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Réflexion simultanée de Rayons X par deux plans
dans un cristal

par Jean Weigle et Helmut Mühsam.
(9. IL 37.)

Introduction.

Dans les spectrogrammes de rayons X, on observe souvent
des lignes blanches se détachant sur le fond continu et donnant
l'apparence de lignes d'absorption. Ces lignes, que nous appellerons

des lignes blanches, sont indépendantes de l'anticathode et
ne varient qu'avec le cristal employé pour la diffraction des

rayons X. Elles sont dues au fait que, pour la longueur d'onde
considérée, deux plans réticulaires peuvent à la fois réfléchir les

rayons X; une partie de l'énergie alors, qui se réfléchissait dans
la direction considérée, se propage maintenant dans une direction
différente.

Les lignes blanches furent observées pour la première fois
par E. Wagner1). O. Berg2) a donné une explication du phénomène

par les conditions géométriques du cristal et a esquissé une
théorie simple, permettant de prévoir l'intensité des lignes. Berg
s'est limité au cas des cristaux cubiques.

Pour étudier l'intensité des lignes et leur largeur, G. Mayer3)
a employé la théorie dynamique de la dispersion des rayons X,
due à Ewald4). Il s'est placé dans le cas très particulier d'une
seule longueur d'onde incidente sur le cristal, alors qu'en général
les lignes se forment sur un fond continu, comprenant tout un
domaine de longueurs d'ondes.

Laue5) a donné récemment une expression plus simple de
la théorie d'EwALD, décrivant le cristal comme un milieu
continu, à constante diélectrique périodique. Il nous a semblé
intéressant de reprendre l'étude des lignes blanches au moyen de la
théorie d'EwALD-LAUE et de la compléter, vue que certains phéno-

*) E. Wagner, Phys. Zeitschr. 21, 94 (1923).
2) O. Berg, Wissensch. Veröffentl. a. d. Siemenskonzern, 5, 89 (1926).
3) G. Mayer, Zeitschr. f. Kristallogr. 66, 585 (1928).
4) P. P. Ewald, Handbuch der Physik, 23/2, p. 285.
5) Laue, Ergeb. der exakten Naturw., p. 133, 1931.
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mènes très caractéristiques, comme l'adjonction d'une ligne noire,
bordant la ligne blanche n'avaient pas reçu d'explication jusqu'ici.

Ces lignes blanches pourraient servir à déterminer avec
précision les constantes de la structure des cristaux. En outre, comme
ces lignes ne dépendent que du cristal, on pourrait, en mesurant
leur largeur, étudier la qualité du réseau cristallin. Jusqu'ici,
on s'est toujours servi pour les mesures de réflexion des cristaux
de lignes spectrales d'émission, dont la largeur propre était
inconnue (spectromètre à double cristal) et il serait fort avantageux
de posséder une méthode permettant d'éliminer cette largeur
propre. Il est possible, que ces lignes blanches nous donnent un
moyen d'arriver à ce but.

Dans la première partie de ce travail préliminaire, nous
étudions pour le mica les conditions géométriques de la formation
des lignes blanches et nous vérifions expérimentalement les résultats

de nos calculs. Dans la seconde partie, nous appliquons,
dans un cas simple, la théorie d'EwALD-LAUE à la formation des

lignes blanches.

I. Conditions «jéométriques dans le mica.

La diffraction des rayons X par les cristaux peut être considérée

comme une réflexion sur les plans réticulaires du cristal,
qui n'a lieu que si la relation de Bragg

2 d sin 0 k (1)

Rayons X
incidents

Plans p

Plans m

Fig. 1.

Réflexion simultanée sur les plans p et m.

X
est satisfaite. Si, pour un autre plan réticulaire qui forme avec
les rayons X incidents un angle 0' et dont la distance est d', la
relation

2 d' sin 0' k (2)
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est aussi satisfaite, les rayons X de longueur d'onde k se
réfléchissent simultanément sur ces deux plans. On observe alors
sur le fond continu du spectre, dû à chacun de ces plans, une
ligne blanche, qui provient du fait que l'énergie a dû se partager
entre les deux directions dans lesquelles partent les rayons réfléchis
(voir fig. 1).

Dans le cas du mica, que nous avons étudié expérimentalement,

un plan (200) nous a servi à obtenir le fond continu, l'axe
qx étant horizontal, l'axe a3 horizontal et approximativement

Rayons X incidents
a«!

h,h

f a

if

Eig. 2.

Conditions géométriques pour la réflexion simultanée. Les axes ax a2 a3 sont
les axes de la maille cristalline, et xx x2 x3 un système d'axes rectangulaires. Les

segments OA, OB, OC sont coupés par un plan d'indices (hxh2h3).

normal à la face du cristal, l'axe a2 vertical. L'angle ß entre ax
et a3 est d'environ 84° et les autres dimensions sont:

a, 20 A.5,2 A a9 9 A
Ces valeurs connues à quelques pour cent près varient avec les
échantillons de mica.

En général, chaque plan réticulaire d'indices (hxh2h3) peut
donner lieu à une ligne blanche sur le fond continu de tout autre
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plan. Pour déterminer la position de raie blanche, nous repérerons
la direction des rayons X incidents par les angles cp et xp (fig. 2).
Les angles 0 et 0' que ces rayons forment avec les plans (200)
et (hxh2h3) sur lesquels nous supposerons qu'il y a réflexion simultanée

sont alors donnés par:
sin 0 cos xp sin cp sin ß + cos xp cos cp cos ß

sin 0' d' K
cos xp sm «

hi,
sm xp +

hx
1 + c+K

a3hx cos ß

\ß cos xp cos cp

où d' est la distance réticulaire des plans (hxh2h3

d'
sin ß

m -m 2 2 hx h3
COS ß

En éliminant A des conditions de réflexion simultanée (1) et (2)
et en introduisant les expressions ci-dessus pour 0 et 0', on
obtient l'équation entre xp et cp qui détermine dans quelle direction
les rayons X doivent tomber sur le cristal pour être réfléchis
simultanément par le plan (200) et hxh2h3. A chaque direction
correspond évidemment une longueur d'onde bien déterminée.

Les rayons X réfléchis répondant à ces conditions forment alors
une surface dont l'intersection avec un film photographique donne
une ligne blanche. Dans le spectrographe dont nous nous sommes
servis, l'angle xp reste toujours petit et les lignes blanches
apparaissent sur le film comme des droites. On peut alors mesurer
la longueur d'onde correspondant à xp 0 et l'angle i que la
ligne blanche forme avec l'horizontale. Cet angle est donné par:

tgi
dxp

dcp

«2

K
d hx

-o-r-- (cos ep0 sin ß — sm ep0 cos ß) — — cos ep0
(X Cl-\

sm cp0

_, a, h,
l, 1 + -
"¦l a3 hx cos i

«i tg/3

cp0 est l'angle correspondant à xp 0; il est donné par
_. a1h3 /

K a3hlCo$ß d hx

ax tg p / d i ax

La longueur d'onde kn correspondant au point xp 0 de la ligne
blanche(peut être calculée par l'expression:

2 d (sin cp0 sin ß + cos ep0 cos ß) k0. • :,
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On remarque que i change de signe si l'on remplace h2 par
— h2, tandis que la valeur de cp0 reste la même. On observera
donc en général des paires de lignes blanches placées symétriquement

par rapport à l'horizontale et se croisant sur celle-ci. A
titre d'exemple, pour une de ces paires de lignes blanches qui
était assez nette pour permettre des mesures suffisamment
précises, les résultats ci-dessus ont pu être vérifiés, comme le montre
le tableau suivant:

fond continu (200) ligne blanche (424)

observé calculé

i
1,557 À
74» 30'

1,550 À
77»

La différence entre les valeurs calculées et observées
provient du fait que les constantes du cristal n'étaient pas connues
avec précision.

Si h2 0, l'angle i est droit, la ligne blanche est alors verticale.

Ce sont ces lignes qu'on a pu obtenir avec le plus de facilité
et qui ont permis de vérifier nos résultats. Par exemple, pour
un fond continu dû au plan (200), seuls les plans (204), 206), (208).
(404), (406), (4010) donnent lieu à des lignes blanches pour des

longueurs d'onde comprises entre 1 Â et 2 Â. Sur un film,
comprenant le domaine entre 1,2 À et 1,65 A, on a mesuré les

longueurs d'onde des lignes blanches données dans le tableau ci-
dessous :

fond continu 200

plan 404 204 406 408 4010 206 208

calculé en Â
observé

1,08 1,23

1,220

1,36

1,365

1,51

1,505
1,56

1,559
1,61

1,604
1,82

Les longueurs d'onde calculées ne peuvent être déterminées
avec plus de précision car les constantes de la maille cristalline
ne nous sont connues qu'à plusieurs pour cent près. Il est vrai
qu'à partir des valeurs observées pour les longueurs d'onde des

lignes blanches, on pourrait retrouver avec plus de précision les
constantes du réseau cristallin. Mais, par le fait que, pour les
lignes verticales, interviennent déjà trois constantes, ax, a2 et ß,
les calculs ne peuvent aboutir à des résultats satisfaisants qu'avec
un nombre considérable de lignes mesurées avec précision.
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II. Largeur et intensité des lignes blanches.

1. Théorie d'Ewald.

D'après la théorie géométrique développée dans le paragraphe
précédent, la largeur des lignes blanches devrait devenir infiniment

petite pour un cristal idéal. Ce que l'on observe expérimentalement

est une ligne claire d'une largeur finie, accompagnée
souvent d'une ligne noire adjacente, plus intense que le fond
continu avoisinant.

Il faut avoir recours à la théorie dynamique d'EwALD sur la
dispersion des rayons X dans un cristal pour pouvoir donner une
description complète du phénomène.

Pour trouver les directions dans lesquelles les ondes secondaires

diffusées par les atomes s'ajoutent pour donner des
interférences positives, on trace, dans le réseau réciproque, ce qu'EwALD
appelle la sphère de propagation: à partir d'un point du réseau
réciproque choisi arbitrairement comme origine, on trace le vecteur

— k (k ljk) de l'onde incidente et, à partir de l'extrémité
de ce vecteur, on décrit une sphère de rayon k. Si d'autres points
du réseau réciproque (à part l'origine) se trouvent près de cette
sphère de propagation, les vecteurs d'onde des ondes diffractées
(« réfléchies ») sont donnés approximativement par les vecteurs kf
joignant le centre de la sphère à ces points. Alors que la théorie
élémentaire (de Laue-Bragg) demandait que ces points soient
exactement placés sur la sphère de propagation pour donner lieu
à des « réflexions », il suffit, dans la théorie dynamique, que ces

points soient près de cette sphère pour que des ondes réfléchies
se propagent dans le cristal.

Dans le cas qui nous occupe ici, il y a réflexion simultanément
sur deux plans. Il y a donc à part l'origine 0 deux points que nous
appellerons M et P du réseau réciproque qui se trouvent près
de la sphère de propagation.

Nous supposerons, pour simplifier le problème, que le vecteur
de l'onde incidente est dans le plan défini par les trois points O

M et P. On peut alors, en décomposant les ondes en deux
polarisations, l'une dans le plan OMP et l'autre perpendiculaire à ce
plan, traiter chacune des polarisations séparément. Comme notre
but, dans cette étude préliminaire, est de montrer les propriétés
principales des lignes blanches, nous introduirons les simplifications

suivantes :

a) nous admettrons que les deux plans qui donnent lieux aux
réflexions simultanées sont placés symétriquement par
rapport à la direction de l'onde incidente,



Réflexion simultanée de Rayons X. 145

b) nous supposerons que les facteurs de structure de tous les

plans sont égaux,
c) nous ne traiterons que l'une des polarisations,
d) nous supposerons que le cristal n'est pas absorbant.

Par contre, nous étudierons la réflexion non seulement pour la
longueur d'onde unique qui, d'après la théorie élémentaire, devrait
se réfléchir simultanément sur les deux plans, mais aussi pour
les longueurs d'ondes voisines. Car, en vertu de la théorie d'EwALD,
des longueurs d'ondes voisines de celle satisfaisant à l'équation
de Bragg se réfléchissent aussi sur les plans considérés. Une
bande même infiniment petite d'un spectre continu étalé par un
cristal contient encore une infinité de longueurs d'ondes
différentes, mais les intensités de ces différentes ondes, maxima pour
une longueur d'onde très voisine de celle de Bragg, diminuent
très rapidement lorsqu'on s'éloigne tant soit peu de celle-ci.

2. Trois ondes dans un cristal infini.

A l'intérieur d'un cristal que, pour l'instant, nous supposerons
infini, le champ d'ondes électromagnétiques planes d« fréquence
v kfc sera représenté par

D /,i"EV"(ï,"')i
où D est le déplacement électrique. Pour satisfaire aux équations
de Maxwell, autrement dit pour que les ondes soient dynamiquement

stables, il faut que les D3 vérifient les équations de
récurrence1)

1^J^bi yjxpl^Dm (3)
Ki I

et que

h — K h (4)

qui sont les équations fondamentales du problème. Dtyi représente

la projection de Dt sur une direction normale à kj qui est
le vecteur de l'onde dont l'amplitude est D}. Le vecteur bj est un
vecteur du réseau réciproque (tracé entre le point origine 000 et
un point quelconque jxj2j3 du réseau réciproque). Les indices
i et j représentent trois chiffres. Les coefficients \ps sont
proportionnels aux coefficients du développement en série de Fourier
de la densité électronique du cristal ou si l'on veut ce sont les

Laue, loc. cit.
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facteurs de structure des plans d'indices de Miller j. Ils sont
de l'ordre de grandeur de 10~5 à 10~6.

Comme les équations (3) sont linéaires et homogènes, il existe
une condition de comptabilité entre les coefficients qui permet
de calculer k0 et, en vertu de (4) tous les autres fc,- (la direction
de k0 étant donnée).

Dans le cas des trois points 0 M et P, les équations
fondamentales deviennent pour la composante de D normale au plan
des trois points (polarisation normale1))

2 e0D0 ipnDn + yi-pDj, + xp_mDm

2 evDv xppD0 + xp0Dv + xpv_mDm

2emDm= xpmD0+ xpm_liDJt+ xp0Dm (5)

où nous avons posé
/j.2 /ç2

kj k (1 + e,-) et donc —^-p 2 e,-

kj

car Bj est comme y>} très petit par rapport à 1.

Il est intéressant de voir s'introduire dans les équations de
récurrence ces facteurs de structure \pm-v de plans d'indices (m—p)
qui, d'après les conceptions de la théorie cinématique de la
diffraction des rayons X (théorie élémentaire de Laue) ne devraient
pas intervenir dans le problème. Un des défauts de celle-ci
provient du fait qu'elle suppose que seule l'onde incidente incite les
atomes à diffuser les ondes électromagnétiques, alors que les ondes
diffractées ayant une intensité comparable à celle de l'onde
incidente doivent, elles aussi, exciter les atomes. A l'intérieur du
cristal, les ondes perdent leur personnalité, si bien qu'il est
impossible de savoir quelle est l'onde incidente et quelles sont les
ondes diffractées. Chacune des trois ondes peut, si l'on veut,
être considérée comme incidente, les deux autres résultant de la
première. Le passage alors de l'une aux autres fait intervenir
les plans — m, — p, p — m et m — p. On peut aussi exprimer
cela dans le langage de la « réflexion » en disant que l'onde m se

propageant dans le cristal se trouve dans les conditions de Bragg
pour se réfléchir sur le plan (p — m) donnant par réflexion l'onde p
(voir fig. 3).

1) L'autre polarisation, que nous ne traitons pas dans cet article, donne, en
appelant &m et &v les angles de Bragg relatifs aux réflexions sur les plans M et P,

2 ZoDo VoDo + W-v cos 2 ®vDv + V-m cos 2 ®mDm
2 e„iy ¥>„ cos 2 ®„ö0' + xo0Dp' + y>p_m cos 2 (©„ + @J Dm'
2 emDm Vm cos 2 ®mDù + Vm-v cos 2 (®î> + &m) Dv + WoDm'-
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Cet effet pourrait donner lieu à un phénomène intéressant.
Supposons par exemple que le facteur de structure xpm soit nul
alors que xpp et ym„„ ne le sont pas. Le plan m ne réfléchit donc
pas les rayons X, cependant lorsque les conditions pour la
réflexion simultanée sur p et m sont remplies, il peut y avoir une
onde k„, se propageant dans le cristal comme s'il y avait eu
réflexion sur m, alors qu'en réalité cette onde provient de la
réflexion de l'onde p sur (m — p). On observera donc, dans la région
angulaire correspondant à la réflexion sur m, une ligne noire se
détachant sur un fond blanc. (Le fond continu étant en effet
absent puisqu'il n'y a pas réflexion sur le plan m).

n?,V,

M

Fig. 3.

Réflexion simultanée dans le réseau réciproque.
Les trois ondes de vecteurs k0 kp km se propagent dans un réseau infini. O, P, M
sont des points du réseau réciproque, L est le point de Laue, la sphère est la sphère
de propagation. Les trois ondes peuvent être considérées comme dues à des

réflexions, km par exemple comme due à k0 réfléchie sur le plan M ou à kv réfléchie
sur M—P.

Nous allons maintenant supposer que tous les xp sont égaux.
En posant

Wj — -

Wi

les équations (5) deviennent:

(l-2w0)D0+ Dv +Dm 0 j

D0+(l-2wv)Dv + Dm^0 (6)

D0+ D» +(l-2wn\Dm 0 J

Pour que ces équations homogènes et linéraires pour les D soient
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compatibles, il faut que le déterminant des coefficients soit nul,
ce qui donne l'équation

2 w0Wj,wm — w0wp — wPwm — wmw0 0 (7)

Nous montrerons plus loin que wm et wP sont des fonctions linéaires
de w„. Par conséquent, l'équation (7) est du troisième degré en

w0, elle a donc trois solutions w], w\ et w\. Ce qui veut dire qu'une
onde de fréquence v kfc et de direction donnée peut se décomposer

en trois ondes dont les vecteurs d'ondes ont les grandeurs

K k(l +w\xp)
kl k(l+wly>) (8)

fc* fc(l +wlxp).
Vers chacun des points M et P, on obtient aussi trois ondes associées

à celles décrites ci-dessus et dont les vecteurs d'ondes sont
donnés par l'équation (4) en remplaçant fe0 par les valeurs (8).

3. Surfaces de Dispersion.
Si l'onde k0 se propage dans le cristal dans une direction

un peu différente de celle considérée précédemment, la sphère
de propagation est déplacée. Mais aussi longtemps que les points
M et P du réseau réciproque restent relativement près de celle-ci
(ce qui n'a lieu que pour de très petits déplacements angulaires
de k0), il y a encore de l'énergie dans les ondes km et kp. Pour
chacune des orientations de k0 on a, d'après l'équation (7), trois
valeurs fcj, fc2, k30. Les origines de ces trois vecteurs d'onde
décrivent dans l'espace des surfaces dont les intersections avec le
plan MOP sont les courbes de dispersion. Chacune de ces courbes
correspond à l'une des trois solutions de l'équation (7).

Ces courbes de dispersion déterminent pour une onde de

fréquence et de direction donnée se propageant dans le cristal,
a) la grandeur du vecteur de cette onde, et b) les vecteurs des
ondes dynamiquement associées à celle-ci et nécessaires pour
satisfaire aux équations de Maxwell. En effet, à l'onde fcj (vecteur

ayant son origine sur une des courbes de dispersion et son
extrémité sur un des points du réseau réciproques) sont nécessairement

associées les ondes dont les vecteurs sont

\ Ti + K et kl kl + bP

Comme nous l'avons dit, seul un domaine angulaire extrêmement

restreint intervient et, pour tracer les courbes de dispersion,
nous agrandirons l'échelle autour du centre de la sphère de propagation

environ un million de fois.
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Choisissons tout d'abord une fréquence telle que la sphère
de propagation passe exactement par les trois points MOP. Soit
N cette fréquence, le rayon de la sphère est alors K Nfc. Nous
appellerons point de Laue L le centre de la sphère. Pour pouvoir
tracer les courbes de dispersion données par (7), il est nécessaire

k«i>»<e

fcuVC

Fig. 4.

La figure du haut montre les deux sphères de propagation de rayons K (point de

Laue L) et k (point de Laue Q). La figure inférieure redonne ce qui se passe autour
du point L avec une échelle agrandie un million de fois environ. Les sphères tracées
autour des points O P M (absentes dans la figure supérieure) dégénèrent dans
leurs plans tangents. La quantité /i sert à déterminer la fréquence de l'onde k

par rapport à celle de K, & est l'angle de Bragg. Le point A est supposé placé
sur une combe de dispersion, son abscisse x est mesurée à partir du point Q.

de connaître wm et wp en fonction de w0 et de l'orientation de

k0 dans le cristal. Le calcul nous est facilité par le fait que les

8j comme les xp, sont petits et qu'à l'échelle considérée les sphères
tracées à partir des points OMP autour de L dégénèrent en leurs
plans tangents (voir fig. 4).
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Nous désirons connaître les courbes de dispersion non seulement

pour l'onde de fréquence N, mais aussi pour des ondes de

fréquences voisines de celle-ci. En effet, de même qu'une onde
de fréquence donnée peut être « réfléchie » par un plan réticulaire
dans tout un petit domaine angulaire, les ondes de tout un petit
domaine de fréquence seront « réfléchies » simultanément par les

deux plans M et P.
L'onde de vecteur fc vfc (v fréquence considérée) donnera,

pour la « réflexion » sur le plan P, un nouveau point de Laue Q

(à égale distance (fc) de 0 et P). Si l'on appelle pijk (voir fig. 4)

l'angle qu'il faut ajouter à l'angle de Bragg 0 (pour la fréquence N)
pour avoir le nouvel angle de Bragg pour la fréquence v, on
voit facilement que

fc Wl+-| ctg©

D'autre part, soit A un point de la courbe de dispersion pour la
fréquence v. La distance de A aux sphères de rayon fc tracées
à partir des points MOP vaut respectivement kxpw0, kxpwm,
kxpwP. On voit alors que

w.p w0 cos 2 0 — x' sin 2 0
wm= iv0 cos 2 0 + x' sin 2 & — pi'

- x u 2 sin 2 0
avec x -— pi —

(9)

fc xp fc xp 1 — cos 2 0

et en remplaçant dans (7) on trouve

2 w% cos 2 0 — w; cos 2 <9(cos 2 0 + 2 + 2 pi')

+ wo[2x'sin2 0(pi'— x'sin 2 0)+pi'(1 +cos 2 0)] \ (10)

+ x' sin 2 0 (x' sin 2 0 — pi') O.

Cette équation nous permet de calculer w0 en fonction de

x, c'est-à-dire en fonction de l'orientation de l'onde dans le cristal
pour une valeur de /i donnée, ou autrement dit pour chaque
longueur d'onde. Pour résoudre l'équation (10), nous avons
procédé graphiquement en traçant les courbes de dispersion. Ces

courbes sont données dans la figure (5) pour différentes valeurs
de pi. H y a trois branches correspondant à chacune des racines
de l'équation du troisième degré (10). Ces branches s'approchent
asymptotiquement des sphères de rayon fc (1 + \ xp) ayant leurs
centres aux points MOP. On voit en effet dans les équations
fondamentales que lorsque les points M et P par exemple sont
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éloignés de la sphère de propagation, seule l'intensité de l'onde
O n'est pas négligeable et que, par conséquent, les équations se
réduisent à

1-2
xp

o ou 2

-T^sq^ ¦:¦

¥¦=-0,4 ¥=-0.1

^=-0,05 ¥=0

SS

n:
¥=0,1 ¥=0,4

Fig. 5.

Les courbes sont tracées pour un angle de Bragg de & 13» 26'. Les asymptotes
sont des cercles de rayon k + | ip ayant comme centres les points O, P et M.
Les droites en pointillé sont des cercles concentriques de rayon k. L est le point
de Laue pour la double réflexion, Q les points de Laue relatifs aux autres
fréquences. Sur la première et la dernière courbe, nous avons indiqué, en trait pointillé,

la courbe de dispersion qu'on aurait obtenue en l'absence de l'autre plan
réflecteur.

4. Cristal fini. Conditions aux limites.

Nous désirons connaître maintenant l'intensité des ondes
sortant du cristal après avoir été diffractées par celui-ci, l'intensité
de l'onde incidente étant donnée. Nous supposerons que le cristal
a la forme d'une plaque à faces parallèles.

La première condition aux limites à réaliser concerne les
vitesses de propagation. On sait que lorsqu'une onde passe d'un
milieu dans un autre, les composantes tangentielles des vitesses
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dans les deux milieux doivent être égales. Si une onde de vecteur
fc tombe sur le cristal, les vecteurs fcj, fc2,, kl (en spécifiant
maintenant que l'indice 0 se réfère à l'onde incidente) correspondant
aux trois solutions de l'équation (10), doivent avoir même

composante tangentielle que fc. Si donc, à partir du point 0 du réseau

réciproque, on trace le vecteur — fc et que, par l'extrémité de
ce vecteur, on fasse passer une normale à la surface du cristal,
les vecteurs k0 devront nécessairement avoir leur origine sur cette
droite. Nous savons d'autre part qu'ils doivent avoir leur origine
sur les surfaces de dispersion, par conséquent les origines seront
déterminées par les intersections de la normale avec les surfaces
de dispersion. L'onde incidente à l'intérieur du cristal se divisera
donc en trois ondes fcj fc2 kl de directions et de longueurs d'ondes
différentes et chacune des ondes «réfléchies» sera de même
constituée par trois ondes fc],, fc2, fc^ et kxm, fc2^, fc^.

En réalité, un des trois groupes k'0k'pklm (i 1, 2, 3) forme
une solution dynamiquement stable des équations de Maxwell.
La nécessité de l'existence des trois groupes simultanément
provient des conditions aux limites qu'on ne peut satisfaire avec
trois ondes seulement.

Comme la constante diélectrique du cristal est très peu différente

de l'unité, on pourra confondre D et E et ne pas tenir compte,
dans l'expression, des conditions aux limites du changement de
direction des ondes à l'entrée ou à la sortie du cristal.

Les conditions aux limites s'écrivent alors à la surface d'entrée

(H)

en se rappelant que les indices supérieurs se réfèrent aux trois
racines de l'équation (10). De0 est l'amplitude de l'onde incidente
à l'extérieur du cristal.

D'autre part, les équations (6) nous donnent, pour chaque
valeur de w0wP et wm les rendant compatibles, les valeurs de

DPID0 et DmID0. On obtient en effet:

ß. (12)

Les valeurs de w0wp et wm pour chaque direction de l'onde
incidente peuvent être mesurées sur les courbes de dispersion de la

^l+Dl+Dl D[
l1 +D2 +D3 0

y + Dl + D« 0

i Wm _ W0

wP
a

Dm

D0

w0
i
0

2 wmwP — wP--wm Wm
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figure (5). En effet, les points d'intersection de la normale à la
face du cristal avec les courbes de dispersion se trouvent à une
distance kxptvl, kxpw^, kxpwp, etc. des sphères de rayon fc ayant
pour centres les points MOP.

Les équations (11) deviennent:

Dl+ Dl + Dl -
oixDl + <x2D* + <x3 D08

ßxDt + ß2D20+ßzDl-

-D'0
0

0

d'où l'on tire directement:

A? _ a.2ß3 — ct.3ß2
(13)

D„ oc2ß3 — a.3ß2 + ccxß2 — a.2ßx + oc3ßx — axß3

et des expressions semblables pour DlfDe0 et DgjDe0. Les relations
(12) nous permettent aussi de calculer facilement les amplitudes
relatives dos ondes diffractées.

Les trois ondes dénotées par les indices supérieurs 1,2,3 ont
des vitesses de propagation très semblables et elles se propagent
dans des directions très peu différentes les unes des autres. A
l'intérieur du cristal, elles donneront donc lieu à un phénomène de
battement (quasi-périodique en général). A la face de sortie du
cristal, l'amplitude de l'onde sortante sera donnée par la somme
des trois amplitudes des ondes 1,2,3. On voit que, suivant l'épaisseur

du cristal, cette amplitude sera variable. Cependant, comme,
expérimentalement, les ondes incidentes ne sont jamais réellement
planes, ce phénomène n'a pas été observé. Pour calculer
l'intensité des ondes sortantes, nous prendrons donc la moyenne de
l'intensité en fonction de l'épaisseur du cristal, ou, ce qui revient
au même, nous ajouterons simplement les intensités (au lieu des

amplitudes)
/ D1 \2 D2 \2 1 D3 \2M-0f)+(-t)+(if)- (14)

Dans les figures 6, nous avons tracé l'intensité relative des
ondes réfléchies sur le plan P en fonction de l'angle de réflexion,
et cela pour différentes longueurs d'ondes (dénotées par pi). On

remarquera tout d'abord que le maximum de l'intensité se déplace
régulièrement avec la longueur d'onde. La réflexion simultanée
sur M a pour effet principal de soustraire de l'énergie à la réflexion
sur P, ce qu'on voit nettement pour pi — 0,05 et dans la figure
du haut, dans laquelle on a tracé à la fois la courbe de réflexion
en l'absence de réflexion sur M et la courbe avec réflexion sur M
(pour pi — 0). On voit aussi qu'une sorte de maximum secondaire
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se produit, qui ne se déplace pas lorsque la longueur d'onde change.
Ce maximum provient de l'énergie « rendue » par le plan M. La
réflexion sur le plan P est donc à la fois diminuée et étalée par
la présence de la réflexion sur M. A mesure que la longueur
d'onde envisagée s'éloigne de la longueur d'onde caractéristique
pour la réflexion simultanée (pt 0), oa. voit que la courbe de
réflexion redevient semblable à ce qu'elle aurait été en l'absence
de réflexion sur M.
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Fig. 6.

Répartition de l'intensité dans la direction de diffraction.
La ligne blanche est formée, dans le fond continu, par la superposition des
distributions d'énergie ci-dessus. Cette distribution est donnée en fonction de l'angle
de réflexion x. Nous l'avons tracée pour différentes fréquences, données par /x.
dans le cas des courbes de dispersion de la figure 5. La normale à la surface du
cristal a été choisie de façon à former avec les rayons X incidents un angle de

26° 35' et avec les rayons X diffractés un angle de 63° 56'.

La figure du haut donne la répartition de l'intensité pour une réflexion simple des

rayons X, comparée à celle pour /ti 0 (ligne pointillée).
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5. Largeur et intensité de la ligne blanche.

Comme nous l'avons dit précédemment, les lignes blanches
se forment dans le spectre continu. Pour avoir une mesure de

leur largeur et de leur intensité, il faut comparer, pour les

longueurs d'ondes considérées, l'énergie arrivant réellement en un
point du fond continu avec celle qui serait arrivée si la réflexion
simultanée n'avait pas eu lieu. Pour chaque longueur d'onde,
nous pouvons tracer (grâce à des figures semblables à celles du
haut de la fig. 6) la différence entre l'intensité en présence de la
réflexion simultanée et en son absence. On trouve alors que,
d'un côté l'énergie est fortement diminuée, elle a été enlevée par
la réflexion sur l'autre plan, tandis que de l'autre elle est plus
grande qu'elle ne l'aurait été par « simple » réflexion.

Forme de la ligne blanche L -¦

Fig. 7.

position de la ligne blanche dans la théorie
élémentaire.

Pour obtenir l'intensité de la ligne blanche dans le spectre
continu, il faudrait prendre l'intégrale pour chaque angle de sortie
de toutes les intensités des différentes longueurs d'onde arrivant
suivant l'angle considéré. Le calcul graphique que nous avons
employé ne nous a pas permis d'effectuer cette intégration. Par
contre, la forme de la ligne blanche et sa largeur peuvent être
obtenues en additionnant pour chaque angle de sortie les
différences positives ou négatives entre les courbes d'intensité dues à

une réflexion simple et celles dues à une réflexion simultanée.
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Dans la fig. 7, on voit la forme de la ligne blanche obtenue

par ce procédé. Cette ligne est asymétrique et son maximum
d'intensité ne coïncide pas avec la longueur d'onde donnée palla

théorie élémentaire. D'autre part, la ligne blanche est bordée
d'une ligne noire adjacente, recevant donc plus d'énergie que le

spectre continu avoisinant (plus d'énergie que s'il y avait eu
réflexion simple et non simultanée). Nous avons pu vérifier
théoriquement que la position et l'intensité de cette ligne noire
dépendent des conditions géométriques de la réflexion. C'est bien
là ce que nous avons observé expérimentalement d'une façon
qualitative. Remarquons encore que la largeur de la ligne blanche
est du même ordre de grandeur que la largeur de réflexion simple
d'une seule longueur d'onde.

Des mesures expérimentales plus précises sont en cours pour
vérifier quantitativement les résultats théoriques de cette étude.

Université de Genève, Laboratoire de Physique.
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