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Über die Lichtstreuung an elektrischen Feldern nach
der Theorie des Positrons1)

von N. Kemmer*).
(25. I. 37.)

Wie zuerst Delbrück2) bemerkte, ist als Folge der „Löcher -

theorie" des Positrons eine kohärente Streuung von Licht an
statischen elektrischen Feldern zu erwarten, ein Effekt, der
prinzipiell als Ablenkung harter y- Strahlen im Coulombschen Feld
von Atomkernen beobachtbar sein könnte.

Die Durchrechnung dieses Problems bietet erhebliche
Schwierigkeiten; im Folgenden sollen die allgemeinen Ansätze dieser
Rechnung wiedergegeben und anschliessend ein einfacher Sonderfall

explizit berechnet werden: die Frequenz des Lichts soll
hinreichend klein sein, d. h. der Ungleichung

mc2
* < —r- (1)

h

genügen und ausserdem soll für das streuende statische Feld die
Einschränkung

rrt c
j grad | g | K | Ê | • — (2)

li

gefordert werden, wobei ® die elektrische Feldstärke darstellt.
Ungleichung (2) ist für das Ooulomb'sche Feld sicher nicht

erfüllt. Daher ist auch der hier betrachtete Fall weniger von
Interesse im Hinblick auf eine experimentelle Prüfung als vielmehr
für die prinzipielle Begründung der Theorie. Es gelingt hier nämlich

die gleiche Darstellung mittels einer Abänderung der Lagrange-
Funktion des Vakuums, wie sie bereits von verschiedenen Autoren3)
an verwandten Effekten abgeleitet wurde. Gegenüber früheren
Herleitungen dieser Darstellung bietet die vorliegende einerseits
den Vorteil, dass die sehr weitgehend frei ist von allen spezielleren
Subtraktionsvorschriften der Löchertheorie4), und gibt andererseits

auch wohl den bisher kürzesten und elementarsten Weg zur
Bestimmung der niedrigsten Ordnung der nichtlinearen Zusätze
(4. Potenz der Feldstärken in der Energiedichte).

*) Jetzt Beit Scientific Research Fellow, Imperial College of Science and
Technology, London.
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§ 1. Allgemeine Ansätze.

Wir betrachten die Bewegung von Elektronen in dem
statischen Potentialfeld V(%). Die unabhängigen stationären
Lösungen der zugehörigen Diracgleichung bezeichnen wir mit

WA 0A • e
~^EAt (3)

Unter den EA müssen selbstverständlich auch diejenigen mit
EA < 0 berücksichtigt werden. Wir nehmen an, dass von den
Zuständen A eine Anzahl unter Berücksichtigung des Pauliprinzips

durch je ein Elektron ausgefüllt ist.
Die einfallende Lichtquelle habe den Ausbreitungsvektor t d. h.

die Frequenz v ck (mit fc \t\), und die Richtung des
elektrischen Vektors sei durch den Einheitsvektor C gekennzeichnet.
Es ist also (dt) 0.

Bei der gestreuten Welle nennen wir entsprechend den Wellen-
zahlvektor !', die Polarisationsrichtung c'; es gilt wieder v' ck'
und (e'f) 0.

Nach dem üblichen Verfahren der Quantentheorie der Strahlung

bestimmt sich die Wahrscheinlichkeit dafür, dass pro
Zeiteinheit ein Streuprozess in den Raumwinkel d ü stattfindet aus

(4)a(t-
2 Tre2 1 ei(r'

h Vkk' L3 v' -
-v)t

-M
mit

Mvv, M+, + MTW

und

h c a ,s

(bes.) (unb.)

/0*(r)(ae)e+i<tr>^s(r)dr-/^(r')(ac')e-i(t'l")^(r')^r'
(EA + %v-Es) y

1
M~ - V V— 1V1vv' — Z_i Zj

he as(bes.) (unb.)

/ 0A(t')(az')e-^'^0s(t')dl'- f0l(t)(oL«)e-i^0Ä(t)dt
(EA-Es-hv')

Es ist über die besetzten Anfangszustände A zu summieren
und ausserdem über Zwischenzustände S, für die nach dem Pauli-
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prinzip nur anfänglich unbesetzte zugelassen werden dürfen. Wie
gewohnt lassen wir nur Wellen mit dem Kubus der Kantenlänge L
als Periodizitätsbereich zu und gehen erst im Endresultat zur
Grenze L—>- go über.

Aus a(t—*-!') berechnet sich die Wahrscheinlichkeit für eine
Streuung nach dû pro Zeiteinheit als:

WdÜ=1 y \a(t-^î')\2m^-(^-)3- v'2dv'\a(î->î')\2
t r.-m dQ t \2ncj j

wobei für die Gültigkeit der letzten Beziehung die Forderung
nicht allzu kurzer Zeiten notwendig ist (t^> 1/v). Unter der
nämlichen Voraussetzung gilt für die Frequenz der gestreuten Strahlung

v t£ v.

Zur weiteren Berechnung von M„ ist eine Annahme über
das Potential V(%) bzw. die zugehörigen Eigenfunktionen 0A
notwendig. Wir werden verlangen, dass für die 0A die Born'sehe
Näherung zulässig ist. Dann ist

zu setzen, wo

Vab- fWlV(r)<pA}dr (8)

ist und die cpA Lösungen der kräftefreien Diracgleichung, also
ebene Spinorwellen darstellen.

In dieser Näherung ist eine sinnvolle Trennung der Zustände,
die als besetzt anzusehen sind, von den unbesetzten ohne weiteres
möglich. Wir betrachten die Zustände mit EA < 0 anfänglich als
besetzt, die mit EA > 0 als unbesetzt, was dem löchertheoretischen
Bild des Vakuums entspricht.

Führen wir die Abkürzungen

HSA f{cpA(cxe)cps}e^^dt

HAS= /{?£(««'W e-UVx,) dt'
(9)
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ein, so lautet Gleichung (5) folgendermassen :

"¦AS "SA
1

J£> 2 2
1

hc vv ^ ^ (EA-Es-hv)
(EA<0) (Es>0)

Y /HÄSHSKVKA VAKHggFLSA HAs'srH-ka
_,_

H-akYksH-sa
1 ii\(EA-EK) + (EA-EK) + (ES-EK)

'

(ES-EK
HasHskVklVla VakHksHslVla ~VakVklHlsHsa
.(EA-EK) (EA-EL) + (EA-EK)(EA-EL) ^ (EA-EK)(EA-EL)

HasVsk^kl HLA Hak^ks^sl Hla HakVkiVls Hsa

(ES-EK) (ES-EL)
+

(ES-EK) (ES-EL)
+ (ES-EK) (ES-EL)

"as* sk^iiiAla HAKVKS "siAla

+

(ES-EK)(EA-EL) (ES-EE)(EA~EL)

*KS *Slfl-LA * AK™KL * LS"SA+
(EA-EK)(ES-EL) (EA-EK)(ES-EL[

(10)

Eine ganz entsprechende Darstellung gilt für M*. Da nun
die cpA ebene Wellen darstellen, sind die Integrationen in (9)
sofort ausführbar und liefern die Aussage der Impulserhaltung.
Daraus folgt unmittelbar, dass das Glied nullter Ordnung in e

nur für t Ï von null verschieden ist, und daher für den hier
betrachteten Effekt der Streuung belanglos ist*). Man erkennt
auch leicht mit Hilfe der expliziten Darstellung der Matrixelemente,

dass sich alle in e linearen Glieder bei den Summationen
über A,S,K gegenseitig kompensieren.

Zur Streuung geben erst die Glieder zweiter Ordnung in e

Anlass. Zu deren weiterer Ausrechnung ist eine getrennte
Ausführung der Summationen über positive und negative Werte von
EK und EL nötig. Man gewinnt dabei nach einigen Zusammenfassungen

eine Form für Mfv, in der keine Nenner vom Typus
(\EA\— \EB\) mehr vorkommen, sondern nur solche der Art
(\EA\ + \EB\) oder (\EA\ + \EB\ +hv), was für die Konvergenz
des Resultates von grösster Wichtigkeit ist.

(Dieses lässt sich übrigens durch eine Zwischenbetrachtung
leicht verständlich machen. Hätte man von vornherein, anstatt
von (5) auszugehen und darin (7) einzusetzen, die Störungen

*) Das Glied hat freilich die Gestalt ô (î- t')-C, wo C ein divergentes Integral

ist; es steht in engem Zusammenhang mit der von Brinkman5) diskutierten
Dispersion des Vakuums. In der konsequenten Subtraktionstheorie wird dieses

Glied natürlich kompensiert.
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durch Lichtfeld und statisches Feld symmetrisch behandelt, so
hätte sich für a (î —>¦ î') leicht die Darstellung

mt

h (v'-v)^m (El-E,c)(Ef-El)(Ei-Em)
ergeben, wobei die JJilc bis auf konstante Faktoren entweder mit
einem HAB aus (9) oder einem VAB aus (8) zu identifizieren sind.
Die Ei, Ek bedeuten hier jedoch Energien des gesamten Viel-
elektronensystems mit Strahlung. Nun ist im Anfangszustand
kein Elektron mit positiver Energie vorhanden, während alle
Zustände negativer Energie besetzt sind. Als Zwischenzustände
kommen aber jedenfalls nur solche vor, in denen an einer Stelle A
im negativen Spektrum eine Lücke liegt, an einer Stelle B des

positiven ein Elektron. Der Ausdruck E{ — E*, wo Ei der
Anfangszustand ist, enthält dann offenbar immer Summen
— \EA\ — \EB\, niemals Differenzen \EA\— \EB\.)

Wir geben für Mfv nun denjenigen Ausdruck an, der sich
nach Berücksichtigung des Impulssatzes und Ausführung der
Spinsummation ergibt. Von der Summation über A verbleibt
dann noch eine Integration über n, und wir bekommen eine
Darstellung der Form

ircM- (2% (hcT2^V{9l) 7(92) ' IdVFHV,%i,^X-,-')- (11)

Die 2 ist UDer ane Fourierkomponenten des Feldes

L(r)=2F(9)eî'(9ï>
8

zu erstrecken, und es gilt %x + g2 !' — t.
Hierbei ist

F± (p,gi,8g,l,c, c')

|[/±(p,r, + t p + t + 92,p + + gi + g2> P —Sl
+ f± (v,v + t.,V + t + Q1,p + l + Q1 + gi, p-92;
+ /± (p + !,p;.P"92,P-Si-S2;P + Î + 9i)
+ /± (p + E,p:• P — 8i>P-9i — 92» P + tH--92)]

umd bei Einführung der Bezeichnungen

Wi
1

he
• \Et\ VpTTü? ; k

mc
h

^i(l±fctì + M

(12)

(13)
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gilt:
\ /~(Pl,p2»Ps,p4,Po)

117

Spur I£(«e) D+ D±D+ K)
(W2 + Wx + v) (Ws + Wx + v) (W, + Wx + v)

(Wx + W2 + W3 + Wi + ,)LV(ae)D-D+D+(ae')
(Ws + Wx + v) (Wi + wx + ^)(TU2 + IT3)(TU2+IU4)

(Wx + W2 + W3 + Wi + v)Dr(aC)D+D+D7(aC)
(Ws + Wx + v) (W2 + Wx + v)(Wi + Ws)(Wi+W2)
(Wx + W2 + Ws + Wi + v)DV(*t)D+D~D+(*t')

(W2 + Wx +v) (TU4 + Wx + v) (W3 + W2) (W3 + TU4)

D+(ae)D+D-D7(«0
(W^ + Wx + v)(W2 + Wi)(W3 + Wi)

Dì (ae)D+D-D+(aC)
(W3 + Wx + v)(W2 + Ws)(Wi + W3)

Dt (ae)D-D+D+(ae')
(W% + Wx + v) (W3 + W2) (W, + W2)

i(W0+Wx + W2 + W3 + 2 v)D-D- (ae)D+D+(ae'-)
(W0+W3+v) (Wx+W3+v) (Wn+W2+v) (Wx+W2+v)

D0+D+(«e)D+D3-(aC)
(W3 + Wx + v) (W3 + Wn + v) (W2 + W3)

_
D+D+(xe)D-Df(*r')

(14)

(W0 + W2 + v) (W2 + Wx + v) (W2 + W3)

_ è (Wn + Wx + W2 + W3 + 2y)D+J-(ac)D+D8-(ae')
(W0 + WS + v) (Wx + W2 + V) (Wn + Wx) (W2 + W3)

D+D-(xr)D-D+(*c:')
(Wx + W3 + v) (W0 + Wx) (W2 + W3)

Für f± ergibt sich eine ganz analoge Darstellung. Der Übergang

von /i zu F± bedeutet eine Symmetrisierung und hat zur
Folge, dass

F± (p, 0, g2, Î, e, e') =i?± (p, Sl, 0, t, e, C) 0 (15)

identisch erfüllt ist, wie leicht nachzuprüfen ist. Dieses ist damit
gleichbedeutend, dass nicht die Fourierkomponenten des Potentials,

sondern erst die der Feldstärke g U(g), einen von null verschie-
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denen Beitrag zur Wahrscheinlichkeitsamplitude liefern, wie ja
auch physikalisch zu fordern ist (Eichinvarianz). Ferner ist
leicht zu erkennen, dass das Integral über p konvergiert, und zwar
gibt bereits jedes Einzelglied in (14) einen endlichen Beitrag, mit
Ausnahme des ersten und des achten, die erst miteinander zu-
sammengefasst werden müssen.

Um die Konvergenz von (11) zu erreichen, sind offenbar
keinerlei Subtraktionskunstgriffe notwendig gewesen, was eine
bemerkenswerte Auszeichnung gegenüber anderen ähnlichen Effekten
darstellt. Dementsprechend besitzen auch die von Heisenberg
(1. c.) angegebenen zusätzlichen Subtraktionsglieder keine
Matrixelemente, die den hier betrachteten Übergängen ' entsprechen,
falls in jenen nur die Zeitkomponente x0 des „Ausserdiagonal-
abstandes" von vornherein nullgesetzt wird.

Zur weiteren Berechnung von (14) benutzen wir die
Relationen :

4. Spur [D± (oce) D±D±D± (ac')]

(«O

(16)

+

+

+

w2Yy 15

1 +

1 —

1 —

(±WX) (±W2)

w\3
(±WX) \±W3)

w\i
(±WJ(±WJ

w\,
(±WX) (±W2)

Wis
(+WX) (±Wa)

w2
(±W1)\±Wi)

w?
(±W3)\±Wi)

(±W2)l+Wi)

(±w2) 2(±w3)

w2
1 + ——3-4 —

(±W3) (±W,)
w2

1 ~ (±Jm±m
W\9 \

(±W2) (+W3)j

([ee'],[p3p4])
{±W3) {±Wi)
([ee'],[p2p4j)
(±W2) (+W,)
(ree'],[p2p3])
(±W2) (±W3)

(gpi) (g>g) + (ep2) (e'px)

(±WX) (+W2)

(gpi) (g'Ps) + (gPs) (g'Pi)

(±WX) (+W3)

(epi) (e'p4) + (CP4) (c'Pi)
(+WX) ± (Wt)
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4. Spur [D± Df (oce) Df Df («')]

119

(«')

+

1

1

1

1 +

1 +

1

1

1

(±W0) (±WX)

w\%

(±WX) (+W2)

(±W0)°(±W2)

w201

1 +

1 —

w\3
(±W2) (±W3)

w*03

(±W0) (±W3)

w13

(±WX) \±W3)

([« «'] » [P2 Pa])

(±TF0) (±TT0; (±TF2) (±IF3)

WL \ ([cQJPoPJ)
(=TO (±^s)/ (±^o) (±^l)

Pf-

(±TFi) (±^;
» \ (gpo) (g'Ps) + (gp3)(e,Po)

W2'' 03

(±TF0) (±W,
WL

(±W0) (±W3)

(gpi) (e'P») + (gpg) (e'Pi)
(±TFi) {±w2)

(«Pi) (g'Pa) + (cp,) (e'px)
(±TF0) (±TU2)/ (ÌT70 (±W3)

W\3 \(ep0)(e'p2) + (ep2)(e'p0)

a^i) (±w3) (±Wn) (±W2)
(16)

Hierin ist W\h (p{ p,.) + x2 gesetzt worden, und die
doppelten Vorzeichen sind so zu verstehen, dass jeweils das am Dt
links stehende dem rechts vor dem W{ mit gleichem Index i
anzubringenden zugeordnet ist.

An dieser Stelle ist ein Weiterrechnen nur mit geeigneten
Näherungsansätzen möglich.

§ 2. Der Fall k « x und | g ] « x

Diese Ungleichungen sind mit den Annahmen (1) und (2)
identisch; sie bedingen, dass man eine Taylorentwicklung von F
nach und g ansetzen darf.

Es wurde bereits mit Gleichung (15) bewiesen, dass eine
Entwicklung von F für kleine gx und g2 mit dem zu Qx und g2
proportionalen Term beginnt. Eine ganz entsprechende Eichinvarianz-
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Überlegung für das Lichtfeld lässt erwarten, dass F, oder wenigstens

das p-Integral darüber, in t und !' mit der Ordnung
const, fc • fc' beginnt. Es gelang jedoch nicht, dieses auf einfache
Weise einzusehen, und eine rechnerische Prüfung wurde nur insoweit

unternommen, als fc 0 gesetzt und gleichzeitig eine
Entwicklung in g bis zur zweiten Ordnung durchgeführt wurde.

Tatsächlich wurde nach Ausführung der p-Integration das
Verschwinden der Amplitude bestätigt, in den zu g2 proportionalen

Gliedern jedoch bereits mit einiger rechnerischer Mühe. Das
Verschwinden der in t linearen Beiträge wurde nicht geprüft.

Die in t und g quadratischen Glieder wurden nur für den
Fall V (Vorwärtsstreuung) berechnet, es ergab sich

(g= \g\; w= + Vp2 + *2)-

F(p,o>,-%,i,ct,z')=-^(^')k2g2 + ^9(^')g2(pîY

6'
(cc')fc2(gp)2 + zL^11(ce')(9P)(pE)2

16

W* ""' ' v*a/ xar' vr" '

4W9r ^r («O («8) (9P) (Vi) + -r^r (ßP) (e'PWg2

129 45

-4 Tun
(CP) (C'P) g2{vt)2 - 4W11

(eP) (ßP')fe2(9P)2

891 'H)
-^3(^)W)(pt)HQP)2+^xx(-P)(-P')(iQ)(QP)(pt)8TU13V T/v T /VT ' WT/ W

4W9[(cp)(c'g) + (cg)(c'p)]fc2(gp)

49S

+ j^î [(cp) («'g) + (eg) Kp)] (pg) (pf)2

9 RS

+ 4if7 (ßg) (c'8)fe2-jV9 (eg) (ß'g) (pf)2- (17)

Die Integration über den p-Raum ist ohne Schwierigkeiten
in Polarkoordinaten ausführbar. Der radiale Anteil führt auf
Integrale der Form:

r pm _
2 1

i Vp2 + x2 m + '° V ~
(m + 1) (m + 3) a:4

'
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Es wird sodann:

M-> ^M>(-t)'V{s)V{~3}
¦ [- 8 (eg) (e-j)*« + 7 (tt'Wf - 7 (ce') (tg)*]. (18)

Die Berechnung dieser Amplitude ist nun andererseits mit
Hilfe der von Euler und Kockel (1. c.) angegebenen Lagrange-
Funktion möglich, und es ergibt sich für Mvv :

M»=-w(^)?y(9)F(-s)
[(4«-« (eg) (c'9)It> + /J(M')*V-0(«O (Ig)»]. (19)

Durch Vergleich der Ausdrücke (18) und (19) folgt in voller
Übereinstimmung mit den von Euler und Kockel gefundenen
Werten :

1 ß=--tJrr- (20)
360 n2 ' r 360 n2

Es darf also wohl mit Sicherheit angenommen werden, dass die
Lagrangefunktion

L 1. (g2 _ 232) +
1 ^+ [ (g2 _ 232)2 + 7 (@23)21

ganz allgemein die Vakuum-Effekte dieser Näherung richtig
wiedergibt, und insbesondere auch die richtige Erweiterung unserer
Ergebnisse für 4= t' liefert.

Für irgendwelche weiteren Ausrechnungen wäre man zu
spezielleren Annahmen über das Potential V(y) genötigt. Dimen-
sionsmässig ergibt sich offenbar für die nach (6) auszurechnende
Wahrscheinlichkeit

w=i^)^- - S

,hc1 hv hv \mc2/ \hc] \ mc2,1 \mc2/

wo E die gesamte Energie des statischen Feldes bedeutet, S die
einfallende Photonenstromdichte. Der „Wirkungsquerschnitt" für
unseren Prozess ist daher:

e^thv^tE, (23)
hei \mc2j \mc
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Diese Arbeit wurde 1935/36 im Institut meines verehrten
Lehrers, Herrn Prof. G. Wentzel, ausgeführt, wo ich dank einer
Zuwendung der Jubiläumsstiftung für die Universität Zürich
verbleiben konnte. Es ist mir eine angenehme Pflicht, hierfür meinen
Dank auszusprechen. Auch bin ich Herrn Dr. V. Weisskopf für
Hilfe und enge Zusammenarbeit zu grossem Dank verpflichtet.

Zürich, Physikalisches Institut der Universität.
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