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Uber die dureh Elektronenstrahlen in Kristallen
angeregte Lichtemission

von V, Bargmann.
(11. V. 37.)

Zusammenfassung. Charakterisierung des benutzten Modells. — Diskussion
der Interferenzbedingungen. — Rechnung fir das unendliche Gitter. — Durch-
fithrung der Rechnung fiir kleine Kristallblécke. — Einfluss der Temperatur-
bewegung. — Beriicksichtigung der Wechselwirkung der Atome im Kristallgitter.

Es soll untersucht werden, wieweit die Atome eines Kristall-
gitters bel Anregung durch Elektronenstrahlen kohérentes Licht
aussenden. Wir beschridnken uns auf solche Fille, in denen das
optische Spektrum des Kristalls, soweit es fiir uns in Betracht
kommt, nicht allzusehr vom Spektrum der betreffenden freien
Atome abweicht?) und in denen es erlaubt ist, die Wechselwirkung
der Atome miteinander als Stérung zu behandeln. Sieht man von
der Wechselwirkung ganz ab — mit einem so idealisierten Modell
werden wir uns vorwiegend befassen —, so ergibt sich Kohérenz,
und eine merkliche Lichtintensitit ist nur dann zu beobachten,
wenn die einfallenden Elektronenstrahlen in bestimmter Weise
zum Kristallgitter orientiert sind. Eine notwendige Voraussetzung
hierbei ist die, dass sich der Kristall nach der Lichtemission wieder
im Grundzustand befindet. Ist z. B. die Lichtemission mit einer
Ionisation verbunden, wie bei der Anregung der Riontgenspektren,
so ergibt sich ndmlich die Intensitat der ausgesandten Strahlung
durch inkohdrente Addition iiber alle moglichen Endzustédnde, die
den verschiedenen ionisierten Atomen entsprechen. Das gleiche
gilt fir den Fall, dass der Anregungsprozess zur Neutralisierung
eines Jonenpaares im Kristall fithrt (z. B. bei den Alkalihalogeniden).

Die Temperaturbewegung der Atome im Gitter setzt die Licht-
Intensitat in denjenigen Fillen herab, in denen die Richtungen
der einfallenden Elektronen den Interferenzbedingungen geniigen,
und verursacht umgekehrt eine von Null verschiedene Intensitét
auch fir die anderen Richtungen der priméren Elektronen, in
Analogie zum kontinuierlichen Untergrund auf den Beugungs-
bildern der Réntgenstrahlen. In qualitativ dhnlicher Weise wird

1) Vgl. hierzu die Bemerkung zu den Gleichungen (2a), (2b).
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der Interferenzeffekt durch die Wechselwirkung der Atome im
Gitter gestort, voraussichtlich am wenigsten bei Kristallen mit
einer schmalen Absorptionslinie. Er wird daher nur an bestimmten
Materialien (und bei tiefen Temperaturen) auftreten. Bei der
grossen Man%igfaltigkeit der hier vorliegenden Moglichkeiten wer-
den wir dartiber nur mehr qualitative Aussagen machen konnen.
Da im folgenden nur in der ersten Bornschen Niherung ge-
rechnet wird, konnen wir weitere Effekte, die ebenfalls die Ko-
hirenz herabsetzen, nicht berticksichtigen, némlich die Mehrfach-
streuungen und die Bremsung der einfallenden Elektronen.

Charakterisierung des benutzten Modells.

1. Die Uberlegungen werden in zwei Grenzfallen einfach,
erstens, wenn die Zahl N der Atome so gross ist, dass man den
Kristall durch ein wnendliches Gitter ersetzen darf, zweitens bei
einer verhiltnismissig geringen Zahl der Atome des in Betracht
kommenden Kristallblocks. (Niheres iiber die verschiedenen
Giiltigkeitsbereiche im 6. Abschnitt, (40) und (40a).)

Die Grundvektoren unseres Gitters bezeichnen wir mit a,, a,,
a3, das Volumen der von a;, a,, a; gebildeten Zelle mit 4. Das
reziproke Gitter hat dann die Grundvektoren b;, b,, b,, definiert
durch

(b, q;) =27 d;.

Die Punkte des Gitters sind t; = 2, a, (I; ganz), die Punkte des

reziproken Gitters entsprechend q, = Zr; b, (r; ganz).

Im Fall des unendlichen Gitters, den wir zunéchst behandeln,
fithren wir in tblicher Weise eine Zyklizititsbedingung ein, fiir
ein Ubergitter mit den Grundvektoren La; und einer Zelle vom
Volumen

' G=I13-4=N-4, (1)

in der auch die auftretenden Eigenfunktionen normiert sind. Es
sel etwa das Gebiet — L/2 <[, < L/2 gewihlt.

Der Einfachheit halber beriicksichtigen wir nur ein Atom pro
Zelle, was immer dann erlaubt ist, wenn man die Anregung und
die Lichtemission in jeder Zelle einem wohlbestimmten Atom zu-
schreiben kann. Um der Temperaturbewegung Rechnung zu tra-
gen, denken wir uns die Atomkerne nicht in den Gitterpunkten,
sondern i den Punkten

6, =1, + U (1a)

angeordnet. Die Elektronen des Atoms (I) mogen in bezug auf
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dessen Kern die Koordinaten 1, (x =1,...,2) haben. Wie schon
erwéhnt, legen wir unserer Rechnung ein Modell zugrunde, in
dem die Wechselwirkung der einzelnen Atome mitelnander ver-
nachlissigt ist, so dass die Eigenfunktionen des Kristalls Produkte
von Funktionen der Einzelatome sind. Ist die Eigenfunktion des
Atoms 1m Grundzustand (Energie Fj) ¢o(x,), In dem angeregten
Zustand, den wir im folgenden betrachten werden (Energie K, =
Ey + ho), ¢, (x,)Y), so ergibt sich

D, = ](;)1 @o (X15) (2a)
tir den Grundzustand des Kristalls und
Dy = @1 (Kmy) * g% (X1c) (2b)

fir denjenigen Zustand, in dem das Atom (m) angeregt i1st. Streng
genommen brauchen die Funktionen ¢, und ¢, nicht mit den Eigen-
funktionen des freien Atoms iibereinzustimmen; worauf es an-
kommt, ist nur der Autbau der Funktionen @, und @,,, aus denen
der Einzelatome. Insofern wird also die Wechselwirkung der Atome
in einer indirekten und schematisierten Weise beriicksichtigt, als
die Atome an die Gitterpunkte gebunden sind und die Funktionen
@o, 1 von denen der freien Atome abweichen konnen.?2)

Das einfallende bzw. gestreute freie Elektron wird durch die

Eigenfunktion
et (R, R)

| Ve

beschrieben, wobei wegen der Zyklizititsbedingung R, = L=1q,
h?

2 my

U, ®

sein muss. (Die zugehirige Energie ist E(R,) = R,2, wenn
my die Elektronenmasse bezeichnet.)

Die Wechselwirkungen Kristall-Elektron sowie Kristall-Strah-
lungsfeld sollen als Storungen behandelt werden. Daher ist ein
stationdrer Zustand des ungestorten Gesamtsystems gegeben durch
den Zustand des Kristalls, den Zustand U, des Elektrons und die
Lichtquantenverteilung (Photonenzahlen) des Strahlungsfeldes.

Das Elektron erzeugt ein Potential —eI'(p), wenn unter b
der Vektor vom Elektron zum Aufpunkt verstanden ist; die
Funktion F ist im Ubergitter periodisch, geniigt der Laplaceschen

1) Fiir eine etwaige Entartung des angeregten Zustandes vgl. den 5. Ab-
schnitt. ‘ :

2) Vgl. hierzu die Arbeit von H. BETHE iiber ,,Termaufspaltung in Kristal-
len*, Ann. d. Phys. (5) 3, 133, 1929.
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Gleichung und wird im Punkte » = 0 wie 1/ | » | unendlich. TIhre
Fourierreihe lautetl)

iL-1(q,v)
F(y) = G 2 T lq Ce (40,00, @)

R, se1 der Wellenvektor des einfallenden Elektrons. Fir die
Matrixelemente der Wechselwirkungsenergie finden wir dann, wenn
durch dxz die Integration tber die Koordinaten der Elektronen
eines Atoms, durch dX die Integration iiber die Koordinaten aller
Elektronen des Kristallgitters angedeutet wird,

Zﬁ_ 22-[[]* O F S — Fma) " Ur Prm AR IX

282.6 2[ (R, — Ky R—5,,— xm“)F(SR S —Tms) AR

fcpo x) ez (R~ Ry, 1) @, (x) dx.

Das erste Integral liefert den Fourierkoeffizienten von F(p), und
es wird daher nach (4)

V* 4 7 e2 ei (‘Q-r_"@(l’ 8'm) @ (@ @0 ¥a)
LA 3 » ko x)dx
G~ G R f—Jf‘p" 7(2)
_ ot (R, =Ry, 8) * (R, — R, ) Zj
G G’
wenn wir den von %, abhéngigen Faktor abtrennen. )
Das fiir die Lichtemission massgebende Matrixelement?) (Uber-

gang D,,, — D,, Aussendung eines Lichtquants der Wellenzahl
£, und der Polarisation e¢,) 1st?)

Wwo 1 [ h\b e, ts Ta)
VG - \/G_Y(_’Vj) PALA ‘1 h Effpl ¢l (b ( ograd,) @y (z)dz
1 1
= —— (¢, W,,,) =——=e e (Esom) (¢ QB 6
e, W) = o) e, ). ®

Hierbe1 1st

h \% e

%a =t &= S‘ ra (1 0) )
1}O' ‘L o

1) Vgl. M. BorN, Atomtheorie des festen Zustandes, S. 723. Leipzig und
Berlin 1923.

2) Vgl. G. WeNTZEL, Handbuch d. Physik, Bd. XX1IV/1, S. 743, Berlin 1933.

3) Durch den Index o soll sowohl der Wellenvektor E; als auch die Polarisa-
tionsrichtung e, bestimmt sein.

%) Hier ist 1, (1,0) = [ ¥ (2) xy @o(x) d2.
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da man ja im optischen Gebiet die Exponentialfunktion im In-
tegranden unterdriicken, d. h. sich auf die Dipolstrahlung be-
schranken darf.

Wir unterwerfen noch die Eigenfunktionen der angeregten
Zustande der unitdren Transformation

@,lm:Zélﬂ Unm (7)
mit
Unm = \/:lN ei (I.’n Em) ’ (73‘)
wobel

1 L L
pIme (g =)

Die entsprechend transformierten Matrixelemente sind:

B’m o S‘ Wn o LT:m (e %mﬂ) - (70)

Bei der Aufstellung der quantenmechanischen Differential-
gleichungen beriicksichtigten wir nur die Amplituden folgender
Zustdnde: o — Kristall im Grundzustand, das einfallende Elektron
im Zustand U,, keine Strahlung; b,,, — Kristall im angeregten
Zustand m, Elektron in U,, keine Strahlung; a,,— Kristall wieder
im Grundzustand, Elektron in U,, ein Lichtquant ¢ emittiert. Die
Mehrfachstreuungen Werden also ausser acht gelassen. Demnach
ergibt sich?):

__2 mr i(rr—w)thT ) (8&)

gl r)fa+2___B"£ei(w—%)ta” (8b)

T #Va
. dafﬂ, BZG (vo— t
ih—2 =%—\7;;’6W b (8e)

Die Anfangsbedingungen sind
a(0) = 1; b r(0) = 0; e () = s (8d)

1) Vgl. G. WENTZEL, a. a. O. S. 735.
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Mit hr, bezeichnen wir die Differenz der Elektronenenergien

E(R,) — E(R,), also
"R RY) . (8¢)

T’." B
2 m,

Von der Temperaturbewequng sehen wir zunichst ab, setzen
also tberall u,, =0, d. h. s,, = r,,. Dann folgt aus (5), (6) und (7)
Apnr =NV, 0(R — R, — 1) (9a)
Bo,=+/N-(¢e,W,) - o(t, —¢,). (9b)
Hier bedeutet '

5 (@) 1, wenn =g = Z?v"mZ b; (m; ganz)
0 sonst.

(10)

Ist q ein nicht verschwindender Vektor des reziproken Gitters, so
gilt fiir den Wellenvektor £ eines Lichtquants im optischen Gebiet
[£:]q] ~1:1000, (11)

da sich |E| zu | q| umgekehrt verhilt wie die Wellenlinge des
emittierten Lichts zur Gitterkonstanten. Daher kann sich £, von
£, nicht um einen von Null verschiedenen Vektor q des reziproken
Gitters unterscheiden, und (9b) verschiarft sich zu:

— \/N (ea Q:Ba) bl wenn Eg == Em
0, wenn £, +¢,

B (9c)

mo

Diskussion der Interferenzhedingungen.

2. In den Gleichungen (9) sind die Interferenzbedingungen
enthalten, die wir zunidchst diskutieren wollen. Bezeichnet man
den Wellenvektor des emittierten Lichtquants mit ¢, denjenigen
des gestreuten Elektrons mit &, so werden die Amplituden a,, nur
dann von Null verschieden sein, wird also nur dann Licht emittiert,
wenn

Re=R+t+gq. (12)

Geht man durch Multiplikation mit 7 von den Wellenzahlvektoren
zu den zugehorigen Impulsen iiber, so besagt (12), dass der Impuls
hq vom Kristallgitter aufgenommen wird. Hinzu kommen noch
die Frequenzbedingung?)

clt|=w (13)
und die Energiebeziehung?)

2= K2+ g2, (,72 — 2m0w) (14)

1) Vgl. (27h). 2) Vgl. (27a).
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wie sie sich bei der Auflésung der Differentialgleichungen (8) er-
geben. '

Die Gleichungen (12) bis (14) sind micht erfiillbar, wenn q
verschwindet. (Streng gilt dies, sobald fir die Elektronenenergien
die relativistischen Ausdricke E = ¢ j/m2c? + (hR)? eingefiihrt
werden.) Bekanntlich beruht hierauf die Tatsache, dass das freie
Elektron Licht weder emittieren noch absorbieren kann?).

Den Vektor q halten wir im folgenden fest, d. h. wir dis-
kutieren die durch ein vorgegebenes q definierten Erscheinungen.
Auf Grund der Beziehung (11) kann in den meisten Fillen ¢
neben den Vektoren K, & und q vernachléssigt werden, so
dass sich aus (12) ergibt

Ro~R+q. (15)

Der hierdurch begangene Fehler ist in (16a) abgeschitzt. Aus
(12) folgt

[ RI—[E[=[R—a =|R][+|¢E]
Quadriert man diese Ungleichung und setzt
(Ko@) = [ Ro |- 1] cos 9,
so wird wegen (14)
PP 2t | R] 2| Ry| - || cos I =qr+yP—t22[ ] | R] (16)

d. h. die erlaubten Werte von cos & unterscheiden sich um héch-
stens

B IR] _ 2]t

d=2-"—.- & ~ 10-3 bis 10-2, (16a)
a1 1%l =~ Tal |
Mit ausreichender Genauigkeit wird daher
q* + 7*
cos = ——— (17)
2|R|-14q]

entsprechend (14) und (15).

Durch die Interferenzbedingungen wird also ein Kegel von
moglichen Richtungen der einfallenden Elektronen ausgesondert,
der den Vektor q des reziproken Gitters zur Achse hat. Ibenso
erfilllen die Richtungen der gestreuten Elektronen einen Kegel
mit derselben Achse.

Im Gegensatz zum Winkel &, der zwischen den engen Grenzen
(16) eingeschlossen ist, wird der Bereich, den der Winkel ¢ zwischen
der Richtung des emittierten Lichtes und dem Vektor ¢ ein-

1) Vgl. G. WENTZEL, a. a. 0. S. 769.
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nehmen kann, durch (12) bis (14) wegen der Kleinheit des Ver-
héaltnisses | #]:|q | sehr viel weniger emngeschrankt, wie unmittel-
bar aus den Figuren 1 und 2 hervorgeht, die den Extremwerten
von # (R parallel £ und R antiparallel zu £) entsprechen; weiterhin
ist wegen der Wechselwirkung der Atome des Kristalls der Wert
von # nicht vollig scharf, sondern erfiillt ein bestimmtes Intervall
(vgl. 46), so dass trotz der Interferenzbedingungen alle Richtungen
des emittierten Lichtes erlaubt sind, sofern nicht schon wegen der
Form der durch die Einzelatome bestimmten Grossen V, und 8,
die Lichtintensitidt fiir gewisse Emissionsrichtungen verschwindet
(vgl. z. B. 33a).

R parallel ¢ K =4D t=DC.

R antiparallel zu ¢ K =AD" t=DC.

Wegen |cos ¢ | =1 folgt aus (17) noch
et _(al=mn*

+nt L,
| q | 2|q]

d. h. der Impuls 7 | R | des einfallenden Elektrons muss den fiir
die Anregung des einzelnen Atoms erforderlichen Impuls Ay

v

| Ro|

um mindestens 3 |hq} (| | —n)? ibersteigen.
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Auflosung der Differentialgleichungen (8).

8. Nach (9) verschwinden die meisten Matrixelemente 4 und
B; infolgedessen brauchen in den Gleichungen (8) die entsprechen-
den Amplituden @ und b nicht beriicksichtigt zu werden. Wir un-
tersuchen wieder die durch ein festes q definierten Erscheinungen
und setzen zur Vereinfachung der Schreibweise

ay = ak . (Polamsatlonsrlchtung e,) (18b)
Dann wird
- I e i(r,—w)t
1h 7 :A\/NZ‘VTQ r b, (19a)
db, 1 1 2
R S 1 0 U L R mm)iy( i) @ (19b)
dt  A+/N VA =
T dd‘f_ _ \/iz (¢, % ) ¢ Cmin =)t (19¢)

Alle ibrigen Amplituden sind wegen der Anfangsbedingungen (8d)
bestdndig gleich Null.

Nach der Weisskopf-Wignerschen Methode?) lésen wir die
Gleichungen (19) durch den Ansatz:

a = e ki, ~ (20a)
Durch (19b) und (19¢) sowie die Anfangsbedingungen (8d) sind

dann die Funktionen b, und a? eindeutig bestimmt, und zwar er-
gibt sich:

b v, e—i(gr—’tﬂ)t{( e“@.(ar+5r_9r+7:.“')t_1
r — o"['_ r =
hA\/N 26? GT+§T_QT+'LM’

o Y
— (o + &) LT eI 1} (20D)
GT—‘ET"I‘QT—’L/,&

a? = Ve (e QB:W-)) ) e~ Q=28 —1pu)t

" nE- A% y/N 20,
—i(o,+E—p+ipu)t o (0,— 5_1_9? $ il
[6 1+ 1} (200)
1 Ur“f‘gr_gr‘]“iy — &, +QT_T’M s

1) V. WersskopF und E. WIGNER, Zeitschr. f. Phys. 63, 54, 1930. Vgl. auch
G. WENTZEL, a. a. O. S. 752.

24



370 V. Bargmann.

wobe1 gesetzt wird

@ = T @3 §r = 30V — ®) (21a)
Oy = ]/_T_wa_ffz (21b)
Hier ist
o 1 & 5 1 5
8p” = h2 A Z | (e-p mm(?‘)) | = ‘ [n %m(f)]l s (210)

A h?A

P

wenn n die Richtung des Wellenvektors £, ., bezeichnet.

Zur Rechtfertigung des Ansatzes (20a) bleibt noch nachzu-
weisen, dass durch die Ausdriicke (20) auch die Gleichung (19a)
befriedigt wird. Hierzu ersetzen wir nach dem Schema

Florss —2 2 f v2dvdQ (22)

e (27 ¢)3

die Summe in (19a) durch das entsprechende Integral. Bei der
Integration tiber die Resonanzstelle variiert der Ausdruck ¢ nur
sehr langsam gegeniiber & und ¢ und kann daher als konstant

betrachtet werden. Die Resonanzstellen & der Nenner sind gegeben
durch

G+E—p=0; —&+po=0. (23)
Daher wird
_ g2 g?
= —— 24
5o (24)
und
_ 2 2
F_o=-—-2"%_x3,
20

je nachdem, ob ¢ > 0 oder ¢ < 01). Da wu klein 1st (vgl. (26)),
geniigt die Diskussion fir ¢ > u. (Fir die Intensitét des emit-
tierten Lichtes, auf die es uns in erster Linie ankommt, spielen
ohnedies die kleinen Werte von ¢ keine Rolle (vgl. 27b).) Dann
1st in (20b) jeweils nur ein Summand zu berticksichtigen, und
zwar fir ¢ > 0 der erste, fiir ¢ < 0 der zweite. Ohne Beschrankung
der Allgemeinheit koénnen wir uns mit der Untersuchung des
Falles p > 0 begniigen.

Um das Integral nach Gleichung (A5)2) auszuwerten, setzen wir

p=&+0—0p,

') Die Variation von s} kann vernachlassigt werden.
2) Die Hinweise (Al), (A2) usw. beziehen sich auf den mathematischen An-
hang am Schluss der Arbeit.
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also
dy & d?2¢ s
——=14+ =, =,
dé o a& o3
Nach (24) erhilt man fir die Resonanzstelle
2 2 2 8 '
de  20*  d*¢  Bs?p (24a)

d5_92+82’ d_gez*(gz_{_sz)s’

- und die Fdrderung

e <l
fithrt daher auf die Bedingung
) 2
Demnach ist (A5) sicher anwendbar, solange

o> . _, - (25)

In diesem Fall kann auch wirklich, wie oben behauptet, der zweite
Summand der Klammer in (20b) vernachléssigt werden; denn
o — & + p 1st stets grosser als g, also erst recht wesentlich grésser
als u. Aus (19a) folgt nun

Vl 3"i((p+ﬂ:ﬂ)t_1
—3h P = NPT B ¥ | 2 dé.
vhper (2nc3hdf [ e-a R

Werden die langsam verénderlichen Funktionen durch ihre Werte
an der Resonanzstelle & ersetzt, so ergibt sich

| V(@B w? | 8
h?A Qmed o2

po= (26)

Hier ist, nach (21c),

2 |38, [*
— = [ 2 _ =
fs d 3 A

Mit, ausreichender G'renauigkeit gilt in (26) %)% = w? (vgl. 27b).
Die Bedingung (25) kann deshalb erfillt werden, weil

V(q) |2
‘h2A1 2me 3<V

wie sich durch eine einfache Abschitzung ergibt. Hiermit sind
daher die Gleichungen (19) gelost.

*®
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Die Intensitit des emittierten Lichts.

4. Die Wahrscheinlichkeit fiir die Emission eines Lichtquants
mit der Polarisationsrichtung ¢, in den Raumwinkel d2 ist ge-

geben durch
dJ= > |a’|?.
fr indf
Wie im vorigen Abschnitt braucht man (fiir ¢ > 0) nur den

ersten Ausdruck der Klammer in (20c) zu beriicksichtigen. Ge- -
miss (23) wird dann

dJ:dQ| Vi) [*, (e, 8B,)" o2e2ul f
(27 c)® VER Y 2

2

o t(ptip)t_q i

@ +ip

de
a&

Hieraus folgt nach (A3), wenn die Ausdriicke (24) und (24a) ein-
gesetzt werden,

1—e2ut o | V(@)[2](,B,) 2 o

dJ = .
2 u 472c3 A2 R 0% + s?

(27)

Da wir Mehrfachstreuungen der Elektronen nicht beriick-
sichtigen, gelten die Gleichungen (8) bzw. (19) nur fir Zeiten
t < 1/u. Infolgedessen kann der erste Bruch in (27) durch ¢ er-
setzt werden. Der Eigenfunktion (8) des einfallenden Elektrons

entspricht der Strom %@é—[ Bezieht man die Wahrscheinlich-

keit dJ auf den Strom 1 und dividiert noch durch t, so erhilt
man den differentiellen Wirkungsquerschnitt

N-V(g)|*[(¢,38,)[* mo?

AQ=dQ- :
¢ 472c® AR5 Ry | 0F + s

(27a)

Wegen des Resonanznenners fiithrt dieser Ausdruck nach (22) auf
die Energiebeziehung (14); denn fiir das Maximum des Resonanz-
nenners, also fiir ¢ = 0, ist nach (8e), (12) und (21a)

2 my @
h

Da |t| L w/c, kann man hier ¢ vernachlidssigen und schreiben:

RE— (Ry—q—B2+

2my w

% = (Ro— g+ 202,
Um die Linienform des aﬁsgestrahlten Lichts zu finden,
empfiehlt es sich, nicht von einer monochromatischen Elektronen-



- Durch Elektronenstrahlen angeregte Lichtemission. 373

welle auszugehen, sondern eine Impulsverteillung anzunehmen, der
in der Skala der g nach (21) eine Verteilung

fle) de

entsprechen moge. Bei vorgegebenem K, ist nach (18b) jedem £,
eindeutig ein Vektor K, zugeordnet, und zwar so, dass zu ver-
schiedenen Vektoren R, auch wverschiedene nicht verschwindende
Amplituden a,, gehoren. Daher addieren sich einfach die Inten-
sitéiten, und die Verteilung f(p) fithrt auf eine Gesamtwahrschein-
lichkeit .

as=ae-p- [ 1€ +2,
QS

wenn alle von ¢ unabhéngigen Faktoren in D zusammengefasst
werden. Ordnen wir jedem Wert von o den Ausdruck & zu, der
aus p, = & + ]/52 + s2bzw. g, = & — /&2 + s2 folgt (Gleichung 24),
so erhalten wir als ein ungefdhres Mass der auf das Intervall d&
entfallenden Intensitat

D,V@o f 22

2 2 2 2
R 0,18

dé
52+32

d 0,
d&

do;
d&

]EFJ—U@J+H@H

Folglich 1st fiir eine geniigend langsam verénderliche Verteilungs-
funktion f(p) die Linienform durch

1
(v — w)2 + 452

gegeben. Damit ist auch gezeigt, dass die Vernachlissigung der
kleinsten Werte von g berechtigt ist. (Vgl. die Bemerkungen zur
Gleichung 24.)

Da sowohl die Lineardimensionen der Atome als auch die
Gitterkonstante klein gegeniiber der Wellenlinge A des emittierten
Lichtes sind, ist 4/s2 erheblich grosser als die Breite der Emis-
sionslinie des freien Atoms,

(27h)

w2

i P
Aus (6) und (21c) folgt namlich
2 'Y & .2 |y2].
Yoo o/ |%2}=8x.e | x2| - 4 (28)

4352 924 72h2c6 3 " he | AS

Die Linienbreite ist nur durch die Koppelung des Kristalls
mit dem Strahlungsfeld bestimmt, wéhrend die Koppelung des

1) Vgl. G. WENTZEL, a. a. O. 8. 753.
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Kristalls mit den Elektronen nichts zu ihr beitragt. Es ist be-
merkenswert, dass die Linienbreite 2 ]/?E nicht, wie fiir das freie
Atom oder auch fir kleine Kristallblocke (vgl. (87h)), zur zweiten
Potenz, sondern zur ersten Potenz der Elektronenladung propor-
tional ist. Der Grund dafiir, dass die Strahlungskoppelung im
Fall des unendlichen Gitters sich ganz anders verh#lt als im Fall
des freien Atoms, liegt darin, dass wegen der Interferenzbedmgun-
gen der Zustand b nur ein Lichtquant emittieren kann.

Entartung des angeregten ZuStands.

5. Um die Formeln nicht zu komplizieren, haben wir bisher
eine ntartung des angeregten Zustands des Einzelatoms nicht
berticksichtigt. Wie aber BrreE (a. a. O. §§ 4, 5) gezeigt hat,
wird die Entartung der atomaren Energieniveaus in vielen Féllen
im Kiristallgitter nicht aufgehoben. Sei E, ein S-Term, H; ein
P-Term. E,; bleibt dann im kubischen Gitter entartet, spaltet
im hexagonalen und tetragonalen in nur zwer Terme auf, und erst
in Gittern hoherer Symmetrie wird die Entartung im allgemeinen
vollig aufgehoben. ’

Es sind also f angeregte Zustinde ¢,; (1 = 1,..., f) des Einzel-
atoms, f+ N Zustinde @,;,, des Kristalls in Rechnung zu setzen.
Dementsprechend wird nach (5)

Vimy = € Ro=Ressn) 77| (29a)
und nach (6)

Wime=eteom) (e, 98,). (29)

Mittels der unitdren Transformation (7) fithren wir wieder die
Grossen 4 ;,,, und Bm,, ein, und es bleiben in den Gleichungen nur
die Amplituden af, und b;, stehen, die den Grossen (18) ent-
sprechen®). Mit den Abkurzungen (21) erhalten wir dann:

da

y — @Q'rtb. ' 30

LT A\/N 2 Vi@ ®bis (B0)

. db, 1 - 2088 2

P h— 27 — Ve tela+ ¢ T NV gr 30b
dt ~ AN /2 fl {50h)
2 208,t I

R ACAR B 7P (30c)

wobei
Wﬂ - ( QB) m (7))

1) Wir setzen hier wieder s,, = r,, voraus!
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Setzt man a = e *!, 5o sind durch (80b), (830c) und die An-
fangsbedingungen a?(0) = 0, b,,(0) = 0 die Amplituden a und b
eindeutig bestimmt. Zu ihrer Berechnung unterwirft man sie, fiir
ein festes r, zweckmaéssigerweise den unitdren Transformationen

i 2
br?rzszk bic'r; a’fszsﬂq af,
k=1 q=1
entsprechend

i
V;'r =k2 Tjk Vkr; IP_E Z‘Tﬂc Wq S;qﬁ
=1

=1 ¢=1
die so gewihlt sind, dass W% auf die Dwgonalform gebracht wird,
also nur die beiden Elemente

7’1 = Wy,, Wé% = Wy, (31)

nicht verschwinden (vgl. 82). Die Transformationen 7' und S
sind leicht zu ermitteln; denn durch T wird die Matrix

2 f.m
Bix = SIW W = [n;,,]- M BE,], (n TE—T) (31a)
g=1
durch S die Matrix '
=S W, (31b)

auf Hauptachsen gebracht. Da beide Matrizen, « und f, nur zwei
von Null verschiedene Eigenwerte haben, néamlich

wlr

}: 2 (0‘11 + ogp £ 1/ gy — %gp)® + 4| 0oy 12)’ (32)

wZT

bleiben zur Bestimmung von 7' und S nur noch lineare Gleichungen
aufzulosen. Fir die Amplituden @’ und b’ ergibt sich dann, in
genauer Analogie zu den Ausdriicken (20),

' Vi em (o= tp)t 8_7’.(0'1'?"'"57“ ertipm)t 1

b ir — — (0'3-,,-—51-) ;
TLA'\/N 20':,'7- Ujr'+§T—QT+?’/‘L

ei(a‘jr_‘fr'*’é’r_?;lu)t— 1

. jr_i“f'r . 328.)
(G ) O‘ja«_§r+ Qr — VU (
| 7 —i(g,—tu)t _q
e i E k=3 HALs
& hA4/N 0 — 1 k=9 )
a'? — V’ e (e =28 —ip)t(p=i(0p,+E— 0 tip)t__q
' hZA‘“ VN 2 G 0pr + & — 0 gt
- & +o, b
12 (0 &= 1K) 1 (32¢)

§ —I—Q,,.—‘tﬂ
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mit den Abkiirzungen

Wiy oy ;
o =Vs.+&  (1=12).

Sy S
T ha/A
 Der Wirkungsquerschnitt tiir die Emission von Lichtquanten der
Polarisation p 1st (vgl. 27a)

N\ V(|2 |w,|? myw?
4723405 |R| o0F+ s

dQw = (83)

Ein einfaches Beispiel liefert ein P-Term, dessen Entartung
in elnem kubischen Kristall erhalten bleibt. Die Eigenfunktionen
@;; mogen dre1 aufeinander senkrechten Richtungen ¢; entsprechen,
die im tibrigen beliebig gew#hlt werden kénnen. Dann wird 28,,, =
g, ¢; mit einer geeignet gew#hlten skalaren Funktion g, also

W;?r e (ef) QBfm(T)) =4, (ej e:n)’

und beide Eigenwerte w,2, w,? sind gleich | g |2 Die den Transfor-
mationen 7' und S entsprechende Wahl der Eigenfunktionen fithrt
darauf, e¢; mit der Richtung n des emittierten Lichts, ¢; und e,
mit den beiden Polarisationsrichtungen gleichzusetzen. Aus Sym-
metriegriinden ergibt sich noch

4 e L § = COS . . !
uq>—(ej|q') fllal) (ep @) - 7(a)),

so dass nach (33) der Wirkungsquerschnitt d@Q® zu

| cos (e5,q) < f ([ q]) 9.

und der Wirkungsquerschnitt d@Q = dQW 4 d Q® fir die Emission
eines Lichtquants beliebiger Polarisation zu

|sin (i, q)-F([q]) -9,/ (33a)

proportional ist. In der Richtung des Vektors ¢ wird also kein
Licht ausgestrahlt.

Durehfiihrung der Rechnung fiir kleine Kristallblocke.

6. Ist der betrachtete Kristallblock hinreichend klein, so darf
man 1hn nicht mehr durch ein unendlich ausgedehntes Gitter
ersetzen. Statt dessen denken wir uns N Atome in den Punkten
$m angeordnet, wobel die Zahl N ein fiir allemal fest bleibt. Da-
neben soll eine Zyklizititsbedingung fiir ein Ubergitter mit der
Zelle G = Nj- A gelten, wie es in der Strahlungstheorie tblich
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1st1), so dass man die physikalisch sinnvollen Ergebnisse durch
den Grenziibergang N,— o erhilt. Die Gleichungen (1) bis (8)
bleiben dann ungeéndert bestehen. Zur Vereinfachung der Rech-
nung nehmen wir weiter an, dass man in (6) die Faktoren e*®%m
unterdriicken darf, dass also N¥ & - d/A2) eine kleine Zahl ist, wenn
d einen mittleren Wert fiir die Gitterkonstante bezeichnet. Unter
dieser Voraussetzung verschwinden namlich alle Matrixelemente
B,,, ausser?)

= 4/N - (¢, W,), (34)
und wir erhalten aus (8)
. mr —w)t |
1h dt ——2 @(T @) bm"r | (353')
‘ihddb:?n::' Aéu- ei(w—t,,)ta + '\/Nz(ei/ggd) ei(w—ws)taru (35b)
dam _ VN (e\/Qg 5) 43 (s w)ip (35¢)
dbmr Amr (o — =
vh i -G elo=m) ity (m+0). (35d)

Diese Gleichungen lgsen wir nach der von WEISsKoPF4) zur Be-
handlung der Resonanzfluoreszenz entwickelten Methode, setzen
also zunéchst
a = e Mt (36a)
bor = Bor (e ¥t—e[pti(s,— o)1), (36Db)
Hieraus folgt

0 — v/N (¢, IB%) 8 1_ebr+ilo-v)lt 1 _eg[u+i(z,— )]t
" ihy/G Tyt i(w— ) (T, — v,

also nach (35b)

, (86¢)

V=t =i Bor{ [+ i (r— )] i =0ty o h

_ Aor [ptit- o)t

G
ﬁOT (w Vg) t_e yi ei(m—vo) t_e—[,u+i('[,r—w)]t
Tine Zl V+'b(w Vo) @+ (T, — v)

) Vgl. G. WENTZEL, a. a. O. S. 740.
2) 4 bezeichnet die Wellenlinge des emittierten Lichts.
3) Der Index 0 an den Grossen B und b bringt zum Ausdruck, dass der nach
(7) zugehorige Vektor f,, verschwindet.
- %) V. WeisskopF, Ann. d. Phys. (5) 9, 23, 1931. Vgl. auch G. WENTZEL,
a. a. O. Ziff. 21. :
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Fiir die Summe iiber ¢ erhilt man aus (28) und (A2) den Ausdruck

for N ) T
ih 2med {CUZK(CU)B )’t_.rr2K(1:T)e [u+1(z, w)]t}
mit
1
= =0 MWH2dQ = 2 2|
») 4nf§\(ev H 298 2|
Daher ist
AOT TfrzK(Tr)
T ; 75 G=No—o g (7
Po iGh[(e—9,) +i(r,— )] 0 7208 (37a)
und
w? K (o)
=N e Vel 37b
4 N 27'6?1,2 c3 Yo ) ( )
Fir m+ 0 findet man aus (35d)
—_p— ) — ¢
bmr: Amr 1—e-lu+1(r,— w)] (370)

1Gh p+i(t,— o)

Setzt man die fiir die Amplituden b gefundenen Werte in (85a)
ein, so ergibt sich

da

ih T =— i hueH
e~ vhue
_ —ie#t SV |23[H y+i(r,—w)t_4q
ChGE | u—0,+1i(t,— )

e[MH(T )]t _1

20 2 [4me]* u+ i, —w) | (38)

r m¥O0

Nach dem Schema

G 2
... |R|2d|R|d 2 39
S e [ e 18IS (39
erhalten wir daher, wegen
dt h 2myt
o ] [P e__ 270 °r 39a
- moV@o — flAmwlde (39D)
272 h3 G -"44

(Bei der Integration wurde 4, durch den Wert y an der Resonanz-
stelle T = w ersetzt.)

1) Auch in diesem Fall, wie im Fall des unendlichen Gitters, ist die Linien-
breite nur durch die Wechselwirkung Kristall-Strahlungsfeld verursacht.
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Der Ausdruck fiir g verschwindet, wenn man zur Grenze
G — oo iibergeht, weil die Dichte der einfallenden Elektronen 1/G
ist. Dagegen bleibt der fiir uns wesentliche Wirkungsquerschnitt,
der ja dem Strom 1 entspricht, endlich.?)

Der Giiltigkeitsbereich der vorstehenden Losung ergibt sich
daraus, dass wir in (38) | 4, |2 als langsam verénderliche Funktion
betrachtet und bei der Integration durch ihren Wert an-der Re-
sonanzstelle ersetzt haben. Das ist zuldssig, wenn | 4y,|2 in der
Umgebung der Resonanzstelle 7 = w innerhalb des Bereichs
| At | £ 6, bzw. | A7 | <y wenig variiert. Nun kann sich der in
| 4 |2 enthaltene Faktor

‘2 et (R—Ro, 5m§' A
m

stark dndern, sobald N/ |4 & | d von der Gréssenordnung 7z wird

oder At von der Grossenordnung . |§$ﬁs (nach 39a). Folglich bleibt

unsere Losung sicher richtig, solange dieses At gross gegen y ist
oder, wegen (37h),

R =

N : 40
Nb L —— — od 7 (40)

Nun ist y, ungefahr gleich «3- ®?) (« die Feinstrukturkonstante)
und |®| von der Grissenordnung 2x/d. Daher kann man auch

schreiben

N P A1
m

Die Linienbreite des emittierten Lichts wird eine monotone
Funktion der Zahl N sein, die fiir kleine N gleich N - y, ist und fiir
grosse N den konstanten Wert 2 4/s2 annimmt. Es wird also er-

laubt sein, den Kristall durch ein unendliches Gitter zu ersetzen,
sobald

N> V?. . (40a)

(Vgl. hierzu die Abschitzung 28.) . |
Um die Wahrscheinlichkeit dafiir zu erhalten, dass das Elek-
tron in den Raumwinkel d£2, gestreut, das Lichtquant (mit der

Polarisationsrichtung ¢,) in den Winkel d£, emittiert wird, hat
man die Summe 726' |a, ;|2 zu bilden (R, in d£2,, £, in df,) bzw.

1) Vgl. (41a).
2) Vgl. V. WEisskorF, a. a. 0. S. 36.
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die entsprechenden Integrationen auszufiihren. Nach (86c) und
(87a) wird

2]&,0 G3h42
(1—elrtilo—w)lt g lutilr ]t}
V)

| y+@(w—vg) - ,u+fz,(,,

Die Integration nach » liefert zunichst, mit Benutzung von (A3),

Nw2
ol 88 g i

(e, WX Ay,
——*5 +1(w—1,)

* 2

o . or 7. i TT’
\

w— dﬂr @ (
wobel

__ =2yt =2 ut
T, Rl et
4 “

)1_e~%[r —w—1i(y+p)]t 1—ei[rg‘—w+’&'(y+/~c)]il
+ 27 — : .
| 7 —o—ily + ) ,— o4y +u) |

Integriert man endlich noch iiber | R |, so findet man

ao. - do
ziai‘"a‘z**—»}”bd_ 2
Nmyw 21/@2 e ‘ (e, W )Aom|2f1—e~2,ut_“1___6—2;”5]‘. )
Brfetns 2 —p 2 p 2y |

Be1 Beschrinkung aut solche Zeiten, die der Ungleichung ut <1
< yt gentigen, reduziert sich der letzte Klammerausdruck auf ¢,
und der Wairkungsquerschnitt wird daher, wenn noch fir 4,, und
y 1hre Werte eingesetzt werden,

dQ = d.Ql ’ d.Qz : ¢ ??%02 ]/@92 —77%72 ‘ (eru QBw) |2

3272 ht | KR, | | 98,2 |
1V (o ) 2] 3 i S . (41a)

Fragt man nur nach der Intensitidt des emittierten Lichts, so ist
noch tiber d£2; zu integrieren.

Sehen wir wieder von der Temperaturbewegung ab, setzen
also s, =t,, so ergeben sich bekanntlich scharfe Maxima der
Intensitét fir & — K, = ¢, und wir gelangen, genau wie bei der
Diskussion des unendlichen Gitters, zu den Interferenzbedingungen
(18) bis (15), die somit in allen Fillen gelten werden. Die Aus-
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driicke fiir den Wirkungsquerschnitt lauten in den beiden Grenz-
fallen verschieden; im allgemeinen wird man eine Intensitit er-
halten, die sich dureh eine gewisse Interpolation zwischen d1esen
be1den Werten ergibt.

(Im Fall einer Entartung des angeregten Zustands lassen sich
die Uberlegungen des 5. Abschnitts ungeandert tibertragen.)

Der Einfluss der Temperaturbewegung.

7. In (41) lasst sich der Einfluss der Temperaturbewegung
ohne weiteres berticksichtigen. Um den beobachtbaren Wert des
Wirkungsquerschnitts zu erhalten, haben wir noch iiber alle Lagen

S, zu mitteln, so dass das Quadrat der letzten Summe durch den
Ausdruck

| Z e?’. (5m’ S?0_ S?r) ‘2 (42)

ersetzt wird, der auch der Debye-Wallerschen Theorie!) iiber den
Einfluss der Temperaturbewegung auf die Interferenzen der Rint-
genstrahlen zugrunde liegt. Die Ergebnisse dieser Theorie konnen
daher auf unseren Fall iibertragen werden: Die Temperaturbe-
wegung setzt also die Intensitét in den Interferenzpunkten herab
und bewirkt das Auftreten einer endlichen Lichtintensitdt auch
fiir die durch die Interferenzbedingungen ausgeschlossenen Ein-
fallsrichtungen der Primérelektronen. Fiir eine erste Abschétzung
gentigt die Annahme, dass die einzelnen Atome wunabhdngig von-
einander um ihre Ruhelagen harmonische Schwingungen aus-
fihren (als gleichartige Oszillatoren mit den KEigenfrequenzen v;
und den Schwingungsrichtungen e;). Allgemein ist dann fir die
Temperatur T' '
1firl=m

[B(g)]* fir L+ m

B 3 h(ge,)? hov,
R—eXpl—; A, 2kT}

2t (g u—uy,) —

}~ R® + 6., (1 — R?)

mit

wenn M die Masse der Atome (bzw. Atomkerne) bezeichnet?), folglich

‘2 ei(gst)ﬁ =3 o8 1—1y) o1 (6 t—1U,y,)
{ im s
- Rzlzei(gl‘z)ﬁ—kN(l—Rz). (42a)

1) P. DEBYE, Ann. d. Phys. (4) 43, 49, 1913. I. WALLER, Diss. Upsala 1925.
2) Vgl. H. Orr, Ann. d. Phys. (5) 23, 169, 1935.
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Will man den Einfluss der Temperaturbewegung auf das
unendliche Gitter im Anschluss an die Gleichungen (19) behandeln,
so zeigt es sich, dass der Temperatureffekt nicht mehr als kleine
Storung anzusehen ist; denn es miissen alle Amplituden b,,, und
a,, beriicksichtigt werden. Die Matrixelemente kinnen nach (42a)
abgeschéatzt werden:

‘Am,, 12 = | 237;(@0" @r_ E'm’ rz) 37"(*@0_@1" ul)|
l

s | V|2
N
— | V,|2{R* N6 (R — R, —t,) + (1 — R}

Demnach sind diejenigen Matrixelemente A,,, die den Be-
dingungen (18a) nicht entsprechen, von der Grissenordnung 1/4/N
gegeniiber den auch bei fehlender Temperaturbewegung nicht ver-
schwindenden. Wegen der Kleinheit der Lichtvektoren f, kann
in B,,, die Temperaturbewegung vernachlissigt werden, so dass
(9c) bestehen bleibt. Folglich werden auch die Amplituden a,,
und b,,,, die fir u; = 0 verschwinden, gegeniiber a, und b, um den
Faktor 1/4/N verkleinert sein, ihr Quadrat also um den Faktor
1/N. Da aber ihre Mannigfaltigkeit gegeniiber derjenigen der
Amplituden @, um den Faktor N grosser ist, wird die auf die a,,
entfallende Lichtintensitdt von der gleichen Grossenordnung sein
wie die von den a, allein herrithrende, d. h. die Intensitit wird
in den Interferenzpunkten keine scharfen Maxima mehr auf-
weisen, und zwar wegen der Nullpunktschwingungen auch nicht
ber tiefen Temperaturen.

Die fiir den Prozess in Wirklichkeit massgebenden Kristall-
blécke werden Erscheinungen hervorrufen, die zwischen den hier
behandelten Grenzfiéllen liegen. Danach wird der Temperatur-
effekt qualitativ den geschilderten Charakter haben, jedoch die
Interferenzen vermutlich stérker storen, als der Debye-Waller-
schen Theorie entspricht.

Beriicksichtigung der Wechselwirkung der Atome im Kristallgitter.

8. In seiner Arbeitl) iber die Absorptionsspektren fester
Korper, der wir uns im folgenden eng anschliessen, diskutiert
PeierLs den Einfluss der Wechselwirkung der Atome im Kristall-
gitter auf die Eigenfunktionen und Eigenwerte des Kristalls. Diese
Wechselwirkung wird als Storung behandelt, was dann zulédssig
1st, wenn der von PrIERLS mit % bezeichnete Storungsparameter
der Relation

- x<L1 (43)
1) R. PEIERLS, Ann. d. Phys. (5) 13, 905, 1932. '
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geniigt. Die Bedingungen, unter denen das der Fall ist, lassen sich
nur schwierig tibersehen. Am ehesten wird man es fiir einatomige
Gitter und bei tiefen Temperaturen erwarten. Es lisst sich aber
noch weiter sagen, dass die Kristalle mit » <€ 1 ,,Streuer sind,
die die empfangene Anregungsenergie in Form von Licht wieder
abgeben, im Gegensatz zu ,,Absorbern®, die die Anregungsenergie
vorwiegend in die Wirmeenergie der Gitterschwingungen ver-
wandeln. Beil der Behandlung des uns interessierenden Prozesses
werden wir uns also aus zwei Griinden auf die Bedingung (43)
stiitzen, erstens, um sicher zu sein, dass nicht die durch die Elek-
tronenstrahlen auf den Kristall iibertragene Energie in Warme ver-
wandelt wird, und zweitens, um in erster Niaherung die bisherigen
Uberlegungen verwenden zu kiénnen.

Die Eigenfunktionen, von denen PrrerLs ausgeht, entstehen
aus den Funktionen (2a) und (2b), indem man den Elektronen-
austausch berticksichtigt und geeignet symmetrisierte Linearkom-
binationen wihlt — wir nennen sie ¥;,, —, wie es in der Heitler-
Londonschen Theorie der homéopolaren Bindung geschieht, weiter
aber die Kernkoordinaten, die bel uns nur als Parameter auf-
treten, explizit in die Funktionen einfiihrt.

Die Wechselwirkung zweier Atome aufeinander hingt von
thren Kernkoordinaten ab bzw. von deren Abweichungen von den
Ruhelagen (u,). Entwickelt man nach diesen Abweichungen, die
bei tiefen Temperaturen klein sind, so erhidlt man die Wechsel-
wirkung nullter Ordnung, wenn alle u, =0 gesetzt werden. In
diesem Fall lasst sich die Form der Eigenfunktionen bestimmen,
und zwar erhélt man fiir die angeregten Zustéinde die Ausdriicke

X(u-DetPwm) ., (44)

«die nach (7) den Funktionen @';, entsprechen. Hier ist p ein
Vektor der Form L-1q; X (u) ist eine Funktion der Kernkoordi-
mnaten allein, und zwar ein Produkt der zu den einzelnen freien
Schwingungen des Gitters gehoérigen Eigenfunktionen. Der (44)
entsprechende Energiewert ist |

Ey+ X hv (N, + 3) +f(p) (45)

(s numeriert die Gitterschwingungen.) Man erkennt, dass die fir
unseren Prozess massgebenden Matrixelemente nur dann von Null
verschieden sind, wenn f,=p und R, R =p +q gilt. Die
Interferenzbedingung (12) ist also erfiillt. Weiter folgt nach (4)
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aus der Form der Wechselwirkungsenergie, dass nicht gleichzeitig
eine Elektronen- und eine Kerneigenfunktion angeregt werden
kann. Daher ergibt sich statt der Gleichung (14)

Ro* =R+ 7', (46)

wobei aber #’ nur wenig von % abweicht. Da namlich £, gegeniiber
einem Vektor des reziproken Gitters sehr klein ist, wird sich f(£,)
von f(0) nicht wesentlich unterscheiden. In dieser nullten N#he-
rung bleiben also unsere bisherigen Ergebnisse bestehen.

Berticksichtigt man die Grossen u, in erster N#éherung, so
kommt zu dem scharfen Energiewert E,; ein kontinuierliches Band
hinzu, so dass die Energiebeziehung (46) verwaschen wird. Dadurch
andert sich jedoch der Charakter der Erscheinungen nicht ent-
scheidend: Statt des festen Winkels & (17) erhédlt man einen ent-
sprechenden Winkelbereich. Viel wesentlicher ist es, dass die
Interferenzbedingung nicht mehr erhalten bleibt. Die gestorten
Eigenfunktionen sind namlich Linearkombinationen von solchen
der Form (44) mit verschiedenen p. Kin Lichtquant der Wellen-
zahl £, kann nur dann aus einem Zustand emittiert werden, wenn
er die ungestorte Eigenfunktion mit p’ = £, enthélt, und dieser
Zustand kann durch das Elektron nur angeregt werden, wenn unter
den ihn aufbauenden ungestorten Eigenfunktionen eine solche
vorhanden ist, deren Wellenvektor p”’ der Relation K — R =
p"’ + q geniigt (R der Wellenvektor des gestreuten Elektrons),
wobel aber jetzt p’ mit p’’ nicht ibereinzustimmen braucht.

Diejenigen Matrixelemente, die auf Prozesse fithren, welche
den Interferenzbedingungen (12) widersprechen, werden mit einem
Faktor » behaftet sein, die zugehorigen Intensitéten also mit
einem Faktor »% Hierdurch ergibt sich ein Zusammenhang zwi-
schen der Intensitét det durch die Interferenzbedingungen ausge-
schlossenen Prozesse mit der Struktur des Absorptionsspektrums.
Wie namlich PrrerLs zeigt, besteht in dieser N&herung das Ab-
sorptionsspektrum des Kristalls aus der Hauptlinie und einem
(daran anschliessenden oder auch zu beiden Seiten der Linie ge-
legenen) kontinuierlichen ,,Spektrum erster Ordnung®, dessen Ge-
samtintensitdt um einen Faktor von der Ordnung 2 kleiner ist
als die Intensitat der Hauptlinie. Je kleiner nun x, je schirfer
also die Absorptionslinie ist, umso weniger werden auch die in der
vorliegenden Arbeit behandelten Interferenzerscheinungen gestort
sein. Eine analoge Beziehung ergibt sich fiir die héheren Nédherun-
gen, bel denen jeweils ein Faktor » hinzukommt.
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Mathematischer Anhang.

Alle in unseren Rechnungen auftretenden Integrale kiénnen
auf die folgenden zurtickgefiihrt werden, deren Werte sich in be-
kannter Weise durch komplexe Integration und Residuenbildung
ergeben.

W= U+ 10, Wy = Uy + 10y,. .., seien komplexe Zahlen mit nicht
verschwindendem Imaginiirteil; a sei eine reelle Zahl.

Dann ist
1 T eiaé‘
— 1w
2”’5_4 —dE—ce (a 0) (A1)
wobel
¢ = % (sgna+ sgnov)l). (A2)

Fir a = 0 findet man

1 dé 1 lim
_ec _ Al
00i ) E—mp B jd=tw fs— hagnn, | (ady

so dass in diesem Fall die Gleichung (A1) richtig bleibt.
Nach (Al) und (Ala) wird

+ @

1 eia(‘s_w)——-l
. d
27ti_£ E—w d
1 lifn +Aeia(§—-w)_1
ey dé =1 . . (Alb
2 ) A—-»oo_fA E—w 2 Sgh 4 ( )

Die folgenden Beziehungen gelten ohne Unterschied fiir alle
reellen a, wobei tibrigens die betreffenden Integrale auch im Punkte
a = 0 stetig von a abhéingen (dle Zahlen ¢; sind nach (A2) de-
finiert):

2 J]w e4sds ettt i, (A3)
2n {iﬁw (S_wl) * (E—'wg) B W — Wy
f e0E q& B ¢y el aw
2 wy J (E—wy) (E—wy) (E—w5) (wy —wy) (W — wy)
L Cze@awz - cq6t @ W (A4)

(W — wy) (wy—1wy) (w3 —wy) (wg — wy)

1y 1 fiir y >0
sgny={ g » y:g
o ’9 y<

25
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Ist ¢(2) eine reelle Funktion, die fiir x, verschwindet, und
u eine reelle positive Zahl, so kann man das Integral

e 1aQ taQ
f e .—dxzf et dzx o
Jog—p p—ipu dy

mit ausreichender Genauigkeit ersetzen durch

da TP gtak
=2 [ A5
(d(p)x:%mm e 9, (A5)

wenn innerhalb des Gebiets | ¢ | < u der Ausdruck % wenig
variiert, also fir ¢ = 0 die Ungleichung

d (dx dzx
t”ﬁg(dw)'<d?
dzx ) de dz B dz . dg\3
oder, da g = 1: g7 und g = — 755+ (3
d2<p d(p 2
po < = (49

erfillt ist.

Entsprechendes gilt fiir die iibrigen Integrale, wobei die Be-
dingung (A6) erhalten bleibt.

Zum Schlusse sel es mir gestattet, Herrn Prof. WENTzEL fiir
die Anregung zu dieser Arbeit und fiir die stdndige Unterstiitzung
bei ihrer Ausfithrung meinen herzlichsten Dank auszusprechen.

Ziirich, Physikalisches Institut der Universitit.
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