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Réflexion simultanée de Rayons X par deux plans
dans un eristal |

par Jean Weigle et Helmut Mi{ithsam.
(9. IL. 37.)

Introduction.

Dans les spectrogrammes de rayons X, on observe souvent
des lignes blanches se détachant sur le fond continu et donnant
I’'apparence de lignes d’absorption. Ces lignes, que nous appelle-
rons des lignes blanches, sont indépendantes de l'anticathode et
ne varient qu'avec le cristal employé pour la diffraction des
rayons X. Elles sont dues au fait que, pour la longueur d’onde
considérée, deux plans réticulaires peuvent & la fois réfléchir les
rayons X; une partie de I’énergie alors, qui se réfléchissait dans
la direction considérée, se propage maintenant dans une direction
différente.

Les lignes blanches furent observées pour la premiére fois
par E. Waener?). O. BErRG?) a donné une explication du phéno-
mene par les conditions géométriques du cristal et a esquissé une
théorie simple, permettant de prévoir 'intensité des lignes. Bera
s’est limité au cas des cristaux cubiques.

Pour étudier I'intensité des lignes et leur largeur, G. MAYER?)
a employé la théorie dynamique de la dispersion des rayons X,
due & EwaLp?). Il s’est placé dans le cas trés particulier d’une
seule longueur d’onde incidente sur le cristal, alors qu’en général
les lignes se forment sur un fond continu, comprenant tout un
domaine de longueurs d’ondes.

Laug’) a donné récemment une expression plus simple de
la théorie d’Ewarp, décrivant le cristal comme un milieu con-
tinu, & constante diélectrique périodique. Il nous a semblé inté-
ressant de reprendre l'étude des lignes blanches au moyen de la
théorie d’EwarLp-LAUE et de la compléter, vue que certains phéno-

1) B. WaeNER, Phys. Zeitschr. 21, 94 (1923).

2) O. BErG, Wissensch. Verdffentl. a. d. Siemenskonzern, 5, 89 (1926).
) G. MAYER, Zeitschr. f. Kristallogr. 66, 585 (1928).
)
)

]

%) P. P. Ewarp, Handbuch der Physik, 23/2, p. 285.
%) LAvUE, Ergeb. der exakten Naturw., p. 133, 1931.
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meénes trés caractéristiques, comme l'adjonction d’une ligne noire,
bordant la ligne blanche n’avaient pas recu d’explication jusqu’ici.

Ces lignes blanches pourraient servir 4 déterminer avec pré-
cision les constantes de la structure des cristaux. En outre, comme
ces lignes ne dépendent que du cristal, on pourrait, en mesurant
leur largeur, étudier la qualité du réseau cristallin. Jusqu'ie,
on s’est toujours servi pour les mesures de réflexion des cristaux
de lignes spectrales d’émission, dont la largeur propre était in-
connue (spectromeétre & double cristal) et il serait fort avantageux
de posséder une méthode permettant d’éliminer cette largeur
propre. Il est posable que ces lignes blanches nous donnent un
moyen d’arriver & ce but.

- Dans la premiere partie de ce travail préliminaire, nous étu-
dions pour le mica les conditions géométriques de la formation
des lignes blanches et nous vérifions expérimentalement les résul-
tats de nos calculs. Dans la seconde partie, nous appliquons,
dans un cas simple, la théorie d’Ewarp-Lave & la formation des
lignes blanches.

I. Conditions géométriques dans le miea.

La diffraction des rayons X par les cristaux peut étre consi-
dérée comme une réflexion sur les plans réticulaires du cristal
b

qul n’a leu que s1 la relation de Braca : f

24 sin O — 1 (1)

Rayons X

incidents

y . v ~a,
Plans m

Fig. 1.
Réflexion simultanée sur les plans p et m.

est satisfaite. Si, pour un autre plan réticulaire qui forme avec

les rayons X incidents un angle @ et dont la distance est d', la
relation |

2 d sin O = @
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est aussi satisfaite, les rayons X de longueur d’onde 4 se réflé-
chissent simultanément sur ces deux plans. On observe alors
sur-le fond continu du spectre, dit & chacun de ces plans, une
ligne blanche, qui provient du fait que ’énergie a di se partager
entre les deux directions dans lesquelles partent les rayons réfléchis
(voir fig. 1). :
Dans le cas du mica, que nous avons étudié expérimentale-
ment, un plan (200) nous a servi & obtenir le fond continu, 'axe
@y étant horizontal, 1’axe a, horizontal et approximativement

X2
Rayons X incidents
A a
F
|
B i
]
!
I
b 2ed i
hiholhs 5
!
I
1
) AV LS i
I
1
|
|
|
|
3 I

a;

X3 Fig. 2.
Conditions géométriques pour la réflexion simultanée. Les axes a;, a, a, sont
les axes de la maille cristalline, et x, x, z; un systéme d’axes rectangulaires. Les

segments 0A, OB, OC sont-coupés par un plan d’indices (h, ks hsy).

normal & la face du cristal, I’axe a, vertical. L’angle 8 entre a,
et a; est d’environ 84° et les autres dimensions sont:

Ces valeurs connues & quelques pour cent prés varient avec les
échantillons de mica.

En général, chaque plan réticulaire d’indices (h,hyh;) peut
donner lieu & une ligne blanche sur le fond continu de tout autre



142 Jean Weigle et Helmut Miithsam.

plan. Pour déterminer la position de raie blanche, nous repérerons
la direction des rayons X incidents par les angles ¢ et p (fig. 2).
Les angles & et @' que ces rayons forment avec les plans (200)
et (hyhohs) sur lesquels nous supposerons qu’il y a réflexion simul-
tanée sont alors donnés par: |

sin @ = cos ysin @ sin B+ cos w cos @ cos f
' 14 @ vhy

- h . hy . b T
sin @' = d’ [J- Cos  sin @ + —2 sin p + —L _ ah ©08 B
ay 2 a4 t ﬂ

ot d’ est la distance réticulaire des plans (hyhyh,)

COS Y COS @

’ Sin ﬁ

/[ \E, [ hesinB\Z (hy\2 2 Ay :
V) + (B (G e n 8

En éliminant 4 des conditions de réflexion simultanée (1) et (2)
et en introduisant les expressions ci-dessus pour @ et 6, on
obtient I’équation entre v et ¢ qui détermine dans quelle direction
les rayons X doivent tomber sur le cristal pour &tre réfléchis
simultanément par le plan (200) et hyhyhs. A chaque direction
correspond évidemment une longueur d’onde bien déterminée.
Les rayons X réfléchis répondant & ces conditions forment alors
une surface dont l'intersection avec un film photographique donne
une ligne blanche. Dans le spectrographe dont nous nous sommes
servis, I'angle v reste toujours petit et les lignes blanches appa-
raissent sur le film comme des droites. On peut alors mesurer
la longueur d’onde correspondant & y =0 et l'angle ¢ que la
ligne blanche forme avec I'horizontale. Cet angle est donné par:

P d'fp a2 [ d . . hl
tgr=|—-— =_= S @ - q .
g (d(p)w_ T, L (cos @, sin # — sin ¢, cos f) 2 COs @,
B a, hy '
+ sin @, LS s iy COSIS}.
| | a,  tgh
@, est I'angle correspondant &4 y = 0; 1l est donné par
j ay }7/3' i g D, .
hy 14, cos b d h
t = e R BB sin s 1
50 &y tg B ae P ay

La l'ong.ueur d’ondeuﬁ correspondant au point y = 0. 'dg,la hgﬁe
blanche peut étre calculee par l'expression:

2 d (sin @, sin f 4 cos ¢, cos fB) = 4,.
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On remarque que ¢ change de signe si 'on remplace h, par
— hy, tandis que la valeur de @, reste la méme. On observera
donc en général des paires de lignes blanches placées symétrique-
ment par rapport & l'horizontale et se croisant sur celle-ci. A
titre d’exemple, pour une de ces paires de lignes blanches qu
était assez nette pour permettre des mesures suffisamment pré-
cises, les résultats ci-dessus ont pu étre vérifiés, comme le montre
le tableau suivant:

fond continu (200)  ligne blanche (424)

observé * calculé
YR 1,557 A 1,550 A
) 74° 30’ 7790

La différence entre les valeurs calculées et observées pro-
vient du fait que les constantes du cristal n’étaient pas connues
avec précision. |

S1 hy, = 0, 'angle 4 est droit, la ligne blanche est alors verti-
cale. Ce sont ces lignes qu’on a pu obtenir avec le plus de facilité
et qui ont permis de vérifier nos résultats. Par exemple, pour
un fond continu dt au plan (200), seuls les plans (204), 206), (208).
(404), (406), (4010) donnent lieu & des lignes blanches pour des
longueurs d’onde comprises entre 1 A et 2 A. Sur un film, com-
prenant le domaine entre 1,2 A et 1,65 A, on a mesuré les lon-

gueurs d’onde des lignes blanches données dans le tableau ci-
dessous: : '

fond continu 200

plan 404 | 204 | 406 408 | 4010 | 206 | 208

calculé en A | 1,08 | 1,23 | 1,36 | 1,51 | 1,56 | 1,61 ’il,sz
observé . . . — | 1,220 1,365 | 1,505 | 1,559 | 1,604 ‘ —

~ Les longueurs d’onde calculées ne peuvent étre déterminées
avec plus de précision car les constantes de la maille cristalline
ne nous sont connues qu’a plusieurs pour cent pres. Il est vrai
qu’a partir des valeurs observées pour les longueurs d’onde des
lignes blanches, on pourrait retrouver avec plus de précision les
constantes du réseau cristallin. Mais, par le fait que, pour les
lignes verticales, interviennent déja trois constantes, a,, a, et S,
les calculs ne peuvent aboutir 4 des résultats satisfaisants qu’avec
un nombre considérable de lignes mesurées avec précision.
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I1. Largeur et intensité des lignes blanches.
1. Théorie d’Ewald.

D’aprés la théorie géométrique développée dans le paragraphe
précédent, la largeur des lignes blanches devrait devenir infini-
ment petite pour un cristal idéal. Ce que 1'on observe expérimen-
talement est une ligne claire d'une largeur finie, accompagnée
souvent d'une ligne noire adjacente, plus intense que le fond
continu avoisinant.

Il faut avoir recours a la théorie dynamique d’EwaLp sur la
dispersion des rayons X dans un cristal pour pouvoir donner une
description compléte du phénomene.

Pour trouver les directions dans lesquelles les ondes secon-
daires diffusées par les atomes s’ajoutent pour donner des inter-
férences positives, on trace, dans le réseau réciproque, ce qu' EwaLp
appelle la sphére de propagation: & partir d'un point du réseaun
réciproque choisi arbitrairement commne origine, on trace le vec-
teur — & (k= 1/4) de I'onde incidente et, & partir de 'extrémité
de ce vecteur, on décrit une sphére de rayon k. Si d’autres points
du réseau réciproque (4 part l'origine) se trouvent prds de cette
sphére de propagation, les vecteurs d’onde des ondes diffractées
(« réfléchies ») sont donnés approzimativement par les vecteurs k;
joignant le centre de la sphére 4 ces points. Alors que la théorie
élémentaire (de LaUE-Bract) demandait que ces points soient
exactement placés sur la sphére de propagation pour donner: lieu
a des «réflexions», 1l suffit, dans la théorie dynamique, que cés
points soient prés de cette sphére pour que des ondes réfléchies
se propagent dans le cristal.

Dans le cas qui nous occupe ici, 1l y a réflexion simultanément
sur deux plans. -1l y a donc & part 'origine 0 deux points que nous
appellerons M et P du réseau réciproque qui se trouvent pres
de la spheére de propagation.

Nous supposerons, pour simplifier le probléme, que le vecteur
de 'onde incidente est dans le plan défini par les trois points O
M et P. On peut alors, en décomposant les ondes en deux polari-
sations, I'une dans le plan O M P et 'autre perpendiculaire & ce
plan, traiter chacune des polarisations séparément. Comme notre
but, dans cette étude préliminaire, est de montrer les propriétés
principales des lignes blanches, nous introduirons les simplifi-
cations ‘suivantes:

‘a) nous admettrons que les deux plans qui donnent lieux aux
réflexions simultanéss sont placés symétriquement par rap-
port & la direction de l’onde incidente,
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b) nous supposerons' que les facteurs de structure de tous les
plans sont égaux,

¢) nous ne traiterons que l'une des polarisations,

d) nous supposerons que le cristal n’est pas absorbant.

Par contre, nous étudierons la réflexion non seulement pour la
longueur d’onde unique qui, d’aprés la théorie élémentaire, devrait
se réfléchir simultanément sur les deux plans, mais aussl pour
les longueurs d’ondes voisines. Car, en vertu de la théorie d’EwaLb,
des longueurs d’ondes voisines de celle satisfaisant a 1’équation
de Braca se réfléchissent aussi sur les plans considérés. Une
bande méme infiniment petite d’'un spectre continu étalé par un

cristal contient encore une infinité de longueurs d’ondes diffé-
rentes, mais les intensités de ces différentes ondes, maxima pour
une longueur d’onde trés voisine de celle de BRAGG diminuent
trés rapidement lorsqu’on s’éloigne tant soit peu de celle-ci.

2. Trois ondes dans un cristal infini.

A Tintérieur d’un cristal que, pour 'instant, nous supposerons
infini, le champ d’ondes électromagnétiques planes de fréquence
v = kjc sera représenté par

B Lhg " R 3 o
D ____e_ntthDjemzn@(lrj-r) |
7

ou D est le déplacement électrique. Pour satisfaire aux équations
de MAXWELL, autrement dit pour que les ondes soient dynamique-

ment stables, il faut que les D; vérifient les équations de récur-
rence?l)
k2 — k2 -
‘Jk—,z“'— Da = > Y- JDz[;] (3)

et que

=

qui sont les équations fondamentales du probléme. Dl“ repré-

sente la projection de D, sur une direction normale & k; qul est

le vecteur de I'onde dont I'amplitude est D;. Le vecteur b, est un
vecteur du réseau réciproque (tracé entre le point origine 000 et
un point quelconque j,7,7; du réseau réciproque). Les indices
et 9 représentent trois chiffres. Les coefficients v, sont propor-
tionnels aux coefficients du développement en série de Fourier
de la densité électronique du cristal ou si I'on veut ce sont les

1) Lavg, loec. cit.
10
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facteurs de structure des plans d’indices de Mirrer j. Ils sont
de l'ordre de grandeur de 10-5 & 10-S, |

Comme les équations (3) sont linéaires et homogeénes, il existe
une condition de comptabilité entre les coefficients qui permet

de calculer k, et, en vertu de (4) tous les autres k (la direction
de k, étant donnee)

Dans le cas des trois points O M et P, les équations fonda-
mentales deviennent pour la composante de D normale au plan

des trois points (polarisation normale?))
260Dy = poDy + v, Dy + ¢ mDp
2¢,D, = y"pDo + Dy + ¥y mDy

2en D= pu Do+ Yu_pDy+ 9Dy | (5)
ol nous avons posé
; k2 — L2
kj=k(l +¢) et donc T = &
j

car ¢; est comme v; trés petit par rapport a 1.

Il est intéressant de voir s’introduire dans les équations de
récurrence ces facteurs de structure v,,_, de plans d’indices (m—mp)
qui, d’apres les conceptions de la théorie cinématique de la dif-
fraction des rayons X (théorie élémentaire de LAUE) ne devraient
pas Intervenir ‘dans le probléme. Un des défauts de celle-ci pro-
vient du fait qu’elle suppose que seule I’onde incidente incite les
atomes & diffuser les ondes électromagnétiques, alors que les ondes
diffractées ayant une intensité comparable a celle de I'onde inci-
dente doivent, elles aussi, exciter les atomes. A I'intérieur du
cristal, les ondes perdent leur personnalité, si bien qu’il est im-
possible de savoir quelle est I'onde incidente et quelles sont les
ondes diffractées. Chacune des trois ondes peut, si 'on veut,
étre considérée comme incidente, les deux autres résultant de la
premiére. Le passage alors de l'une aux autres fait intervenir
les plans —m, —p, p—m et m —p. On peut aussi exprimer
cela dans le langage de la « réflexion» en disant que l'onde m se
propageant dans le cristal se trouve dans les conditions de Braca
pour se réfléchir sur le plan (p — m) donnant par rétlexion 'onde p
(voir fig. 3).

1) L’autre polarisation, que nous ne traitons pas dans cet article, donne, en
appelant ©,, et @, les angles de BraGa relatifs aux réflexions sur les plans M et P,
2¢,D) =y, D, 4+ vy _,c0820,D, 4y ,00826,D,'
{ 2¢,D,=vy,c08260,D, +vy,D, + vy, ,co82(60,46,)D
2¢,D, =vy,c8260, D +vy, ,c082(60,+6,)D, 4 p,D
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Cet effet pourrait donner lieu 4 un phénomene intéressant.
Supposons par exemple que le facteur de structure v, soit nul
alors que v, et ¢, _, ne le sont pas. Le plan m ne réfléchit donc
pas les rayons X, cependant lorsque les conditions pour la ré-
flexion simultanée sur p et m sont remplies, il peut y avoir une
onde k,, se propageant dans le cristal comme s’il y avait eu ré-
flexion sur m, alors qu’en réalité cette onde provient de la ré-
flexion de I'onde p sur (m — p). On observera donc, dans la région
angulaire correspondant & la réflexion sur m, une ligne noire se
détachant sur un fond blanc. (Le fond contmu étant en effet
absent puisqull n’y a pas réflexion sur le plan m).

Fig. 3.

Réflexion simultanée dans le réseau réciproque.

Les trois ondes de vecteurs ‘Zo iz;, Em se propagent dans un réseau infini. 0, P, M

sont des points du réseau réciproque, L estle point de Laue, la sphére est la sphére

de propagation. Les trois ondes peuvent étre considérées comme dues a des ré-

flexions, Em par exemple comme due a '750 réfléchie sur le plan M ou 2 l-c;, réfléchie
sur M—P.

Nous allons maintenant sﬁbpos\ef .que tous les y sont égaux.
En posant

les équations (5) deviennent:

1—2w)D,+ D, +D;=0 |
D,+ (1—2w,) D,+D,, =0
D,+ D, —!—(]——wam)D -0 J

Pour que ces équations homogenes et hneralres pour les D solent

(6)
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compatibles, il faut que le déterminant des coefficients soit nul,
ce qui donne l'équation

rr
2 W, Wp W, — Wy Wy — WyW,, — Wy W, = O (1)

Nous montrerons plus loin que w,, et w, sont des fonctions linéaires
de w,. Par conséquent, I’équation (7) est du troisitme degré en
w,, elle a donc trois solutions w), w? et w?. Ce qui veut dire qu'une
onde de fréquence » = k/c et de direction donnée peut se décom-
poser en trois ondes dont les vecteurs d’ondes ont les grandeurs

K= k(1 + wh o) |
2=k (1 + wiy) (8)
El=k (1 + ulvy).

Vers chacun des points M et P, on obtient aussi trois ondes asso-
ciées a celles décrites ci-dessus et dont les vecteurs d’ondes sont
donnés par l'équation (4) en remplacant k, par les valeurs (8).

3. Surfaces de Dispersion.

S1 I'onde k, se propage dans le cristal dans une direction
un peu différente de celle considérée précédemment, la spheére
de propagation est déplacée. Mais aussi longtemps que les points
M et P du réseau réciproque restent relativement prés de celle-ci
(ce qui n’a lieu que pour de tres petits déplacements angulaires
de k,), 11 y a encore de I’énergie dans les ondes k,, et k,. Pour
chacune des orientations de k, on a, d’aprés I'équation (7), trois
valeurs ki, k2, k2. Les origines de ces trois vecteurs d’onde dé-
crivent dans l'espace des surfaces dont les intersections avec le
plan MO P sont les courbes de dispersion. Chacune de ces courbes
correspond & l'une des trois solutions de 1’équation (7).

Ces courbes de dispersion déterminent pour une onde de
fréquence et de direction donnée se propageant dans le cristal,
a) la grandeur du vecteur de cette onde, et b) les vecteurs des
ondes dynamiquement associées a celle-ci et nécessaires pour
satisfaire aux équations de MaxweLL. En effet, 4 'onde k) (vec-
teur ayant son origine sur une des courbes de dispersion et son
extrémité sur un des points du réseau réciproques) sont nécessaire-
ment associées les ondes dont les vecteurs sont

B, =T +b, et K=k +b,

Comme nous ’avons dit, seul un domaine angulaire extréme-
ment restreint intervient et, pour tracer les courbes de dispersion,
nous agrandirons 1’échelle autour du centre de la sphére de propa-
gation environ un million de fois.
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Choisissons tout d’abord une fréquence telle que la spheére
de propagation passe exactement par les trois points MO P. Soit
N cette fréquence, le rayon de la sphére est alors K = N/c. Nous
appellerons point de Laue L le centre de la spheére. Pour pouvoir
tracer les courbes de dispersion données par (7), il est nécessaire

Fig. 4.
La figure du haut montre les deux sphéres de propagation de rayons K (point de
Laue L) et k (point de Laue @). La figure inférieure redonne ce qui se passe autour
du point L avec une échelle agrandie un million de fois environ. Les sphéres tracées
autour des points O P M (absentes dans la figure supérieure) dégénérent dans
leurs plans tangents. La quantité u sert a déterminer la fréquence de 'onde k
par rapport & celle de K, @ est 'angle de BrRaGG. Le point 4 est supposé placé
sur une combe de dispersion, son abscisse z est mesurée & partir du point Q.

de connaitre w,, et w, en fonction de w, et de l'orientation de

k, dans le cristal. Le calcul nous est facilité par le fait que les
¢; comme les p, sont petits et qu’a ’échelle considérée les sphéres
tracées a partir des points OM P autour de L dégénérent en leurs
plans tangents (voir fig. 4).
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Nous désirons connaitre les courbes de dispersion non seule-
ment pour 'onde de fréquence N, mais aussi pour des ondes de
fréquences voisines de celle-ci. En effet, de méme qu’une onde
de fréquence donnée peut étre « réfléchie » par un plan réticulaire
dans tout un petit domaine angulaire, les ondes de tout un petit
domaine de fréquence seront «réfléchies» simultanément par les
deux plans M et P.

L’onde de vecteur k = v/c (v {réquence considérée) donnera,
pour la « réflexion » sur le plan P, un nouveau point de LAUE ¢
(& égale distance (k) de O et P). Si 'on appelle u/k (voir fig. 4)
Pangle qu’il faut ajouter 4 I’angle de Braca @ (pour la fréquence N)
pour avoir le nouvel angle de Brace pour la fréquence », on
voit facilement que

k=K (1+; cte 0).

D’autre part, soit 4 un point de la courbe de dispersion pour la
fréquence ». La distance de A4 aux sphéres de rayon k tracées
a partir des points MOP vaut respectivement kyw,, kyw,,
kEyw,. On voit alors que

w, = W, cos 26 —x'sin2 O
W= W, c08 260 + ' sin 260 — u ] )
NN ey § 2sn 2 @ J

Ey # ky 1 —cos20

et en remplacant dans (7) on trouve

2wl cos 20 —w,cos2O(cos26+2+2u)
+w,[2 2 sin2 O(p — 2 sin26)+ u (1+cos 2 )] (10)
+2'sin260(zx'sin260 —u')=0.

Cette équation nous permet de calculer w, en fonction de
x, ¢’est-a-dire en fonction de 'orientation de l'onde dans le cristal
pour une valeur de u donnée, ou autrement dit pour chaque
longueur d’onde. Pour résoudre 1’équation (10), nous avons pro-
cédé graphiquement en tracant les courbes de dispersion. Ces
courbes sont données dans la figure (5) pour différentes valeurs
de x. Il y a trois branches correspondant & chacune des racines
de I’équation du troisieme degré (10). Ces branches s’approchent
asymptotiquement des spheres de rayon k(1 +4vy) ayant leurs
centres aux poimnts MOP. On voit en effet dans les équations
fondamentales que lorsque les points M et P par exemple sont
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éloignés de la sphére de propagation, seule l'intensité de 1’onde
O n’est pas négligeable et que, par conséquent, les équations se
réduisent &

€, Y
1 — — o e
( — 2 ) 0 ou &=

Fig. 5.

Les courbes sont tracées pour un angle de Bragg de ©® = 13° 26”. Les asymptotes

sont des cercles de rayon k + 1 v ayant comme centres les points O, P et M.

Les droites en pointillé sont des cercles concentriques de rayon k. L est le point

de Laue pour la double réflexion, () les points de Laue relatifs aux autres fré-

quences. Sur la premiére et la derniére courbe, nous avons indiqué, en trait poin-

tillé, la courbe de dispersion qu’on aurait obtenue en I'absence de 'autre plan
réflecteur.

4. Cristal fini. Conditions aux limaites.

Nous désirons connaitre maintenant l'intensité des ondes sor-
tant du cristal aprés avoir été diffractées par celui-ci, I'intensité
de I'onde incidente étant donnée. Nous supposerons que le cristal
a la forme d’une plaque & faces paralléles.

La premiére condition aux limites & réaliser concerne les
vitesses de propagation. On sait que lorsqu’une onde passe d'un
milieu dans un autre, les composantes tangentielles des vitesses
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iian‘s les deux milieux doivent étre égales. Si une onde de vecteur
k tombe sur le cristal, les vecteurs k}, k2, k3 (en spécifiant main-
tenant que l'indice 0 se référe & l'onde incidente) correspondant
aux trois solutions de I’équation (10), doivent avoir méme com-
posante tangentielle que k. Si done, & partir du point 0 du réseau
réciproque, on trace le vecteur —k et que, par l'extrémité de
ce vecteur, on fasse passer une normale a la surface du cristal,
les vecteurs k, devront nécessairement avoir leur origine sur cette
droite. Nous savons d’autre part qu’ils doivent avoir leur origine
sur les surfaces de dispersion, par conséquent les origines seront
déterminées par les intersections de la normale avec les surfaces
de dispersion. L’onde incidente & l'intérieur du cristal se divisera
donc en trois ondes k! k2 K} de directions et de longueurs d’ondes
différentes et chacune des ondes «réfléchies» sera de méme cons-
tituée par trois ondes 73},, Tc?,‘, EZ et kL, B2, k2.

En réalité, un des trois groupes k! I:p ko (1=1,2,8) forme
une solution dynamiquement stable des équations de MAXWELL.
La nécessité de l'existence des trois groupes simultanément pro-
vient des conditions aux lhmites qu’on ne peut satisfaire avec
trois ondes seulement.

Comme la constante diélectrique du cristal est trés peu diffé-
rente de I'unité, on pourra confondre D et E et ne pas tenir compte,
dans l'expression, des conditions aux limites du changement de
direction des ondes & l’entrée ou a la sortie du cristal.

Les conditions aux limites s’écrivent alors a la surface d’entrée

D} +D; +D? =D,
D) +D}+D;=o0 (11)
D, +D}+D} =0

en se rappelant que les indices supérieurs se réferent aux trois

racines de ’équation (10). Df est I'amplitude de I'onde incidente
a l'extérieur du cristal.
D’autre part, les équations (6) nous donnent, pour chaque

valeur de w,w, et w, les rendant compatibles, les valeurs de
D,/D, et D,/D,. On obtient en effet:

D, w w D w
= % 2 - =8, (12
D, 2 W Wy — Wy — Wy w, * D, Wy £ (12

Les valeurs de w,w, et w,, pour chaque direction de l'onde inci-
dente peuvent étre mesurées sur les courbes de dispersion de la
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figure (5). En effet, les points d’intersection de la normale & la
face du cristal avec les courbes de dispersion se trouvent & une
distance kyw}, kyw,,, kyw), etc. des sphéres de rayon k ayant
pour centres les points MO P. !

Les équations (11) deviennent:

D,+ D;+D; =D;
B1D; + B2 D + B D) = o

d’ou l'on tire directement:

Dé _ %Py — %3Py (13)
D; %y By — %3 By + oy By — %o fy + X3 By — 1 B

et des expressions semblables pour DZ/D; et D?/D;. Les relations
(12) nous permettent aussi de calculer facilement les amplitudes
‘relatives des ondes diffractées,

Les trois ondes dénotées par les indices supérieurs 1,2, 3 ont
des vitesses de propagation trés semblables et elles se propagent
dans des directions trés peu différentes les unes des autres. A I'in-
térieur du cristal, elles donneront donc lieu & un phénomene de
battement (quasi-périodique en général). A la face de sortie du
cristal, 'amplitude de l'onde sortante sera donnée par la somme
des trois amplitudes des ondes 1, 2, 3. On voit que, suivant 1’épais-
seur du cristal, cette amplitude sera variable. Cependant, comme,
expérimentalement, les ondes incidentes ne sont jamais réellement
planes, ce phénomene n’a pas été observé. Pour calculer I'in-
tensité des ondes sortantes, nous prendrons donc la moyenne de
I'intensité en fonction de I’épaisseur du cristal, ou, ce qui revient
au méme, nous ajouterons simplement les intensités (au lieu des

amplitudes .

mplitudes) oiis - phag
I — (D et 2 et 28 14
= (o) (3r) + (5r) s

Dans les figures 6, nous avons tracé l'intensité relative des
ondes réfléchies sur le plan P en fonction de 'angle de réflexion,
et cela pour différentes longueurs d’ondes (dénotées par u). On
remarquera tout d’abord que le maximum de l'intensité se déplace
régulitrement avec la longueur d’onde. La réflexion simultanée
sur M a pour effet principal de soustraire de 1’énergie a la réflexion
sur P, ce qu’on voit nettement pour u = — 0,05 et dans la figure
du haut, dans laquelle on a tracé & la fois la courbe de réflexion
en 'absence de réflexion sur M et la courbe avec réflexion sur M

M
*



154 Jean Weigle et Helmut Mihsam.

se produit, qui ne se déplace pas lorsque la longueur d’onde change.
Ce maximum provient de 1’énergie « rendue» par le plan M. La
réflexion sur le plan P est done a la feis diminuée et étalée par
la présence de la réflexion sur M. A mesure que la longueur
d’onde envisagée s’éloigne de la longueur d’onde caractéristique
pour la réflexion simultanée (x = 0), on voit que la courbe de
réflexion redevient semblable & ce qu’elle aurait été en l'absence
de réflexion sur M.

7009/,
90 Intensite
80
70
60
—50
t —40

—30
—20
= 70

Fig. 6.
Répartition de l'intensité dans la direction de diffraction.

La ligne blanche est formée, dans le fond continu, par la superposition des distri-

butions d’énergie ci-dessus. Cette distribution est donnée en fonction de I'angle

de réflexion x. Nous 'avons tracée pour différentes fréquences, données par u,

dans le cas des courbes de dispersion de la figure 5. La normale a la surface du

cristal a été choisie de fagon & former avec les rayons X incidents un angle de
26° 35" et avec les rayons X diffractés un angle de 63° 56".

La figure du haut donne la répartition de 'intensité pour une réflexion simple des
rayons X, comparée a celle pour u = O (ligne pointillée).
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5. Largeur et intensité de la ligne blanche.

Comme nous l'avons dit précédemment, les lignes blanches
se forment dans le spectre continu. Pour avoir une mesure de
leur largeur et de leur intensité, il faut comparer, pour les lon-
gueurs d’ondes considérées, 1’énergie arrivant réellement en un
point du fond continu avec celle qui serait arrivée si la réflexion
simultanée n’avait pas eu lien. Pour chaque longueur d’onde,
nous pouvons tracer (grice & des figures semblables & celles du
haut de la fig. 6) la différence entre I'intensité en présence de la
réflexion simultanée et en son absence. On trouve alors que,
d’un cdté I'énergie est fortement diminuée, elle a été enlevée par
la réflexion sur 'autre plan, tandis que de l'autre elle est plus
orande qu’elle ne laurait été par «simple» réflexion.

AN

o~

Fig. 7.
Forme de la ligne blanche L = position de la ligne blanche dans la théorie
élémentaire.

Pour obtenir l'intensité de la ligne blanche dans le spectre
continu, il faudrait prendre 'intégrale pour chaque angle de sortie
de toutes les intensités des différentes longueurs d’onde arrivant
suivant l'angle considéré. Le caleul graphique que nous avons
employé ne nous a pas permis d’effectuer cette intégration. Par
contre, la forme de la ligne blanche et sa largeur peuvent étre
obtenues en additionnant pour chaque angle de sortie les diffé-
rences positives ou négatives entre les courbes d’intensité dues a
une réflexion simple et celles dues & une réflexion simultanée.
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Dans la fig. 7, on voit la forme de la ligne blanche obtenue
par ce procédé. Cette ligne est asymétrique et son maximum
d’intensité ne coincide pas avec la longueur d’onde donnée par
la théorie élémentaire. D’autre part, la ligne blanche est bordee
d’une ligne noire adjacente, recevant donc plus d’énergie que le
spectre continu avoismant (plus d’énergie que s1l y avait eu
réflexion simple et non simultanée). Nous avons pu vérifier théo-
riquement que la position et l'intensité de cette ligne noire dé-
pendent des conditions géométriques de la réflexion. (’est bien
la ce que nous avons observé expérimentalement d’une fagon
qualitative. Remarquons encore que la largeur de la ligne blanche
est du méme ordre de grandeur que la largeur de réflexion simple
d’une seule longueur d’onde.

Des mesures expérimentales plus précises sont en cours pour
vérifier quantitativement les résultats théoriques de cette étude.

Université de Geneve, Laboratoire de Physique.
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