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Über die durch Elektronenstrahlen in Kristallen
angeregte Lichtemission

von V. Bargmann.
(11. V. 37.)

Zusammenfassung. Charakterisierung des benutzten Modells. — Diskussion
der Interferenzbedingungen. — Rechnung für das unendliche Gitter. —
Durchführung der Rechnung für kleine Kristallblöcke. — Einfluss der Temperaturbewegung.

— Berücksichtigung der Wechselwirkung der Atome im Kristallgitter.

Es soll untersucht werden, wieweit die Atome eines Kristallgitters

bei Anregung durch Elektronenstrahlen kohärentes Licht
aussenden. Wir beschränken uns auf solche Fälle, in denen das

optische Spektrum des Kristalls, soweit es für uns in Betracht
kommt, nicht allzusehr vom Spektrum der betreffenden freien
Atome abweicht1) und in denen es erlaubt ist, die Wechselwirkung
der Atome miteinander als Störung zu behandeln. Sieht man von
der Wechselwirkung ganz ab — mit einem so idealisierten Modell
werden wir uns vorwiegend befassen ¦—, so ergibt sich Kohärenz,
und eine merkliche Lichtintensität ist nur dann zu beobachten,
wenn die einfallenden Elektronenstrahlen in bestimmter Weise

zum Kristallgitter orientiert sind. Eine notwendige Voraussetzung
hierbei ist die, dass sich der Kristall nach der Lichtemission wieder
im Grundzustand befindet. Ist z. B. die Lichtemission mit einer
Ionisation verbunden, wie bei der Anregung der Röntgenspektren,
so ergibt sich nämlich die Intensität der ausgesandten Strahlung
durch inkohärente Addition über alle möglichen Endzustände, die
den verschiedenen ionisierten Atomen entsprechen. Das gleiche
gilt für den Fall, dass der Anregungsprozess zur Neutralisierung
eines Ionenpaares im Kristall führt (z. B. bei den Alkalihalogeniden).

Die Temperaturbewegung der Atome im Gitter setzt die
Lichtintensität in denjenigen Fällen herab, in denen die Richtungen
der einfallenden Elektronen den Interferenzbedingungen genügen,
und verursacht umgekehrt eine von Null verschiedene Intensität
auch für die anderen Richtungen der primären Elektronen, in
Analogie zum kontinuierlichen Untergrund auf den Beugungsbildern

der Röntgenstrahlen. In qualitativ ähnlicher Weise wird

*) Vgl. hierzu die Bemerkung zu den Gleichungen (2a), (2b).
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der Interferimzeffekt durch die Wechselwirkung der Atome im
Gitter gestört, voraussichtlich am wenigsten bei Kristallen mit
einer schmalen Absorptionslinie. Er wird daher nur an bestimmten
Materialien (und bei tiefen Temperaturen) auftreten. Bei der
grossen Mannigfaltigkeit der hier vorliegenden Möglichkeiten werden

wir darüber nur mehr qualitative Aussagen machen können.
Da im folgenden nur in der ersten Bornschen Näherung

gerechnet wire, können wir weitere Effekte, die ebenfalls die
Kohärenz herabsetzen, nicht berücksichtigen, nämlich die
Mehrfachstreuungen und die Bremsung der einfallenden Elektronen.

Charakterisierung des benutzten Modells.

1. Die Überlegungen werden in zwei Grenzfällen einfach,
erstens, wenn die Zahl N der Atome so gross ist, dass man den
Kristall durch ein unendliches Gitter ersetzen darf, zweitens bei
einer verhältnismässig geringen Zahl der Atome des in Betracht
kommenden Kristallblocks. (Näheres über die verschiedenen
Gültigkeitsbereiche im 6. Abschnitt, (40) und (40a).)

Die Grundvektoren unseres Gitters bezeichnen wir mit ax, a2,
cl3, das Volumen der von ax, a2, a3 gebildeten Zelle mit A. Das
reziproke Gitter hat dann die Grundvektoren bx, b2, b3, definiert
durch

{bi ak) 2 n ôik.

Die Punkte des Gitters sind r{ Elt at (l{ ganz), die Punkte des
i

reziproken Gitters entsprechend qr Zrt bi (r{ ganz).
Im Fall des unendlichen Gitters, den wir zunächst behandeln,

führen wir in üblicher Weise eine Zyklizitätsbedingung ein, für
ein Übergitter mit den Grundvektoren Lat und einer Zelle vom
Volumen

G L*-A N-A, (1)

in der auch die auftretenden Eigenfunktionen normiert sind. Es
sei etwa das Gebiet — Lß sS lt < Lß gewählt.

Der Einfachheit halber berücksichtigen wir nur ein Atom pro
Zelle, was immer dann erlaubt ist, wenn man die Anregung und
die Lichtemission in jeder Zelle einem wohlbestimmten Atom
zuschreiben kann. Um der Temperaturbewegung Rechnung zu
tragen, denken wir uns die Atomkerne nicht in den Gitterpunkten,
sondern in den Punkten

&i v, + U; (la)

angeordnet. Die Elektronen des Atoms (l) mögen in bezug auf
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dessen Kern die Koordinaten xla (oc 1,..., z) haben. Wie schon
erwähnt, legen wir unserer Rechnung ein Modell zugrunde, in
dem die Wechselwirkung der einzelnen Atome miteinander
vernachlässigt ist, so dass die Eigenfunktionen des Kristalls Produkte
von Funktionen der Einzelatome sind. Ist die Eigenfunktion des

Atoms im Grundzustand (Energie E0) 9?0(Xa); in dem angeregten
Zustand, den wir im folgenden betrachten werden (Energie Ex
E0 + h co), cpx QcJ1), so ergibt sich

*o=n<po(h*) (2a)

für den Grundzustand des Kristalls und

#1» Vi (Xma) ¦ Un (ha) (2b)

für denjenigen Zustand, in dem das Atom (m) angeregt ist. Streng
genommen brauchen die Funktionen cp0 und cpx nicht mit den
Eigenfunktionen des freien Atoms übereinzustimmen; worauf es

ankommt, ist nur der Aufbau der Funktionen &0 und 0lm aus denen
der Einzelatome. Insofern wird also die Wechselwirkung der Atome
in einer indirekten und schematisierten Weise berücksichtigt, als
die Atome an die Gitterpunkte gebunden sind und die Funktionen
cp0, cpx von denen der freien Atome abweichen können.2)

Das einfallende bzw. gestreute freie Elektron wird durch die
Eigenfunktion

U,-^!5 (3)

beschrieben, wobei wegen der Zyklizitätsbedingung $r L_1 Cfr
h2

sein muss. (Die zugehörige Energie ist E (Ur) -^-— S?r2, wenn

m0 die Elektronenmasse bezeichnet.)
Die Wechselwirkungen Kristall-Elektron sowie Kristall-Strahlungsfeld

sollen als Störungen behandelt werden. Daher ist ein
stationärer Zustand des ungestörten Gesamtsystems gegeben durch
den Zustand des Kristalls, den Zustand Ur des Elektrons und die
Lichtquantenverteilung (Photonenzahlen) des Strahlungsfeldes.

Das Elektron erzeugt ein Potential —eF(X)), wenn unter r>

der Vektor vom Elektron zum Aufpunkt verstanden ist; die
Funktion F ist im Übergitter periodisch, genügt der Laplaceschen

x) Für eine etwaige Entartung des angeregten Zustandes vgl. den 5.
Abschnitt.

2) Vgl. hierzu die Arbeit von H. Bethe über „Termaufspaltung in Kristallen",

Ann. d. Phys. (5) 3, 133, 1929.
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Gleichung und wird im Punkte Y> 0 wie 1/ | O | unendlich. Ihre
Fourierreihe lautet1)

An „, e*i_1(lr9)
FW=T^ L-iqf]' (' + 0,0,0). (4)

S?0 sei der Wellenvektor des einfallenden Elektrons. Für die
Matrixelemente der Wechselwirkungsenergie finden wir dann, wenn
durch dx die Integration über die Koordinaten der Elektronen
eines Atoms, durch dX die Integration über die Koordinaten aller
Elektronen des Kristallgitters angedeutet wird,

mr
G

e2 2 f ü0* 0*o F (9t - e» - *ma) • Ur ¦ 0Xm dXdX

e2. e»(«,-^Ov /* JLe»'(«r-^«-»«-x»a)F(9l-A1.-3C»3) d9t

[cp* (x)et^r~-^o^'x)Cp1 (a;) d».

Das erste Integral liefert den Fourierkoeffizienten von F (r>), und
es wird daher nach (4)

_ j («,- St,, 6„) F* (go - gr) _ ei(®r- ftn, em) Z*; (5)
G G

wenn wir den von 8ra abhängigen Faktor abtrennen.
Das für die Lichtemission massgebende Matrixelement2) (Übergang

0lm—>-0o, Aussendung eines Lichtquants der Wellenzahl
ta und der Polarisation eo) ist3)

m a -=¦(—ì e*(f<,s™>— • ihy fcp*(x) eli-i<jT^(eagradaL)cp0(x)dx
W
VG~ VG~\vaj m.

1
(eff2BTOJ)=-17fei^8™)(e<J3B0). (6)

VG ' ° ""' VG

Hierbei ist

9Ö„ (—V. -co -2^(1,0)*)

x) Vgl. M. Born, Atomtheorie des festen Zustandes, S. 723. Leipzig und
Berlin 1923.

2) Vgl. G. Wentzel, Handbuch d. Physik, Bd. XXIV/1, S. 743, Berlin 1933.
3) Durch den Index a soll sowohl der Wellenvektor ta als auch die

Polarisationsrichtung ca bestimmt sein.
4) Hier ist ra (1,0) f tp* (er.) ra <p0(x) dx.
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da man ja im optischen Gebiet die Exponentialfunktion im In-
tegranden unterdrücken, d. h. sich auf die Dipolstrahlung
beschränken darf.

Wir unterwerfen noch die Eigenfunktionen der angeregten
Zustände der unitären Transformation

mit

wobei

0\ V 0, U (7)
n

CJ„=4f«,'(t»g, (7a)
VN

*m =—2^mibi — — ^ n%i < —

Die entsprechend transformierten Matrixelemente sind:

¦A-rnr ~ / < * nr U nm \ * ®)
n

Bma yiWnaU*nm^(ea3ima). (7c)
n

Bei der Aufstellung der quantenmechanischen Differentialgleichungen

berücksichtigten wir nur die Amplituden folgender
Zustände : a — Kristall im Grundzustand, das einfallende Elektron
im Zustand U0, keine Strahlung ; bmr — Kristall im angeregten
Zustand m, Elektron in Ur, keine Strahlung; ara — Kristall wieder
im Grundzustand, Elektron in Ur, ein Lichtquant a emittiert. Die
Mehrfachstreuungen werden also ausser acht gelassen. Demnach
ergibt sich1):

i h dar ^\A^ei^r-")tbmr (8a)
dv m p LT

h
dbm r_==Amr_ei(co-Tr)ta + Y1^ e* lm~ *«> ttr „ (8b)

dt G V1 VG

ihda^L yK_1_ei(va-co)tbm^ (8c)
dt ir^VG

Die Anfangsbedingungen sind

o(0)-1; 6mr(0)=0; ara(0) 0. (8d)

x) Vgl. G. Wentzel, a. a. 0. S. 735.
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Mit hrr bezeichnen wir die Differenz der Elektronenenergien
E(®0)-E(®r), also

rr=_!_(ft0«_Rr*). (8e)
2 m0

Von der Temperaturbewegung sehen wir zunächst ab, setzen
also überall um 0, d. h. sm tm. Dann folgt aus (5), (6) und (7)

Amr= VN-Vr-ô(®0-Ur-tm) (9a)

Bma=VN-(caWa)-o(ta-tm). (9b)
Hier bedeutet

ô (33)
1 *' wenn ^ q ^m< b* ^' ganz^

(10)
0 sonst.

Ist q ein nicht verschwindender Vektor des reziproken Gitters, so

gilt für den Wellenvektor î eines Lichtquants im optischen Gebiet

|l]:|q|-1:1000, (11)

da sich | î | zu | q | umgekehrt verhält wie die Wellenlänge des
emittierten Lichts zur Gitterkonstanten. Daher kann sich la von
tm nicht um einen von Null verschiedenen Vektor q des reziproken
Gitters unterscheiden, und (9b) verschärft sich zu:

B VN (c„ 9Ba), wenn ta tm

0, wenn t„$tm'nie

Diskussion der Interferenzbedingungen.

2. In den Gleichungen (9) sind die Interferenzbedingungen
enthalten, die wir zunächst diskutieren wollen. Bezeichnet man
den Wellenvektor des emittierten Lichtquants mit f, denjenigen
des gestreuten Elektrons mit S?, so werden die Amplituden ara nur
dann von Null verschieden sein, wird also nur dann Licht emittiert,
wenn

®0 Sv + t + q (12)

Geht man durch Multiplikation mit h von den Wellenzahlvektoren
zu den zugehörigen Impulsen über, so besagt (12), dass der Impuls
foq vom Kristallgitter aufgenommen wird. Hinzu kommen noch
die Frequenzbedingung1)

c | î | co .(13)
und die Energiebeziehung2)

2 w0co

h
2 ®2 + V, lV=—-0--) (14)

x) Vgl. (27b). 2) Vgl. (27a).
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wie sie sich bei der Auflösung der Differentialgleichungen (8)
ergeben.

Die Gleichungen (12) bis (14) sind nicht erfüllbar, wenn q
verschwindet. (Streng gilt dies, sobald für die Elektronenenergien
die relativistischen Ausdrücke E c -]Jm2c2 + (feS?)2 eingeführt
werden.) Bekanntlich beruht hierauf die Tatsache, dass das freie
Elektron Licht weder emittieren noch absorbieren kann1).

Den Vektor q halten wir im folgenden fest, d. h. wir
diskutieren die durch ein vorgegebenes q definierten Erscheinungen.
Auf Grund der Beziehung (11) kann in den meisten Fällen
neben den Vektoren U0, R und q vernachlässigt werden, so
dass sich aus (12) ergibt

Sv0 - R + q (15)

Der hierdurch begangene Fehler ist in (16a) abgeschätzt. Aus
(12) folgt

| ® | — | f | ^ | ®o — <T I ^ | & | + | * |

Quadriert man diese Ungleichung und setzt

(®0q) | $01 • j q | • cos &,

so wird wegen (14)

q2+?f-t2-2\i\\U\^2\®0\ • \q\ cos &^Lq2+rl2 — ^+2\ î | |ft| (16)

•d. h. die erlaubten Werte von cos & unterscheiden sich um höchstens

0 2-] -' l^\ < t-Î-U ~ IO"3 bis 10-2. (16a)
l<rl IRol M

Mit ausreichender Genauigkeit wird daher

<?2-

2 |Ro
cos&= f + rl2

(17)

entsprechend (14) und (15).
Durch die Interferenzbedingungen wird also ein Kegel von

möglichen Richtungen der einfallenden Elektronen ausgesondert,
der den Vektor q des reziproken Gitters zur Achse hat. Ebenso
erfüllen die Richtungen der gestreuten Elektronen einen Kegel
mit derselben Achse.

Im Gegensatz zum Winkel &, der zwischen den engen Grenzen
(16) eingeschlossen ist, wird der Bereich, den der Winkel cp zwischen
-der Richtung des emittierten Lichtes und dem Vektor q ein-

Vgl. G. Wentzel, a. a. O. S. 769.
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nehmen kann, durch (12) bis (14) wegen der Kleinheit des
Verhältnisses | t | : |q j sehr viel weniger eingeschränkt, wie unmittelbar

aus den Figuren 1 und 2 hervorgeht, die den Extremwerten
von & (Sv parallel l und Sv antiparallel zu t) entsprechen ; weiterhin
ist wegen der Wechselwirkung der Atome des Kristalls der Wert
von rj nicht völlig scharf, sondern erfüllt ein bestimmtes Intervall
(vgl. 46), so dass trotz der Interferenzbedingungen alle Richtungen
des emittierten Lichtes erlaubt sind, sofern nicht schon wegen der
Form der durch die Einzelatome bestimmten Grössen Vr und 3S„
die Lichtintensität für gewisse Emissionsrichtungen verschwindet
(vgl. z. B. 33a).

s*

\2f

Fig. l._
parallel l R AD t DC.

Fig. 2.

S? antiparallel zu t ® A D' t D'C'.

Wegen | cos & | <\ 1 folgt aus (17) noch

q2 + r/2
_ (\q\-y)2

1 °'^ 2|ql - 2|q|
"H n '

d. h. der Impuls h \ R0 \ des einfallenden Elektrons muss den für
die Anregung des einzelnen Atoms erforderlichen Impuls hi]

h
um mindestens „ (| q ] —rj)2 übersteigen.
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Auflösung der Differentialgleichungen (8).

3. Nach (9) verschwinden die meisten Matrixelemente A und
B ; infolgedessen brauchen in den Gleichungen (8) die entsprechenden

Amplituden a und b nicht berücksichtigt zu werden. Wir
untersuchen wieder die durch ein festes q definierten Erscheinungen
und setzen zur Vereinfachung der Schreibweise

or om^r mit tm (r) S?0 — &r — q (18a)

nV -^ nPwr ar, m (r) (Polarisationsrichtung e^,) (18b)

Dann wird
da

i.h —dt
V V* ri^Tr~m'tb'AVNÏ r (19a)

hau1 x
_ ^ gi (co_Tf), o + _^ ßl{m-vmM) t y ,e gjj x ßp (19b)

di zi -y/N ^Zl ^
a^?.= 1

(e^*w)e*>m<r>-")%. (19c)

Alle übrigen Amplituden sind wegen der Anfangsbedingungen (8d)
beständig gleich Null.

Nach der Weisskopf-Wignerschen Methode1) lösen wir die
Gleichungen (19) durch den Ansatz:

(20a)«-*•'.

Durch (19b) und (19c) sowie die Anfangsbedingungen (8d) sind
dann die Funktionen br und af eindeutig bestimmt, und zwar
ergibt sich:

br
Vr e'^Qr -i/*)t 1 (or+Sr-

r ~v Sr

-Qr+i/J.)t_
— Qr + ifl

1

hA VN 2 ar rr
-(<

ov

-Sr+Qr-
— iT + Q

i,u)t
±)

Vr '(«,!3B*v*-'m(r)/ e-i(gr-2Sr--i fl)i
h2 JV. • Vjv 2ov

(<rr + fr- Qr+ifl)t_ J

- Qr + i fl

ei(ar~ £r+Qr- ifl)t_ j|+
Or ~- fr + qr — ipi J

(20b)

(20c)

*) V. Weisskopf und E. Wignee, Zeitschr. f. Phys. 63, 54, 1930. Vgl. auch
G. Wentzel, a. a. O. S. 752.

24
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wobei gesetzt wird

Qr Tr — co ; fr \ (vm (r) — co) (21a)

ffr yV + Ir2 (21b)
Hier ist

Sf2=ih '(Cß ^™«) i2 ^j i tn3jw i2' (21c)

wenn n die Richtung des Wellenvektors lm(r) bezeichnet.

Zur Rechtfertigung des Ansatzes (20a) bleibt noch nachzuweisen,

dass durch die Ausdrücke (20) auch die Gleichung (19a)
befriedigt wird. Hierzu ersetzen wir nach dem Schema

V G

(2 ne)
- f v2dvdü (22)

die Summe in (19a) durch das entsprechende Integral. Bei der
Integration über die Resonanzstelle variiert der Ausdruck q nur
sehr langsam gegenüber f und a und kann daher als konstant
betrachtet werden. Die Resonanzstellen f der Nenner sind gegeben
durch

Daher wird

und

f —g-0; ä-S + Q 0. (23)

2

~2q

n2 — s2

| L ' (24)

e2

2p T o,

je nachdem, ob q > 0 oder q < 01). Da pi klein ist (vgl. (26)),
genügt die Diskussion für q^> pi. (Für die Intensität des
emittierten Lichtes, auf die es uns in erster Linie ankommt, spielen
ohnedies die kleinen Werte von g keine Rolle (vgl. 27b).) Dann
ist in (20b) jeweils nur ein Summand zu berücksichtigen, und
zwar für o > 0 der erste, für g < 0 der zweite. Ohne Beschränkung
der Allgemeinheit können wir uns mit der Untersuchung des
Falles q > 0 begnügen.

Um das Integral nach Gleichung (A5)2) auszuwerten, setzen wir

cp £ + ff— q

x) Die Variation von Sf kann vernachlässigt werden.
2) Die Hinweise (Al), (A2) usw. beziehen sich auf den mathematischen

Anhang am Schluss der Arbeit.
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dÇ a

d2cp

d£2

Nach (24) erhält man für die Resonanzstelle

dcp 2 g2 d2cp 8 s2 gz

und die Forderung

d|2 (g2 + s2)s
(24a)

^
d2

df2 <
dcp

dï
(*='?)

führt daher auf die Bedingung

Demnach ist (A5) sicher anwendbar, solange

(25)

In diesem Fall kann auch wirklich, wie oben behauptet, der zweite
Summand der Klammer in (20b) vernachlässigt werden; denn
a — f + q ist stets grösser als g, also erst recht wesentlich grösser
als pi. Aus (19a) folgt nun

-ihpie'r1^
e-ßt

(2nc)*hA
r r\V\2

dQ /L!U-.(ff_|). y
2e-i(<p + i(i)t_i

cp + i pi
de.

Werden die langsam veränderlichen Funktionen durch ihre Werte
an der Resonanzstelle | ersetzt, so ergibt sich

Hier ist, nach (21c),

h2 A 2nc3
(26)

énJ
s2 d-Q

2 I 2B I2

en J ' " 3 h2A

Mit ausreichender Genauigkeit gilt in (26) v02 co2 (vgl. 27b).
Die Bedingung (25) kann deshalb erfüllt werden, weil

|F(q)|2 c>2

h2A 2nc% <Vs2,

wie sich durch eine einfache Abschätzung ergibt. Hiermit sind
daher die Gleichungen (19) gelöst.
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Die Intensität des emittierten Lichts.

4. Die Wahrscheinlichkeit für die Emission eines Lichtquants
mit der Polarisationsrichtung ep in den Raumwinkel du ist
gegeben durch

dJ= 2 |<|2-
ir in d ß

Wie im vorigen Abschnitt braucht man (für g > 0) nur den
ersten Ausdruck der Klammer in (20c) zu berücksichtigen.
Gemäss (23) wird dann

dJ=dQ T7(q)|2 (e,2ÖJ2 m2e-2^
(2nc)s A2h* I e-i(tp + ifi) i_j

%pL

dcp.

Hieraus folgt nach (A3), wenn die Ausdrücke (24) und (24a)
eingesetzt werden,

1 _. e-2ut I y (à) I2 ICc 20 i2 co2
dJ -—-^Y-dQ- Wl Lil^^J _ (27)

2pc 4cn2c3A2hi g2 + s2
v ;

Da wir Mehrfachstreuungen der Elektronen nicht
berücksichtigen, gelten die Gleichungen (8) bzw. (19) nur für Zeiten
i <^ 1/pi. Infolgedessen kann der erste Bruch in (27) durch i
ersetzt werden. Der Eigenfunktion (3) des einfallenden Elektrons

i h fö I

entspricht der Strom -—p-. Bezieht man die Wahrscheinlichkeit

dJ auf den Strom 1 und dividiert noch durch i, so erhält
man den differentiellen Wirkungsquerschnitt

dQ dü.X-\VW\(*M\*™o«>\ (27a)X 4 n2 c3 A h* I Svo I g2 + s2
V ;

Wegen des Resonanznenners führt dieser Ausdruck nach (22) auf
die Energiebeziehung (14); denn für das Maximum des Resonanznenners,

also für o 0, ist nach (8e), (12) und (21a)

K (®o-c,-ty
2 m0 co

h

Da | t | ^ co je, kann man hier t vernachlässigen und schreiben :

Sv^(S^0-q)2+2^.
h

Um die Linienform des ausgestrahlten Lichts zu finden,
empfiehlt es sich, nicht von einer monochromatischen Elektronen-
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welle auszugehen, sondern eine Impulsverteilung anzunehmen, der
in der Skala der o nach (21) eine Verteilung

f(g) dg

entsprechen möge. Bei vorgegebenem R0 ist nach (18b) jedem tm

eindeutig ein Vektor Rr zugeordnet, und zwar so, dass zu
verschiedenen Vektoren Sv0 auch verschiedene nicht verschwindende
Amplituden arm gehören. Daher addieren sich einfach die
Intensitäten, und die Verteilung f(g) führt auf eine Gesamtwahrscheinlichkeit

#

dJ dü-D- f f{e)dQ
J g2+s2

wenn alle von o unabhängigen Faktoren in D zusammengefasst
werden. Ordnen wir jedem Wert von g den Ausdruck | zu, der
aus Pi + ]/£2 + s2 bzw. g2 i —- ]/|2 + s2 folgt (Gleichung 24),
so erhalten wir als ein ungefähres Mass der auf das Intervall di
entfallenden Intensität

D \f(ei) dgx

di
,/(<?•) dg2

'

di di
D

[/(&)+/(e.)] di
I2

Folglich ist für eine genügend langsam veränderliche Verteilungsfunktion

f(g) die Linienform durch

1

(v — co)2 is2
(27b)

gegeben. Damit ist auch gezeigt, dass die Vernachlässigung der
kleinsten Werte von o berechtigt ist. (Vgl. die Bemerkungen zur
Gleichung 24.)

Da sowohl die Lineardimensionen der Atome als auch die
Gitterkonstante klein gegenüber der Wellenlänge X des emittierten
Lichtes sind, ist Vs2 erheblich grösser als die Breite der
Emissionslinie des freien Atoms,

co2

y° -3^vr|20
Aus (6) und (21c) folgt nämlich

2|I)

n2
_

«>M

4 s2 24n2%2c6
2Ö2

¦ 7Ta e*

h c

I «2 1

A5
(28)

Die Linienbreite ist nur durch die Koppelung des Kristalls
mit dem Strahlungsfeld bestimmt, während die Koppelung des

Vgl. G. Wentzel, a. a. O. S. 753.
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Kristalls mit den Elektronen nichts zu ihr beiträgt. Es ist
bemerkenswert, dass die Linienbreite 2 -j/s2 nicht, wie für das freie
Atom oder auch für kleine Kristallblöcke (vgl. (37b)), zur zweiten
Potenz, sondern zur ersten Potenz der Elektronenladung proportional

ist. Der Grund dafür, dass die Strahlungskoppelung im
Fall des unendlichen Gitters sich ganz anders verhält als im Fall
des freien Atoms, liegt darin, dass wegen der Interferenzbedingungen

der Zustand b nur ein Lichtquant emittieren kann.

Entartung des angeregten ZuStands.

5. Um die Formeln nicht zu komplizieren, haben wir bisher
eine Entartung des angeregten Zustands des Einzelatoms nicht
berücksichtigt. Wie aber Bethe (a. a. 0. §§ 4, 5) gezeigt hat,
wird die Entartung der atomaren Energieniveaus in vielen Fällen
im Kristallgitter nicht aufgehoben. Sei E0 ein S-Term, Ex ein
P-Term. Ex bleibt dann im kubischen Gitter entartet, spaltet
im hexagonalen und tetragonalen in nur zwei Terme auf, und erst
in Gittern höherer Symmetrie wird die Entartung im allgemeinen
völlig aufgehoben.

Es sind also / angeregte Zustände tpxj (j 1,...,/) des Einzelatoms,

/ • N Zustände 0xjm des Kristalls in Rechnung zu setzen.
Dementsprechend wird nach (5)

F3-mr e*^o-^>V)7,r (29a)
und nach (6)

T^»0 e»<«aSm)(c0SB,e). (29b)

Mittels der unitären Transformation (7) führen wir wieder die
Grössen Ajmr und Bjma ein, und es bleiben in den Gleichungen nur
die Amplituden afr und bir stehen, die den Grössen (18)
entsprechen1). Mit den Abkürzungen (21) erhalten wir dann:

4'=^'"'"'''+iws'""'« (80b>

da®

v=i
1

ih^YYL= *__Y y W?*b- (30c)
dt VA px ,r ir

wobei
w? /g gri. \" jr V"P *"] m (»)/

x) Wir setzen hier wieder sm tm voraus
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Setzt man a e~ßt, so sind durch (30b), (30c) und die
Anfangsbedingungen a£(0) 0, bjr(0) 0 die Amplituden a und b

eindeutig bestimmt. Zu ihrer Berechnung unterwirft man sie, für
ein festes r, zweckmässigerweise den unitären Transformationen

/ 2

b ir Z-i-L jkbicr', af— /i"tiifl!i
k=l q=l

entsprechend
/ / 2

y =yy.iF w^=y Vt., w, S*'ir / i ^ ile r 1er, rr j r / i / i
-1- ite ''lcr^pgf

h l k l g l
die so gewählt sind, dass Wfi auf die Diagonalform gebracht wird,
also nur die beiden Elemente

IIriJ; wlr, W'22r w2r (31)

nicht verschwinden (vgl. 32). Die Transformationen T und S
sind leicht zu ermitteln; denn durch T wird die Matrix

ß,t 2 W)r Wfr [n ©,„] • [n 3BÎJ, (n —M (31a)

durch S die Matrix
«», 2^7?^, (31b)

i
auf Hauptachsen gebracht. Da beide Matrizen, a und ß, nur zwei
von Null verschiedene Eigenwerte haben, nämlich

Wir \ (au + a22 ± ]/ (ocn — a22)2 + 4 | a1212) (32)
Wq r J

bleiben zur Bestimmung von T und S nur noch lineare Gleichungen
aufzulösen. Für die Amplituden a' und b' ergibt sich dann, in
genauer Analogie zu den Ausdrücken (20),

V jr e-i(gr-ifi)t< e-i(ojr+£r-Qr + ifi)t_i
jr ~ ì, A /AT

' O^ (ff3> ~~ £*)
fi A VN 2 ajr { 'r air + £r — Qr + V

- (alr + ir) K _ :— (32a)
air — ir + gr — tpi

0' b2)
V,' o~ì{q, — iß) t 1

h A yjv or — %pi

'V _ SvrVVr e~i^r-2Sr-iß)t^e-i(a7,r+Sr-Qr+iM)t — l
h2A'!'VN 2 G„r \ Ovr + Ìr— Qr + ifJL

ei(apr-§r+Qr-ifi)t_ i
+ _s —•— - (32c)
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mit den Abkürzungen

wjr
G j r ySyr '"" fe, /TT' 11 0" 1,2).

rv -y ia

Der Wirkungsquerschnitt für die Emission von Lichtquanten der
Polarisation p ist (vgl. 27a)

ciqm- N' iFg(q)i2" i^i2 mow2 /33iV A-n2c3- A-h»\®0\
'

g2 + s2' K '

Ein einfaches Beispiel liefert ein P-Term, dessen Entartung
in einem kubischen Kristall erhalten bleibt. Die Eigenfunktionen
<pXj mögen drei aufeinander senkrechten Richtungen e,- entsprechen,
die im übrigen beliebig gewählt werden können. Dann wird 2Ö3TO

gv ¦ e3-, mit einer geeignet gewählten skalaren Funktion gv, also

"" jr '*» ¦^im(r)) 9v ' \~i *»/>

und beide Eigenwerte w-,2, w2 sind gleich | g \2. Die den
Transformationen T und S entsprechende Wahl der Eigenfunktionen führt
darauf, c3 mit der Richtung n des emittierten Lichts, tx und c2

mit den beiden Polarisationsrichtungen gleichzusetzen. Aus
Symmetriegründen ergibt sich noch

F3(q) (c,^_)-/(|q|) cos(e,,q)-/(|q]),

so dass nach (33) der Wirkungsquerschnitt dQip) zu

i cos (c^q) •/ (| q j) ¦ gm\2

und der Wirkungsquerschnitt dQ dQ(1) + dQ(2) für die Emission
eines Lichtquants beliebiger Polarisation zu

|sin(n,q)-/(|q|)-gj2 (33a)

proportional ist. In der Richtung des Vektors q wird also kein
Licht ausgestrahlt.

Durchführung der Rechnung für kleine Kristallblöcke.

6. Ist der betrachtete Kristallblock hinreichend klein, so darf
man ihn nicht mehr durch ein unendlich ausgedehntes Gitter
ersetzen. Statt dessen denken wir uns AT Atome in den Punkten
6ra angeordnet, wobei die Zahl N ein für allemal fest bleibt.
Daneben soll eine Zyklizitätsbedingung für ein Übergitter mit der
Zelle G N0 ¦ A gelten, wie es in der Strahlungstheorie üblich
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ist1), so dass man die physikalisch sinnvollen Ergebnisse durch
den Grenzübergang N0—voo erhält. Die Gleichungen (1) bis (8)
bleiben dann ungeändert bestehen. Zur Vereinfachung der Rechnung

nehmen wir weiter an, dass man in (6) die Faktoren ei (l Sm>

unterdrücken darf, dass also Ni n ¦ d/X2) eine kleine Zahl ist, wenn
d einen mittleren Wert für die Gitterkonstante bezeichnet. Unter
dieser Voraussetzung verschwinden nämlich alle Matrixelemente
Bma ausser3)

B0a= VF-(ea2Ba), (34)

und wir erhalten aus (8) :

^4^=24^e*(Tr_ft,)'0- (35a)
"* mr "

ihd^r=A^ei{a>-rr)ta+Vü v^«'(»-M«af. (35b)
dt G ^ VG

ih^=VN ^|S él>'-°>)%r (35c)
dt VG

i%äKL=Ä^ei{0i-rr)ta (TO+0). (35d)
dt G

Diese Gleichungen lösen wir nach der von Weisskopf4) zur
Behandlung der Resonanzfluoreszenz entwickelten Methode, setzen
also zunächst

a e-/*t, (36a)

f)0r ßor(e-yt—e-[>+»'(*r- <*>)]*). (36b)
Hieraus folgt

V^(««9B3 o \l-e-tY+i(^-va)]t i-e-bi+i(rr-va)-]t\
ara 7- t= Pori —r-, r —^? T—\, (,öt)C_)

t h VG \ y + i(co — va) /li + % (t, — v„) J

also nach (35b)

ihdhl=ihßor^jLl + i (jr_(u)]e-lß + i(rr-co)]t_y e-yi^

_ A0r — [^t+i{-rT.— eo)] <

07

Nßors^\u cm \\2\ei{(ü~Va)t-e~yt e*(co~"o><-e~[<" + i(T>--cuW
-2 |(ca3Ba)|

;

_l ft, G V | y + i (ft) — V0) ^ + * (Tr —- Va)

1) Vgl. G. Wentzel, a. a. O. S. 740.
2) A bezeichnet die Wellenlänge des emittierten Lichts.
3) Der Index 0 an den Grössen B und h bringt zum Ausdruck, dass der nach

(7) zugehörige Vektor lm verschwindet.
4) V. Weisskopf, Ann. d. Phys. (5) 9, 23, 1931. Vgl. auch G. Wentzel,

a. a. O. Ziff. 21.
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Für die Summe über a erhält man aus (23) und (A2) den Ausdruck

kf 0~---, {co2K(co) e-yt-Tr2 K (rr) er&•+*(*,-«)]<}

mit

4~w ^
Daher ist

*>'- v*Tr7 ^VT-? VT; *'=Nirfr7 (37a)
t(r «,[(/*—or) +i(rr—co)] znn'c*

und
AT w2 K (co) AT ,0_,.y N

O 12 3 ^0 )• (37b)
2 jr ?r c3

Für m 4=0 findet man aus (35 d)

/4_ 1 p-\_1*- + Ì(tr— COÜt

i G h pi + i (rr — co

Setzt man die für die Amplituden b gefundenen Werte in (35a)
ein, so ergibt sich

-, da „f
dt r

_ — ieri**f^ ]2 e^">' + *(Tr-C0)]'-l
hG2 [-7-1 pt — dr + i(rr—co)

„[u+i(rr— cu)] t -i

+ 2 S Mmrl26 - .:
_

71 ¦ (38)
r m^O /* + 'llTr w,)

Nach dem Schema

(2n)3
erhalten wir daher, wegen

G f ...\®\2d\®\dQ (39)

c^ | Sv | m0
' '

m0 y
° h

^/y-;'^l(|4.l'M. (39b)
2n2h3 G -^ 4 Tr 7

(Bei der Integration wurde <5r durch den Wert y an der Resonanzstelle

t w ersetzt.)

x) Auch in diesem Fall, wie im Fall des unendlichen Gitters, ist die Linienbreite

nur durch die Wechselwirkung Kristall-Strahlungsfeld verursacht.
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Der Ausdruck für pt verschwindet, wenn man zur Grenze
G —>¦ co übergeht, weil die Dichte der einfallenden Elektronen 1/67
ist. Dagegen bleibt der für uns wesentliche Wirkungsquerschnitt,
der ja dem Strom 1 entspricht, endlich.1)

Der Gültigkeitsbereich der vorstehenden Lösung ergibt sich
daraus, dass wir in (38) |^40r|2 als langsam veränderliche Funktion
betrachtet und bei der Integration durch ihren Wert an der
Resonanzstelle ersetzt haben. Das ist zulässig, wenn |^40r|2 in der
Umgebung der Resonanzstelle r co innerhalb des Bereichs
| Ar | :£ ör bzw. | Ar | ^ y wenig variiert. Nun kann sich der in
| A |2 enthaltene Faktor

y „?(»,-Po.«*)

stark ändern, sobald iV1/s | A S? | d von der Grössenordnung n wird
oder Ar von der Grössenordnung ——-tt (nach 39a). Folglich bleibt

unsere Lösung sicher richtig, solange dieses Ar gross gegen y ist
oder, wegen (37b),

h I & I nN,L li | X | n
^ (40)

m0dy0

Nun ist y0 ungefähr gleich a3 • co2) (a. die Feinstrukturkonstante)
und | Sv | von der Grössenordnung 2 n/d. Daher kann man auch
schreiben

,T4, „ h ;. i
mQc 2d2 öl3

Die Linienbreite des emittierten Lichts wird eine monotone
Funktion der Zahl AT sein, die für kleine N gleich N • y0 ist und für
grosse N den konstanten Wert 2 Vs2 annimmt. Es wird also
erlaubt sein, den Kristall durch ein unendliches Gitter zu ersetzen,
sobald

N > V4ts2 (40a)" Yo

(Vgl. hierzu die Abschätzung 28.)
Um die Wahrscheinlichkeit dafür zu erhalten, dass das Elektron

in den Raumwinkel düx gestreut, das Lichtquant (mit der
Polarisationsrichtung ea) in den Winkel dü2 emittiert wird, hat
man die Summe £ I ar „

12 zu bilden (SvV in düx, ta in dü2) bzw.
r g

Vgl. (41a).
2) Vgl. V. Weisskopf, a. a. O. S. 36.
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die entsprechenden Integrationen auszuführen. Nach (36c) und
(37a) wird

SI
N

G*h*"S
(e.SBÎ)^,

pi — ôr + %(co — rr)
1 —e-[y + i (co- va)]t 1 _e-[jli + t(Tr-»„)]'

y + i (ft) — j>0) j« + t (rr,— v„)

Die Integration nach v liefert zunächst, mit Benutzung von (A3),

Z i
I "ro I dß,

Aco2

G2ft4(27rc)3t2
(emgBSMo,

,«— c3r+i (co—rr)
Tr

wobei

T,.=
1 —e-2^

7

2 Tri¦
U

pi

-i[rT-CD-i(y + fi)]t 1

{ rr — co — i (y + pi)

Integriert man endlich noch über j Sv |, so findet man

düx ¦ dü2

ei[rr-ci) + i(y + ß)] t\

— co + i(y + pi) |

/ I ara G

N mn ]/%2-V \(emW*m)A0a\2ti-e-2ßt l-e-zyt
(2n)ic3hò 2 (y-pi) 2pi 2y

(41)

Bei Beschränkung auf solche Zeiten, die der Ungleichung pit<^l
<^yi genügen, reduziert sich der letzte Klammerausdruck auf t,
und der Wirkungs querschnitt wird daher, wenn noch für A0m und
y ihre Werte eingesetzt werden,

dQ dÜx- dÜ2- AülüliÄ: r/2 |(e.9ÖJ|*
32 TT2 fl* 28 „

F(S?0-Svr)|2 y et(8m,R,-fl;) (41a)

Fragt man nur nach der Intensität des emittierten Lichts, so ist
noch über düx zu integrieren.

Sehen wir wieder von der Temperaturbewegung ab, setzen
also 6m vm, so ergeben sich bekanntlich scharfe Maxima der
Intensität für S?0 — SvV q, und wir gelangen, genau wie bei der
Diskussion des unendlichen Gitters, zu den Interferenzbedingungen
(13) bis (15), die somit in allen Fällen gelten werden. Die Aus-
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drücke für den Wirkungsquerschnitt lauten in den beiden Grenzfällen

verschieden; im allgemeinen wird man eine Intensität
erhalten, die sich durch eine gewisse Interpolation zwischen diesen
beiden Werten ergibt.

(Im Fall einer Entartung des angeregten Zustands lassen sich
die Überlegungen des 5. Abschnitts ungeändert übertragen.)

Der Einfluss der Temperaturbewegung.

7. In (41) lässt sich der Einfluss der Temperaturbewegung
ohne weiteres berücksichtigen. Um den beobachtbaren Wert des

Wirkungsquerschnitts zu erhalten, haben wir noch über alle Lagen
6m zu mittein, so dass das Quadrat der letzten Summe durch den
Ausdruck

|2e*(«».«o-»,>|2 (42)
m

ersetzt wird, der auch der Debye-Wallerschen Theorie1) über den
Einfluss der Temperaturbewegung auf die Interferenzen der Bönt-
genstrahlen zugrunde liegt. Die Ergebnisse dieser Theorie können
daher auf unseren Fall übertragen werden: Die Temperaturbewegung

setzt also die Intensität in den Interferenzpunkten herab
und bewirkt das Auftreten einer endlichen Lichtintensität auch
für die durch die Interferenzbedingungen ausgeschlossenen
Einfallsrichtungen der Primärelektronen. Für eine erste Abschätzung
genügt die Annahme, dass die einzelnen Atome unabhängig
voneinander um ihre Ruhelagen harmonische Schwingungen
ausführen (als gleichartige Oszillatoren mit den Eigenfrequenzen v(
und den Schwingungsrichtungen c,). Allgemein ist dann für die
Temperatur T

—¦", »
1 für l m „„ „ „„•,.lftu,",gHw«iIi^)=B+',"(1"iP)

mit

wenn M die Masse der Atome (bzw. Atomkerne) bezeichnet2), folglich

|2e*(9 6;)|2 =v^ei(9, t,- rm) ei(g,Ui-iv)
l Im

fi2|yy(3r*>|2 + A(l-P2). (42a)

P. Debye, Ann. d. Phys. (4) 43, 49, 1913. I. Wallee, Diss. Upsala 1925.
2) Vgl. H. Ott, Ann. d. Phys. (5) 23, 169, 1935.
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Will man den Einfluss der Temperaturbewegung auf das
unendliche Gitter im Anschluss an die Gleichungen (19) behandeln,
so zeigt es sich, dass der Temperatureffekt nicht mehr als kleine
Störung anzusehen ist; denn es müssen alle Amplituden bmr und
ara berücksichtigt werden. Die Matrixelemente können nach (42a)
abgeschätzt werden:

iXT^ |yy«.-*r-«».«:)6«*»-*r'u»>r^^
j Vr |2 {P2 Nò (% - SvV - U + (1 - B2)}.

Demnach sind diejenigen Matrixelemente Amr, die den
Bedingungen (18a) nicht entsprechen, von der Grössenordnung 1/VN
gegenüber den auch bei fehlender Temperaturbewegung nicht
verschwindenden. Wegen der Kleinheit der Lichtvektoren ta kann
in Bma die Temperaturbewegung vernachlässigt werden, so dass

(9c) bestehen bleibt. Folglich werden auch die Amplituden aTa
und bmr, die für U; 0 verschwinden, gegenüber ar und br um den
Faktor 1/VN verkleinert sein, ihr Quadrat also um den Faktor
1/N. Via, aber ihre Mannigfaltigkeit gegenüber derjenigen der
Amplituden ar um den Faktor N grösser ist, wird die auf die ara
entfallende Lichtintensität von der gleichen Grössenordnung sein
wie die von den aT allein herrührende, d. h. die Intensität wird
in den Interferenzpunkten keine scharfen Maxima mehr
aufweisen, und zwar wegen der Nullpunktschwingungen auch nicht
bei tiefen Temperaturen.

Die für den Prozess in Wirklichkeit massgebenden Kristallblöcke

werden Erscheinungen hervorrufen, die zwischen den hier
behandelten Grenzfällen liegen. Danach wird der Temperatureffekt

qualitativ den geschilderten Charakter haben, jedoch die
Interferenzen vermutlich stärker stören, als der Debye-Waller-
schen Theorie entspricht.

Berücksichtigung der Wechselwirkung der Atome im Kristallgitter.

8. In seiner Arbeit1) über die Absorptionsspektren fester
Körper, der wir uns im folgenden eng anschliessen, diskutiert
Peibrls den Einfluss der Wechselwirkung der Atome im Kristallgitter

auf die Eigenfunktionen und Eigenwerte des Kristalls. Diese
Wechselwirkung wird als Störung behandelt, was dann zulässig
ist, wenn der von Peieels mit x bezeichnete Störungsparameter
der Relation

x < 1 (43)

R. Peiebls, Ann. d. Phys. (5) 13, 905, 1932.
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genügt. Die Bedingungen, unter denen das der Fall ist, lassen sich
nur schwierig übersehen. Am ehesten wird man es für einatomige
Gitter und bei tiefen Temperaturen erwarten. Es lässt sich aber
noch weiter sagen, dass die Kristalle mit x <^ 1 „Streuer" sind,
die die empfangene Anregungsenergie in Form von Licht wieder
abgeben, im Gegensatz zu „Absorbern", die die Anregungsenergie
vorwiegend in die Wärmeenergie der Gitterschwingungen
verwandeln. Bei der Behandlung des uns interessierenden Prozesses
werden wir uns also aus zwei Gründen auf die Bedingung (43)
stützen, erstens, um sicher zu sein, dass nicht die durch die
Elektronenstrahlen auf den Kristall übertragene Energie in Wärme
verwandelt wird, und zweitens, um in erster Näherung die bisherigen
Überlegungen verwenden zu können.

Die Eigenfunktionen, von denen Peierls ausgeht, entstehen
aus den Funktionen (2a) und (2b), indem man den Elektronenaustausch

berücksichtigt und geeignet symmetrisierte Linearkombinationen

wählt — wir nennen sie rI'Xm —, wie es in der Heitler-
Londonschen Theorie der homöopolaren Bindung geschieht, weiter
aber die Kernkoordinaten, die bei uns nur als Parameter
auftreten, explizit in die Funktionen einführt.

Die Wechselwirkung zweier Atome aufeinander hängt von
ihren Kernkoordinaten ab bzw. von deren Abweichungen von den
Ruhelagen (u„). Entwickelt man nach diesen Abweichungen, die
bei tiefen Temperaturen klein sind, so erhält man die Wechselwirkung

nullter Ordnung, wenn alle u„ 0 gesetzt werden. In
diesem Fall lässt sich die Form der Eigenfunktionen bestimmen,
und zwar erhält man für die angeregten Zustände die Ausdrücke

I(«)'i;ei(pg^. (44)
m

•die nach (7) den Funktionen 0'Xm entsprechen. Hier ist p ein
Vektor der Form L~1q; X(u) ist eine Funktion der Kernkoordinaten

allein, und zwar ein Produkt^ der zu den einzelnen freien
Schwingungen des Gitters gehörigen Eigenfunktionen. Der (44)
entsprechende Energiewert ist

Ex + ^hvs(Ns + i)+f(p) (45)
s

(s numeriert die Gitterschwingungen.) Man erkennt, dass die für
unseren Prozess massgebenden Matrixelemente nur dann von Null
verschieden sind, wenn ta p und ^0 — S^ p + q gilt. Die
Interferenzbedingung (12) ist also erfüllt. Weiter folgt nach (4)



384 V. Bargmann.

aus der Form der Wechselwirkungsenergie, dass nicht gleichzeitig
eine Elektronen- und eine Kerneigenfunktion angeregt werden
kann. Daher ergibt sich statt der Gleichung (14)

vo
2 Sv2 + V2, (46)

wobei aber r{ nur wenig von r\ abweicht. Da nämlich ta gegenüber
einem Vektor des reziproken Gitters sehr klein ist, wird sich f(t0)
von /(0) nicht wesentlich unterscheiden. In dieser nullten Näherung

bleiben also unsere bisherigen Ergebnisse bestehen.

Berücksichtigt man die Grössen un in erster Näherung, so
kommt zu dem scharfen Energiewert Ex ein kontinuierliches Band
hinzu, so dass die Energiebeziehung (46) verwaschen wird. Dadurch
ändert sich jedoch der Charakter der Erscheinungen nicht
entscheidend: Statt des festen Winkels # (17) erhält man einen
entsprechenden Winkelbereich. Viel wesentlicher ist es, dass die
Interferenzbedingung nicht mehr erhalten bleibt. Die gestörten
Eigenfunktionen sind nämlich Linearkombinationen von solchen
der Form (44) mit verschiedenen p. Ein Lichtquant der Wellenzahl

la kann nur dann aus einem Zustand emittiert werden, wenn
er die ungestörte Eigenfunktion mit p' la enthält, und dieser
Zustand kann durch das Elektron nur angeregt werden, wenn unter
den ihn aufbauenden ungestörten Eigenfunktionen eine solche
vorhanden ist, deren Wellenvektor p" der Relation S^0 — Sv

p" + q genügt (Sv der Wellenvektor des gestreuten Elektrons),
wobei aber jetzt p' mit p" nicht übereinzustimmen braucht.

Diejenigen Matrixelemente, die auf Prozesse führen, welche
den Interferenzbedingungen (12) widersprechen, werden mit einem
Faktor x behaftet sein, die zugehörigen Intensitäten also mit
einem Faktor x2. Hierdurch ergibt sich ein Zusammenhang
zwischen der Intensität def durch die Interferenzbedingungen
ausgeschlossenen Prozesse mit der Struktur des Absorptionsspektrums.
Wie nämlich Peierls zeigt, besteht in dieser Näherung das

Absorptionsspektrum des Kristalls aus der Hauptlinie und einem
(daran anschliessenden oder auch zu beiden Seiten der Linie
gelegenen) kontinuierlichen „Spektrum erster Ordnung", dessen Ge-

samtintensität um einen Faktor von der Ordnung x kleiner ist
als die Intensität der Hauptlinie. Je kleiner nun x, je schärfer
also die Absorptionslinie ist, umso weniger werden auch die in der
vorliegenden Arbeit behandelten Interferenzerscheinungen gestört
sein. Eine analoge Beziehung ergibt sich für die höheren Näherungen,

bei denen jeweils ein Faktor x hinzukommt.
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Mathematischer Anhang.

Alle in unseren Rechnungen auftretenden Integrale können
auf die folgenden zurückgeführt werden, deren Werte sich in
bekannter Weise durch komplexe Integration und Residuenbildung
ergeben.

w u + iv, wx ux + ivx,..., seien komplexe Zahlen mit nicht
verschwindendem Imaginärteil; a sei eine reelle Zahl.

Dann ist

(AI)

(A2)

(Ala)

1 r plaS
-^—7 / Y di-c-eiaw (0*0)
Z n% J i — w

wobei
c 1 (sgn a + sgn v)1) •

Für a 0 findet man

1

2 n i
F ^ 1 lim f d% i/ mu / A sgnt>J i — w 2niA-+™ J i — w

&

— oo —A

so dass in diesem Fall die Gleichung (AI) richtig bleibt.
Nach (AI) und (Ala) wird

2 n i J i — w
— CO

VA
1 r™ /• eia(§-w)_-tir^ hm / ^— - - di \ sgn a. (Alb)2ni *->*<*> J i — w 2ë V '

—A

Die folgenden Beziehungen gelten ohne Unterschied für alle
reellen a, wobei übrigens die betreffenden Integrale auch im Punkte
a 0 stetig von a abhängen (die Zahlen c{ sind nach (A2)
definiert) :

_ 1_ Y eia*dj cx eiawi — c2eiaw* ,Ag,
2 n i J (i — wx)-(i — w2) wx — w2

1 +f eiaidi cxeiciw1

2 n i J (i — wx) (i — w2) (i — w3) (wx — w2) (wx — w31

c2eiaw2 csetaw3
(Wj — Wx) (W2 — Wa) (W3 — Wx) (W3 — Wg)

(A4)

x) r 1 für y > 0
sgn y 0 „ y 0

I-i „ y<o
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Ist <p(x) eine reelle Funktion, die für x0 verschwindet, und
pi eine reelle positive Zahl, so kann man das Integral

J cp — iU J <

eiarf dx
¦ pi J cp — ipi dcp

mit ausreichender Genauigkeit ersetzen durch

dcp

dx
d<P /*=,*,.

,iaÇ

ipt,
di, (A5)

wenn innerhalb des Gebiets | cp | ^ pi der Ausdruck -j— wenig

variiert, also für cp 0 die Ungleichung

pi
d I dx

dcp \ d

oder, da
dx am l'I-5— und -5—»da; a çs^

da;

dç?

ci2 qp / dcp \3
ci x2

pi
d2cp

dx2
dip

dx

dq>Y
dx J

(x x0) (A6)

erfüllt ist.
Entsprechendes gilt für die übrigen Integrale, wobei die

Bedingung (A6) erhalten bleibt.

Zum Schlüsse sei es mir gestattet, Herrn Prof. Wentzel für
die Anregung zu dieser Arbeit und für die ständige Unterstützung
bei ihrer Ausführung meinen herzlichsten Dank auszusprechen.

Zürich, Physikalisches Institut der Universität.
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