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Théorie de la diffraction de la lumiére par des ultra-sons

par Riehard C. Extermann.
(28. IV. 37.)

IL.

Dans un article précédent!) nous avons résolu partiellement
le probleme de la propagation de la lumiére dans un milieu per-
turbé par des ultra-sons. Nous nous proposons ici de reprendre ce
probléme par une méthode plus générale. Cette méthode est sem-
blable & celle qu’ont employée EwaLp et Lave dans la théorie
de la propagation des rayons X dans les cristaux?).

§ 1. Equations fondamentales,

Dans un milieu dont la constante diélectrique » est fonction
de 'endroit et du temps, I’élimination des grandeurs magnétiques
dans les équations de MAXwWELL conduit & I'équation d’ondes

D D 1 02D D
V' V= VV =y %= (1)
P % ¢ 0t )

ot D est le déplacement et £ le champ électriques.
Nous voulons écrire cette équation pour un milieu traversé

par une onde ultra-sonore plane Ae?® 7" de vecteur d’onde b

et de fréquence »/2x. L’onde ultra-sonore rend la constante diélec-

trique » périodique, on peut développer » en série de FourieEr
) P PR

| s -‘-- "'_
X% :Z %netn(b r vt)'
1
L’inverse de » qui figure dans ’équation (1) varie avec la méme
période dans l'espace et dans le temps, et le développement de
Fourter en est |

_ p = = 1 X
15 =Spnein@ o, Yo 1o ?)
n Y n= Yn.
1} R. EXTERMANN et G. Waxwnier, Helv. Phys. Acta, 9, 520, 1936.

2) Ewarp, Handbuch der Physik, vol. 23, 2, 1933; Lavg, Ergeb. der Exakt.
Naturwiss. 1931.
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En portant dans l'équation d’ondes (1) la valeur (2) de 1/x,
on trouve 1’équation que D doit satisfaire dans un milieu stratifié
par une onde ultra-sonore plane. Nous allons chercher & résoudre
cette équation en prenant pour D une somme d’ondes transversales
planes

i 2 f)mefi (767,";— 5 bets) (3)

L’indice m, dans ce développement, suppose la possibilité de nu-
meroter les ondes planes de la somme; généralement il faudra
prendre pour m le groupe de trois indices m; m, mg et la somme
sera une somme triple.

En remplacant (3) et (2) dans (1), le membre de gauche devient

i b b b o Y it D) T ()
kb |m+nb] "

On posera

E_Eern*I_oEern‘B - -
" et n 0| e+ m )

m Dm_[_m,n s

T)m Lm,n» €t la composante de ﬁm perpendiculaire au vecteur
(ky, + nb). L’équation (1) s’écrit alors

Zzwn (Z;m + n:l;)2 f)m_l_ m, n ei[(zm_Fn bjr_(wm“'””) oy, ]

R

Cette équation est une identité en 7 et en ¢ pour les exponen-
tielles qui y figurent; si donc un des membres contient un terme

d’exposant k-r— wt+ o on doit trouver dans I'autre membre

un terme qui a le méme exposant k-7 — ot + « Dans I’équation
(4), la somme du membre de gauche est une somme quadruple
(sur m; my my et n), tandis qu’a droite la somme est triple seule-
ment. Si on effectue la somme en 7 en commencant par n = 0,
on voit que le membre de gauche contient déja pour cette valeur
tous les exposants qui apparaissent au membre de droite. Pour
les autres valeurs de n, l’exposant

(k +nb) - r— (w

Wiy

D, oilem 7= omi+on] (4)

+ nv) t +
m, m, My My My My hy t ! O(.v.n, My My
1 Z q

doit étre identique & un des exposants déja rencontrés, par exemple

>
kpl'pa P2 T wplp*z'pa t I Oﬂ'pl’p2ps
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puisque nous avons vu qu’il est impossible de trouver dans le
membre de gauche un exposant qui ne figure pas au membre de
droite. On aura donc séparément

> -
kmmmsms + nb - kp1 D2 Ps
| __
Opymymy T V= Wp,p,p,
amq Mo g - a’p,_pgpa

Tous les « étant égaux en vertu de la troisiéme égalité, nous poserons

o =) ;

my My Mg

De la forme des deux premiéres égalités, on déduit qu’il suffit
d’un seul indice pour numeéroter les k et les w. On pourra tous
les obtenir a partir d’'un vecteur d’onde k, et d’une fréquence w,,

et par suite les grandeurs k,, et w,, qui figurent dans la solution (3)
doivent nécessairement satisfaire aux équations

(a) 7Cm s 760 e = mz (5)
(b)  wp= wy+ my '

L’équation d’ondes (4) s’écrit maintenant, en identifiant les
termes de méme exposant, sous la forme du systeme

ws

D,

}ﬂ Ys— mk DmLs o2

ou le symbole Do | s désigne la composante de D,, perpendiculaire
au vecteur k,. Comme les ondes qui figurent au développement (3)

sont transversales, D, i 5 — D, et le systéme devient
w
, - g — ’Po k& .
2 YVs—m Dm_l_s: k2 Ds (6)

la sommation 2’ s’étendant sur toutes les valeurs de m différentes
de s.

L’équation (6) est une équation entre vecteurs, pour la com-
modité du calcul on a intérét a 1’écrire en composantes: on résoud
D,, en D, dans le plan qui contient ky et b (donc tous les o),
et D,,"" perpend10ula1re 4 ce plan. En d931gnant par (s,m) 'angle
compris entre k et km, on a

’

, ~

m“ = D, cos (s,m)
rr

fm _1_5* D
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Le systéme (6) se décompose en deux systémes et si on pose
¥ o-m = Wo—m COS (s,m) (7)
YV s—m = Ys—m

on voit que les deux polarisations D’ et D' satisfont un systéme
de la méme forme

w2 I 2
= 9 Yol 8
‘;%J Ysom Dm = —"C—'"'ksz Ds ( )

avec des coefficients y différents.

Nous avons ainsi remplacé 1’équation différentielle (1) par
les systémes d’équations algebriques (5) et (8). Ce sont ces systémes
qu’ll faut résoudre pour connaitre la solution des équations de
MaxwgerL dans le milieu diffractant.

§ 2. Résolution des équations fondamentales.

La résolution des équations (8) pour les vecteurs D,, nous
oblige a faire quelques simplifications.
Nous étudions la diffraction d’une onde lumineuse dont le

vecteur d’onde dans le vide est | k| = w/c; & cette onde corres-
pondent, dans le milieu, des ondes diffractées dont la fréquence
est donnée par les équations (5b). Pour la suite des calculs, nous
admettrons que toutes les ondes diffractées ont la fréquence
de I'onde extérieure; cela revient & poser » = 0 dans (5b). Cette
simplification est légitime parce que la fréquence » de I'onde ultra-
sonore est pratiquement toujours trés petite par rapport a la
fréquence o de la lumiére?).
Le second membre de (8) devient alors

FE— ks

A

Comme 'amplitude de la variation de constante diélectrique pro-
voquée par ’onde sonore est toujours petite, la grandeur kg d'un
vecteur d’onde dans le milieu perturbé est trés voisine de la longueur

..,_ k
]ﬂ’\/%o — \/’;*
Yo
1) On néglige ici » devant w pour le calcul des conditions géométriques et
de P'intensité de la diffraction, les erreurs ainsi introduites sont trop petites pour
pouvoir étre observées; mais les mesures de fréquence trés précises qu’on peut

faire sur les ondes diffractées permettent une vérification expérimentale directe
des équations (5b).
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qu’il aurait dans le milieu non perturbé. Le numérateur est donc
petit et on peut écrire au dénominateur

P )

Yo k?
Dans les problémes de diffraction que nous traiterons, la quan-
kS kzu_ 0 2 I » b} 3 f 4
tite ———k%i‘i est négligeable par rapport & l'unité; avec cette

seconde simplification les équations (8) deviennent si on tient
compte de (5a)

k2 > >
1 ——— (ko + sb)?
T ’WS—fm Dm + L k(; Ds = 0. (9)
Yo" m

Pour toute valeur de k, ces équations définissent une suite
de D,,, mais ces suites n’ont une signification physique que si elles
convergent vers zéro pour m — + o0, ce qui n’est le cas que pour

certaines valeurs propres k7. Nous allons chercher les valeurs uk;
paralléles & un vecteur unité %. Le systéme (9) s’écrit dans ce cas

k2 - *
s (eliy — ib)* 1 1
+ B 2 D_y——5 Dy VE YD1+, . =0
1 L e (% ko) 1
R Yo o s .. -
w2 py D4+ 12 0 02 Y1 Dy 0
k2 o -
1 1 oo — (uky + b)?
T ‘P~2D—1*“q;0‘2‘ paDy+*—p—— Dy . . =0

La condition de convergence des D,, est que le déterminant
des coetficients de ces équations soit nul?):

i W .kz. g * g .a— ..................
o = (k=T
0

7 W1 L2
k2 L2 (_)k ,

— = (u

wﬂ 0) w = 0 (10)
Y.a k2 - 1

2 - -
VI/L — (wky+ b)?

w-—-Z '4’»-1 wo k2

!) La convergence vers zéro des suites D,, pour m—» + oo s’exprime sous
la forme suivante: étant donné ¢ arbitrairement petit, il existe un nombre XN,
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Cette équation a une infinité de racines, il y a donc dans toute
direction % une infinité de vecteurs uk’ qui font converger les D,
du systeme (9). On pourrait arriver ainsi & la solution générale
de I'équation (1), mais au lieu de résoudre le probléme des valeurs

propres pour des k, qui solent tous dans la méme direction, nous
allons le faire pour des k, qui aient tous la méme composante

selon la direction b des ultra-sons, car sous cette forme la solution
sera plus commode lorsque nous aurons & introduire les conditions

aux limites. Nous décomposons k, en
E@ —bE+n 0 (11)

ou 7 est un vecteur unité perpendiculaire & b dans le plan qui
contient k, et b. Si on pose

1 k? e
B, == ‘"W b2 Ys—m> o= % (12)
les équations (8) deviennent
>0 Dy +c—(E+ 82D, =0 (18)

la condition de convergence (10) étant maintenant
[ o o 4 & v e e s s e s s e e
. E—12 0, 0

+2 .
5(&6,)=. 0, ¢ & 6, .|=0 (14)
f_, By e—(E+1)2 .

Cette équation a une infinité de racines ¢(&, 0,), nous appelons
c* la racine qui tend vers la valeur (& 4 s)2 lorsque les 0, tendent
vers Zzeéro.

Si on résoud les équations (13) avec la valeur cf, on obtient
une suite convergente de D;,, qu’on peut tous exprimer au moyen
de I'un d’eux

D, = o, D o, = o (c%, 64). - (19)
tel qu'on ait | D, | <& pourvu que m > N,, et de méme un nombre N, tel que
| D_, | <& pourva que m > N, Soit M le plus grand des nombres N, et N,,
on a encore | D, | <& pourvu que |[m | > M.

On exprime d’abord une condition approximative de convergence pour la
suite des D, en négligeant les D,, pour | m | > M; le systéme (9) devient alors
un systéme d’équations linéaires homogénes, la condition de convergence s’ex-
prime par le fait que le déterminant des coefficients doit étre nul. Cette condition
approximative devient la condition exacte si les grandeurs ¢ qu’on néglige sont
nulles; c’est le cas lorsque M —» 0, la convergence des suites (9) est donc assurée
si le déterminant infini des coefficients s’annule, ce qu’'exprime ’équation (10).
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D’autre part les équations (12) associent 4 chaque racine
c*(&, 0,) une valeur propre o°; pour une valeur donnée de &, la
composante ¢ doit donc prendre des valeurs propres pour que la
suite des D,, converge. A chacune de ces valeurs p° correspond
une solution indépendante des équations de MAXWELL pour une
des polarisations, c’est une somme d’ondes de la forme (3)

-

ED;Bi(km.T_wmt): D;Za‘fn e?:(km'?’—wmt) (16)

m

Slans laquelle les chn‘sont donnés par les equations (10) et (5a):
ley, = b (& +m) +~np*; et w, par les équations (5b).

La solution générale pour une des polarisations est une somme
de ces solutions particuliéres, pour toutes les valeurs de s et de &.
Chacune des solutions particuliéres est multipliée par un facteur
arbitraire D et posséde une constante de phase arbitraire. Les
conditions aux limites (§ 4) déterminent le probléme, mais avant
de les introduire, il peut étre utile de donner une interprétation

géométrique de la double infinité des ondes I;,fn Cette interprétation
utilise les notions de réseau réciproque et de surface de dispersion.

§ 3. Réseau réciproque, surface de dispersion, sphére de propagation.

On représente géométriquement une onde plane par un vecteur
d’onde qui est tracé dans la direction de propagation avec une
longueur inversément proportionnelle & la longueur d’onde; ce
sont ces vecteurs qui figurent dans les développements de FoURIER

(2) et (3). L’onde ultra-sonore est représentée par les vecteurs mb,
I'onde lumineuse par les vecteurs k,,. Les vecteurs mb sont connus,

mais on ne connait pas a priori les vecteurs Tcm, on sait seulement
qu’ls doivent satisfaire aux équations fondamentales. Ces équa-
tions se prétent & une interprétation géométrique, que nous don-
nerons successivement pour les équations (5) et (8).

Les équations (5a) s’interprétent dans le réseau réciproque.
Si on considére 'onde ultra-sonore comme immobile, figée & un
mstant donné, elle présente une structure périodique dans une
dimension, c¢’est un réseau unidimensionnel. Le réseau réciproque
de 'onde ultrasonore est défini comme le réseau réciproque d’un
cristal; il se réduit & une série de points équidistants sur une
droite, la translation d’un point au suivant étant définie par le

vecteur b. Les vecteurs du réseau réciproque sont les vecteurs mb
qul en réunissent les points.
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Les équations (5a) expriment le fait que tout vecteur obtenu
par addition d'un des vecteurs du réseau réciproque & un vecteur
d’onde existant est un vecteur d’onde possible, 'interprétation
géométrique en est donnée par la fig. 1.

P, P P, 2 23 Py

0

Fig. 1. Réseau réciproque statique.
On construit le réseau réciproque statique en portant bout a bout des vecteurs
b égaux. On peut numéroter les points du réseau réciproque a partir de l’un d’eux
P, choisi arbitrairement comme origine, de telle fagon que le vecteur mb relie
Py,a P,. Sion trace un vecteur d’onde existant, ko, avec l'extrémité en P,, tout
vecteur qui a la meme origine 0 et se termine sur un des points P,, du réseau
est un des vecteurs k associés & k Tous ces vecteurs sont dans le plan qui con-

tient k et b.

0,

Fig. 2. Réseau réciproque cinétique.
On construit le réseau réciproque cinétique en portant bout & bout des quadri-
vecteurs B égaux; on peut aussi en construire les points P,,” en faisant subir aux
points P,, du réseau statique une translation m» selon —¢. La représentation
geometrlque du réseau cinétique est partwuherement simple si on prend comme
plan des z y le plan qui contient lco et B, avec Oz dans la direction § des ultra-
sons; alors (K,,),= B,=0 et les quadrivecteurs sont contenus dans l'espace a
trois dimensions (z, ,—t), Si K, est un quadrivecteur existant dont '’extrémité
est en P,’, tout quadrivecteur qui a la méme origine 0’ et se termine sur un des
points P,,’ du réseau cinétique est un des quadrivecteurs K, associés a K.
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Si on veut interpréter ensemble les équations (5a) et (5b), il faut définir
les vecteurs d’onde dans les quatre dimensions z, y, z, —f. Ces « quadrivec-
teurs» K,, et B ont les composantes '

By, y,e = By, y, 23 (Kyo) g =0

Ba:,y,z= ba, y, 23 B_t:”-

Les équations (5) deviennent alors
K,=EKy+mB. (6%

Nous appellerons par analogie les quadrivecteurs m B quadrivecteurs du
réseau réciproque cinétique.

Nous savons maintenant comment on peut construire les
ondes associées & un vecteur k, donné. Pour trouver quels sont
les vecteurs k, possibles dans le milieu, il faut résoudre les équa-

tions (8). Nous avons montré au § 2 que les ke possibles forment
une suite discréte. Nous allons voir qu’on peut prévoir le méme
résultat au moyen d’une construction géométrique que nous
appellerons la surface de dispersion.

Considérons, dans le cas ou l'onde sonore d’'intensité trés
faible produit une perturbation négligeable, toutes les directions

dans lesquelles peut se propager une onde dont le vecteur Je., aboutit
au point P,, du réseaun réciproque. Le lieu des origines de ce vecteur
est évidemment une sphére de rayon k4/zx, ayant P, pour centre.
Supposons cette sphére tracée autour de chaque point du réseau:
Iensemble des sphéres qu'on obtient ainsi forme une surface re-
présentant géométriquement la propagation des ondes possibles
dans le milieu. C’est cette surface que nous appelons surface de
dispersion du milieu pour la fréquence w = ke. La fig. 3 montre
comment la surface de dispersion permet de construire les vecteurs

ly possibles dans la direction . Ils forment une suite discréte,
ce que nous avions déja reconnu algébriquement au § 2.

On arrive & une interprétation géométrique de la double
infinité d’ondes k), possibles dans le milieu en construisant au
moyen du réseau réciproque les ondes associées aux ondes k.

Il est commode d’appeler couche s I’ensemble des vecteurs
dont I'origine commune est en 0% et qui se terminent sur tous les
points du réseau; et ordre m I'ensemble des vecteurs issus de toutes
les origines 0° qui aboutissent au méme point P, du réseau. Nous
avons vu que tous les vecteurs d’une couche sont dans un méme
plan, il en est de méme de tous les vecteurs dun ordre.

13
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Nous n’avons tracé la surface de dispersion que dans le cas
ou les ultra-sons sont trés peu intenses (0,~ 0). Pour étudier la
déformation des sphéres lorsque les 0, prennent des valeurs plus
grandes, 1l est nécessaire de chercher la solution du probléme
des valeurs propres (§ 2); le plus simple est de tracer la surface

P P, P,

(UL
S anene

. TSTSISS

__.__ =____________=——~ e

—
/

Fig. 3. Surface de dispersion d’un milieu faiblement perturbé.

%
%

!

-~

i

:

Pour trouver les vecteurs %0 possibles dans la direction u, on trace par P, une
droite paralléle a u, cette droite rencontre la surface de dispersion aux points
09, ...0"...; 0" étant le point d’intersection avec la sphére centrée en P,. 7)—01’30
est un vecteur d’onde possible que nous désignerons par I}Tg Nous allons montrer
vecteur possible, nous savons donc qu’il est accompagné d’une série de vecteurs
qui ont la méme origine 0" et se terminent sur chaque point du réseau réciproque.
07 P, est un de ces vecteurs, c’est donc un vecteur possible, nous le désignerons
par i?g'. Il y a donc une infinité d’ondes qui peuvent se propager dans toute
direction .
Nous avons vu (fig. 1) qll,Oll peut construire géométriquement les ondes Tc,m qui
accompagnent une onde /, qui se propage dans le milieu. Supposons que toutes
les ondes 75-5 possibles dans la direction w existent & Dintérieur du milieu stratifié.

s

Alors tout vecteur 0 P, est le vecteur Efn d’une des ondes adjointes aux FZ%. On
vérifie facilement que la numérotation des ondes telle que nous la définissons
ici est identique & celle que nous avons définie au § 2.
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dans un systéme de coordonnées cylindriques (p, ¢, b &) (fig. 4).
On déduit de (12) que l’équation de la surface de dispersion est,
dans ces coordonnées

L — |
Qs:]/__bzcs; et =¢*(§, 0,). (17)
Yo

9/ b& £

¢

Qﬁl

05

Fig. 4. Coordonnées cylindriques pour étudier la surface de dispersion.

Lorsque les 6, prennent des Ialeurs non nulles, on peut définir 13 surface de dis-
persion comme lieu, lorsque % varie, des origines (s des vecteurs k£ l_)ossiab_les gans
la direction #. Pour étudier la surface de dispersion, on décompose k5 en b&+ ngs;
par raison de symétrie ¢* a la méme valeur quelle que soit la direction n perpendi-
culaire & b, autrement dit la surface de dispersion est une surface de révolution
autour de 'axe du réseau réciproque, et ’équation ne dépend pas de I'azimut ¢.

D’apres 'équation (15) la surface de dispersion a les mémes
propriétés de symétrie que 'ensemble des racines ¢® du déterminant
(14). On voit que celui-ci reprend la méme forme si & augmente
d’'une unité ou change de signe: 6 (§) = 6 (£ +n), n entier;
0(&) = 0(— &). Ces deux propriétés montrent que la surface de
dispersion est périodique en & avec une période égale & l'unité,
et qu’elle admet les plans & = n/2 comme plans de symétrie.

Il v a une difficulté dans ’emploi des équations (17), ¢’est que la numérota-
tion des racines du déterminant telle que nous I'avons prévue n’est pas possible
pour §=n/2. Cela provient du fait que dans la limite 6, =0, les racines ¢, sont
deux & deux confondues (ou, dans la représentation géométrique, que le point 0%
est commun & deux sphéres). Cette dégénérescence disparait pour 6, # 0, on peut
en effet écrire (14), pour £=n/2, comme produit de deux déterminants dont les
racines af et b® ne se confondent que pour 0,=0. Nous reverrons cette décomposi-
tion dans un cas particulier.

La difficulté signalée n’est pas génante si on définit comme nappe de la
surface de dispersion, non pas les éléments qui donnent une sphére & la limite
0,0, mais ceux qui se réduisent, dans cette limite aux surfaces en festons com-
prises entre les cylindres

I n

2 ” k2 n 2b2
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Ce sont ces nappes qui ont les propriétés de symétrie. On les trace en construisant
la surface de dispersion au moyen des équations (17) pour 0 < & < }; les propriétés
de symétrie permettent de les construire ensuite pour toute valeur de é&.

La surface de dispersion est une interprétation géométrique
des valeurs propres des équations (8) ou (18), mais il est aussi
possible de prévoir les propriétés de convergence des D,, au moyen

Fig. 5b.

Fig. 5a. Sphére de propagation.
Pour savoir, parmi les ondes de la couche s, lesquelles sont intenses, on en trace
les vecteurs *‘an avec une origine commune 0%, ils se terminent sur les points du
réseau réciproque, puis on trace avec 0° comme centre une sphére de rayon k4/x,
(sphére de propagation). Si cette sphére touche un des points P, du réseau réci-
proque ou en est trés voisine, 'onde %,?n qui se propage dans la direction de ce
point a une grande intensité par rapport aux autres ondes de la couche. L’inverse
de la distance entre la sphére et un point P,, du réseau est une mesure de I'inten-
sité de l’onde*;’;cfn. La convergence des amplitudes de la suite D}, est assurée parce
que cette distance augmente de plus en plus lorsque m croit indéfiniment.

Fig. 5b. Réflexion de Braac.

Dans le cas ot la composante selon b du vecteur E;’, est un multiple entier de
b/2 (§=n/2), la construction de la sphére de propagation est symétrique de part
et d’autre du plan N, normal au réseau réciproque, qui contient 0°. Ceci montre
que P'amplitude des ondes de la couche s sera symétrique aussi: D5, =D% _ .

d’une construction analogue, nous le montrerons sur les équations
(13). Dans la limite 6,—0 les ¢® sont voisins de la valeur (& + )2
et tous les coefficients [¢®* — (§+r)%] sont de I'ordre de 'unité, sauf
le coefficient de Df, [¢® — (§+s)2], qui est trés petit. Les équations
(13) sont donc satisfaites par une suite D), =0 pour m+s; Di+0.
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La seule onde intense dans la couche s est donc celle dont le
vecteur k; a la longueur k4/%, qu’il aurait dans le milieu immobile.

Lorsque les 6, prennent des valeurs plus grandes, la suite des Dj,
admet des valeurs non nulles méme pour m + s, mais les ondes
ont une amplitude d’autant plus grande que leur vecteur d’onde
a une valeur plus proche de k4/x, Cette remarque justifie la
construction de la fig. 5a, construction qu’Ewarp appelle sphere
de propagation. Cette construction permet donc de prévoir
qualitativement quelles seront les ondes intenses parmi celles
d’une couche.

La construction de la spheére de propagation fait prévoir des
phénomeénes importants pour & = n/2, en effet elle montre qu’il
y a dans chaque couche deux groupes d’ondes qui ont deux &
deux les mémes amplitudes (fig. 5b); ce fait correspond a la ré-
flexion de Bragg des ondes lumineuses sur les ondes ultra-sonores.

Nous avons ainsi une représentation géométrique complete

des ondes kj,: les surfaces de dispersion permettent de trouver les
k3 répondant aux conditions aux limites, le réseau réciproque

donne la direction et la grandeur des vecteurs d’onde ks, associés
aux vecteurs ainsi trouvés, la sphére de propagation indique,
dans chaque couche, les ordres intenses.

Il faut maintenant introduire les conditions aux limites de

facon & déterminer quels ZO on doit choisir et quels rapports d’am-
plitude existent entre les différentes couches.

§ 4. Conditions aux limites.

Pour introduire les conditions aux limites, 1l est commode
de définir un systéme d’axes rectangulaires z, y, z; Ox étant dans

la direction b. Nous considérerons, dans un milieu infini de constante
diélectrique 4, une région stratifiée par I’onde ultra-sonore, comprise
entre les deux plans y = 0 et y = d; ces limites sont pratiquement
celles d'une cuve & faces paralléles de trés grande surface, d’épais-
seur d, traversée par une onde ultra-sonore plane qui se déplace
parallélement aux faces (fig. 6). Une onde lumineuse plane

Deet(k*-r=wl) gntre dans la région stratifiée par la face d’incidence
y = 0, elle ¢’y diffracte et on observe au-delad du plan d’émergence
(y > d) des ondes planes diffractées D,, e* Bm "= ®u?) dont 1'in-
tensité est J,,.

Lorsqu’une onde passe d’un milieu dans un autre, la compo-
sante des vecteurs d’onde dans le plan de séparation est continue,

il faut donc qu’il existe dans la région stratifiée des ondes dont
*
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le vecteur k a la méme composante que le vecteur de 'onde ex-
térieure dans le plan d’entrée y — 0: nous définirons comme ordre
zéro l'ordre formé par toutes les ondes intérieures possibles qui
ont cette propriété. Soient K}k, k¢ les composantes du vecteur
de l'onde incidente, b¢, 7, £ celles d’un des vecteurs de lordre
zéro. Le choix de & et de ¢ est fixé par la condition de continuité
de la composante de % dans le plan y = 0, bé =k}, { = k¢ (fig. 6),
c’est done la composante 7 qui prendra des valeurs propres #°.
Tous les vecteurs de ’ordre zéro ont la méme composante b& dans

z

/L ........... i 3

Fig. 6. Limites du milieu stratifié.

la direction b, ils ont donc une composante o® normale & b(§ 2),
et on peut calculer #* au moyen des équations (12) en posant
(9% = (7% + 22 On trouve

—_— /] u.é‘*-— /
nt = 10? — L2 = l/(%_?) —*hA, (18)

Chacun des vecteurs k2 de 1’ordre zéro est accompagné de vecteurs

Tc;’ﬁn formant une couche s.

La condition de continuité des composantes tangentielles
des vecteurs d’onde doit étre satisfaite aussi sur la face de sortie
y = d. Il doit donc exister & I'extérieur (z > d) des ondes dont

le vecteur % a les mémes composantes b (& +m), £, selon Oz et 02

que les ondes intérieures 73; Cette condition montre qu’a chaque
ordre m correspond une seule onde plane diffractée dont le vecteur
est Em. Le nom d’ordre donné aux ondes intérieures dont les
vecteurs se terminent sur le méme point du réseau réciproque se
trouve ainsi justifié: les ondes de I'ordre m se réunissent & la sortie
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pour donner une onde diffractée d’ordre m au sens habituel. Cette
onde a la fréquence w,, définie par les équations (5b), la direction

- - —-—-
VP [ ——

p o= = = = -

réseau
réciproque

surface /N

d € R S
dispersion

bé

D P e ——— P

|

-
Fig. 7. Conditions aux limites pour les vecteurs k.
On cherche & lentrée, au moyen de la surface de dispersion tous les vecteurs
d’onde possibles & l'intérieur avec la méme composante tangentielle 6§ dans la
> - -
face d’entrée que le vecteur k¢ de l'onde incidente.

A la sortie on fait correspondre & chaque ordre intérieur m une onde diffractée
d’ordre m dont le vecteur | Fm |=ka/%, a la mémg composante tangentielle dans
le plan de sortie que les vecteurs k; de I'ordre m.

La figure représente ces conditions dans le cas ou le plan d’incidence contient le
réseau réciproque; la théorie donnée dans le texte n’est pas soumise a cette res-

triction.

en est donnée par la construction de la fig. 7, on trouve évidemment
les mémes directions que pour les ondes diffractées par un réseau
de constante A = 2 x/b.
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Les conditions aux limites devraient s’écrire pour les vecteurs
électriques et magnétiques, elles associent & chaque onde diffractée
une onde réfléchie. Comme nous avons supposé que les fluctua-
tions de la constante diélectrique sont trés petites quand on tra-
verse les plans limites y = 0 et y = d, nous négligerons la ré-

flexion, et pour la méme raison nous admettrons que E est paralléle
a D. Les conditions & 'entrée s’écrivent alors

s TS De (m = 0)
%‘ o Dy = 0 (m+0). 19)
Ces équations déterminent I'amplitude D; de chaque couche.

Nous avons vu au moyen de la construction de la sphére de
propagation que 'amplitude maximum dans la couche s est voisine
de D;. 81 donc N est assez grand, on pourra négliger I'ordre zéro
de la couche N, DY, devant D], et de méme DM devant D. Le
systéme (19) se décompose en

LNl

'« D} = De
s=%m> ’ Nt DE=0 (m+0).
> a@Di+ D asDi=0
s=—M s=N

Ce systéme est satisfait par une suite de D différents de zéro
seulement pour — M < s < N. Cette remarque montre que la
convergence des D), dans les couches entraine, en vertu de la forme
des conditions aux limites, la convergence des amplitudes maxima
D; de chaque couche.

La solution des équations de MaxweLL dans le milieu stratifié
est une somme de solutions de la forme (16) pour toutes les valeurs
de s, elle s’éerit 1c1

512 S o 08w v =00
§ m

— ei(bfw-{- CZ)Z e_iwmtzai@ D; einsy.
m S
Les conditions & la sortie expriment que 'amplitude D,, de 'onde
extérieure d’ordre m est égale a la somme des amplitudes des ondes
intérieures du méme ordre m sur le plan y = d. Cette condition
s’écrit
T3, = ei(b&ﬁ—}—é‘e—wmt)ga; D: 6@71,'.303.
s
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L’intensité diffractée dans 'ordre m est proportionnelle au carré
de D ) .

» = |D|2= | S, Dy il
8

On peut transformer ’exposant en tenant compte de (18)
k2

2“ o3 ]/(~»——‘2)—c3b2d2

Fig. 8. Angle d’incidence.
On décompose 'angle d’incidence 7 en deux angles « et . « est le complément
de I'angle compris entre le vecteur ke (] ke |=k+/%,) de I'onde incidente et 'axe b
du réseau recxproque pest T ncle diédre entre le plan qui conteint b et k¢ et le
plan qui contient b et la normale N i la face d’entrée. On a les relations suivantes
b&=k¢sin a; {=k® cos «sin f§
et si o est de 'ordre b/k ou plus petit
b&=kfa; {=Kk®sin B.

Si on introduit les deux angles « et f qui caractérisent la direction
du vecteur k¢ de l'onde incidente (fig. 8), cette équation devient

14/ (1—cos® x sin? f)—cs b2 d |

(20)

s S
s Die

Lorsque l'angle « est petit («2 <€ 1), on peut écrire cos o = 1, et
développer la racine en série. On trouve ainsi

Im = | Do, D2 et L(B, d) |2 (21)
avec '
b2d
LB,d)=t—F—— (22)
— cos
Yo

Ce développement est valable pourvu que cos > bjk.
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Nous avons alnsi ’expression cherchée de l'intensité diffractée
dans l'ordre m en fonction des données expérimentales. Cette
expression dépend, par lintermédiaire des grandeurs L(B, d),
c*(&, 0,) et a,(ct, 0,), des parameétres f et & qui caractérisent la
direction de 'onde incidente, des 6, qui sont déterminés par l'in-
tensité et la forme de l'onde ultra-sonore, de |’épaisseur d du
faisceau ultra-sonore traversé. Les D: sont proportionnels & 'am-
plitude D¢ de l'onde incidente.

I11.

§ 5. Réseau sinusoidal.

La théorie développée dans la deuxiéme partie de ce travail
est générale, elle permet de calculer les phénomenes de diffraction
dans tous les cas particuliers. Nous allons I’appliquer maintenant
au cas que nous avons déja étudié partiellement dans la premieére
partie!), ou le réseau est sinusoidal, et ou donc la constante di-
électrique a la forme

%= %y, + 2 %, cos (bx — vi). (28)

Dans les conditions expérimentales habituelles les ondes ultra-
sonores produisent bien une perturbation de cette forme. Comme
%, est trés petit, U'inverse de x s’écrit

-l: 1 A cos (bx — »t).

A
On trouve en identifiant cette expression avec le développement
(3) de la deuxiéme partie

1 1
— =Y Ya=T YaT¥i T 5>
#p %2

les autres u sont nuls.

Les deux polarisations D’ et D'’ satisfont aux mémes équations,
en effet les définitions (7) de 9" et 9" deviennent ici

Wi = 15 Y1 = Y1008y
ou y est 'angle compris entre deux vecteurs d’onde successifs dans
la méme couche. Cet angle est de ’ordre b/k, et en posant cos y = 1,
on fait une erreur de 'ordre b%/k?, pratiquement négligeable. (Dans
les conditions expérimentales habituelles (b ~10%, k ~103), le

1) R. ExTerMaNN et G. WANNIER, Loc. cit.
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rapport b?/k? est de I'ordre 10-%). Les parameétres 6, définis par
les équations (12) deviennent

k2 o, L2
9~1:9+1=9=”“§ﬁ:%1*b? (24)

et les équations (13) se réduisent a
0(Dp + Diyin) +[¢°— (& +m)?] D, = 0. (25)

Ces équations de récurrence permettent de calculer les Dj,
lorsqu’on connait I'un d’entre eux

D;, = o, D;; avec o), = «,, (¢®, 0) .

Les valeurs propres ¢® qui font converger les suites o), sont

les racines de 1’équation

0 0 0
e~ (E=1)2 6 0 .
O(E, 0) = 0 c— &2 ] . |=0 - (26)
' 0 0 e— (E+1)2 . |
0 0 6 |

La forme des conditions aux limites reste la méme que dans
la deuxieme partie (équations (19) et (21)), elles s’écrivent

o D# (m=0) '

pour l'entrée dans le milieu; D¢ est 'amplitude de ’onde plane
mecidente. A la sortie, on observe des ondes planes diffractées,
I'intensité de I'onde du m-iéme ordre est

e == E o« DE et L (S d) C“IP (21)
avec ’
b2d
L d=1 ———
(Cy ) 2 Vk2% Cz

Pour calculer J,, il faut connaitre les ¢°, puisque les «), et
les D; sont fonctions des ¢ et de 6. Le probléme se réduit donc
a la recherche des racines ¢® du déterminant. Nous examinerons
d’abord le cas ou il est possible d’exprimer analytiquement les
racines cf, en puissances de 0; si on peut le faire, tous les termes
de la somme dans I'expression (21) de J,, ont une forme analytique
en puissances de 6. |
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§ 6. Cas analytique.

On appelle ¢* (&, 6) la racine du déterminant (4) qui tend vers
¢5(&,0) = (&4 s)? lorsque 0 tend vers zéro. On peut développer cette racine en
puissances de 6, on trouve '

) ~ 2 20 (£+ 8)%+ T
CEN=CE+ 1 U TE e e -1
4 [144 (5+5)°+ 88 (§+5)'— 203 (§+5)*—29] oo (27)

[4(5+5)2— 115 [(E+ s)2— 112 [4 (§+ 8)2— 9]

Les premiers termes de ce développement montrent qu’il n’est pas valable
pour (§+s)=4%, 1, §; en général il n’est valable que pour & + »/2. On retrouve
ici I'impossibilité déja signalée de numéroter de la méme maniére les racines des
déterminants symétriques (§=n/2) et sans symétrie (5 + n/2).

Le développement (27) converge pour de petites valeurs de 0, on pourrait
donc faire I’étude analytique de la diffraction dans ce cas, mais les phénoménes
de diffraction ne sont pas intéressants lorsque 0, c¢’est-a-dire 'intensité de ’onde
ultra-sonore, a une petite valeur. La convergence de (27) a cependant lieu méme
pour de grandes valeurs de 6, pourvu que (£-+s) > 6; on pourrait donc étudier
analytiquement la diffraction pour des incidences trés obliques (£3)60), nous
avons vu en effet que la forme des conditions aux limites réduit le nombre des
couches, donc aussi des racines a considérer. Si donc £ est assez grand, les ampli-
tudes de toutes les couches dont il faut tenir compte se déduisent de (25) avec
des racines ¢® pour lesquelles le développement (27) est valable. Mais le cas de
Iincidence trés oblique pour le réseau sinusoidal n’est pas intéressant non plus,
parce que le phénomene de diffraction tend & disparaitre lorsque ’angle d’incidence
augmente: on s’en rend compte en remarquant que lorsque & augmente, la racine
¢® tend vers la valeur (£+ s)% or pour cette valeur le phénomeéne de diffraction
ne se produit plus, en effet dans chaque couche s la seule amplitude non nulle est
Dj, et les conditions & I’entrée (19) donnent Dé= DJ; 0= D;;. Il n’y a donc qu'une
onde dans le milieu stratifié, et qu’une onde & la sortie.

Nous nous servirons du cas analytique pour montrer pourquoi, dans le ré-
seau sinusoidal, on ne trouve pas d’énergie réfléchie sur les plans de ’onde ultra-
sonore lorsque 1’angle d’incidence est un angle de Braga d’ordre élevé, bien que
la construction de la sphére de propagation fasse prévoir une réflexion intense.
La condition pour que ’angle d’incidence soit un angle de Braga est =n/2, il
faut donc étudier les racines du déterminant (26) dans le cas ol il prend une forme
symétrique, et olt le développement (27) n’est plus valable. On peut alors écrire
le déterminant (26) comme produit de deux déterminants

0 (n/2, 0) =09, (n/2, 0) - 5, (n/2,0). (28)

Les déterminants d, et ¢, ont la forme

a 20 0 0 .| ta-1 0 0 0 i

0 a—1 0 0 6 a—4 0 0 ;
0,=| 0 0 a—4 7 ; Op=1 0 6 a-9 0

0 |0

pour n pair, et
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a~(3)2+6 6 0 | a~(3-6 0 0
| 0 a—(3)2 6 . 8 a—(3)2 6 .
= 0 0 a—(3)%.; &= O 0 a—(§).
0 0 6 .0

[ l
i . ‘ 0 7
P F { I

pour # impair.

L’équation §,=0 exprime la convergence de suites D3, «symétriques»
(D= D_,_), tandis que §,=0 est la condition de convergence de suites « anti-
symétriques » (D ,,= — D_,,_,,). Nous désignerons par a°les racines du déterminant
d, et par b° celles du déterminant d,; et nous considérerons ’ensemble des racines
a® et b° (—n/2 < s< o) au lieu des racines ¢ (—ow << §<< 4+ ), ainsi les deux
racines ¢%(&=n/2,0) et c-n-s (§=n/2, 0) qui étaient confondues a la limite 6=0
et pour lesquelles le développement (27) n’était pas valable sont remplacées par
les deux racines af et b5, qu'on peut développer en puissances de 6. D’aprés la
forme des déterminants J, et d;,, on peut dire que les racines les plus petites (voi-
sines de 1; 4; 9... pour n pair) sont distinctes, tandis que les suivantes se rap-
prochent de plus en plus 'une de l’autre, et de fait on trouve que les (#/2+ s)
premiers termes du développement
2 20 (n/24 s)2+ 7

{ 2 S RO . .
(24 8% BT oP=1 0 T 2[4 2+ &) = 1P [(n2+ 8)P=1]

4

[4 144 (1/2+ 5)® + 88 (n/2+ s)*— 203 (n/2+ s)*— 29] poy .

[4 (/2 + )~ 1 [(n/2+ 52— 12 [4 (n/2+ )2 9] =

sont communs aux développements de a® et de 5%, Les racines a® et b® sont done
confondues pourvu que (n/2+ s) soit assez grand, la valeur commune est la limite
de celles que donne le développement (27) pour ¢® et ¢c—n-s lorsque & tend vers n/2.

Nous envisageons I'incidence sous un angle de Braca d’ordre n assez élevé
pour que les couches qui interviennent soient caractérisées par des racines o’ et
b° pour lesquelles le développement (29) soit valable. Dans ce cas les couches
symétriques et antisymétriques de méme indice ont au signe prés les mémes
amplitudes, et la table des amplitudes devient

ordre-n—-1 ordre—n ordre—n+1 ordre-1 ordre 0 ordre+1

- —1 —1 wal —1 -1 —1
couche— 1{ BY B 6 5 4 5 Dﬁ?fﬁl D_? D__71H_1. .. Df} D, ) D+i ;
g—sym. ..-D_, , -D_ -D”_ ... .D7y D, D_;.
0 0 0 0 0 0
S—— Isym. ..... DcT%_1 Do_n Da%ﬂ. .. Da_1 D8 D(_}H ;
| a- sym. .. =02, =D%, D%, ... DL, Dy DY
+1 +1 +1 +1 +1 +1
éouche1 BY I &5 g DT, . DT D_,M_l. .« DTy Dy 1 Di} :
_ _p+l _ p+1 4, +1 +1 1
¢—sym. .. -DT. . -DT -~ DT 4 .- DT, Dy D7y,
Les conditions & Pentrée donnent
2 Di=D0"; 2>\ D=0 (m + 0)
s s

et les équations (21) montrent que I'intensité diffractée dans Pordre — % (réflexion
de BrAGG) et les ordres voisins est nulle quelle que soit 1’épaisseur du milieu dif-
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fractant traversé. Ce résultat n’est pas en contradiction avec la construction de
la sphére de propagation, dans chaque couche I'amplitude de I'ordre —n—m est
aussi grande que celle de I'ordre m, mais 'amplitude des deux couches s est en
phase dans l'ordre + m, en opposition dans Pordre —n—m.

Ce raisonnement est valable pourvu que n soit assez grand; pour de petites
valeurs de n, les premiéres racines interviennent, qui sont deux & deux voisines,
mais non égales, I'intensité diffractée dans l'angle de Brace ne sera plus iden-
tiquement nulle. Il est naturellement possible de développer ces racines en puis-
sances de 6 mais les développements qu'on obtient convergent trés mal, en sorte
qu’on est limité & de petites valeurs de 0.

Ainsi la méthode analytique ne se préte pas au calcul de la diffraction pour
de petites valeurs de &, dés que les ultra-sons ont une intensité notable (6 ~ 1).
Il faut donc recourir & des méthodes numériques pour calculer dans ce cas les
racines ¢® qui permettent la construction de la surface de dispersion.

§ 7. Surface de dispersion pour § — 1.

Nous avons vu que le probléeme de la diffraction se ramenait
entierement au calcul des ¢®; et qu’il n’était pas possible d’en
donner un développement analytique lorsque les ultra-sons ont
une intensité notable (6 ~1). Il faut donc recourir au calcul
numérique. Nous l'avons fait pour une valeur 6 = 1, c’est un
cas typique correspondant a des conditions expérimentales facile-
ment réalisables.

A cause de la symétrie du déterminant, il suffit d’en calculer
les racines pour 0 < & < 4. Pour £ =0 et &= 1, les racines sont
les a® et b définis au § 6, pour 0 < & < 4, ce sont les ¢®. Nous
avons calculé les a® et les b* au moyen de la méthode indiquée
par INcE et perfectionnée par WANNIER!) pour le calcul des nombres
caractéristiques de I’équation de MaTuIEU; pour le calcul des c*,
nous avons généralisé quelque peu cette méthode. Le probléeme
consiste & trouver des nombres ¢* qui fassent converger les suites
D;, définies par les formules de récurrence (3):

0D, o +[c*— (£ +5—1)¥]D,; + 0D, =0
(T) 6Ds—1+[cs_($+8)2}l)s+GDS-H =0
0D, +[c*—(E+s+1))]D,y + 6D, =0
Nous cherchons en particulier un nombre ¢¢ voisin de (& + s)2
Pour cela nous écrivons I’équation (1) sous la forme
Ds—l Ds+1

0= (6 +8)— 0 (.___... g ) — (E+ 82—y —d5a (30)

1) G. H. WANNIER, Beitrag zur numerischen Berechnung der Mathieuschen
Funktionen, & paraitre aux Commentarii Mathematici Helvetici.
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D,y
D,
Il est maintenant possible de calculer &, ; et d,,; au moyen

des équations de récurrence sans faire usage de 1’équation (), on
trouve

Doy

T T
’ +1 Ds

83_1 == 9

ik o2

T Er—1)—e— Err_9E—c—
2 2

6s+1= 0 :

E+r+1)2—c— (E4+r+22—c—

La condition de convergence de la suite des D,, (§ 2) nous
permet ici de négliger les d,, pour m>N; et les ¢, pour m <—N,.
Il en résulte que les deux fractions continues ont pratiquement
un nombre fini de termes.

Pour calculer les nombres ¢?, on en prend une valeur approchée
¢§ (calculée par exemple au moyen du développement (27)), qu’on
porte dans le membre de droite de (11). Si cette valeur est la
valeur exacte ¢®, on la retrouve au membre de gauche. En général
on trouve une valeur ¢'* différente de ¢f, on peut en déduire une
valeur de premiére approximation

ci=¢3 | (31)

C’S_ GS
1 0
! 2 2 2 2 2 2
1+8;;1(1+82;2(1+...(1+8—g§" ))) - 5;:1(1+§f;2(1+ (1 ‘;N)))

On peut prendre cette valeur ¢® pour itérer 1'opération et
1
obtenir des valeurs ¢, ¢5.... Ces valeurs convergent trés rapide-
2 3 g
ment vers une limite qui est la valeur ¢® cherchée.

Les racines calculées par cette méthode sont données par
la table I.
Table L.

§=0 ey =

£=3 e

ot
-

a® |—1,0701 | ¢® |—1,0694 [c® |—1,0675 |¢° |—1,0656 | a® —1,0648
bt |+0,6867 | ¢ 1'+0,6684 |c11+0,6285 |¢c-1|+0,5931 | b° |+0,5795
al | 1,7073 | ¢tt| 1,7654 |ctl) 1,9236 | ctl| 2,1456 | ol | 2,3154
b2 4,1130 | ¢ 2| 3,6756 |c 2| 3,2546 |c2| 2,8851 | b | 2,6677
a® | 4,1625 | ct?| 4,6361 |c¢t2| 5,1685 |ct2| 5,7347 | a® | 6,3325
b3 9,0574 | c%| 83284 |c¢®| 7,6314 |c®| 6,9666 | b2 | 6,3359
a® | 9,0575 | ct3| 9,8184 | ¢t3 | 10,6111 | ¢+3| 11,4356 | a® | 12,2918
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Pour représenter graphiquement ces résultats, on tracera les
courbes ¢® = ¢*(£); la fig. 9 ainsi obtenue est une section de la
surface de dispersion par un plan qui contient l'axe du réseau
réciproque.

Pour montrer que ¢$=¢5(£) est équation d’une telle section, il suffit de
montrer qu’elle est équivalente & 1’équation (17)

0f (£) =2 xo — b3S,

On peut développer la racine
2

s e - 1 b s
0 (5)_'16'\/7{0 lmf kz%o ¢ (5)}

parce que b%/k2{( 1. Si on effectue un changement de variable en posant
0% =k 4/ ny— uf, cette équation devient
) =3 —
piE) =% =
“k '\/’fo
¢® et u® sont done proportionnels 'un & l'autre, et ¢*=¢5(£) est, & un facteur cons-
tant prés, 'équation d'une section de la surface de dispersion.

¢* (&)

Dans la fig. 9 la trace des sphéres auxquelles se réduit la sur-
face de dispersion pour 0 = 0 est indiquée par les traits pointillés.
On voit que la déformation est surtout semsible pour les petites
valeurs de ¢®; ce sont les racines pour lesquelles les développements
(27) ou (29) ne sont pas valables.

Les valeurs c¢® que nous avons obtenues permettent de ré-
soudre tous les problémes pour 6 = 1, nous nous en sommes servi
pour calculer la diffraction d’une onde entrant dans le milieu
stratifié & une incidence presque normale.

Difiraction pour de petits angles d’incidence. Résultats numériques,

Nous avons déja donné les résultats du calcul pour I'incidence
normale!) ; nous avons complété ces résultats au moyen de la théorie
exposée dans les paragraphes précédents, en calculant les inten-
sités oJ,, lorsque I'angle d’incidence o varie dans un petit domaine
autour de la valeur a = 0. Cette généralisation permet en parti-
culier de montrer dans quelle mesure les phénomeénes obgervés
peuvent s’interpréter par la notion de «réflexion de Bragg ».

Nous avons vu que le probléme intérieur était complétement,
déterminé par la valeur de &, c¢’est donc I'angle « seul qui inter-
vient dans les conditions & l'entrée; 'angle B ne figure que dans
Pexpression (22) de L; si g varie seul, la figure de diffraction
qu’on observe pour une valeur f’ avec une épaisseur L est la

1) R. EXTERMANN et G. WANNIER, loc. cit.
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AC

Fig. 9. Surface de dispersion pour 6=1.
Nous avons tracé les courbes ¢8=¢%(£) (avec une échelle quadruple sur 'axe des &).
La figure ainsi obtenue est une image déformée d’une coupe de la surface de dis-
persion ps=uf(b&) par un plan qui contient le réseau réciproque; la déformation
étant une contraction latérale (selon 0&) dans le rapport
VA
2 "
Les courbes en pointillé sont les traces des sphéres auxquelles se réduit la surface
de dispersion pour 6=0. On voit que ce ne sont que les nappes les plus éloignées
du réseau réciproque qui sont sensiblement déformées.

14
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méme que celle qu’on observerait pour une valeur f =0 avec
L,
os i’ °
différentes valeurs de L en fonction de o (ou de &) seul: on dé-
termine d’abord les o, (¢*, 1) au moyen des équations (25), puis
les D! comme solutions du systéme (19), et on peut alors écrire
la table des D], = o, Di; nous avons effectué graphiquement le
calcul des J,, selon les équations (21).

une epaisseur L' = — Il suffit donc de calculer les J,, pour

Nous donnons la table des Dj, pour neuf valeurs différentes
de I'angle d’incidence (Table II); la Table III contient 1'intensité
des ordres centraux de diffraction pour différentes valeurs de
Iangle d’incidence et de ’épaisseur L. On passe des résultats
pour 'angle + o aux résultats pour I'angle — o en intervertissant
les ordres -+ m et —m.

Table II.
Table des D’ pour =1 et pour différentes valeurs de &.
£=0.
-3 -2 -1 0 £ +2 +3
a® | +0,007| +0,068 | +0,335| +0,627 | +0,335 | + 0,068 | 4+ 0,007
p1 _ — _ — _ — —
at | —0,020| —-0,143| - 0,307 | + 0,360 | — 0,307 | — 0,143 | — 0,020
b2 _ _ _ — . — _
a® | +0,016 | +0,075 | — 0,028 | +0,013 | — 0,028 | + 0,075 | +0,016
b —— — - — — — —
a® | —-0,003| + 0,001 — — — | 40,001 —0,003
£=1

g +0,009 | +0,085| +0,381 | +0,614 | + 0,285 | +0,052 | + 0,005
1 1-0,007| —0,0562| —0,140 | +0,038 | +0,115| + 0,031 | + 0,003
et 1 -0,020| -0,128 | - 0,204 | +0,332| —0,377| — 0,144 | — 0,018
2 | +0,021| +0,093 | —0,036| +0,010| — 0,003 | — 0,004 | — 0,001
gra — +0,001 | —0,001 | +0,005 | —0,020 | + 0,064 +0,013
¢ | —0,004| 40,001 — — — e s
gre — — = — — — - 0,002
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f=1
—3 _2 1 0 41 42 +3
o |+0,012] +0,105] +0419 ] +0,579 | +0,235| +0,039 | +0,003
1| 0,016 —0,111 | —0,253 | +0,127 | + 0,181 | +0,042 | +0,004
e —0,021| —0,118 | —0,118 | +0,271 | —0.392 | —0,130 | — 0,015
et | 40,020 +0,123 | — 0,053 | +0,019 | — 0,008 — 0,005 | — 0,001
o | — | —0,001|+0,003| —0,016| +0,054 | +0,010
% | ~0,004] 40,001 — _ _ — _
A8 | — _ _ _ _ |~ 0,002
E=14
_3 _2 1 0 371 +2 +3
O | 4+0,016] +0,124 | +0,445 +0,523 | 40,187 | +0,028 | +0,002
el 0,027 —0,170 | —0,320 | +0,234 | +0,214 | +0,043 | + 0,004
e | 20,028 —0,132 | — 0,037 | 0,196 | — 0,357 | — 0,15 | — 0,011
2 | 0,045 +0,176 | —0,088 | +0,044 | — 0,032 — 0,012 | — 0,001
or _ — | 4£0.002] —0,018| +0,046 | + 0,008
€3 —0,005 +0,001 — _ _ - —
e | — _ - _ _ — | —0,002
E=1
—3 —9 1 0 +1 +2 +3
a0 | +0,020] 0,143 +0.454 | 0,454 | +0,143 | +0,020| +0,001
B0 — 0,041 | —0,220| — 0,341 | +0.341 | +0,229 | +0,041 | -+ 0,004
al | — 0,036 — 0,139 +0,045| +0,045| —0,139 | — 0,036 | — 0,004
Bl | +0,064] +0223 —0,158 | +0,158 | —0,223 | — 0,064 | — 0,007
a2 | +0,016 | — 0,004 | + 0,001 | +0,001 | —0,004| +0,016 | + 0,003
b2 | —0,023| 40,006 —0,001| +0,001 | —0,006 | +0,023 | + 0,004
a3 — PR —— s —_ m—— s—
E=2
_4 -3 | _39 ~1 0 41 +2
1 | +0,002] +0,024| +0,159| +0,445 | +0,379| +0,106 | +0,013
| —0,006] — 0,059 —0,292| —0,320| +0,437 | +0,231 | +0,037
2 | £0,002| 40,020 +0,067 | — 0,037 | +0,007 | +0,025 | +0,005
1 | +0,008| +0,024| +0,064| —0,088 | +0,177 | —0,353 | — 0,090
3 | —0,002| —0,009] +0,002] — _ — _
o+ — _ — — | £0,001 | —0,008] +0,034

¢t | +0,001 — —

211
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2

=i

—4 -3 -2 -1 0 +1 +2
1 | +0,003| +0,028] +0,171] +0,420 | + 0,304 | +0,076 | + 0,000
¢® | —0,009| —0,083| —0,360 | — 0,254 | + 0,504 | +0,220 | + 0,032
2 | +0,006 | +0,054| +0,163 | —0,113 | +0,047 | +0,049 | +0,009
¢l | +0,002| +0,014 | +0,023 | — 0,053 | +0,145 | — 0,338 | — 0,080
¢8| —0,002| —0,013| +0,004| —0,001| — — —
ct? — — — — | 40,001 | — 0,007 | +0,031
A = = = == = e e
=3
-4 -3 -2 -1 0 1 2
et | 40,003] +0,032] +0,177] +0,381 | +0,237 | +0,053 | +0,006
¢® | -0012| -0,114 | — 0,425 - 0,140| +0,517 | +0,190 | +0,025
¢ | +0,011 | +0,088 | +0,232| —0,204 | +0,125| +0,079 | +0,012
¢t | 4+0,002 | +0,014 | +0,009 | —0,036 | +0,121| —0,317 | — 0,070
¢® | —0,004 | —0,020 | +0,006 —0,001| — — —
cte — — — — | +0,001 | - 0,006 | +0,027
¢4 = — — e — — —
=1
—4 -3 ~2 -1 0 +1 +2
et | +0,004] +0,036 | +0,179 | +0,335 | +0,179 +0,036 | + 0,004
b | —0,017| —0,143| — 0,455 — | +0,455| +0,143| +0,017
a® | +0,017| +0,122| +0,262 | — 0,307 | +0,262 | +0,122| +0,017
b | 40,029 +0,140| —0,045| — | +0,045 — 0,140 0,029
atl | —0,033| —0,155| +0,058 | — 0,028 | +0,058  —0,155 —0,033
b2 | —0,012| +0,002| — - — | —0,002 +0,012
at? | +0,012| - 0,003| — — — | =0,003 +0,012
Conelusions.

Nous avons donné dans cet article une théorie tout a fait
générale du probleme de la diffraction de la lumiére par un milieu
périodique dans une dimension et nous 'avons entiérement résolu
pour un réseau sinusoidal, avec une seule condition restrictive:
b%/k? << 1. Nous avons calculé quelques cas typiques montrant
nettement que les caractéristiques de la solution dépendent prin-
cipalement des deux parameétres 6 et L. Le parameétre 0 est une
mesure de l'intensité de I’onde ultra-sonore, il caractérise le phéno-
meéne & l'intérieur du milieu stratifié. La valeur numérique de 6 est
approximativement égale au nombre d’ordres d’intensité notable qui
apparaissent dans la figcure de diffraction pour I'incidence normale
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Table III.
Intensité J,, des ordres centraux pour 6=1 et pour différentes valeurs de &
et de L.

Ezo-l) | Ig_:é. &T‘-?f-

!I_g J-1 JO Jl J_2 J»l !IU eIl J_2 c]_l JU Jl

=~
I

— 0,0380,9230,038] — 0,0380,9220,038] — 0,038 0,921 0,038
0,005 0,135 0,720 0,135 | 0,005 0,135 0,719 0,134.] 0,005 0,137 0,719 0,133
0,020 0,248 0,464 0,248 | 0,022 0,250 0,462 0,244 | 0,022 0,251 0,466 0,241
0,045 0,335 0,238 0,335 | 0,049 0,339 0,238 0,329 | 0,054 0,342 0,242 0,323
0,070 0,377 0,102 0,377 | 0,081 0,383 0,103 0,370 | 0,093 0,387 0,107 0,361
0,081 0,375 0,087 0,375 | 0,102 0,383 0,084 0,364 | 0,125 0,389 0,083 0,353
0,070 0,332 0,196 0,332 | 0,098 0,352 0,181 0,315 | 0,133 0,373 0,157 0,302
0,045 0,260 0,389 0,260 | 0,071 0,305 0,360 0,231 | 0,110 0,359 0,289 0,223
0,022 0,163 0,631 0,163 | 0,036 0,243 0,569 0,133 | 0,065 0,356 0,423 0,147
0,007 0,067 0,853 0,067 | 0,016 0,174 0,752 0,058 | 0,022 0,355 0,506 0,110
0,003 0,006 0,981 0,006 | 0,004 0,109 0,841 0,042 | 0,002 0,341 0,511 0,136

WP HHRHRRO O S
Moo rivcowo R

-

e w e

xa

£ =3

(S

&=
J 2 J——l JO Jl J 2 J—l JO ']1 J___2 z]_l ']0 ']1

T

— 0,0380,9210,038] — 0,0380,9230,038] — 0,038 0,924 0,038
0,006 0,136 0,720 0,133 | 0,006 0,137 0,722 0,130 | 0,006 0,136 0,727 0,128
0,023 0,253 0,469 0,238 | 0,024 0,254 0,474 0,232 0,024 0,253 0,484 0,228
0,058 0,345 0,248 0,317 | 0,061 0,346 0,258 0,306 | 0,063 0,345 0,272 0,295
0,104 0,389 0,113 0,352 | 0,113 0,390 0,124 0,337 | 0,122 0,389 0,139 0,320
0,148 0,394 0,080 0,340 | 0,170 0,395 0,080 0,323 | 0,191 0,394 0,087 0,302
0,171 0,388 0,126 0,290 | 0,213 0,392 0,097 0,275 | 0,255 0,388 0,080 0,255
0,159 0,405 0,199 0,223 | 0,224 0,420 0,121 0,220 | 0,297 0,405 0,072 0,206
0,115 0,457 0,246 0,172 | 0,197 0,497 0,109 0,184 | 0,305 0,457 0,044 0,173
0,058 0,531 0,237 0,163 | 0,140 0,600 0,061 0,179 | 0,277 0,531 0,013 0,155
0,014 0,588 0,182 0,197 | 0,079 0,693 0,014 0,191 | 0,225 0,588 0,025 0,137

w w e e

-

S R I
NOWOWOPRNOWS RN

~

E=1. &= E=1.9)

Gel=a

Jo Jao Jo Iy \Js T Jy | de T Jy Iy

2 -

b
Il

»

[\D[\{)I—L)—il—ll—il—iooco
NMNOOSHENOWS R

— 0,0380,9240,037] — 0,0380,9240,038] — 0,038 0,924 0,038
0,006 0,137 0,728 0,127 } 0,006 0,135 0,730 0,126 | 0,006 0,135 0,733 0,123
0,026 0,251 0,491 0,221 } 0,025 0,250 0,500 0,214 | 0,026 0,248 0,508 0,207
0,065 0,342 0,288 0,284 | 0,067 0,339 0,307 0,271 | 0,067 0,335 0,326 0,255
0,128 0,387 0,159 0,303 | 0,132 0,383 0,183 0,282 | 0,133 0,377 0,213 0,258
0,206 0,389 0,101 0,279 | 0,217 0,383 0,124 0,253 | 0,220 0,375 0,157 0,220
0,290 0,373 0,080 0,232 | 0,315 0,352 0,099 0,202 | 0,323 0,332 0,136 0,164
0,367 0,359 0,063 0,185 | 0,417 0,305 0,121 0,150 | 0,433 0,260 0,136 0,109
0,421 0,356 0,049 0,144 | 0,511 0,243 0,096 0,105 | 0,543 0,163 0,159 0,065
0,443 0,355 0,060 0,112 | 0,580 0,174 0,135 0,069 | 0,634 0,067 0,192 0,036
0,428 0,341 0,123 0,080 | 0,610 0,109 0,199 0,043 | 0,685 0,006 0,213 0,028

-

-

-

.

-

-

-

-

-

1) Incidence normale. ?) Angle de Brage du ler ordre.
%) Angle de Brace du 2° ordre.



214 Richard C. Extermann.

(voir par exemple les figures de diffraction de la premiére partie, loc.
cit. p. 526). Ce fait peut s’expliquer par la construction de la sphére
de propagation (fig. 5a). Si pour chaque couche on trace la spheére
de propagation de rayon k 4/, seules les ondes dont les vecteurs
se termiment sur un point du réseau réciproque placé preés de la
sphére donnent une intensité qui n’est pas négligeable. Mais la
distance a laquelle ces points peuvent se trouver de la sphére
pour donner encore une intensité non négligeable est proportionnelle
a la valeur de 0, ce qui fait que, lorsque 0 augmente, le nombre
des points du réseau réciproque prenant part au phénomeéne
augmente. On voit 1mmédiatement que, lorsque l'angle d’inci-
dence « varie dans de petites limites, le nombre d’ordres reste
inchangé; par contre, en comparant le nombre d’ordres qui ap-
paraissent pour l'incidence normale et pour une incidence tres
différente, mais pour la méme valeur de 6, on voit sans peine
que la figure de diffraction pour le grand angle d’incidence con-
tiendra moins d’ordres. En effet la sphére de propagation coupe
maintenant la ligne du réseau réciproque sous un angle relative-
ment grand, et la distance des points du réseau a la sphére a aug-
menté, ce qui fait que certains points, qui dans 'incidence normale
pouvalent prendre part au phénomeéne, en sont maintenant exclus
parce qu’ils se sont trop éloignés de la sphere de propagation. Le
fait qu'on peut traiter analytiquement le cas de l'incidence treés
oblique (§ 6) est d’ailleurs un indice que la figure de diffraction
ne contient que peu d’ordres.

Le parametre 6 détermine completement la forme de la sur-
face de dispersion. Il est donc possible d’utiliser celle-ci avee
d’autres limites que celles que nous avons introduites. On pourrait
s’en servir en particulier pour calculer les phénomeénes qui se pro-
duisent lorsqu’une onde entre dans le milieu stratifié par une
face parallele aux plans de 'onde ultra-sonore. Cette diffraction
serait ’analogue du procédé de Brace dans la technique des
rayons X, tandis que celle que nous avons étudiée (& laquelle se
rapportent les limites que nous avons choisies) correspond au
procédé de LaAUE.

Le second parametre caractéristique, L, a une signification
moins générale que 0, il n’est défini que lorsque la forme du milien
diffractant est celle que nous avons choisie. C’est une fonction
directe de l'épaisseur d du faisceau ultra-sonore traversé par la
lumieére, et cette épaisseur joue un rdle treés important dans le
calcul de I'intensité diffractée dans les différents ordres. En effet,
chaque ordre dans le milieu est formé par un grand nombre d’ondes
planes qui ont toutes environ la méme longueur d’onde et dont
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Fig. 10. Intensité de la lumiére diffractée dans les ordres —1 et — 2, en fonetion

de §&.
Ces graphiques représentent la variation de I'intensité de l'onde diffractée dans
les ordres —1 et — 2 lorsque l'angle d’incidence varie, le paramétre L étant tenu
constant. L’intensité de 'onde incidente est prise comme unité. Les figures sont
symétriques autour de ’angle de Braga, mais l'intensité de I'ordre réfléchi peut
étre maximum ou minimum pour cet angle, suivant la valeur de L. Pour certaines
valeurs particuliéres de L, on peut avoir une réflexion presque compléte (courbe
Ia, L=5,9, courbe Ib, L=9), pour d’autres valeurs de L l'intensité réfléchie est
nulle (courbe Ila, L=15,2, courbe IIb, L=24,9). Les courbes IIla et IIIb re- .
présentent le carré de la somme des modules des amplitudes des ondes de lordre:
c’est la plus grande intensité qui puisse apparaitre lorsqu’on fait varier L. On
voit que la réflexion compléte n’est possible que pour 'angle de Braca.
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I'interférence produit une sorte de phénoméne de « battements »;
I'intensité de ce phénomene sur la face de sortie détermine I'in-
tensité observée de l'ordre, et elle dépend elle-méme de ’épaisseur
traversée d. L’intensité de la raie centrale est égale & l'intensité
J¢ de 'onde incidente, lorsque 1’épaisseur est nulle, et il existe
d’autres valeurs de I'épaisseur pour lesquelles le phénomeéne de
battements redonne & cet ordre zéro presque toute l'intensité .Je.
I’intensité des ordres latéraux est nulle sur la face d’entrée, elle
varie ensuite pour chaque ordre entre la valeur zéro et un maxi-
mum qui est le carré de la somme des modules des intensités de
cet ordre. Lorsque l'angle d’incidence est un angle de Braca,
ce maximum pour l'ordre «réfléchi» est précisément égal a l'in-
tensité de 'onde incidente (a cause de la symétrie ou de l'anti-
symétrie des D, dans ce cas). Pour certaines valeurs de 1’épaisseur
d, la réflexion de Braca est donc compléte, pour d’autres toutefois
elle peut é&tre nulle (fig. 10). Le phénomeéne se complique encore de
par lexistence des ondes « diffractées » & coté des ondes incidente
et refléchie. Cette décomposition du phénoméne en «réflexion »
et «diffraction » est commode pour montrer la cause de 'asymétrie
des images observées, mais elle est artificielle et ne permet d’ail-
leurs pas un calcul quantitatif. La répartition de 1’énergie dans
les différents ordres est donc fonction de L, mais le nombre des
ordres qui peuvent apparaitre est déterminé uniquement par 0.
On peut encore remarquer que la signification de L est trés simple:
c’est une mesure du nombre de longueurs d’onde ultra-sonores
que traverse le rayon lumineux du premier ordre pour 'incidence
normale.

Toute la théorie que nous avons exposée ne s’applique pas
seulement & la diffraction de la lumiére par des ultra-sons, elle
permet de résoudre tous les problémes de la propagation d’une
onde électro-magnétique dans un milieu & structure périodique
sinusoidale, quelle que soit la grandeur de la perturbation de la
constante diélectrique, pourvu toutefois que b%k%<<1. Nous
reviendrons plus loin sur les conséquences de cette condition
restrictive.

La théorie telle que nous 'avons élaborée permet aussi de
prévoir les caractéristiques générales de la diffraction par un
reseau quelconque. Nous nous sommes borné en effet a l'étude
d’un réseau sinusoidal, parce que ce cas est particuliérement simple,
mais nous allons voir qu'on peut tirer de notre théorie générale
quelques conséquences qualitatives qui s’appliquent & un réseau
dans lequel la périodicité n’est plus simple (réseau en « dents de
scie» p. ex.). Le paramétre unique 6 qui nous avait suffi doit
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¢tre remplacé par ’ensemble des 6,, qui fait intervenir les ampli-
tudes des harmoniques, et alors le nombre d’ordres qui apparaissent
dépend essentiellement de ce nouveau groupe de paramétres. En
particulier ce nombre peut étre grand méme pour des ultra-sons
peu intenses. La distribution de I'intensité dans les ordres dépend
elle aussi de tous ces paramétres et on peut voir par exemple que
la réflexion de Brace se produira de fagon marquée pour les
angles y tels que sin y = nb/k si le coefficient v, dans le développe-
ment de Fourier de l'inverse de la constante diélectrique est
grand (si l'amplitude de l’harmonique % est grande). Il serait
donc théoriquement possible d’analyser la distribution de la ma-
tiere dans le réseau diffractant par 1’étude de l'intensité de la lu-
miere diffractée, c’est la une méthode qui est fort employée au-
jourd’hui pour I'investigation des structures cristallines au moyen
des rayons X. Cependant, comme ici le nombre d’ordres diffractés
qui apparaissent simultanément est trés grand, et qu’en plus
I'influence de 1’épaisseur du faisceau ultra-sonore traversé n’est
pas simple, une telle analyse semble devoir rencontrer des diffi-
cultés imsurmontables. On pourrait toutefois imaginer des cas
trés particuliers dans lesquels cette méthode serait applicable.

La condition restrictive b%k? <<€ 1 nous a permis de montrer
que les deux polarisations donnent des résultats semblables lorsque
tout le phénomeéne est compris dans un domaine angulaire assez
petit pour que le cosinus des angles qui peuvent intervenir soit
assimilable &4 l'unité. Les effets de polarisation sont alors trop
petits pour &tre observables.

Je tiens en terminant & remercier Monsieur le Professeur
J. WEIGLE pour l'intérét constant qu’il a porté a mes recherches,
aprés m’en avoir proposé le sujet et suggéré la méthode.

Ma vive gratitude va a Monsieur G. WANNIER, Docteur és
sciences, en collaboration avec lequel j’ai publié la premiére partie
de ce travail et qui a continué de me faire bénéficier de conseils
précieux.
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