Annahme, dass
sowohl die Massenwirkung als auch die Ladungswirkung propor-
tional seil zu do/ds, d.h. also zur Zahl der Wirkungspunkte pro
Langeneinheit. Wir ersetzen daher m¢® und é durch die Grissen
mc® K do/ds und € K do/ds, wo K so gewdhlt werden muss, dass
K do/ds eine reine Zahl ergibt. Die Dimension von K stellen
wir leicht fest, da o eine Anzahl ist. Es ergeben sich so die
Aquivalenzen

do do vy
ds  edt ~ The
Vo me
e “h
Also gilt:
L ﬂ: reine Zahl.
me ds

Die Grosse hjme ist somit das gesuchte K.

Auf die Gréssen mc? und € muss demnach folgende Substi-
tution ausgeiibt werden

me2 —> he %—G—

s

5
. hé do )
B o o e

mcec ds

und an Stelle von (2) erhélt man:

R, — d (hc do d9€)
ds ds ds
eh do (©)
=—__ 7 @
R, o s grad

%) Dabei ist Anmerkung 3 zu beachten.
) Eine Aufklirung dieser Verhiltnisse erhalten wir am Schluss von Ab-
schnitt V.
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Jetzt kann man R; und K; einander gleich setzen. An Stelle der
aus (2) resultierenden Uberbestimmung erhilt man nun die Mog-
lichkeit, die neu eingefiihrte Funktion o = ¢(s) zu bestimmen.
Indem wir auf beiden Seiten durch ¢ do/ds dividieren und d%/ds
durch do/ds. dX/do ersetzen, gelangen wir zu der Gleichung

d do\? d¥)
h —
dc[ (ds) do | hm02

grad @. (7)

Um den Parameter s vollends zu eliminieren, miissen wir den
Vorzeichen der auftretenden Skalare Rechnung tragen. Es sei 4
irgend ein reeller, von Null verschiedener Skalar. Dann wollen
wir unter sg (4) entweder + 1 oder — 1 verstehen, je nachdem 4
positiv oder negativ ist. In diesem Sinne setzen wir

S ﬁz ? s 002 604_‘ 1 J (8)
¢ (ds) B ’ -
Nun erhalten wir
do\? d¥X\2
SN g | B 9
()~ (@) ®
und damit an Stelle von (7)
d [ 5, (d%X\2 d¥X he .
——|n2h(——) +——|=—grad D). 10
do [77 (dcr) do} = (mcz ) 10)
Da nun aber aus (8) und (9) folgt
dX\? n?
—) =t 11
sg(( dc)) w? (11

empfiehlt es sich, statt (10) zu schreiben

d [ nh [d%\"2 dX eh
il PR : - D). 12
da[ w (da) do‘} grad(nwm02 ) 12)

Von nun an wollen wir die Ableitung nach ¢ auch mit einem Punkt
bezeichnen. Dann ist

T—2hlg (‘“:;b V) (13)

das kinetische Potential zu (12). Der Faktor im Logarithmus ist
so gewdhlt, dass der Numerus als dimensionslose positive Grosse
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angesehen werden darf. Wir konnen dann die Gleichungen (12)
als Lagrange’sche Gleichungen auffassen:

d (OL )_ oL _ 0
do \0x, 0 x; o (14)
7 wme ,— é
=— hlg (—— —— e D
k= w L g( nh ]/%2) nwmc?

TIII. Die Hamilton’sche Funktion.

Wir ermitteln jetzt einen Impulsvektor P. Sein Vorbild muss
offenbar der Vektor
dX

R
ds

aus (2) sein. Er ist geméss (5) zu ersetzen durch

do d¥%X
fi .
ds ds

Diesen Vektor wollen wir noch mit einer Einheit multiplizieren
derart, dass sein Quadrat positiv ausfillt. Unter Berticksichtigung
von (8) haben wir also zu setzen

h do d¥%

P= no ds ds La)

Die Elimination von s gemiss (9) ergibt dann

P = % h&-2- X (16)

In Ubereinstimmung mit (14) gilt also

0L
= 17
= (5z) =
Quadrierung von (16) ergibt
P2 — 1 pag-e, (18)
w?
Eingesetzt in (18):
X= L hp-2-P. (19)
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Dafiir konnen wir auch schreiben

aX 7 0 VP2
do :Zh(()p@- (Lg me )) #0)

Wiederum darf infolge unserer Wahl von P der Ausdruck im
Logarithmus als dimensionslose positive Grosse angesehen werden.
Setzt man andererseits (16) in (12) ein, so folgt:

dP h 0 [ ¢eh

—_—= | — ; 21

do 7w (Oxz- (m02 @)) (21)
Die Gleichungen (20) und (21) konnen offenbar zusammen auf-
gefasst werden als ein Hamilton’sches System:

dz, OH _ dp,  OH
do  0p; do O
_ _ (22)
ay2
H="TpLg (\/B )_%ehij
w me nwme

Wir vergleichen noch die Hamiltonfunktion H mit der Lagrange-
funktion L. Die Einfithrung von (18) in (22) ergibt mit Ricksicht
auf (14) unmittelbar®):

H=—1L (23)

Schliesslich fithren wir noch die Wirkungsfunktion ein:

S— [Ldo.
£ o (24)

Die Variation von (24) ergibt in bekannter Weise auf Grund von (14)
P = grad S. (25)

Wir weisen noch auf folgenden Punkt hin. Bei Durchlaufung einer
wirklichen Bahn ist H konstant, also gilt

H=" hw (26)
w
wo w eine reine Zahl ist. Dann folgt wegen (24) und (23)
S=—"Thw(—oa,). (27)
w

*) Diese Beziehung scheint mir bemerkenswert. Bekanntlich ist sie in der
klassischen Dynamik nicht erfiillt.
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Die entwickelte Dynamik passt sich also dem wurspriinglichen
geometrischen Bild gut an, insofern der numerische Wert der
Wirkungsfunktion der Zahl der Wirkungspunkte ¢ — o, pro-
portional 1st. ,

Die Einsetzung von (25) in (26) ergibt schliesslich die Hamal-
ton’sche partielle Differentialgleichung:

H (X; grad 8) = = haw. (28)

w

Es mag noch darauf hingewiesen werden, dass Gleichung (18)
offenbar ein invariantes Analogon zu der de Broglie’schen Relation

uv = 2. (29)

zwischen der Teilchengeschwindigkeit v und der Wellengeschwindig-
keit u darstellt. Dass in (18) auch der Wellenoperator angedeutet
1st, sieht man, wenn man abgekiirzt symbolisch schreibt

p=" 5.1 150 (30)

w & ) ox

IV. Invariante Quantisierung.

Zum Zwecke der Quantisierung spezialisieren wir @ auf das
Coulombpotential. Da wir den Kern als unendlich schwer voraus-
setzen wollen, handelt es sich darum, den Ausdruck

Ze

r

P —

(31)

in Analogie zu (5) zu transformieren. Bezeichnen wir Bogenlinge
und Wirkungszahl der Kernbahn mit s und ¢, so haben wir offenbar
(81) zu ersetzen durch

Ze h do

b — -,
r mec¢ ds

(32)

Da ein unendlich schwerer Kern keine Riickwirkung erleidet,
muss der hinzugetretene Faktor eine Konstante sein, deren Grund-
einheit nattirlich wieder das in (8) eingefiihrte w ist. Wir setzen
direkt
h do
mec ds

= w. (83)

Darin steckt die von vorneherein keineswegs erlaubte Annahme,

31
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dass der Betrag der fraglichen Konstanten 1 ist. Doch hat man

immer die Moglichkeit, einen Fehler im Betrag durch passende

Wahl von Z zu kompensieren. Wir setzen also unbedenklich
Zew

r

D —

= @. (34)

Weiter soll nun der Geschwindigkeitsvektor d¥%/ds als zeitartig
angenommen werden. Gemiss (8) hat man demnach die Wahl

n=1 (35)
zu treffen und erhélt so an Stelle von (22) die Hamiltonfunktion
: — N
H=tlpg(VE) b, (36)
® me wme
oder an Stelle von (26) die ,,Energiegleichung*
— _
Lg(\/cD )— ez Q= w. (37)
me me

Nun muss infolge der getroffenen Vorzeichenbestimmungen das
Argument des Logarithmus bei kleinen Geschwindigkeiten in der
Néhe von 1 liegen. Wir entwickeln also

Lg (‘/7?:) ~ Lg [1 + (‘?/?f - 1)] _ (Yg _. 1) 4.

und erhalten die N#&herungsgleichung

— ;
A —1=w-+ —e—tp
me me?
oder
A2 = moe? (l twt S = gv)d. (38)
me

Gestiitzt auf (25) und nach Einfiihrung ebener Polarkoordinaten
folgt

0S\2 1 /08\% 1/08\2 5 o é 2
Bl (ot (R B (ot g 1+w+ . 39
(0-r)+rz(0w) 02<0t) mc( w mc2(p) (39)
Entsprechend den Vorschriften der klassischen Quantendynamik
haben wir zu setzen

08 kh . ] (40)
oy 2=n
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Als weiteres Separationsintegral fiigen wir hinzu

%Lts—z‘r)m&u (41)

wo u eine reelle Zahl ist. Die Verwendung des Faktors 4 ist not-
wendig, falls fur die in Betracht kommenden Groéssenordnungen
P2 im Sinne unserer fritheren Festsetzungen positiv ausfallen soll.

Fihren wir schliesslich noch die negative Elektronenladung

E=—e (42)
sowle die Feinstrukturkonstante

2 e

- 43
= (43)
ein, so ergibt die Berechnung des Radialimpulses
08 / B C
22 9 2 44
or 1.Al2m+r2 4d)
mit
A=—[u?— (14 w)¥] m2c2
h
B = (1'r'@0)mC‘ﬁ'ZwO€ (45)
) = = (k% — Z2w?a?)
4 n?
Fir die Auswertung der Quantenbedingung
-dsdrzﬁw~Mh (46)
or

haben wir offenbar eine Konstante zuviel. Darin kommt das
Provisorische der Beschrinkung auf nicht abbrechende ein-
dimensionale Ladungsverteilungen zum Ausdruck.

Bei der nun zu treffenden Auswahl kommen wohl in erster
Linie folgende Fille in Betracht:

. u=1; w40, (47)

Durch (46) sollen also die Werte der invarianten Grisse w be-
stimmt werden. In diesem Falle wird man demnach von einer
msinvarianten Quantisierung® sprechen konnen.

II. w+1; w=0. | (48)

Durch (46) sollen die Werte der relativen Grosse u bestimmt
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werden. Man wird also passend von einer ,relativen Quanti-
sierung’’ sprechen.

Die weitere Berechnung kann man direkt aus der Literatur
entnehmen”). Dabel erweist sich die Festsetzung

w? =1 (49)

als zuldssig. Nach (8) bedeutet dies, dass do/ds als reelle lineare
Dichte aufgefasst werden kann. Der Fall I (invariante Quanti-
sierung) liefert genau die Sommerfeld’sche Termformel

1

14+w= ———
1 -
]/ T (n—k++/k*= Z2 22)

Fall II dagegen nicht.

Die Verhaltnisse bei der relativistischen Wellengleichung
liegen gerade umgekehrt. Dort steht das Potential auf der linken
Seite als ein mit dem Impuls verkniipfter Vektor und deshalb
liefert die ,,relative Quantisierung* die richtigen Terme. Bei uns
hingegen steht das Potential rechts als skalare Invariante.

V. Beziehung zum elektromagnetischen Feld.

Um die gefundenen dynamischen Gleichungen mit den Be-
wegungsgleichungen eines Teilchens im elektromagnetischen Feld
zu vergleichen, gehen wir aus von der Gleichung (7):

: _
dﬁ(@)d%}:—higmd@ (7)
do ds mc?

do

und eliminieren den Parameter ¢. Fiithren wir an Stelle des Sym-
bols d/ds den tiblichen Strich ein, so erhalten wir nach leichter
Umformung:

r

me2 X' = — mczg—, X —égrad @, (51)
o

Auf Grund von (9), (14), (23) und (26) folgt weiter

r’

met = — — @', (52)

¢’ 7
Diesen Wert setzen wir unter Beachtung von (8) in (51) ein und
gelangen so zu
meX' = —eX'-2(grad @-X'2— @ - X'). (53)

) Siehe etwa Sommerfeld: Atombau und Spektrallinien.
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Bringen wir hier schliesslich die Normierung auf zeitartige Ge-
schwindigkeit

X'2=—1 (54)
zur Geltung, so folgt

meX'’ = é(grad @- X' — @ - X) (55)
wobel (54) innerhalb der Klammer absichtlich nicht eingesetzt

worden 1st. Dann kann ndmlich Gleichung (55) folgendermassen
geschrieben werden:

me2 ;" = € G 28

G — 0D B f e 0D 5 (56)
0x, 0 xp

Die formale Analogie zur bekannten Bewegungsgleichung eines
Teilchens im elektromagnetischen Feld liegt auf der Hand. Die-
selbe kann ja bei der von uns benutzten orthogonalen Schreib-
weise dargestellt werden in der Form

1

m0258i = éF?,k ‘(BTC’
L (57)

0y g

Sachlich sind natiirlich die ,,Feldstirken* G, von den F; sehr
verschieden. Aus unseren Ausfiihrungen geht bis jetzt nur hervor, -
dass die Gleichungen (56) beim Einelektronenproblem die Glei-
chungen (57) niherungsweise ersetzen konnen. Ob es moglich
sein wird, mit ihrer Hilfe die magnetischen Wirkungen eines strom-
durchflossenen Leiters darzustellen, ist also eine durchaus offene
Frage. Dies ist vermutlich dann micht der Fall, wenn man sie in
vollkommener Analogie zu den Gleichungen (57) auswerten wollte.
In erster Linie wird man wohl versuchen miissen, auf Grund von
plausibeln Vorstellungen iiber die wirkliche Ladungsverteillung
einen geeigneten Ausdruck fiir @ zu erhalten.

Nun sind wir auch in der Lage, die zu Beginn von Abschnitt 11
kurz geschilderten Verhiltnisse aufzukliren. Die daselbst er-
wihnte und in Formel (24") der zweiten Mitteilung angegebene
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Totalkraft 1st nédmlich identisch mit der rechten Seite von (53).
Diese rechte Seite kann ja geschrieben werden als®)

Re=—égrad ® + eP ¥ -2-%'. (58)

Die Zusatzkraft i1st gerade diejenige Kraft, welche notwendig ist,
um In widerspruchsfreier Weise den Ansatz

mcz %II o @
und die daraus folgende Gleichung
0=R%

zu erfiillen.

Fir die resultierende Dynemik ist es also vollkommen gleich-
gtiltig, ob man das Ausgangssystem (2) im Sinne von (58) korri-
giert, oder ob man das System (2) gestiitzt auf die Vorstellung
der variablen Belegungsdichte durch (6) ersetzt. Trotzdem ist
natiirlich das zweite Verfahren vorzuziehen, da es fiir die einzelnen
Operationen eine inhaltliche Deutung liefert und zwangsldufig
auf den richtigen Impuls fithrt. Gerade bei der Wahl des Impulses
lasst einen das erste Verfahren im Stich, da ja kein ersichtlicher
Grund besteht, vom Vektor me¢ X" abzugehen.

VI. Schlusshemerkungen.

In den Vorbemerkungen wurde schon erwihnt, dass die in
Abschnitt II und III entwickelte Dynamik unabhingig ist von
der Natur des Potentials @. Es ist also méglich, Versuche mit
dem in den beiden ersten Mittellungen in Erwigung gezogenen
Potential k/R? anzustellen. Die Aussichten sind jetzt insofern
giinstiger, als das Auftreten des logarithmischen Gliedes in (22)
gleichbedeutend ist mit der Gleichung

I
wW—

V- me " wme (59)
Die der Gleichung (88) entsprechende Néherung

P2 — m2e? (1 Lo s (60)

2
7% me? )
enthélt also gegentiber der in der ersten Mitteillung in Aussicht
genommenen Gleichung (5) ein Zusatzglied.

%) Beachte wiederum Anmerkung 3. Die Zusatzkraft ist unabhingig von der
Parameterwahl.
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Falls man iibrigens an der Potentialgleichung ] @ = 0 konse-
quent festhalten will, ergeben sich fiir mehrere Zentren die weiteren
Losungen

0=,
t

wo mit R; die Weltdistanz vom it*® Zentrum (Quellpunkt) zum
Aufpunkt bezeichnet ist. Thre Verwendbarkeit h#éngt unter
anderem natiirlich davon ab, ob die Eindeutigkeitsfrage in, be-
friedigender Weise beantwortet werden kann.

Zum Schluss mége noch die zentrale Frage nach der Rolle des
Zeitablaufs erortert werden. Die Erfahrungen an lebendigen Orga-
nismen zwingen uns mit sozusagen praktisch vollkommener Sicher-
heit, eine Einsinnigkeit des Zeitablaufs von der Vergangenheit in
die Zukunft anzunehmen. Im Gegensatz dazu bieten alle bis jetzt
aufgestellten Theorien tiber die leblose Materie nicht die geringste
Handhabe zu einer derartigen Auszeichnung des Zeitablaufs. Viel-
mehr bedeutet der Ubergang von der klassischen zur relativisti-
schen Dynamik eine erhthte Betonung der Symmetrie in Bezug auf
Vergangenheit und Zukunft. Wenn wir in der zweiten Mitteilung
zwecks Gewinnung des retardierten Coulombpotentials den Zu-
kunftskegel ausgezeichnet haben, so war das eine Angelegenheit
der frelen Sinngebung. Bei einem unendlich schweren Kern ist
die Retardierung ohne Einfluss. Man hitte ebensogut von dem
»vordatierten* Potential ausgehen konnen, resp. von der Summe
beider Potentiale. Beim Ubergang von der Darstellung der Materie
durch Weltlinien zur Darstellung durch Weltpunkte wird die
ganze Frage noch drangender, denn eine der Einsinnigkeit des
Zeitablaufs entsprechende Formulierung des dynamischen Ge-
schehens wiirde in gewissem Sinne eine Unterdriickung der Gegen-
warts- und Vergangenheitsgebiete, also des grosseren Teils aller
in der Weltmetrik vorgebildeten Moglichkeiten, erfordern.

Man sieht sich daher vor folgende Alternative gestellt:

entweder 1. konsequente Beriicksichtigung der Einsinnigkeit des
Zeitablaufs,

oder 2. vollkommen symmetrische Behandlung des vier-
dimensionalen Zeitraums.

(61)

Die Verfolgung der ersten Moglichkeit begegnet aber gleichzeitig
zwei ernsthaften Schwierigkeiten: Weder die bis jetzt in der Phy-
stk bewdhrten Grundséitze noch ihre formalmathematische Ver-
fassung lassen eine Einsinnigkeit des Zeitablaufs erkennen. Sie
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ernsthaft erdrtern wire moglicherweise gleichbedeutend mit einer
Abkehr von den Grundsitzen der Weltmetrik, die Zeit miisste ja
in entscheidender Weise vor dem Raum ausgezeichnet sein.

Bei der Verfolgung der zweiten Moglichkeit liegen die Dinge
gerade umgekehrt. Die formal mathematische Verfassung der
jetzigen Theorien zwingt uns beinahe, die Konsequenzen in dieser
Richtung zum &ussersten zu treiben. Man kann deshalb ganz ernst-
haft die Ansicht vertreten, dass auch fiir diejenigen, welche die
Eimsmnigkeit des Zeitablaufs fiir unumgénglich halten, die konse-
quente Verfolgung der zweiten Moglichkeit den einfachsten Weg
darstellt, um ,,modo tollendo ponens ene Entscheidung zu
erzwingen.

Ich moéchte daher noch kurz erliutern, dass die Annahme
der vollkommenen raumzeitlichen Symmetrie keineswegs zu
Absurditdten zu fithren braucht. Wir denken uns den allerein-
fachsten Fall, indem wir die Hypothese aufstellen, dass genau im
Weltpunkt mit den Koordinaten

(z, y, 2, /—1ct) = (0,0, 0,0)

eine Wirkung auftrete. Zu diesem Zentrum bestimmen wir ein
tiber den ganzen vierdimensionalen Zeitraum zu erstreckendes
Potential @ und hierauf eine ebenfalls iiber dasselbe Gebiet zu
erstreckende Wellenfunktion w. Nun kann man der Wellen-
funktion y in Zukunft, Gegenwart und Vergangenheit folgende
anschauliche Deutung geben:

a)  im Zukunftskegel bedeutet, dass auch spater Wirkungen
anzutreffen sein werden.
_ b) y im Gegenwirtsgebiet bedeutet, dass jede Wirkung mit
Ausdehnung verbunden ist. Hier miissten also stark abklingende
Losungen gesucht werden, wie sie schon in der Schrédinger’schen
Theorie zu finden sind.

c) v im Vergangenheitskegel bedeutet, dass schon friher
Wirkungen vorhanden waren.

Gerade die wahrscheinlichkeitstheoretische Auffassung ge-
stattet uns, absurde Vorstellungen zu vermeiden wie etwa die,
dass die Gegenwart auf die Vergangenheit zuriick wirke*¥).

Punkt b) ldsst sich iibrigens auch dahin formulieren, dass
Wirkungen nie vereinzelt auftreten. Bei dieser Interpretation
bietet sich vielleicht auch eine Moglichkeit, die Rolle der mathe-

-

*%) Ubrigens scheint mir rein begrifflich betrachtet das, was in diesen Dingen
als ,,verniinftig* oder ,,absurd‘‘ anzusehen ist, keineswegs auf der Hand zu liegen.
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matischen Singularititen in der Physik zu verstehen?). Die An-
nahme einer vereinzelten in einem ganz bestimmten Welt-
punkt vorhandenen Wirkung hat offenbar das Auftreten einer
mathematischen Singularitdt zur Folge und h#éngt natiirlich mit
der notgedrungen schematisierenden Tatigkeit unseres Verstandes
zusammen. Die Weltpunkte sind gewissermassen die Stellen,
in denen das Schema des idealisierten Koordinatenraumes tiber-
spannt wird.

) Vgl. dazu EinstEIN, A.: Vier Vorlesungen iiber Relativitatstheorie
(Vieweg, Braunschweig 1922), S. 33, Anmerkung 1).
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