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Versuch einer relativistischen Fassung- des Kausalitätsprinzips
(zweite Mitteilung)

von W. Seherrer, Bern.

(23. VIII. 37.)

T. Vorbemerkungen.

In einer unter dem gleichen Titel erschienenen Note1) habe
ich die Gründe auseinandergesetzt, welche mich veranlassten, eine
auf die Methoden der Wellenmechanik gegründete „Weltpunktstatistik"

ins Auge zu fassen. Für das Detail verweise ich den
Leser auf diese Note und beschränke mich hier darauf, kurz
noch einmal das Wichtigste in Erinnerung zu rufen:

1. Die Materie wird aufgefasst als eine Menge von „weltpunkt-
artigen' ' Wirkungselementen.

2. Das dynamische Geschehen soll beschrieben werden durch
folgende Festsetzungen :

a) Man gebe eine beliebige, aber raumzeitlich vollkommen
bestimmte „Ladungsverteilung" von Wirkungselementen
vor.

b) Dieselbe bestimmt in der „Aussenwelt" ein Skalarfeld 0
gemäss der Gleichung

3<Z> 0. (1)

c) Die Wahrscheinlichkeit für das Vorhandensein eines
Wirkungselements ¦ ausserhalb der Ladungsmenge wird
beschrieben mit Hilfe einer Wellenfunktion W gemäss der
Gleichung

UW 0-W. (2)

Wie diese Wahrscheinlichkeit effektiv zu bemessen ist, kann
wohl erst der detaillierte Ausbau der Theorie lehren. Unser Vorbild

ist die skalare Wellenmechanik von Schrödinger in der
begrifflichen Interpretation von Born.

In der ursprünglichen Fassung wurden die Begriffe etwas
enger definiert, insofern daselbst entsprechend der physikalisch
anschaulichen Bedeutung als Aussenwelt nur Zukunftsgebiete zu-

x) Helvetica Physica Acta, Bd. 10, Heft 2, 1937.
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gelassen worden sind. Rein logisch betrachtet ist dies aber nicht
nötig und vom mathematischen Standpunkt aus wäre die eben
angegebene Verallgemeinerung befriedigender, da sie der
vollkommenen Symmetrie der Metrik Rechnung trägt.

Wie schon in der ersten Note betont wurde, scheinen die
Abweichungen von der in gewissen Bezirken mit überraschendem
numerischen Erfolg arbeitenden relativistischen Elektrodynamik
so stark zu sein, dass man an der Erreichung brauchbarer Ergebnisse

zweifeln wird. Insbesondere wird man wohl das
Vektorpotential und das damit verbundene Prinzip der Eichinvarianz
vermissen.

Im folgenden soll deshalb einmal gezeigt werden, dass man
auch vom skalaren Standpunkt aus eine relativistisch invariante
ponderomotorische Kraft erhält, die für unendlich schweren Kern
in die Coulombkraft übergeht, im übrigen aber viel einfacher
gebaut ist als der bekannte Ausdruck von Minkowski. Bevor
ich aber ins Detail gehe, will ich im nächsten Abschnitt den
skalaren Standpunkt unter einem allgemeinen Gesichtspunkt
erörtern.

II. Eine Rangordnung physikalischer Begriffe.

An die Spitze stellen wir die Begriffe Zahl, Kontinuum
(Raum), Dimensionszahl und Metrik. Wir wollen diese Begriffe
anerkennen, und zwar in dem Sinne, dass wir die 4-dimensionale
Geometrie der speziellen Relativitätstheorie — kurz Weltmetrik
— als massgebend annehmen. Als nächst wichtigen Begriff
erwähnen wir eine Anzahl bezogen auf ein Volumen. Wenn
dieselbe gross wird, bildet man den Begriff der Dichte, d. h. also
ein invariantes Skalarfeld. Nun folge der Begriff des Vektors.
Sein Vorbild ist der Verbindungsvektor zweier Punkte. Seine
einleuchtendste physikalische Realisierung findet er als Gradient
eines Skalarfeldes. Als nächst wichtige Vektoren folgen
Tangenten- und Krümmungsvektoren. An die Vektoren aber schliessen
sich an die alternierenden Tensoren der Geometrie. Einer der
wichtigen Erfolge der Relativitätstheorie besteht darin, Kraft,
Impuls und Energie in die Geometrie eingereiht zu haben. Nun
aber leuchtet ein, dass die zu obigen Tensoren führenden Gebilde :

Linien, Flächen usw. selbst wieder als Grenzfälle von
Dichteverteilungen aufgefasst werden können. Damit sind die erwähnten
geometrischen Tensoren indirekt auf Skalarfelder zurückgeführt.

Nun eine frappante Erscheinung: In der jetzt geltenden
Elektrodynamik sind Grössen zu finden, die nicht auf Skalarfelder

zurückgeführt werden können: Das Vektorpotential, das
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daraus entspringende elektromagnetische Feld, sowie die Spinoren.
Umgekehrt fehlt in dieser Theorie gerade die wichtigste Eigenschaft

eines Skalarfeldes, nämlich die wirklich 4-dimensionale
Variabilität der Dichteschwankung. Dies kommt zum Ausdruck
im Anschluss der eigentlichen Gradienten oder — korrespondenz-
mässig ausgedrückt — in der Normierung der Eigenzeit. Dadurch
ist aber auch die begrifflich einfachste Möglichkeit, die Entstehung
und Vernichtung von Korpuskeln zu beschreiben, ausgeschaltet
worden.

Ich will deshalb gleich an dieser Stelle ein Bedenken geltend
machen gegen das Verfahren, nach welchem die makroskopische
Maxwell'sehe Theorie in die Relativitätstheorie übertragen wird:
Das Maxwell'sche Stromelement stellt in erster Linie einen
raumartigen Vektor dar, dem eine bestimmte Dauer, also ein
zeitartiger Vektor zugeordnet werden muss. Die entsprechende
Elementarfigur ist ein Parallelogramm, d. h. ein Sechservektor sik und
nicht ein Vierervektor. Auf jeden Fall scheint es mir notwendig,
zu prüfen, ob dieser geometrischen Analogie nicht auch die
physikalische an die Seite gestellt werden muss. Wenn dies zutrifft,
so gerät man in der Frage der Wechselwirkung zweier Teilchen
vollends in Verlegenheit. Das an sich schon komplizierte Gesetz
der Anziehung zweier Teilchen, in welches zwei Vierergeschwindigkeiten

und ein Distanzvektor multiplikativ eingehen, musste
durch ein noch komplizierteres und absolut unvorstellbares Gesetz
ersetzt werden. Am elektromagnetischen Feld ist auch unbefriedigend,

dass die Invarianten @2 — S)2 und @£j keine ihrer
mathematischen Wichtigkeit entsprechende physikalische Rolle spielen.

Bei einem Versuch, Relativitätstheorie und Quantentheorie
zu vereinigen, sieht man sich also in erster Linie vor folgende
Alternative gestellt:

Entweder die Grundgrössen sind zu beschreiben durch Skalar¬
felder,

oder die Grundgrössen sind zu beschreiben durch Vektor¬
felder und Spinorfeider.

Hier also soll die erste Möglichkeit untersucht werden. Dass sie
bei weitem die einfachere ist, springt in die Augen. Man könnte
eher befürchten, sie sei zu einfach. Doch der Schein trügt. Die
Auflösung des Korpuskels in eine Kette von Einzelakten ermöglicht

ausserordentlich vielgestaltige Kombinationen.
Ich weise noch auf folgenden prinzipiellen Enterschied hin:

Die erste Möglichkeit gestattet uns, die oben an die Spitze
gestellte Begriffsreihe und damit insbesondere die spezielle
Weltmetrik unangetastet zu lassen. Damit möchte ich keine Zweifel



390 W. Scherrer.

an den Grundprinzipien der allgemeinen Relativitätstheorie
ausdrücken. Hingegen ist es doch denkbar, dass über die Materie
im Kleinen noch einiges zu ermitteln ist, das nicht aus der
Gravitationstheorie abgeleitet werden kann, sondern umgekehrt zu
deren Modifikation beiträgt.

Was den Begriff des Spinors betrifft, so scheint es nicht
möglich zu sein, denselben aus dem Begriff des Skalarfeldes
abzuleiten. Jedenfalls enthält derselbe eine Bezugnahme auf ein
ausgezeichnetes Koordinatensystem (einmal müssen seine Komponenten

gegeben sein). Ist er vielleicht ein erstes Symptom für
eine Faserstruktur der Welt oder ist er uns nur durch das ebenfalls

noch undurchsichtige elektromagnetische Feld aufgezwungen
worden? Ich komme in der Schlussbemerkung noch einmal kurz
auf diesen Begriff zurück.

III. Das retardierte Potential.

Nach der ins Auge gefassten Auflösung der Materie in
Wirkungselemente muss die Weltlinie eines dauernd existierenden
Teilchens gedeutet werden als nicht abbrechende Kette von
Wirkungspunkten. Ist Q einer dieser Punkte, so erzeugt er im
Aufpunkt P ein Potential

c2 (t - u)2 — (xx -yx)2 — (x2-y2)2 — (x3- y3)2

wo et, Xi resp. cu, yt die Koordinaten von P und Q sind. Das
totale in P zur Wirkung gelangende Potential soll nun aus
derartigen Einzelpotentialen durch Summation erzeugt werden. Doch
seien im Sinne der Retardation nur diejenigen Quellpunkte
berücksichtigt, welche innerhalb des Vergangenheitskegels von P
liegen. Würde man die Quellpunkte in einer kontinuierlichen
Linie verschmolzen annehmen, so musste das totale Potential
offenbar in jedem Aufpunkt singular werden. Wir denken uns
deshalb einen Grenzübergang ausgeführt. Derselbe lässt sich für
alle stetig differenzierbaren und stetig belegten Weltlinien
durchführen. Es genügt aber, ihn für die konstant belegte Ruhachse
zu beschreiben. Dieselbe sei also mit einer nirgends abbrechenden
äquidistanten Kette von Wirkungselementen bedeckt. Die
Intervallbreite sei ò. Der durch einen vorgegebenen Aufpunkt gelegte
Nullkegel der Vergangenheit teilt ein ganz bestimmtes dieser
Intervalle im Verhältnis 1. Nun lassen wir ô unter Festhaltung
von 1 gegen Null konvergieren und behalten von der gegen co
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strebenden Potentialsumme nur den Term höchster Ordnung in
ô bei. Die Berechnung ergibt:

0 lim — Lg
(5—»-0 -4 \

fc
T /1_\

#
2^

c5 / r
Um also etwas Endliches zu erhalten, muss fc gegen Null streben,
so dass

lim — Lg (—-] e (4)

eine endliche Zahl wird.
Indem wir noch die Retardierung zum Ausdruck bringen,

erhalten wir schliesslich

_ e (et — r) ,_.0 —K- '- (5)
r

Um den gewonnenen Ausdruck in invarianter Weise auf krumme
und nicht homogen belegte Weltlinien zu übertragen, benutzen
wir die orthogonale Schreibweise. Wir setzen also^für die
Ortsvektoren der Aufpunkte P resp. Quellpunkte Q

9£ (xx, x2> x3, Xi) (xx, x2, x3, V3! et) (6)

resp. <$ (yx, y2; y3, yt) (yx, y2, y3, Vz1 cu).

Ausserdem sei s die Bogenlänge der Quellinie, also

^)'=?r.« -i.
"

(7)
ds I

An Stelle von (5) erhält man so den allgemeineren Ausdruck

0 e(s)
(8)

mit der Nebenbedingung
0 (9C-2))2. (9)

Wir stellen daneben den gebräuchlichen Ausdruck für das
Vektorpotential

(epi)
e<®'

(8*)

Unsere Ableitung würde übrigens gestatten, auch in (8*) e als
Funktion von s zu schreiben.

Im Sinne der von mir vorgeschlagenen Auffassung bedeutet
die Ermittlung des Potentials (8) folgendes: Je dichter die Wir-
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kungselemente liegen, desto mehr konzentriert sich die Summe
der Einzelpotentiale auf ein kurzes Stück der Quellinie, das im
betrachteten Quellpunkt endigt, um schliesslich nach vollzogenem
Grenzübergang ganz auf den Quellpunkt zusammenzuschrumpfen.
Gleichzeitig wird die ganze Potentialbewertung in der Grössenordnung

um eine Stufe verschoben.
Es ist zu empfehlen, sich den ganzen Prozess auch beim

Vektorpotential vorzustellen. In erster Linie musste man fc in
(3) durch einen Vektor l ersetzen und dann treten folgende
Absonderlichkeiten auf:

1. Um (8*) zu erhalten, musste man alle I in die Quellinie
hineindrehen. Anders ausgedrückt, die zu addierenden
Elementarvektoren müssten im Sinne von Lie einen Elementverein
bilden. Der einzelne Summand wäre also nicht eine unabhängige
Elementargrösse.

2. Bei der darauffolgenden Summation hat man 4 Integrale
zu bilden, für jede Koordinatenrichtung eines und man fragt
sich unwillkürlich: Woher wissen die Teilchen, in welchem
Koordinatensystem sie sich befinden? Wohl gemerkt: die Invarianz
der Kraftgleichungen leidet nicht darunter. Aber möglicherweise
sind sie deshalb so kompliziert geworden, weil sie diese
Struktureigenschaft des Vektorpotentials kompensieren müssen.

Beim skalaren Potential (8) beachte man vor allem folgende
Eigenschaft: Es ist nur bestimmt, wenn der Quellpunkt <$ und
die Richtung <£,' gegeben sind. Der Richtungseffekt des

Viererpotentials steckt also drin, nur in einfacherer Form.

IV. Die ponderomotorische Kraft.

Wir entwickeln jetzt einen Ausdruck für die Kraft, welche
ein dauernd existierendes Teilchen (Quellpunktlinie) auf ein an
einer bestimmten Weltstelle vorhandenes Teilchen ausübt. Dabei
legen wir den Ausdruck (8) für das skalare Potential zusammen
mit den Nebenbedingungen (7) und (9) zugrunde, also:

0= e(*)

(9(-W 0; $'2 -l
(10)

Bekanntlich ist es möglich, die Feldgesetze der relativistischen
Elektrodynamik dadurch zu gewinnen, dass man die Gesetze des
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magnetischen Feldes auf invariante Weise in die Weltmetrik
überträgt.

Nun überlegt man sich leicht, dass die hier befürwortete
Theorie der Wirkungselemente auch gedeutet werden kann als
invariante Übertragung der elektrischen Feldgesetze in die
Weltmetrik. Als Ansatz für die ponderomotorische Viererkraft ergibt
sich damit:

Sv — ê grad 0. (11)

Das Verfahren zur Bestimmung von grad 0 findet man in der
Literatur durchgeführt für den komplizierteren Fall des
Vektorpotentials. Da die Sache für uns wichtig ist und wir ausserdem
die Bezeichnung anders gewählt haben, sollen die Hauptpunkte
der Berechnung geschildert werden.

1. Man benützt die Abkürzung

r =(%-%)%' (<$-%)%' (12)
und erhält

_ / e (s) \ e (s) e' (s)
grad 0 grad —— — grad r H —?- grad s

denn s ist zufolge der zweiten Nebenbedingung in (10) auch eine
Funktion des Aufpunktes.

Anschaulich: s ist der Parameterwert desjenigen
Quellpunktes, in welchem der Nullkegel der Vergangenheit durch den
Aufpunkt die Quellinie trifft. Daraus folgt leicht

grad s - ^-—^ (13)
r

und damit fürs erste

grad 0 (e (s) grad r + e' (s) • (9C — <$)} (14)

2. Für die weitere Berechnung muss man r sowohl als Funktion

von s und 9£ als auch von 9£ allein darstellen. Wir führen
daher folgende verschiedene Bezeichnungen für r ein:

r («)-«) $'(*) /(*, 90 | (m
r f[s(9i),9C]^g(9i) }

sowie die Ableitungssymbole

dr df dr df dr dg
à s ds dxi dxi dxt dxt

(16)
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Dann folgt wegen (13) :

grad r l-j—) — 93' — ~\dXil ds r

Durch Einsetzen in (14) erhält man:

grad<Z>- e^L' + (^ «'^
r* [ \ r e (s)

-)¦(*-

(17)

(18)

3. Um aus dem gewonnenen Gradienten die Bahngleichungen
zu bekommen, müssen wir schliesslich alles in Funktion von s

darstellen. Dann aber muss aus (18) die partielle Ableitung drjds
entfernt werden. Wir benötigen also neben (15) eine dritte
Darstellung von r:

r f[s,9t(s)] h(s).
Wir setzen weiter

und erhalten

r'
dh
ds

òf
ds dxx
dr dr

(19)

(20)

ds

dr
1)7

dX;

Vx %?.

Also:
dr
l)s

und damit an Stelle von (18) :

e(s) i^, I r'
grad 0 93'

9t(93'

9i'ry

(21)

(9C-3J) (22)

Bei der Darstellung der ponderomotorischen Kraft gemäss
(11) beschränken wir uns auf konstante e:

und erhalten
e(s) konstans e

9f 9)e e
9t-93)33'

(23)

(24)
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Diese Formel liefert also die ponderomotorische Kraft einer der
Weltlinie 93 93 (s) zugeordneten konstanten Ladung e auf ein
Teilchen mit der konstanten Ladung ë.

Falls man sich auf den Standpunkt stellt, dass von dieser
Kraft nur die Normalkomponente zur momentanen Richtung des

bewegten Teilchens ê dynamisch wirksam sein dürfe, hat man
an Stelle von (24) zu setzen:

9c 93ee
93' (£-93) 9i' 24'

9t

Zum Vergleich setzen wir daneben die Formel für die
„elektrodynamische Kraft" nach Minowski2) *).

ee (/+ 9f 93') 193'+ — -(£-93)

-^{»-93" +r 93"-(9£-93)}
(24*)

Wir spezialisieren noch alle drei Ausdrücke auf den Fall des
unendlich schweren Kerns. Dann muss offenbar gesetzt werden
93" 0. Daraus folgt aber r' + 9c' 93' — 1 und man erhält somit
folgende drei Ausdrücke:

ee

ee

ee

93'

93'

93'

l (£-93)

-•(9c-93) + —^-rr 9c 2

9c'93'

r
(9c-93)

(25)

(25')

(25*)

Der durch Spezialisierung von (24) erhaltene Ausdruck (25)
stellt genau die klassische Coulombkraft dar. Diese Feststellung
mag Bedenken erwecken. Doch ist folgendes zu beachten.
Sobald man dem Kern ein endliches Gewicht zuschreibt, wird auch
die Quellinie gekrümmt und damit ändert sich die Kraftwirkung.
Ausserdem bildet die Annahme der kontinuierlichen Verteilung
der Wirkungselemente auf eine Weltlinie einen Grenzfall. Wenn

2) Pur die Literatur verweise ich auf den Enzyklopädiehericht von W. Pauli:
Relativitätstheorie, insbesondere S. 644ff.

*) 5 ist die zum Teilchen e gehörige Bogenlänge.
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es überhaupt möglich ist, den Strahlungsprozess in die Dynamik
einzubeziehen, so liefert dazu das Verhalten der einzelnen
Wirkungselemente vielleicht eine bessere Handhabe.

Die Ermittlung des Potentials und damit der ponderomoto-
rischen Kraft für zwei- und mehrdimensionale Mengen von
Wirkungselementen scheint eigentümliche Schwierigkeiten zu bieten,
falls man alle Elementardistanzen als von der gleichen Grössenordnung

annimmt*). Nun zeigt aber die Erfahrung, dass die
Abstände der Atome gross sind gegenüber ihren Wirkungsquerschnitten.

Dem kann man Rechnung tragen, indem man die
zeitartige Distanz der einzelnen Wirkungselemente als klein
annimmt. Dann ist es möglich, die Wirkungselemente zuerst in
einzelne Weltlinien zusammenzufassen und hernach die totale pon-
deromotorische Kraft aus den Kräften der einzelnen Weltlinien
(Teilchen) additiv zusammenzusetzen.

V. Die korrespondierende Dynamik.

Schon durch die im vorigen Abschnitt vorgenommene
Ermittlung einer ponderomotorischen Kraft ist angedeutet worden,
dass wir beabsichtigen, unsere ursprünglich auf wellenmechanische
Grundsätze begründete Auffassung korrespondenzmässig
darzustellen. Das halte ich zwecks einer ersten Orientierung für
beinahe unumgänglich. Die wellenmechanischen Berechnungen sind
kompliziert und liefern dabei viele Feinheiten, die einen ersten
Überblick erschweren.

Der wellenmechanischen Grundgleichung

uw=0-w (2)

entspricht offenbar die „Energiegleichung"
1 / dX y v w (26)
2 \ da

Hierbei bedeutet er einen Parameter von der Dimension einer
Länge, der jedenfall mit der Zahl der auf die Weltlinie des
Teilchens entfallenden Wirkungselemente zusammenhängen muss. Da
beim Übergang von (2) nach (26) die Konstanten geändert werden,
habe ich V an Stelle von 0 gesetzt. Um Missverständnisse zu
vermeiden, füge ich noch hinzu, dass sich natürlich auch das in
Abschnitt III berechnete 0 von dem in (2) auftretenden um
eine multiplikative Konstante unterscheidet.

*) Die weitere Verwendbarkeit unseres skalaren Ansatzes wird wohl davon
abhängen, ob möglich ist, einen brauchbaren Ausdruck für das Magnetfeld eines
Stromes zu erhalten.
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Die zu (26) gehörigen Bewegungsgleichungen lauten offenbar

d29c
m c2 —— — grad V. (27)

Auf den ersten Blick scheint eine genaue Übertragung der
Newton'sehen Mechanik in die Weltmetrik vorzuliegen. Dem ist
aber nicht so. Die das Potential erzeugenden „Massen" (die
„Ursachen") sind hier im P4 vorgegebene feste Wirkungszentren.
Die „bewegten Massen" (die „Wirkungen") werden in einen
Probekörper zusammengefasst. Wird derselbe irgendwo im
Zukunftsgebiet eingesetzt, so beschreibt er eine Bahn. Diese Bahn
ist nichts anderes als das korrespondenzmässige Analogon der
Menge der bei vorgegebener Anfangslage mit grösster Wahrscheinlichkeit

zu erwartenden Wirkungen. Ohne die an die Spitze der
ganzen Untersuchung gestellten wellenmechanischen Grundsätze
wäre also diese Dynamik vollkommen unverständlich. Objektiv
genommen sind Ursachen und Wirkungen gleichartige Wirkungselemente.

Subjektiv genommen müssen sie aber scharf auseinander

gehalten werden vermöge der eigentümlichen Situation, in
welcher sich der Erkennende befindet. Er will ja aus der
Vergangenheit die Zukunft bestimmen, oder —¦ allgemeiner
ausgedrückt — aus einem Teil das Ganze rekonstruieren. Dies ist
möglich, sofern oder soweit Naturgesetze existieren.

Es ist lehrreich sich zu überlegen, was eine wörtliche
Übertragung der Newton'schen Mechanik bedeuten würde. V musste
eine Wechselwirkungsgrösse sein, also von den Koordinatendifferenzen

zweier aufeinander bezogenen Teilchen abhängen. Damit
würde also wieder das begrifflich unentwirrbare Problem der
koexistierenden Phasen auftauchen. Als weitere Folge ergäbe
sich wiederum ein „Trägheitsgesetz" und man könnte dann auf
„Ruhe", d. h. Zeitlosigkeit transformieren. Damit hätte man eine
5-dimensionale „Galileitransformation" und das Spiel mit der
richtigen Formulierung des Relativitätsprinzips könnte von neuem
beginnen, ganz abgesehen davon, dass ein neuer Parameter
aufgenommen werden musste, um dessen Deutung man wohl
verlegen wäre. Auf dieser Linie ist kein Ende abzusehen, wenn man
sich nicht einmal entschliesst, den absoluten Standpunkt
einzunehmen, den wir gleich zu Beginn für die weltmetrische Dynamik
postuliert haben. Man darf vielleicht sagen, dass die Belativität
von Raum und Zeit in der Absolutheit der Wirkung ein sehr
befriedigendes Korrelat findet. Die Tatsache, dass zu einer
bestimmten Zeit an einem bestimmten Ort eine Wirkung stattgefunden

hat, lässt sich ja auf keine Weise wegtransformieren.
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Schliesslich noch einige Bemerkungen zur formalen
Verfassung unserer „Weltpunktdynamik". Sie kann natürlich ohne
weiteres durch Hamilton'sehe Gleichungen zum Ausdruck gebracht
werden. Nun wird die geometrische Deutung durch infinitesimale
Berührungstransformationen — welcher in der klassischen
Mechanik keine reale Bedeutung zukommt — und die damit
verknüpfte Zusammenfassung aller zur selben Energiefunktion
gehörigen Bahnen zu einem Büschel verständlich. Die
wellenmechanische Lösung fasst eben viele Bahnen zusammen und
erteilt ihnen überdies ein Wahrscheinlichkeitsgewicht. Es ist
also anzunehmen, dass sich die Betrachtungen von Schrödinger3)
in allen wesentlichen Punkten übertragen lassen.

Es ist sogar möglich, dass die Extremalprinzipien eine ganz
konkrete Bedeutung gewinnen. Zum Beispiel erscheint das Prinzip

von Maupertuis formal unverändert in der Gestalt

B

ô J]/2(W-V)d9i2 0. (28)
A

Nimmt man hier an, A B sei ein zeitartiger Vektor und setzt
V 0 (kräftefreie Bewegung), so resultiert die geodätische
Verbindung von A nach B, also die Strecke A B. Nun beweist man
leicht nach den Grundsätzen der Elementargeometrie, dass von
allen zeitartigen Verbindungen zwischen A und B die Strecke A B
die längste ist. Man kann also hier die Frage aufwerfen, in
welchem Umfange es wohl möglich sei, die Weltpunktdynamik einem
Prinzip der maximalen Wirkung zu unterstellen.

VI. Schlussbemerkung.

Zusammenfassend kann man also feststellen, dass die auf
das Potential

0
c212 — x2 — y2 — z2

gegründete Weltpunktstatistik der relativistischen Elektrodynamik
viel näher steht, als man auf den ersten Blick meinen könnte.
Sie hat aber den Vorteil, logisch und anschaulich vollkommen
durchsichtig zu sein. Die Frage ist nun, ob sie sich so ausgestalten
lässt, dass sie auch numerisch befriedigende Ergebnisse liefert.
Speziell: Genügt der skalare Ansatz für den weitern Ausbau

3) „Abhandlungen zur Wellenmechanik", Leipzig 1927 (Verlag J. A. Barth).
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oder muss die Entwicklung in Richtung des Spinorbegriffs
gelenkt werden?

Was die mathematische Analyse des Spinorbegriffs betrifft,
so möchte ich hier auf die Theorie der Quaternionenfunktionen
von Fueter4) hinweisen. Die von diesem Autor gewonnenen
linearen partiellen Differentialgleichungen 1. Ordnung sind ja —
abgesehen vom Vorzeichen der Metrik — offenbar mit den
sogenannten Wellengleichungen des Neutrino äquivalent.

Die der oben formulierten physikalischen Fragestellung
entsprechende mathematische Fragestellung lautet also folgender-
massen : Sind für die Theorie der Differentialgleichung A u 0
in 4 Dimensionen die Quaternionen „irreduzible Elementar-
grössen" oder reine Rechengrössen Die entsprechende Frage für
zwei Dimensionen ist schon lange entschieden: Die komplexen
Zahlen z x + iy sind reine Rechengrössen.

4) „Commentarli Methematici Helvetioi", Bd. 9, Heft 4, S. 321, -wo die
bis jetzt erschienenen Abhandlungen zitiert sind.
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