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Théorie de la diffraction de la lumière par des ultra-sons
par Riehard C. Extermann.

(28. IV. 37.)

II.
Dans un article précédent1) nous avons résolu partiellement

le problème de la propagation de la lumière dans un milieu
perturbé par des ultra-sons. Nous nous proposons ici de reprendre ce

problème par une méthode plus générale. Cette méthode est
semblable à celle qu'ont employée Ewald et Laue dans la théorie
de la propagation des rayons X dans les cristaux2).

§ 1. Equations fondamentales.

Dans un milieu dont la constante diélectrique x est fonction
de l'endroit et du temps, l'élimination des grandeurs magnétiques
dans les équations de Maxwell conduit à l'équation d'ondes

b b i d2b b

où D est le déplacement et E le champ électriques.
Nous voulons écrire cette équation pour un milieu traversé

par une onde ultra-sonore plane Aei{h'r~vt) de vecteur d'onde b

et de fréquence v/2 n. L'onde ultra-sonore rend la constante diélectrique

x périodique, on peut développer x en série de Fourier

x =2 xnein$-T~vt).
n

L'inverse de x qui figure dans l'équation (1) varie avec la même
période dans l'espace et dans le temps, et le développement de
Fourier en est

yVne«"<»-*-">: Vo-l/*ol/*=2>»e*"(6 ¦'-">; ™ *'™° (2)
n W—n yn •

i) R. Extermann et G. Wannier, Helv. Phys. Acta, 9, 520, 1936.
2) Ewald, Handbuch der Physik, vol. 23, 2, 1933; Laue, Ergeb. der Exakt.

Naturwiss. 1931.
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En portant dans l'équation d'ondes (1) la valeur (2) de Ifx,
on trouve l'équation que D doit satisfaire dans un milieu stratifié
par une onde ultra-sonore plane. Nous allons chercher à résoudre

cette équation en prenant pour b une somme d'ondes transversales
planes

D Y, Dmeifon¦ r-°>m'+««)• (3)
m

L'indice m, dans ce développement, suppose la possibilité de
numéroter les ondes planes de la somme; généralement il faudra
prendre pour m le groupe de trois indices mx m2 m3 et la somme
sera une somme triple.

En remplaçant (3) et (2) dans (1), le membre de gauche devient

—2 Wn (K + nby
m, n

On posera

A» ±m,n est la composante de Dm perpendiculaire au vecteur
(km + nb). L'équation (1) s'écrit alors

2 S Wn (K + ni)2 DmLm> „ e^+n b)r-(com+nv) t+xJ
m n

y, ^™_f)mei[km-r-comt + am]_ i^
m C

Cette équation est une identité en f et en i pour les exponentielles

qui y figurent; si donc un des membres contient un terme
d'exposant k • r— eut + a, on doit trouver dans l'autre membre

un terme qui a le même exposant k ¦ r — cot + a. Dans l'équation
(4), la somme du membre de gauche est une somme quadruple
(sur mx m2 m3 et n), tandis qu'à droite la somme est triple
seulement. Si on effectue la somme en n en commençant par n 0,
on voit que le membre de gauche contient déjà pour cette valeur
tous les exposants qui apparaissent au membre de droite. Pour
les autres valeurs de n, l'exposant

(kmim.im, + n") ' r (mmlmima + nv) ' + a-mImtm3

doit être identique à un des exposants déjà rencontrés, par exemple

^PtPiPs ' r mViPìVz Î "r aPiPsP,
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puisque nous avons vu qu'il est impossible de trouver dans le
membre de gauche un exposant qui ne figure pas au membre de
droite. On aura donc séparément

"'m1m2»i3 + n,0 '^plp„ps

Tous les a étant égaux en vertu de la troisième égalité, nous poserons

urli m2 m3 ^ •

De la forme des deux premières égalités, on déduit qu'il suffit
d'un seul indice pour numéroter les k et les eo. On pourra tous
les obtenir à partir d'un vecteur d'onde fe0 et d'une fréquence co0,

et par suite les grandeurs km et com qui figurent dans la solution (3)
doivent nécessairement satisfaire aux équations

(a) fem k0 + mb j ^(b) com= co0+ mv J

L'équation d'ondes (4) s'écrit maintenant, en identifiant les
termes de même exposant, sous la forme du système

co 2 *V 1/1 h 2 n — s n
—j -*- f.&
m ^

où le symbole Dm±s désigne la composante de bm perpendiculaire
au vecteur ks. Comme les ondes qui figurent au développement (3)

sont transversales, DsLS= Ds et le système devient

™l _ h 2

V n +1 Vo
f> (6)/ \ Ws~m i~Jm\_s — jTV s

m "»

la sommation 2" s'étendant sur toutes les valeurs de m différentes
de s.

L'équation (6) est une équation entre vecteurs, pour la
commodité du calcul on a intérêt à l'écrire en composantes: on résoud

bm en Dm' dans le plan qui contient k0 et b (donc tous les km),
et Dm" perpendiculaire à ce plan. En désignant par (s,m) l'angle
compris entre ks et km, on a

DJ±S= Dm' cos (s,m)
D " D "
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Le système (6) se décompose en deux systèmes et si on pose

W's-m ?»-mCOS (s, m)
W s—m Ws-m

on voit que les deux polarisations D' et D" satisfont un système
de la même forme

Jïïd — «, 1-2

V n - f% fò
r> (8)

Zj Ws-m >Jm t. 2 s

m '"s

avec des coefficients rp différents.
Nous avons ainsi remplacé l'équation différentielle (1) par

les systèmes d'équations algébriques (5) et (8). Ce sont ces systèmes
qu'il faut résoudre pour connaître la solution des équations de

Maxwell dans le milieu diffractant.

§ 2. Résolution des équations fondamentales.

La résolution des équations (8) pour les vecteurs Dm nous
oblige à faire quelques simplifications.

Nous étudions la diffraction d'une onde lumineuse dont le

vecteur d'onde dans le vide est | k | coje; à cette onde
correspondent, dans le milieu, des ondes diffractées dont la fréquence
est donnée par les équations (5b). Pour la suite des calculs, nous
admettrons que toutes les ondes diffractées ont la fréquence co

de l'onde extérieure; cela revient à poser v 0 dans (5b). Cette
simplification est légitime parce que la fréquence v de l'onde
ultrasonore est pratiquement toujours très petite par rapport à la
fréquence co de la lumière1).

Le second membre de (8) devient alors

k Vpfc/ n
7.2 us-
tv s.

Comme l'amplitude de la variation de constante diélectrique
provoquée par l'onde sonore est toujours petite, la grandeur ks d'un
vecteur d'onde dans le milieu perturbé est très voisine de la longueur

W^0 /=¦VWo

x) On néglige ici v devant co pour le calcul des conditions géométriques et
de l'intensité de la diffraction, les erreurs ainsi introduites sont trop petites pour
pouvoir être observées; mais les mesures de fréquence très précises qu'on peut
faire sur les ondes diffractées permettent une vérification expérimentale directe
des équations (5 b).
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qu'il aurait dans le milieu non perturbé. Le numérateur est donc
petit et on peut écrire au dénominateur

k. 1
k2 — xp0 k2)

Wo V fc2

Dans les problèmes de diffraction que nous traiterons, la quan-
lj2 i» L» 2

tité W^^ est négligeable par rapport à l'unité; avec cette
seconde simplification les équations (8) deviennent si on tient
compte de (5 a)

1 — -(ko + sb)2- ^T S'Ws-m Dm + -* m Ds 0. (9)
vo m

k2

Pour toute valeur de k0, ces équations définissent une suite
de Dm, mais ces suites n'ont une signification physique que si elles

convergent vers zéro pour m —>- + oo, ce qui n'est le cas que pour
certaines valeurs propres kr. Nous allons chercher les valeurs ukr0

parallèles à un vecteur unité u. Le système (9) s'écrit dans ce cas

k2 _ *-
(u kn — b)2

Jûl_ -—-D_xk2

V-i D-i Vo

Wd

(uk0)

-a- v'+i A)— -~t v+2 A + • ¦ o
Vo*

Wo

—% W-ì D-i 2" V-i A +
Vo3 Wo

A>~
1

Vo
fc2

V+i -°i +

ßi

W

(wfco + o)2

La condition de convergence des Dm est que le déterminant
des coefficients de ces équations soit nul1) :

(uk0- 5)2
Vo

ks

<P-i

V-2

Vo

Vi

- (w&0)2

fc2

V-i

Va

Vi

— -(uko+b)*
Vo

fc2

0 (10)

1) La convergence vers zéro des suites Dm pour m—>-+ oo s'exprime sous
la forme suivante: étant donné £ arbitrairement petit, il existe un nombre iXx
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Cette équation a une infinité de racines, il y a donc dans toute
direction u une infinité de vecteurs ukr0 qui font converger les Dm
du système (9). On pourrait arriver ainsi à la solution générale
de l'équation (1), mais au lieu de résoudre le problème des valeurs

propres pour des k0 qui soient tous dans la même direction, nous
allons le faire pour des k0 qui aient tous la même composante
selon la direction b des ultra-sons, car sous cette forme la solution
sera plus commode lorsque nous aurons à introduire les conditions

aux limites. Nous décomposons k0 en

fe0 ò| + no (11)

où n est un vecteur unité perpendiculaire à b dans le plan qui
contient kQ et b. Si on pose

J.2

fc2

2 b2
Vo

xp0° 0" b2

les équations (8) deviennent

^6^mDm + [c-(i + s)2]Ds=0
m

la condition de convergence (10) étant maintenant

<5(f,<
(f-12

(l+l)

(12)

(13)

(14)

Cette équation a une infinité de racines c(f, 6n), nous appelons
cs la racine qui tend vers la valeur (f + s)2 lorsque les 6n tendent
vers zéro.

Si on résoud les équations (13) avec la valeur cs, on obtient
une suite convergente de Dsm, qu'on peut tous exprimer au moyen
de l'un d'eux

Dl=^KDl; x"n <„ (c-, 6n). (15)

tel qu'on ait | Dm [ < s pourvu que m > Nx, et de même un nombre N2 tel que
| A^b < e pourvu que m > iV2. Soit M le plus grand des nombres Nx et N2,
on a encore | Dm | < e pourvu que | m \ > M.

On exprime d'abord une condition approximative de convergence pour la
suite des Dm, en négligeant les Dm pour > M ; le système (9) devient alors
un système d'équations linéaires homogènes, la condition de convergence
s'exprime par le fait que le déterminant des coefficients doit être nul. Cette condition
approximative devient la condition exacte si les grandeurs e qu'on néglige sont
nulles; c'est le cas lorsque M —>- oo la convergence des suites (9) est donc assurée
si le déterminant infini des coefficients s'annule, ce qu'exprime l'équation (10).
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D'autre part les équations (12) associent à chaque racine
cs(|, 0n) une valeur propre os; pour une valeur donnée de f, la
composante q doit donc prendre des valeurs propres pour que la
suite des Dm converge. A chacune de ces valeurs qs correspond
une solution indépendante des équations de Maxwell pour une
des polarisations, c'est une somme d'ondes de la forme (3)

^DleiCk™7-Wmt) Dl^metCk™rr-œmt) (16)
m m

dans laquelle les ¥m sont donnés par les équations (10) et (5 a):
kln b (£ + m) + n q$; et eom par les équations (5b).

La solution générale pour une des polarisations est une somme
de ces solutions particulières, pour toutes les valeurs de s et de f.
Chacune des solutions particulières est multipliée par un facteur
arbitraire DJ et possède une constante de phase arbitraire. Les
conditions aux limites (§ 4) déterminent le problème, mais avant
de les introduire, il peut être utile de donner une interprétation
géométrique de la double infinité des ondes km. Cette interprétation
utilise les notions de réseau réciproque et de surface de dispersion.

§ 3. Réseau réciproque, surface de dispersion, sphère de propagation.

On représente géométriquement une onde plane par un vecteur
d'onde qui est tracé dans la direction de propagation avec une
longueur inversement proportionnelle à la longueur d'onde; ce
sont ces vecteurs qui figurent dans les développements de Fourier
(2) et (3). L'onde ultra-sonore est représentée par les vecteurs m b,

l'onde lumineuse par les vecteurs km. Les vecteurs mb sont connus,
mais on ne connaît pas a priori les vecteurs km, on sait seulement
qu'ils doivent satisfaire aux équations fondamentales. Ces équations

se prêtent à une interprétation géométrique, que nous
donnerons successivement pour les équations (5) et (8).

Les équations (5a) s'interprètent dans le réseau réciproque.
Si on considère l'onde ultra-sonore comme immobile, figée à un
instant donné, elle présente une structure périodique dans une
dimension, c'est un réseau unidimensionnel. Le réseau réciproque
de l'onde ultrasonore est défini comme le réseau réciproque d'un
cristal; il se réduit à une série de points équidistants sur une
droite, la translation d'un point au suivant étant définie par le

vecteur Ò. Les vecteurs du réseau réciproque sont les vecteurs mb
qui en réunissent les points.
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Les équations (5 a) expriment le fait que tout vecteur obtenu

par addition d'un des vecteurs du réseau réciproque à un vecteur
d'onde existant est un vecteur d'onde possible, l'interprétation
géométrique en est donnée par la fig. 1.

P., Ps

7
y k

Fig. 1. Réseau réciproque statique.
On construit le réseau réciproque statique en portant bout à bout des vecteurs
b égaux. On peut numéroter les points du réseau réciproque à partir de l'un d'eux
P0 choisi arbitrairement comme origine, de telle façon que le vecteur m b relie

P0 à Pm. Si on trace un vecteur d'onde existant, k0, avec l'extrémité en P0, tout
vecteur qui a la même origine 0 et se termine sur un des points Pm du réseau

est un des vecteurs km associés à k0. Tous ces vecteurs sont dans le plan qui con-

/>' fifi-

K.
AT.

Fig. 2. Réseau réciproque cinétique.
On construit le réseau réciproque cinétique en portant bout à bout des quadri-
vecteurs B égaux; on peut aussi en construire les points Pm' en faisant subir aux
points Pm du réseau statique une translation m v selon -1. La représentation
géométrique du réseau cinétique est particulièrement simple si on prend comme

plan des x y le plan qui contient k0 et b, avec Ox dans la direction b des ultrasons;

alors (Km)z— B,= 0 et les quadrivecteurs sont contenus dans l'espace à

trois dimensions (x, y,— t), Si K0 est un quadrivecteur existant dont l'extrémité
est en P0', tout quadrivecteur qui a la même origine 0' et se termine sur un des

points Pm' du réseau cinétique est un des quadrivecteurs Km associés à K0.
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Si on veut interpréter ensemble les équations (5a) et (5b), il faut définir
les vecteurs d'onde dans les quatre dimensions x, y, z, — t. Ces « quadrivec-
teurs » Km et B ont les composantes

'«»'*, y,z~ '»»'*, y, z ' ' «J-t ~ co.

Bx, y,z bx, y, z ', ^—t~ v '

Les équations (5) deviennent alors

Km=K0+mB. (5')

Nous appellerons par analogie les quadrivecteurs m B quadrivecteurs du
réseau réciproque cinétique.

Nous savons maintenant comment on peut construire les

ondes associées à un vecteur k0 donné. Pour trouver quels sont
les vecteurs k0 possibles dans le milieu, il faut résoudre les équations

(8). Nous avons montré au § 2 que les k0 possibles forment
une suite discrète. Nous allons voir qu'on peut prévoir le même
résultat au moyen d'une construction géométrique que nous
appellerons la surface de dispersion.

Considérons, dans le cas où l'onde sonore d'intensité très
faible produit une perturbation négligeable, toutes les directions
dans lesquelles peut se propager une onde dont le vecteur km aboutit
au point Pm du réseau réciproque. Le lieu des origines de ce vecteur
est évidemment une sphère de rayon k\/x0 ayant Pm pour centre.
Supposons cette sphère tracée autour de chaque point du réseau:
l'ensemble des sphères qu'on obtient ainsi forme une surface
représentant géométriquement la propagation des ondes possibles
dans le milieu. C'est cette surface que nous appelons surface de

dispersion du milieu pour la fréquence eo kc. La fig. 3 montre
comment la surface de dispersion permet de construire les vecteurs
fc0 possibles dans la direction u. Ils forment une suite discrète,
ce que nous avions déjà reconnu algébriquement au § 2.

On arrive à une interprétation géométrique de la double

infinité d'ondes km possibles dans le milieu en construisant au

moyen du réseau réciproque les ondes associées aux ondes fc*.

Il est commode d'appeler couche s l'ensemble des vecteurs
dont l'origine commune est en 0S et qui se terminent sur tous les

points du réseau; et ordre m l'ensemble des vecteurs issus de toutes
les origines 0S qui aboutissent au même point Pm du réseau. Nous
avons vu que tous les vecteurs d'une couche sont dans un même
plan, il en est de même de tous les vecteurs d'un ordre.

13
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Nous n'avons tracé la surface de dispersion que dans le cas
où les ultra-sons sont très peu intenses (6„~ 0). Pour étudier la
déformation des sphères lorsque les dn prennent des valeurs plus
grandes, il est nécessaire de chercher la solution du problème
des valeurs propres (§ 2) ; le plus simple est de tracer la surface

Fig. 3. Surface de dispersion d'un milieu faiblement perturbé.

Pour trouver les vecteurs k0 possibles dans la direction u, on trace par P0 une
droite parallèle à u, cette droite rencontre la surface de dispersion aux points
0°, .0r. ; 0r étant le point d'intersection avec la sphère centrée en Pr 0°P0
est un vecteur d'onde possible que nous désignerons par &JJ. Nous allons montrer
que 0T P0 est aussi un vecteur possible. En effet 0rPr est par construction un
vecteur possible, nous savons donc qu'il est accompagné d'une série de vecteurs
qui ont la même origine 0r et se terminent sur chaque point du réseau réciproque.
0r P0 est un de ces vecteurs, c'est donc un vecteur possible, nous le désignerons

par fej. Il y a donc une infinité d'ondes qui peuvent se propager dans toute
direction u.

Nous avons vu (fig. 1 qu'on peut construire géométriquement les ondes km qui
accompagnent une onde k0 qui se propage dans le milieu. Supposons que toutes
les ondes k^ possibles dans la direction u existent à l'intérieur du milieu stratifié.
Alors tout vecteur 0sPm est le vecteur ks d'une des ondes adjointes aux ks0. On
vérifie facilement que la numérotation des ondes telle que nous la définissons

ici est identique à celle que nous avons définie au § 2.
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dans un système de coordonnées cylindriques (q, cp, b f) (fig. 4).
On déduit de (12) que l'équation de la surface de dispersion est,
dans ces coordonnées

(17)fc2c cs (i, 0»
Wo

Fig. 4. Coordonnées cylindriques pour étudier la surface de dispersion.
Lorsque les 6n prennent des valeurs non nulles, on peut définir la surface de
dispersion comme lieu, lorsque u varie, des origines O des vecteurs fc* possibles dans
la direction u. Pour étudier la surface de dispersion, on décompose ks0 en b§+ nqs;
par raison de symétrie qs a la même valeur quelle que soit la direction n perpendiculaire

à b, autrement dit la surface de dispersion est une surface de révolution
autour de l'axe du réseau réciproque, et l'équation ne dépend pas de l'azimut <p.

D'après l'équation (15) la surface de dispersion a les mêmes
propriétés de symétrie que l'ensemble des racines cs du déterminant
(14). On voit que celui-ci reprend la même forme si i augmente
d'une unité ou change de signe: <5 ô (f + n), n entier;
ô(i) ô(—f). Ces deux propriétés montrent que la surface de

dispersion est périodique en £ avec une période égale à l'unité,
et qu'elle admet les plans £ n/2 comme plans de symétrie.

Il y a une difficulté dans l'emploi des équations (17), c'est que la numérotation
des racines du déterminant telle que nous l'avons prévue n'est pas possible

pour f n/2. Cela provient du fait que dans la limite 6n= 0, les racines cs sont
deux à deux confondues (ou, dans la représentation géométrique, que le point 0S

est commun à deux sphères). Cette dégénérescence disparaît pour Qn #= 0, on peut
en effet écrire (14), pour |=n/2, comme produit de deux déterminants dont les
racines a" et bs ne se confondent que pour 6n=0. Nous reverrons cette décomposition

dans un cas particulier.
La difficulté signalée n'est pas gênante si on définit comme nappe de la

surface de dispersion, non pas les éléments qui donnent une sphère à la limite
0n—>-0, mais ceux qui se réduisent, dans cette limite aux surfaces en festons
comprises entre les cylindres

y vo
+ m\ 52 et y- -TO+l1 b
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Ce sont ces nappes qui ont les propriétés de symétrie. On les trace en construisant
la surface de dispersion au moyen des équations (17) pour 0 < § < J; les propriétés
de symétrie permettent de les construire ensuite pour toute valeur de f.

La surface de dispersion est une interprétation géométrique
des valeurs propres des équations (8) ou (13), mais il est aussi
possible de prévoir les propriétés de convergence des Dm au moyen

fc~o

k-

r—N

Fig. 5a. Fig. 5b.

Fig. 5a. Sphère de propagation.
Pour savoir, parmi les ondes de la couche s, lesquelles sont intenses, on en trace
les vecteurs ksm avec une origine commune 0S, ils se terminent sur les points du
réseau réciproque, puis on trace avec 0S comme centre une sphère de rayon k\/x0
(sphère de propagation). Si cette sphère touche un des points Pm du réseau

réciproque ou en est très voisine, l'onde fc£, qui se propage dans la direction de ce

point a une grande intensité par rapport aux autres ondes de la couche. L'inverse
de la distance entre la sphère et un point Pm du réseau est une mesure de l'intensité

de l'onde fc^. La convergence des amplitudes de la suite DHm est assurée parce
que cette distance augmente de plus en plus lorsque m croît indéfiniment.

Fig. 5b. Réflexion de Bragg.
Dans le cas où la composante selon b du vecteur k'Q est un multiple entier de

6/2 (|=w/2), la construction de la sphère de propagation est symétrique de part
et d'autre du plan N, normal au réseau réciproque, qui contient 0S. Ceci montre

que l'amplitude des ondes de la couche s sera symétrique aussi: Dsm=Ds_n_m.

d'une construction analogue, nous le montrerons sur les équations
(13). Dans la limite 6n—>-0 les cs sont voisins de la valeur (£ + s)2

et tous les coefficients [cs — (£+r)2] sont de l'ordre de l'unité, sauf
le coefficient de Dl, [cs — (£+s)2], qui est très petit. Les équations
(13) sont donc satisfaites par une suite Dsm=0 pour m^s; DJ+-0.
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La seule onde intense dans la couche s est donc celle dont le

vecteur fcj a la longueur k^x0 qu'il aurait dans le milieu immobile.
Lorsque les 6n prennent des valeurs plus grandes, la suite des Dsm

admet des valeurs non nulles même pour m +- s, mais les ondes
ont une amplitude d'autant plus grande que leur vecteur d'onde
a une valeur plus proche de k\/x0. Cette remarque justifie la
construction de la fig. 5a, construction qu'EwALD appelle sphère
de propagation. Cette construction permet donc de prévoir
qualitativement quelles seront les ondes intenses parmi celles
d'une couche.

La construction de la sphère de propagation fait prévoir des

phénomènes importants pour £ n/2, en effet elle montre qu'il
y a dans chaque couche deux groupes d'ondes qui ont deux à
deux les mêmes amplitudes (fig. 5 b); ce fait correspond à la
réflexion de Bragg des ondes lumineuses sur les ondes ultra-sonores.

Nous avons ainsi une représentation géométrique complète
des ondes ksm: les surfaces de dispersion permettent de trouver les

ks0 répondant aux conditions aux limites, le réseau réciproque
donne la direction et la grandeur des vecteurs d'onde km associés

aux vecteurs ainsi trouvés, la sphère de propagation indique,
dans chaque couche, les ordres intenses.

Il faut maintenant introduire les conditions aux limites de

façon à déterminer quels k0 on doit choisir et quels rapports
d'amplitude existent entre les différentes couches.

§ 4. Conditions aux limites.

Pour introduire les conditions aux limites, il est commode
de définir un système d'axes rectangulaires x,y,z; Ox étant dans

la direction b. Nous considérerons, dans un milieu infini de constante
diélectrique x0, une région stratifiée par l'onde ultra-sonore, comprise
entre les deux plans y 0 et y d; ces limites sont pratiquement
celles d'une cuve à faces parallèles de très grande surface, d'épaisseur

d, traversée par une onde ultra-sonore plane qui se déplace
parallèlement aux faces (fig. 6). Une onde lumineuse plane
Deel (k" -r~°)t) entre dans la région stratifiée par la face d'incidence
y 0, elle s'y diffracte et on observe au-delà du plan d'émergence

(y > d) des ondes planes diffractées Dsc'(i)i«'''"ft,i»i), dont
l'intensité est Jm.

Lorsqu'une onde passe d'un milieu dans un autre, la composante

des vecteurs d'onde dans le plan de séparation est continue,
il faut donc qu'il existe dans la région stratifiée des ondes dont
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le vecteur fc a la même composante que le vecteur de l'onde
extérieure dans le plan d'entrée y 0: nous définirons comme ordre
zéro l'ordre formé par toutes les ondes intérieures possibles qui
ont cette propriété. Soient ¥x fc* k\ les composantes du vecteur
de l'onde incidente, ò£, n, f celles d'un des vecteurs de l'ordre
zéro. Le choix de £ et de C est fixé par la condition de continuité
de la composante de fc dans le plan y 0, ò£ ¥x, £ fc| (fig. 6),
c'est donc la composante -i] qui prendra des valeurs propres ns.
Tous les vecteurs de l'ordre zéro ont la même composante 6£ dans

bl

Fig. 6. Limites du milieu stratifié.

la direction b, ils ont donc une composante qs normale à ò(§ 2),
et on peut calculer r]s au moyen des équations (12) en posant
(es)2= (rf)* + £2- On trouve

r/s l/e2-C2
k2

Vo
V ¦csb2 (18)

Chacun des vecteurs fc* de l'ordre zéro est accompagné de vecteurs
ksm formant une couche s.

Va condition de continuité des composantes tangentiales
des vecteurs d'onde doit être satisfaite aussi sur la face de sortie
y d. Il doit donc exister à l'extérieur (x > d) des ondes dont
le vecteur fc a les mêmes composantes b(£ + m), Ç, selon Ox et Qz
que les ondes intérieures ksm. Cette condition montre qu'à chaque
ordre m correspond une seule onde plane diffractée dont le vecteur
est km. Le nom d'ordre donné aux ondes intérieures dont les
vecteurs se terminent sur le même point du réseau réciproque se
trouve ainsi justifié: les ondes de l'ordre m se réunissent à la sortie
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pour donner une onde diffractée d'ordre m au sens habituel. Cette
onde a la fréquence eom définie par les équations (5 b), la direction

reseau
réciproque

surface
de

dispersion

+ 7

bl

Fig. 7. Conditions aux limites pour les vecteurs fc.

On cherche à l'entrée, au moyen de la surface de dispersion tous les vecteurs
d'onde possibles à l'intérieur avec la même composante tangentielle 6| dans la

face d'entrée que le vecteur ke de l'onde incidente.
A la sortie on fait correspondre à chaque ordre intérieur m une onde diffractée
d'ordre m dont le vecteur | km \=k-\/xr] a la même composante tangentielle dans

le plan de sortie que les vecteurs ksm de l'ordre m.
La figure représente ces conditions dans le cas où le plan d'incidence contient le
réseau réciproque; la théorie donnée dans le texte n'est pas soumise à cette res¬

triction.

en est donnée par la construction de la fig. 7, on trouve évidemment
les mêmes directions que pour les ondes diffractées par un réseau
de constante A 2 nfb.
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Les conditions aux limites devraient s'écrire pour les vecteurs
électriques et magnétiques, elles associent à chaque onde diffractée
une onde réfléchie. Comme nous avons supposé que les fluctuations

de la constante diélectrique sont très petites quand on
traverse les plans limites y 0 et y d, nous négligerons la
réflexion, et pour la même raison nous admettrons que E est parallèle
à D. Les conditions à l'entrée s'écrivent alors

I De (m 0)

Ces équations déterminent l'amplitude Dss de chaque couche.

Nous avons vu au moyen de la construction de la sphère de

propagation que l'amplitude maximum dans la couche s est voisine
de Dss. Si donc N est assez grand, on pourra négliger l'ordre zéro
de la couche N, Df, devant D°0, et de même D~M devant D°0. Le
système (19) se décompose en

— GO OO g

2 «; Dl + 2 «S Dt 0
s — M s—N

Ce système est satisfait par une suite de DJ différents de zéro
seulement pour — M < s < N. Cette remarque montre que la
convergence des Dsm dans les couches entraîne, en vertu de la forme
des conditions aux limites, la convergence des amplitudes maxima
Dss de chaque couche.

La solution des équations de Maxwell dans le milieu stratifié
est une somme de solutions de la forme (16) pour toutes les valeurs
de s, elle s'écrit ici

2 Dl2 <*s ei(-b^x+riSy+^2~^')
s m

e{ (^*+12) 2 e~iw™ '2 < Dl eiri°y.
m s

Les conditions à la sortie expriment que l'amplitude Dm de l'onde
extérieure d'ordre m est égale à la somme des amplitudes des ondes
intérieures du même ordre m sur le plan y d. Cette condition
s'écrit

n _ J (b Çx+ f 2- com t) y s r,s i r,* d
J-^m ^ Z_J V-.-n JSy O
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L'intensité diffractée dans l'ordre m est proportionnelle au carré
de

J -ID I2- I Vœs Ds eiv'd^"m — | '-'m I — I 7 i »m A/» e ' •

>

On peut transformer l'exposant en tenant compte de (18)

n/(^._:A_cSft2d
2

Fig. 8. Angle d'incidence.
On décompose l'angle d'incidence i en deux angles a et ß. a est le complément
de l'angle compris entre le vecteur ke | fc" | fc-\/*o) de l'onde incidente et l'axe b

du réseau réciproque; ß est l'angle dièdre entre le plan qui conteint b et ke et le

plan qui contient b et la normale N à la face d'entrée. On a les relations suivantes

ft|=fcesina; £=fce cos a sin ß

et si a est de l'ordre b/k ou plus petit
&f=fcea; C=kesinß.

Si on introduit les deux angles a et ß qui caractérisent la direction
du vecteur ke de l'onde incidente (fig. 8), cette équation devient

(20)V s ry î V(l-cos2asin2i8)-cSi2d
2j am ^« e

Lorsque l'angle a est petit (a2 <^ 1), on peut écrire cos a 1, et
développer la racine en série. On trouve ainsi

Jm — Va« j)*eiL(ß,d)c'\z

avec

L(M=i 62d

'— cos |8

(21)

(22)

Vv
Ce développement est valable pourvu que cos ß ^> bjk.
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Nous avons ainsi l'expression cherchée de l'intensité diffractée
dans l'ordre m en fonction des données expérimentales. Cette
expression dépend, par l'intermédiaire des grandeurs L(ß, d),
cs(£, 0„) et o(sm(cs, 6n), des paramètres ß et £ qui caractérisent la
direction de l'onde incidente, des dn qui sont déterminés par
l'intensité et la forme de l'onde ultra-sonore, de l'épaisseur d du
faisceau ultra-sonore traversé. Les Dss sont proportionnels à

l'amplitude De de l'onde incidente.

III.
§ 5. Réseau sinusoïdal.

La théorie développée dans la deuxième partie de ce travail
est générale, elle permet de calculer les phénomènes de diffraction
dans tous les cas particuliers. Nous allons l'appliquer maintenant
au cas que nous avons déjà étudié partiellement dans la première
partie1), où le réseau est sinusoïdal, et où donc la constante
diélectrique a la forme

x x0 + 2 xx cos (bx — vt). (23)

Dans les conditions expérimentales habituelles les ondes
ultrasonores produisent bien une perturbation de cette forme. Comme

xx est très petit, l'inverse de x s'écrit

i 1 y-i
— - cos (bx — vt).
V V V "K X0 X0

On trouve en identifiant cette expression avec le développement
(3) de la deuxième partie

1
xpo ; xp+1 ip-x xpx

oX.

les autres xp sont nuls.
Les deux polarisations D' et D" satisfont aux mêmes équations,

en effet les définitions (7) de xp' et xp" deviennent ici

wî' WV> WÎ ^icos%

où x est l'angle compris entre deux vecteurs d'onde successifs dans
la même couche. Cet angle est de l'ordre bjk, et en posant cos % 1,

on fait une erreur de l'ordre b2fk2, pratiquement négligeable. (Dans
les conditions expérimentales habituelles (b ~ 102, fc ~ 105), le

x) R. Extermann et G. Wannier, Loc. cit.
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rapport o2/fc2 est de l'ordre 10~6). Les paramètres dm définis par
les équations (12) deviennent

b2 xp02 b2

et les équations (13) se réduisent à

HDl-i + D;+1) + [c* - (£ + m)2] D»M 0.

(24)

(25)

Ces équations de récurrence permettent de calculer les D*
lorsqu'on connaît l'un d'entre eux

Ds «m-DÜ; avec < a* 0)

Les valeurs propres cs qui font converger les suites a.sm sont
les racines de l'équation

ô(ï,6)

e

c-(l-l)2
e

o

o

c-Ç2

0
0
e

e-(!+l)2
(26)

La forme des conditions aux limites reste la même que dans
la deuxième partie (équations (19) et (21)), elles s'écrivent

2<a: D"(m=0)
0 (ra+-0)

(19)

pour l'entrée dans le milieu; De est l'amplitude de l'onde plane
incidente. A la sortie, on observe des ondes planes diffractées,
l'intensité de l'onde du m-ième ordre est

J „ 2<d^(^)cS (21)

avec

L (C, d) \
b2d

]/fc2 *o - f2 '

Pour calculer Jm, il faut connaître les cs, puisque les ocsm et
les D'I sont fonctions des cs et de 6. Le problème se réduit donc
à la recherche des racines cs du déterminant. Nous examinerons
d'abord le cas où il est possible d'exprimer analytiquement les
racines cs, en puissances de 6; si on peut le faire, tous les termes
de la somme dans l'expression (21) de Jm ont une forme analytique
en puissances de 0.
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§ 6. Cas analytique.

On appelle cs (|, 6) la racine du déterminant (4) qui tend vers
cs(|, 0) (!+ s)2 lorsque 6 tend vers zéro. On peut développer cette racine en
puissances de 6, on trouve

cS d 6) <s + S)2+ ?-— e2 +
20<g+s>2+7 e*(f' ' U + S) +4(| + s)2-lö + 2 [4 (|+ s)2- !]»[(*+ s)2-1]

4[144(g+s)6+ 88 (f+ s)4-203 (g+s)2-29]
"Ï41I+ S]^TJ5[(|+S)2_ 1]2[4(^+S)2_9]

(27)

Les premiers termes de ce développement montrent qu'il n'est pas valable
pour (f+s)= \, 1, |; en général il n'est valable que pour f + n/2. On retrouve
ici l'impossibilité déjà signalée de numéroter de la même manière les racines des
déterminants symétriques (f=n/2) et sans symétrie (f + n/2).

Le développement (27) converge pour de petites valeurs de 6, on pourrait
donc faire l'étude analytique de la diffraction dans ce cas, mais les phénomènes
de diffraction ne sont pas intéressants lorsque 6, c'est-à-dire l'intensité de l'onde
ultra-sonore, a une petite valeur. La convergence de (27) a cependant lieu même

pour de grandes valeurs de 6, pourvu que (f+ s) > 6; on pourrait donc étudier
analytiquement la diffraction pour des incidences très obliques (f»Ô), nous
avons vu en effet que la forme des conditions aux limites réduit le nombre des
couches, donc aussi des racines à considérer. Si donc § est assez grand, les amplitudes

de toutes les couches dont il faut tenir compte se déduisent de (25) avec
des racines es pour lesquelles le développement (27) est valable. Mais le cas de
l'incidence très oblique pour le réseau sinusoïdal n'est pas intéressant non plus,
parce que le phénomène de diffraction tend à disparaître lorsque l'angle d'incidence
augmente: on s'en rend compte en remarquant que lorsque f augmente, la racine
cs tend vers la valeur (<f+s)2, or pour cette valeur le phénomène de diffraction
ne se produit plus, en effet dans chaque couche s la seule amplitude non nulle est
-Df, et les conditions à l'entrée (19) donnent De Dg ; 0= D^. Il n'y a donc qu'une
onde dans le milieu stratifié, et qu'une onde à la sortie.

Nous nous servirons du cas analytique pour montrer pourquoi, dans le
réseau sinusoïdal, on ne trouve pas d'énergie réfléchie sur les plans de l'onde
ultrasonore lorsque l'angle d'incidence est un angle de Bragg d'ordre élevé, bien que
la construction de la sphère de propagation fasse prévoir une réflexion intense.
La condition pour que l'angle d'incidence soit un angle de Bragg est f=n/2, il
faut donc étudier les racines du déterminant (26) dans le cas où il prend une forme
symétrique, et où le développement (27) n'est plus valable. On peut alors écrire
le déterminant (26) comme produit de deux déterminants

Ó (n/2, 6) ôa (n/2, 0) ¦ ôb (h/2, 6). (28)

Les déterminants ôa et ôb ont la forme

V

a 26 0 0
0 a-1 6 0

o e 0-4 e

o o e a-9

pour n pair, et

o-l 9 0 0

e 0-4 e o

ôb= o e 0-9 e

o o e 0-16
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o-(|)2+
0

0

0

Ì 0

o-(|)2 0

0 o-(|)2

a- (i)2--0 0 0
0 a -( î y 0

0 0 a -(f)2
0 0 0

pour n impair.
L'équation ôa=0 exprime la convergence de suites B\n «symétriques»

(D+m=D_tl_m), tandis que ôb=0 est la condition de convergence de suites
«antisymétriques » {D+m= — D_n_m). Nous désignerons par as les racines du déterminant
ôa et par V celles du déterminant 6b ; et nous considérerons l'ensemble des racines
os et V — n/2 < s < oo au lieu des racines cs (-oo < s < + oo ainsi les deux
racines c?(%=n/2, 0) et o-»-* ({=w/2, 0) qui étaient confondues à la limite 0=0
et pour lesquelles le développement (27) n'était pas valable sont remplacées par
les deux racines os et bs, qu'on peut développer en puissances de 0. D'après la
forme des déterminants ôa et ôb, on peut dire que les racines les plus petites
(voisines de 1; 4; 9.. pour n pair) sont distinctes, tandis que les suivantes se

rapprochent de plus en plus l'une de l'autre, et de fait on trouve que les («/2+ s)

premiers termes du développement

(n/2+ s)3+
20 («/2+ s)2+ 7

4(«/2+s)2-l 2 [4 (n/2+ s)2- l]3 [(«/2+ s)2- 1]

+
[4 144 (w/2+ s)6 + 88 (ra/2+ s)4- 203 (n/2+ s)2- 29]
[4 (M/2+ s)-1]5 [(«/2+ s)2- l]2 [4 (»/2+s)2-9]

' (29)

sont communs aux développements de as et de V. Les racines as et V sont donc
confondues pourvu que (w/2+ s) soit assez grand, la valeur commune est la limite
de celles que donne le développement (27) pour cs et e-n-s lorsque f tend vers n/2.

Nous envisageons l'incidence sous un angle de Bragg d'ordre » assez élevé

pour que les couches qui interviennent soient caractérisées par des racines os et
bs pour lesquelles le développement (29) soit valable. Dans ce cas les couches
symétriques et antisymétriques de même indice ont au signe près les mêmes
amplitudes, et la table des amplitudes devient

ordre-n-1 ordre-» ordre-n+ 1 ordre-1 ordre 0 ordre+1

couche — 1

couche 0

couche +1

sym
a— sym.

sym.
a— sym.

sym.

o—sym.

D-1
—n—1 D-1

—n D-Î+i- ¦ ¦DZ\ Dô1 D-\.
-D-l-l -D-1—n -flri+r • •*>-Î ^ Dl[.

D°-n_x D°
—n u—n+l- • ¦ti D°uo Ki- ¦

-D°u-n-l —n -D° ¦DU D° D°

DZl-i D + 1 D+1u-n+f ¦ ¦Dt\ D+1 D+lu+l ¦ ¦

-D+1 t -D+l—n
-D+1u—n + l- • ¦D±l u0 D+1u+i ¦ ¦

Les conditions à l'entrée donnent

22^=öe; 22 k 0 {m + 0)

et les équations (21 montrent que l'intensité diffractée dans l'ordre — n (réflexion
de Bragg) et les ordres voisins est nulle quelle que soit l'épaisseur du milieu dif-
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fractant traversé. Ce résultat n'est pas en contradiction avec la construction de
la sphère de propagation, dans chaque couche l'amplitude de l'ordre — n — m est
aussi grande que celle de l'ordre m, mais l'amplitude des deux couches s est en
phase dans l'ordre + m, en opposition dans l'ordre —n—m.

Ce raisonnement est valable pourvu que n soit assez grand: pour de petites
valeurs de n, les premières racines interviennent, qui sont deux à deux voisines,
mais non égales, l'intensité diffractée dans l'angle de Bragg ne sera plus
identiquement nulle. Il est naturellement possible de développer ces racines en
puissances de 0 mais les développements qu'on obtient convergent très mal, en sorte
qu'on est limité à de petites valeurs de 0.

Ainsi la méthode analytique ne se prête pas au calcul de la diffraction pour
de petites valeurs de f, dès que les ultra-sons ont une intensité notable (0 ~ 1).
Il faut donc recourir à des méthodes numériques pour calculer dans ce cas les
racines c* qui permettent la construction de la surface de dispersion.

§ 7. Surface de dispersion pour 0 1.

Nous avons vu que le problème de la diffraction se ramenait
entièrement au calcul des cs; et qu'il n'était pas possible d'en
donner un développement analytique lorsque les ultra-sons ont
une intensité notable (0 ~ 1). Il faut donc recourir au calcul
numérique. Nous l'avons fait pour une valeur 0=1, c'est un
cas typique correspondant à des conditions expérimentales facilement

réalisables.
A cause de la symétrie du déterminant, il suffit d'en calculer

les racines pour 0 5Ï £ ^ \. Pour £ 0 et £ \, les racines sont
les as et òs définis au § 6, pour 0 < £ < \, ce sont les cs. Nous
avons calculé les as et les bs au moyen de la méthode indiquée
par Ince et perfectionnée par Wannier1) pour le calcul des nombres
caractéristiques de l'équation de Mathieu; pour le calcul des cs,

nous avons généralisé quelque peu cette méthode. Le problème
consiste à trouver des nombres cs qui fassent converger les suites
Dsm définies par les formules de récurrence (3) :

0D_> + [c'-(f+ *-l)»]D,_1 + eD, =0
(t) 0Ds_1 + [c--(£ + S)2]Ds + 0Ds+1 =0

0DS + [c* - (£ + s + l)2] Ds+1 + 6DS,2 0

Nous cherchons en particulier un nombre cs voisin de (£ -1- s)2.
Pour cela nous écrivons l'équation (f) sous la forme

cs (| _L s)2 _ Q /JV* +
DJ+1_ j (| ._ s)2 _ esi _ ôt+i (30)

J) G. H. Wannier, Beitrag zur numerischen Berechnung der Mathieuschen
Funktionen, à paraître aux Commentarli Mathematici Helvetici.
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OU

D.-1
Ds

ôs+1 d ~d7
Il est maintenant possible de calculer es^x et ôs+x au moyen

des équations de récurrence sans faire usage de l'équation (f), on
trouve

02 02

^s+l

(£+r-l)2— cs- (£ + r-2)2 — cs

02 02

(£ + r + l)2- cs (ï 2)'>

La condition de convergence de la suite des Dm (§ 2) nous
permet ici de négliger les ôm pour m>Nx et les em pour m< — N2.
Il en résulte que les deux fractions continues ont pratiquement
un nombre fini de termes.

Pour calculer les nombres cs, on en prend une valeur approchée
Cg (calculée par exemple au moyen du développement (27)), qu'on
porte dans le membre de droite de (11). Si cette valeur est la
valeur exacte cs, on la retrouve au membre de gauche. En général
on trouve une valeur c's différente de cs0, on peut en déduire une
valeur de première approximation

cl cl (31)

+ c's-cg

i+?^(i+%î(i--(i+^!)))+4K1+%!(1+-(1+M
On peut prendre cette valeur c* pour itérer l'opération et

obtenir des valeurs c|, c*.... Ces valeurs convergent très rapidement

vers une limite qui est la valeur cs cherchée.

Les racines calculées par cette méthode sont données par
la table I.

Table I.
S=0 S=i S=i »s l=è

0» -1,0701 r° -1,0694 c° -1,0675 c" -1,0656 0° -1,0648
b1 + 0,6867 C"1 + 0,6684 c-1 + 0,6285 C"1 + 0,5931 b° + 0,5795
a1 1,7073 C+1 1,7654 C+1 1,9236 C+1 2,1456 o1 2,3154
è2 4,1130 C"2 3,6756 c~2 3,2546 C"2 2,8851 b1 2,6677
o2 4,1625 c+2 4,6361 c+2 5,1685 c+2 5,7347 o2 6,3325
Z>3 9,0574 c-3 8,3284 C"3 7,6314 C"3 6,9666 S2 6,3359
a3 9.0575 C+3 9,8184 c+3 10,6111 g+3 11,4356 o3 12,2918



208 Richard C. Extermann.

Pour représenter graphiquement ces résultats, on tracera les
courbes cs cs (£) ; la fig. 9 ainsi obtenue est une section de la
surface de dispersion par un plan qui contient l'axe du réseau
réciproque.

Pour montrer que es=es(£) est l'équation d'une telle section, il suffit de
montrer qu'elle est équivalente à l'équation (17)

os(l) V/fe2«o-^c8-
On peut développer la racine

h2
(S)=k-\/xQ 2 Z2 CM!)

fc2 x0

parce que S2/fc2«l. Si on effectue un changement de variable en posant
Ss k s/Kr,— /is, cette équation devient

^(1) !—^^)
fc vxo

cs et fts sont donc proportionnels l'un à l'autre, et cs= cs(£) est, à un facteur constant

près, l'équation d'une section de la surface de dispersion.

Dans la fig. 9 la trace des sphères auxquelles se réduit la
surface de dispersion pour 0=0 est indiquée par les traits pointillés.
On voit que la déformation est surtout sensible pour les petites
valeurs de cs; ce sont les racines pour lesquelles les développements
(27) ou (29) ne sont pas valables.

Les valeurs cs que nous avons obtenues permettent de
résoudre tous les problèmes pour 0=1, nous nous en sommes servi
pour calculer la diffraction d'une onde entrant dans le milieu
stratifié à une incidence presque normale.

Diffraction pour de petits angles d'incidence. Résultats numériques.

Nous avons déjà donné les résultats du calcul pour l'incidence
normale1) ; nous avons complété ces résultats au moyen de la théorie
exposée dans les paragraphes précédents, en calculant les intensités

Jm lorsque l'angle d'incidence x varie dans un petit domaine
autour de la valeur x 0. Cette généralisation permet en particulier

de montrer dans quelle mesure les phénomènes observés
peuvent s'interpréter par la notion de « réflexion de Bragg ».

Nous avons vu que le problème intérieur était complètement
déterminé par la valeur de £, c'est donc l'angle x seul qui intervient

dans les conditions à l'entrée; l'angle ß ne figure que dans
l'expression (22) de L; si ß varie seul, la figure de diffraction
qu'on observe pour une valeur ß' avec une épaisseur L0 est la

1) R. Extermann et G. Wannier, loc. cit.
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iC

,<

1.0 -0.5 0,5 1,0 t

Kg. 9. Surface de dispersion pour 0 1.

Nous avons tracé les courbes cs=es(|) (avec une échelle quadruple sur l'axe des f).
La figure ainsi obtenue est une image déformée d'une coupe de la surface de
dispersion /x,s=fis(bÇ) par un plan qui contient le réseau réciproque; la déformation
étant une contraction latérale (selon 0|) dans le rapport

fc-y/xo
x

2 6

Les courbes en pointillé sont les traces des sphères auxquelles se réduit la surface
de dispersion pour 0 0. On voit que ce ne sont que les nappes les plus éloignées

du réseau réciproque qui sont sensiblement déformées.

14
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même que celle qu'on observerait pour une valeur ß 0 avec

une épaisseur L' —~ ¦ D suffit donc de calculer les Jm pour
différentes valeurs de L en fonction de a (ou de £) seul: on
détermine d'abord les <xsm (c$, 1) au moyen des équations (25), puis
les D* comme solutions du système (19), et on peut alors écrire
la table des Dsm u?m DJ; nous avons effectué graphiquement le
calcul des Jm selon les équations (21).

Nous donnons la table des D"m pour neuf valeurs différentes
de l'angle d'incidence (Table II); la Table III contient l'intensité
des ordres centraux de diffraction pour différentes valeurs de

l'angle d'incidence et de l'épaisseur L. On passe des résultats
pour l'angle + a aux résultats pour l'angle — a en intervertissant
les ordres + m et — m.

0.

Table II.
Table des Ds pour 0=1 et pour différentes valeurs de f.

-3 -2 -1 0 + 1 + 2 + 3

a°
b1

+ 0,007 + 0,068 + 0,335 + 0,627 + 0,335 + 0,068 + 0,007

a1

62
- 0,020 - 0,143 - 0,307 + 0,360 - 0,307 - 0,143 - 0,020

o2

b3

+ 0,016 + 0,075 - 0,028 + 0,013 - 0,028 + 0,075 + 0,016

a3 - 0,003 + 0,001 — — — + 0,001 - 0,003

.'

-3 -2 -1 0 + 1 + 2 + 3

c° + 0,009 + 0,085 + 0,381 + 0,614 + 0,285 + 0,052 + 0,005
(T1 - 0,007 - 0,052 -0,140 + 0,038 + 0,115 + 0,031 + 0,003
C+1 - 0,020 -0,128 - 0,204 + 0,332 - 0,377 - 0,144 - 0,018
C"2 + 0,021 + 0,093 - 0,036 + 0,010 - 0,003 - 0,004 - 0,001
c+2 — + 0,001 - 0,001 + 0,005 - 0,020 + 0,064 + 0,013
c-3 - 0,004 + 0,001 — — — — —
c+3 ' ¦ — — — — - 0,002
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Table III.
Intensité Jm des ordres centraux pour 0=1 et pour différentes valeurs de È

et de L.
1 0.*) * *• Ë 4-Ç — 4 •

"—2 "—1 "0 "1 •'-2 •'—I ''0 •'! J _2 J_x J q J-y

£=0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0
2,2

— 0,038 0,9230,038
0,005 0,135 0,720 0,135
0,0200,248 0,464 0,248
0,045 0,335 0,238 0,335
0,0700,377 0,102 0,377
0,0810,375 0,087 0,375
0,070 0,332 0,196 0,332
0,045 0,260 0,389 0,260
0,022 0,163 0,631 0,163
0,007 0,067 0,853 0,067
0,0030,006 0,9810,006

— 0,038 0,922 0,038
0,005 0,135 0,719 0,134
0,022 0,2500,462 0,244
0,049 0,339 0,238 0,329
0,0810,3830,103 0,370
0,102 0,383 0,0840,364
0,098 0,352 0,181 0,315
0,0710,3050,360 0,231
0,036 0,243 0,569 0,133
0,016 0,1740,752 0,058
0,0040,109 0,8410,042

— 0,038 0,9210.038
0,005 0,137 0,719 0,133
0,022 0,251 0,466 0,241
0,0540,342 0,242 0,323
0,093 0,387 0,107 0,361
0,125 0,389 0,0830,353
0,133 0,373 0,157 0,302
0,110 0,359 0,289 0,223
0,0650,356 0,423 0,147
0,022 0,355 0,506 0,110
0,002 0,341 0,511 0,136

Ç 8 * Ç i-2) t _ r,
S — 5 ¦

J_2 ./„j J0 ,J1 J_2 J_X Jr, Jl J—2 '1—1 >>0 ¦'\

L=0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0
2,2

— 0,038 0,9210,038
0,006 0,1360,720 0,133
0,023 0,253 0,469 0,238
0,058 0,345 0,248 0,317
0,1040,389 0,113 0,352
0,148 0,394 0,080 0,340
0,171 0,388 0,126 0,290
0,159 0,405 0,199 0,223
0,115 0,457 0,246 0,172
0,058 0,531 0,237 0,163
0,014 0,588 0,182 0,197

— 0,038 0,923 0,038
0,006 0,137 0,722 0,130
0,0240,254 0,4740,232
0,061 0,346 0,258 0,306
0,113 0,3900,1240,337
0,1700,3950,0800,323
0.213 0,392 0,097 0,275
0,224 0,420 0,121 0,220
0,197 0,497 0,1090,184
0,140 0,600 0,061 0,179
0,079 0,693 0,014 0.191

— 0,038 0,9240,038
0,006 0,136 0,727 0,128
0,024 0,253 0,4840,228
0,063 0,345 0,272 0,295
0,122 0,389 0,139 0,320
0,1910,394 0,087 0,302
0,255 0,388 0,080 0,255
0,297 0,405 0,072 0,206
0,305 0,457 0,0440,173
0,277 0,531 0,013 0,155
0,225 0,588 0,025 0.137

ï l- É i- d i.3)

—2 "—1 "0 "1 ¦1—2 '1—\ ¦!0 "1 ¦'—2 J—\ ¦!0 "1

£=0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0
2,2

— 0,038 0,9240,037
0,006 0,137 0,728 0,127
0,026 0,2510,491 0,221
0,065 0,342 0,288 0,284
0,128 0,387 0,159 0,303
0,206 0,389 0,101 0,279
0,290 0,373 0,080 0,232
0,367 0,359 0,063 0,185
0,421 0,356 0,049 0,144
0,443 0,355 0,060 0,112
0,428 0,3410,123 0,080

— 0,038 0,924 0,038
0,006 0,135 0,730 0,126
0,025 0,250 0,500 0,214
0,067 0,339 0,307 0,271
0,132 0,383 0,183 0,282
0,217 0,383 0,124 0,253
0,315 0,352 0,099 0,202
0,417 0,305 0,121 0,150
0,5110,2430,096 0,105
0,580 0,1740,1350,069
0,610 0,109 0,199 0,043

— 0,038 0,9240,038
0,006 0,135 0,733 0,123
0,026 0,248 0,508 0,207
0,067 0,335 0,326 0,255
0,133 0,377 0,213 0,258
0,220 0,375 0,157 0,220
0,323 0,332 0,136 0,164
0,4330,260 0,136 0,109
0,543 0,163 0,159 0,065
0,634 0,067 0,192 0,036
0,685 0,006 0.213 0,028

x) Incidence normale. 2) Angle de Bragg du 1er ordre.
D) Angle de Bragg du 2° ordre.
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(voir par exemple les figures de diffraction de la première partie, loc.
cit. p. 526). Ce fait peut s'expliquer par la construction de la sphère
de propagation (fig. 5 a). Si pour chaque couche on trace la sphère
de propagation de rayon k V*o> seuies les ondes dont les vecteurs
se terminent sur un point du réseau réciproque placé près de la
sphère donnent une intensité qui n'est pas négligeable. Mais la
distance à laquelle ces points peuvent se trouver de la sphère
pour donner encore une intensité non négligeable est proportionnelle
à la valeur de d, ce qui fait que, lorsque 0 augmente, le nombre
des points du réseau réciproque prenant part au phénomène
augmente. On voit immédiatement que, lorsque l'angle d'incidence

x varie dans de petites limites, le nombre d'ordres reste
inchangé; par contre, en comparant le nombre d'ordres qui
apparaissent pour l'incidence normale et pour une incidence très
différente, mais pour la même valeur de 0, on voit sans peine
que la figure de diffraction pour le grand angle d'incidence
contiendra moins d'ordres. En effet la sphère de propagation coupe
maintenant la ligne du réseau réciproque sous un angle relativement

grand, et la distance des points du réseau à la sphère a
augmenté, ce qui fait que certains points, qui dans l'incidence normale
pouvaient prendre part au phénomène, en sont maintenant exclus

parce qu'ils se sont trop éloignés de la sphère de propagation. Le
fait qu'on peut traiter analytiquement le cas de l'incidence très
oblique (§ 6) est d'ailleurs un indice que la figure de diffraction
ne contient que peu d'ordres.

Le paramètre 0 détermine complètement la forme de la
surface de dispersion. Il est donc possible d'utiliser celle-ci avec
d'autres limites que celles que nous avons introduites. On pourrait
s'en servir en particulier pour calculer les phénomènes qui se
produisent lorsqu'une onde entre dans le milieu stratifié par une
face parallèle aux plans de l'onde ultra-sonore. Cette diffraction
serait l'analogue du procédé de Bragg dans la technique des

rayons X, tandis que celle que nous avons étudiée (à laquelle se

rapportent les limites que nous avons choisies) correspond au
procédé de Laue.

Le second paramètre caractéristique, L, a une signification
moins générale que 6, il n'est défini que lorsque la forme du milieu
diffractant est celle que nous avons choisie. C'est une fonction
directe de l'épaisseur d du faisceau ultra-sonore traversé par la.

lumière, et cette épaisseur joue un rôle très important dans le
calcul de l'intensité diffractée dans les différents ordres. En effet,
chaque ordre dans le milieu est formé par un grand nombre d'ondes
planes qui ont toutes environ la même longueur d'onde et dont



Théorie de la diffraction de la lumière par des ultra-sons. 215
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Fig. 10. Intensité de la lumière diffractée dans les ordres
de È.

Ces graphiques représentent la variation de l'intensité de l'onde diffractée dans
les ordres — 1 et - 2 lorsque l'angle d'incidence varie, le paramètre £ étant tenu
constant. L'intensité de l'onde incidente est prise comme unité. Les figures sont
symétriques autour de l'angle de Bragg, mais l'intensité de l'ordre réfléchi peut
être maximum ou minimum pour cet angle, suivant la valeur de L. Pour certaines
valeurs particulières de £, on peut avoir une réflexion presque complète (courbe
la, £=5,9, courbe lb, £=9), pour d'autres valeurs de £ l'intensité réfléchie est
nulle (courbe lia, £=15,2, courbe IIb, £=24,9). Les courbes Illa et Illb
représentent le carré de la somme des modules des amplitudes des ondes de l'ordre :

c'est la plus grande intensité qui puisse apparaître lorsqu'on fait varier £. On
voit que la réflexion complète n'est possible que pour l'angle de Bragg.



216 Richard C. Extermann.

l'interférence produit une sorte de phénomène de «battements»;
l'intensité de ce phénomène sur la face de sortie détermine
l'intensité observée de l'ordre, et elle dépend elle-même de l'épaisseur
traversée d. L'intensité de la raie centrale est égale à l'intensité
Je de l'onde incidente, lorsque l'épaisseur est nulle, et il existe
d'autres valeurs de l'épaisseur pour lesquelles le phénomène de
battements redonne à cet ordre zéro presque toute l'intensité Je.

L'intensité des ordres latéraux est nulle sur la face d'entrée, elle
varie ensuite pour chaque ordre entre la valeur zéro et un maximum

qui est le carré de la somme des modules des intensités de
cet ordre. Lorsque l'angle d'incidence est un angle de Bragg,
ce maximum pour l'ordre « réfléchi » est précisément égal à
l'intensité de l'onde incidente (à cause de la symétrie ou de l'anti-
symétrie des Dsm dans ce cas). Pour certaines valeurs de l'épaisseur
d, la réflexion de Bragg est donc complète, pour d'autres toutefois
elle peut être nulle (fig. 10). Le phénomène se complique encore de

par l'existence des ondes « diffractées » à côté des ondes incidente
et réfléchie. Cette décomposition du phénomène en « réflexion »

et « diffraction » est commode pour montrer la cause de l'asymétrie
des images observées, mais elle est artificielle et ne permet d'ailleurs

pas un calcul quantitatif. La répartition de l'énergie dans
les différents ordres est donc fonction de L, mais le nombre des
ordres qui peuvent apparaître est déterminé uniquement par 6.

On peut encore remarquer que la signification de L est très simple :

c'est une mesure du nombre de longueurs d'onde ultra-sonores
que traverse le rayon lumineux du premier ordre pour l'incidence
normale.

Toute la théorie que nous avons exposée ne s'applique pas
seulement à la diffraction de la lumière par des ultra-sons, elle
permet de résoudre tous les problèmes de la propagation d'une
onde électro-magnétique dans un milieu à structure périodique
sinusoïdale, quelle que soit la grandeur de la perturbation de la
constante diélectrique, pourvu toutefois que b2jk2 <^ 1. Nous
reviendrons plus loin sur les conséquences de cette condition
restrictive.

La théorie telle que nous l'avons élaborée permet aussi de

prévoir les caractéristiques générales de la diffraction par un
réseau quelconque. Nous nous sommes borné en effet à l'étude
d'un réseau sinusoïdal, parce que ce cas est particulièrement simple,
mais nous allons voir qu'on peut tirer de notre théorie générale
quelques conséquences qualitatives qui s'appliquent à un réseau
dans lequel la périodicité n'est plus simple (réseau en « dents de
scie » p. ex.). Le paramètre unique d qui nous avait suffi doit
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être remplacé par l'ensemble des 6n, qui fait intervenir les amplitudes

des harmoniques, et alors le nombre d'ordres qui apparaissent
dépend essentiellement de ce nouveau groupe de paramètres. En
particulier ce nombre peut être grand même pour des ultra-sons
peu intenses. La distribution de l'intensité dans les ordres dépend
elle aussi de tous ces paramètres et on peut voir par exemple que
la réflexion de Bragg se produira de façon marquée pour les

angles % tels que sin % nbjk si le coefficient xpn dans le développement

de Fourier de l'inverse de la constante diélectrique est

grand (si l'amplitude de l'harmonique n est grande). Il serait
donc théoriquement possible d'analyser la distribution de la
matière dans le réseau diffractant par l'étude de l'intensité de la
lumière diffractée, c'est là une méthode qui est fort employée
aujourd'hui pour l'investigation des structures cristallines au moyen
des rayons X. Cependant, comme ici le nombre d'ordres diffractés
qui apparaissent simultanément est très grand, et qu'en plus
l'influence de l'épaisseur du faisceau ultra-sonore traversé n'est
pas simple, une telle analyse semble devoir rencontrer des
difficultés insurmontables. On pourrait toutefois imaginer des cas
très particuliers dans lesquels cette méthode serait applicable.

La condition restrictive b2fk2 <^ 1 nous a permis de montrer
que les deux polarisations donnent des résultats semblables lorsque
tout le phénomène est compris dans un domaine angulaire assez

petit pour que le cosinus des angles qui peuvent intervenir soit
assimilable à l'unité. Les effets de polarisation sont alors trop
petits pour être observables.

Je tiens en terminant à remercier Monsieur le Professeur
J. Weigle pour l'intérêt constant qu'il a porté à mes recherches,
après m'en avoir proposé le sujet et suggéré la méthode.

Ma vive gratitude va à Monsieur G. Wannier, Docteur es

sciences, en collaboration avec lequel j'ai publié la première partie
de ce travail et qui a continué de me faire bénéficier de conseils

précieux.
Institut de Physique de l'Université de Genève.
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