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Zur Theorie der Neutron-Proton Wechselwirkung-
von N. Kemmer*).

(16. XII. 36.)

Inhaltsübersicht: Zur Beschreibung des aus einem Neutron und einem
Proton bestehenden dynamischen Systems wird eine Wellengleichung angesetzt,
der die Dirac'sohe Gleichung des Einkörperproblems zugrundeliegt. Die
mathematischen Eigenschaften der Gleichung werden untersucht. Der Ansatz ist nur
dann relativistisch invariant, wenn die räumliche Abhängigkeit der Wechselwirkung

die Form der (5-Funktion hat (Nahewirkung). Für Potentialfunktionen
endlicher Ausdehnung geben die Rechnungen nur eine ungefähre Abschätzung
der Relativitätskorrektionen, haben aber gegenüber den bisher gemachten1)
analogen Abschätzungen den Vorzug, dass sie den Spin in relativistisch
konsequenter Weise berücksichtigen. Es bleiben jedoch auch hier die relativistischen
Korrektionen für Kraftreichweiten der üblich angenommenen Grössenordnung
sehr klein. Sie verändern aber beim Übergang zur Nahekraft das Ergebnis sehr
erheblich; aus diesem Grunde können die unrelativistischen Rechnungen von
Thomas2), der die Unverträglichkeit der Annahme einer Nahewirkung mit den
experimentell bekannten Werten der Bindungsenergien leichter Kerne nachweist,
nicht als entscheidend angesehen werden. Während es nicht unternommen wird,
die Thomas'schen Rechnungen für fl3 relativistisch auszubauen, wird darauf
hingewiesen, dass hier wie bei Thomas die Annahme der normierbaren <5-Funktion
für die Wechselwirkung bereits mit einer endlichen Bindungsenergie des Deuterons
unverträglich ist, so dass eine formal befriedigende Darstellung der N.-P.-Wechsel-
wirkung als Nahewirkung ohnehin nicht möglich erscheint.

§ 1. Allgemeine Ansätze.

Wir betrachten ein Zweiteilchensystem, das aus einem Neutron

(N) und einem Proton (P) besteht, deren Massen wir beide
gleich M annehmen. Wie in der Diracgleichung wird dem Neutron
der Impulsvektor pf und der Matrixvektor u.® zugeordnet, wobei
die xf zusammen mit a* ßN den üblichen Vertauschungsrela-
tionen

<«? + af< 2d„ (,«,,=-l,...,4)
genügen. Entsprechend werden die Grössen pf,
für das Proton definiert. Ebenso gilt auch:

<«f + «?<=2a„, (fi,v=l,...,4).
*) Jetzt Beit Scientific Research Fellow, Imperial College of Science and

Technology, London.
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Alle AT-Operatoren sind mit allen P-Operatoren vertauschbar,
insbesondre gilt also:

<af-af< 0.

Wenn wir für jedes der zwei Matrizensysteme von der üblichen
vierreihigen Darstellung ausgehen, bekommen wir unmittelbar
eine 16-reihige Darstellung des Gesamtsystems. Dementsprechend

wird unsere Wellenfunktion xp sechzehn Komponenten xpaß

(a 1, 4; ß 1, 4) besitzen, die sich wie die Produkte
der Komponenten zweier Lösungen der Diracgleichung, xp'^ xpj\
transformieren werden.

Es soll nun dieses xp der Wellengleichung

[-E + H] xp(xN,xp)

[-E + (px S*) + (pp *p) + M (ßN + ßp) + Ü] xp (xN, xp) 0 (1)

genügen, wo Ü den Wechselwirkungsterm symbolisiert. (In unserer
Bezeichnung haben E, p, M alle die Dimension einer Länge, sie
unterscheiden sich um h-c, bzw. h, bzw. Ii • c~l von den
entsprechenden, in CGS-Einheiten gemessenen Grössen.) Bekanntlich
muss sich nun

j dxN dxp{xp*Hxpj

wie die 44-Komponente eines Tensors transformieren. Abgesehen
vom Term mit ü ist dies für alle Glieder ohne weiteres gewährleistet;

für die Wechselwirkung lässt jedoch diese Forderung nur
die folgenden 5 Ansätze mit ihren Linearkombinationen offen3) :

ü=—const, coo- ò (xN — xp).
cox ßNßp
ft)2 l-(xs*p)
co3 ß*ßp[(o*ap) + (*Nxp)]
cox (asop)-r»rp
<°ö ßN ßp rN rp

Dabei ist
al — i a.t a,c (i, fc, l zyklisch)

cl

F IK,«,«,.

(2)

Es ist sehr wesentlich, dass für die Abstandsfunktion in der
Wechselwirkung keine andere als die ^-Funktion genommen
werden kann, ohne die relativistische Invarianz zu zerstören.
Wohlbekannt ist, dass eine Wechselwirkung in relativistisch
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invarianter Weise im allgemeinen nur mittels intermediärer Felder
(Retardierung) beschrieben werden kann. Von Stueckelberg4)
wurde aber darauf hingewiesen, dass auch noch die Möglichkeit
jenes Nahewirkungsansatzes besteht*).

Im Sinne der Überlegungen von Blochnizew, Margenau
und Feenberg1) dürfte diese Gleichung aber auch bei nicht-
singulärer Wechselwirkungsfunktion eine Abschätzung für die
Grössenordnung der Relativitätskorrektionen geben, die bei den
üblich angenommenen Kraftreichweiten auftreten. Jedenfalls ist
es zunächst bequem, die <5-Funktion durch eine reguläre Funktion
zu ersetzen, ohne Rücksicht auf mangelnde Invarianz. Wir
schreiben allgemein

Qi —V{r) ca„ (r=\xN-xp\)
können uns aber immerhin auf den Fall beschränken, dass V
nur in einem kleinen Bereich r<o merklich von null verschieden
ist. Speziell wird im folgenden das „Kastenpotential"

V(r) V für r <q (3)

V(r) 0 für r > q

benutzt werden. Um auf den relativistisch invarianten Grenzfall
zu kommen, hat man V const. o~3 zu setzen und den
Grenzübergang zu g 0 zu vollziehen.

§ 2. Reduktion und Separation der Wellcngleichung.

Wir betrachten den Operator

H (pN*N) + (pp*p) + M (ßN +ßp)-co V(r)

Der Schwerpunktsimpuls pN + pp ist mit H vertauschbar,
also ein Integral; wir berücksichtigen von vornherein nur jenen
Zustand, in dem er den Eigenwert null hat, rechnen also im
Schwerpunktssystem. Wir können uns dann auf die Form

H=(*p) + ßM-a>V(r) (4)

*) Beim obigen Nahewirkungsansatz existiert freilich nicht mehr ein Unterschied

zwischen gewöhnlichen Kräften und Heisenberg-Majorana'schen Austauschkräften,

wie sie zur Erklärung der Massendefekte schwerer Kerne notwendig
scheinen. Dies ist bereits ein Grund, diesen Ansatz abzulehnen; wir ziehen es

jedoch vor, ohne Benutzung der Theorie der schweren Kerne zum gleichen Ergebnis
zu gelangen.

4
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beschränken, wobei

t//jT — Jj Ju j OC^ — OC. OC. I „»

Pi \ (vf-pf) Pf -pf, ß ßN + ßp J
(0)

gesetzt Wurde. Ein weiteres Integral ist dann der Drehimpuls

Mi mf + St

mit
™>i XjcPt — xtpk (i, k, l zyklisch)

und
St h/2i (afccf + ocfotf) (i, k, l zyklisch).

Wir bemerken, dass s{ auch als

St h/4 i (ocjocj — a?aj.)

geschrieben werden kann, und dass ausserdem, wegen

*N af i _ i K?

und
ß*ßP= i/32-l

auch alle »,- als Funktionen der Matrizen xt und /3 allein
ausgedrückt werden können; im Folgenden wird uns daher
ausschliesslich dieses System von nur vier 16-reihigen Matrizen zu
beschäftigen haben. Es ist leicht zu sehen, dass es reduzibel ist.

Hierzu genügt es, eine von der Einheit verschiedene mit allen
vier Matrices vertauschbare Matrix anzugeben*). Setzen wir

yS -iß»0L» Yf -ißPOof
rl ßs vl -ßp

so ist eine solche durch

rNpp(4p N P+1
Wi

gegeben, wie leicht nachzurechnen ist. Eine genauere
Untersuchung ergibt für die 16 Eigenwerte dieser Matrix die Zahlen

+ 1 10-mal

— 3 5-mal

+ 5 1-mal,

*) Herrn Dr. V. Bargmanu bin ich für den angeführten Reduzibilitäts-
beweis sowie für anregende Diskussionen zu grossem Dank verpflichtet.
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woraus gruppentheoretisch folgt, dass unsere 16-reihigen Matrizen
in ein 10-, ein 5- und ein einreihiges Teilsystem zerfallen. Die
Teilmatrizen erweisen sich als irreduzibel. Wegen Spur (a4)

Spur (ß) 0 entspricht bei der einreihigen Darstellung allen vier
Matrizen die Null; für die anderen beiden Darstellungen wäre es

leicht, die Matrizen anzuschreiben. Für das Folgende ist es jedoch
zweckmässiger, diejenige Kombination der xpaß, die zum Zerfallen
führt, nur anzugeben, im übrigen aber bei Anwendung der oc-Ope-
ratoren auf die Definition (5) sowie die übliche Darstellung

[of-' 0)' ß [0 -I
zurückzugreifen, und zwar natürlich so verstanden, dass <xp auf
den ersten, a-¥ auf den zweiten Index von xpaß wirkt.

In der nachfolgenden Tabelle bedeuten die ua die zum Zehnersystem

(I) gehörenden Komponenten, die va die des
Fünfersystems (II), schliesslich w die einzelne sechzehnte Komponente.
Die angegebene Transformation der xpa ß hat ausserdem die
Eigenschaft, dass das Teilsystem der drei Matrizen sf, die die
infinitesimalen Drehungen des Spinraums beschreiben, noch weiter
ausreduziert erscheint: bei Drehungen des Spinraums transformieren

sich jeweils drei in der Tabelle nebeneinanderstehende
Komponenten unter sich nach der irreduziblen Darstellung §>x

der Drehgruppe, während jede der einzeln stehenden Komponenten
in sich übergeht (Darstellung §>„). Dies ist in der fünften Spalte
der Tabelle hervorgehoben. In der folgenden Spalte steht der
zur jeweiligen Komponentengruppe gehörende Eigenwert der
Matrix \ ß% — 1 cax, die Diagonalform annimmt und den
Spiegelungscharakter im Spinraum beschreibt. Schliesslich hat die
obige Wahl der u, v, w noch die Eigenschaft, dass auch die anderen
vier cüi auf Diagonalform sind; ihre Eigenwerte werden in den
folgenden Spalten angegeben. Die letzte Spalte bringt endlich
die Abkürzungen, die wir für Produkte dieser Eigenwerte mit V
benutzen, um in der folgenden Darstellung von den speziellen
Unterschieden der verschiedenen a>j unabhängig zu sein.

Wir suchen nun nach einer Lösung unserer Wellengleichung,
die zur Drehimpulsquantenzahl j gehört. Ausserdem soll die
Lösung entweder

a) den Spiegelungscharakter (—1)'+1
oder

b) den Spiegelungscharakter (—1)'
besitzen.



Ol

Tabelle.

co-i ws £04 to5 VcoOi

I

% -7= (Vn + V33)
V 2

«2 I ('/'12+ V2I + V34+ V43)
1

«3 ^; -/= (Vit + V44)
V2

$1 1 0 2 0 1 a

«4 è (V14-V41- Va+Vïs) ©0 -1 4 6 -4 -1 d

«5= /-(Vn-%3) «6 i (Vis+Vsi-Vm- V43) "7= -7=(V22-V44)
V 2

©X 1 2 0 2 -1 b

«8= -7=(Vis-%i)
V 2

«9 1 (Vl4-V«+V23-%î) »10 ^^=(V21-?42)V2
©x -1 2 0 2 1 c

% è (Via—Vsi+Vs4- V4s) ©0 1 4 -6 -4 1 f

II ''2 —7= (V13 + V31)
V 2

«S £ (V14+V4I+V23 + V32) »4 -7= (V24 + V>4ï) ®1
V 2

-1 0 -2 0 -1 h

1,5 Ì(V12-V21-VS4+V48) ©0 1 -2 0 _2 -1 g

III w 4 (V11+V41 - Wn - V32) ©0 -1 -2 0 -2 1 k

CD
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Da wir aus der Tabelle das Verhalten der einzelnen Komponenten

bei Drehungen und Spiegelungen des Spinraums
übersehen, lassen sich nach bekannten Formeln*) die zugehörigen
Raumfunktionen sofort angeben, die auf eine Lösung mit den
bekannten Eigenschaften führen. Wir führen hierzu die folgenden
symbolischen Abkürzungen ein:

33<m) /_-i / jj+m) (j-m+1) y(m_a);

_my<«0; -i /(j+m+1) (j—m) y(m+1)

(j+m) (j+m+1) V(m_D.
2 *1/27 + 19C.!m)

/(3 —m) Q—m+1) y(m_D

(6)

1/27+13^}=( +1

Hierbei sind die Y'.m) die normierten Kugelflächenfunktionen
in gewohnter Bezeichnung. Es ergeben sich dann die folgenden
Lösungsansätze : (— j< m < +j)

Ia)
Ai(r) „, ^2(r)

«!; M2; %) =^-ü\ 8(m)

u, Y<w: D(r)
r

B1 (Vi B2(r)K; <*.; «7) *£>, ; j +S« -f-]-

(us; u9; uxo) ty(m)

r

C(r)

(7)

*) Vgl. etwa: B. L. v. d. Wabrdbn, Die gruppentheoretische Methode in
der Quantenmechanik, Leipzig, Springer, 1932, S. 70.



54 N. Kemmer.

Ib)
(ux; u2; m8)=$<»>

A (r)

u, 0

(u5; u6;u7) ^13^-

(u6;u9;u10) %<-™\
C'ir) q(m) CHr)

T Oj+ 1

(8)

Ha)
^ 0

(v2; v3; vi)=WMil) H(r)

IIb)
v5=0

vx Y* F(r)

(v2;vz; Vi)=&™\ —¦W-+8^)i
Cl» / ' /1»

U, Y«») G(r)

Illa)

Illb)

w= YJ»»)^M.

w 0.

(9)

(10)

(H)

Durch Einsetzen in die Wellengleichung folgen dann als
Differentialgleichungen für die verschiedenen Radialkomponenten:

v ; 1/27+I \dr rj 1/27+I \dr r /

(E+a)jA± -2Mj Bi + Jîl—%(¦?-+Ì)d =0
I/27+I ydr r/

(B+o) (7+I) ^2-2M(7+l)B2-27Üil)%(—- (?'+1) )D=q
I/27+I \ar r

(12)
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(E+c)i(j+i)c-HMMiid i B1
]/2j + l \dr r
2j(j+l)/(d (7+1)

r

(12)

(E+b) 7 B1

I/27 + I \rir

-2M7

B2 =0

ji 2 7(7+1) Ja
I/27 + I \dr

C

(B+6) (7+1) B2-2 M (7+I) 42 -^W^r% ^ ' —I/27+I \dr
C=0

lb)
(fl+fc) 7 (j+1)B -2 Mj (7+I) ^- 2/^tt^ i(4z-— 1(<1

27(7+1) ,/d (7+1)»^=^ t
1/27 + I \d

I/27+I \dr
C2

(B+c)^1 _2#+5-i^+liB
I/27 + I \dr

I/27 + I yar
(E+o) 7 (7+I) i-2Mj (7+I) B

IIa)
(E+fc) B

IIb)
(E+f)F—2MG+ 31-rif d ,fl'I/27+I \dr

I/27 + I \dr r
B2

(E+h) 7 B1
2 1 / d

I/27+I \dr
F

(B+/j) (7+I) B2

(E+g)G-2MF

lila)
(B+fc) B

[III b) -]

2(7+1) /d (7 + IU
1/2 7+I \dr

B

0

0

0

0.

0

(13)

0

0

0

0

0

(14)
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Die Bedeutung der „Potentialkonstanten" a, b, k wurde
in der Tabelle auf Seite 52 erklärt. Die Differentialgleichungen sind
auch für den Fall 7' 0 gültig; aus diesem Grunde ist das Kürzen
durch 7 in einigen Gleichungen vermieden worden. Aus Symmetriegründen

ist mehrfach auch ein analoger Faktor (7+I)
stehengelassen worden.

Die beiden Fälle II a) und III a) geben zu trivialen
Gleichungen Anlass, die, wie sich später ergeben wird, von geringem
Interesse sind. Wir erhalten also im wesentlichen drei Systeme
radialer Differentialgleichungen, deren Lösung wir im nächsten
Paragraphen im Spezialfall des Kastenpotentials vornehmen
wollen.

§ 3. Integration der radialen Differentialgleichungen im Falle des

Kastenpotentials.

Während bisher die Grössen a, b, k auch noch irgendwelche

Funktionen von r hätten sein dürfen, beschränken wir uns
nun auf den durch Gleichung (3) gegebenen Fall. Für r<g gelten
dann die Gleichungen (12) bis (14) mit konstanten a, k, für
r>p dieselben Gleichungen mit a=b=. .—k=0. Mittels
einfacher Rechnung bekommt man in diesem Fall die nachfolgenden
Differentialgleichungen zweiter Ordnung:

Ia)
(E+d) {(E+a) (E+b) -4 M2}

4 (E+b) i(i+i)
d r2

(E+c) {(E+a) (E+b) -4 M2}

4 (E+a)
?'(?+l)

dr2

D 0

7(7+1)0 0

(15)

lb)
(E+c) {(fi¬

ll b)

-a) (E+b)—4M2}
d2

A (E+a)
dr2

/1+1) j (7+I) B 0 (16)

(E+h) {(E+f) (E+g)~4 M2}+4 (E+g) j(j+l) fi=0 (17)
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Ihre Lösungen lassen sich sofort angeben, es sind bekanntlich,
bis auf den Faktor ri, Zylinderfunktionen von halbzahligem
Index; da aber alle weiteren Radialkomponenten durch
Differentiation aus C und D, bzw. B, bzw. F erhalten werden können,
ist hiermit die Integration bereits vollständig erreicht. Es müssen
nur noch die Lösungen im Gebiet r<g an die des Gebiets r>p
angeschlossen werden; man würde zunächst meinen, dass zu
verlangen ist, dass alle Komponenten einer Eigenlösung sich an der
Grenze des Potentialtopfs stetig verhalten ; eine genauere Betrachtung

zeigt jedoch, dass diese Forderung nicht erfüllbar ist. Die

physikalisch richtige Stetigkeitsforderung kann man dadurch
finden, dass man den Grenzübergang von einem stetig veränderlichen

Potential zum Fall des „Kastens" verfolgt. Es lautet z. B.
die erste Gleichung aus (12) bei beliebigem Potentialverlauf nach
geringer Umformung:

Wir integrieren beide Seiten von einem Punkt rx mit 0<r1 <o
bis zu r2, mit r2>g und erhalten:

C2

[dr
[jA*-(j+l)A*£

U^Ì±1(B+d(r))B+(i-^1+y-±:1^^2
2

Unter der einzigen Voraussetzung, dass die Eigenfunktionen
beschränkt sind, ist das Integral rechts eine stetige Funktion der
Grenzen ; dies gilt auch noch, wenn d (r) bei q einen endlichen
Sprung erleidet. Daraus folgt aber sofort die Stetigkeit von
jA1—(j+l) A2 an der Stelle q.

Analog können wir bei allen weiteren Gleichungen schliessen;
es ergibt sich so die Forderung der Stetigkeit der folgenden
Linearkombinationen radialer Eigenfunktionen:

Ia)

¦2 i 1/27+I

D, jA1-(j+l)A2
(E+b)(±-±-)D-2M^+Vc

\dr(E+a) (E+b)-4M2
7(7 + 1)67, 7 (j+1) (Bi+B*

(18)

_
+2 ij (7+1)1/2 7+1

(B+a)(B+&)-4M2
(E+a)^C-

dr
2M D
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Ib)
7 (7+1) B, 7 (7+1) (Ci+C2) +2M-0_+l)T/g?+l ^ B, (19)

B+c ar

IIb)
*., ,-H._ö+1)1P =«^(-f-_I)P. m

Weitere Stetigkeitsforderungen sind nicht mehr erfüllbar.
Aus den obigen Bedingungen allein folgt bereits die Stetigkeit der
Radialkomponente des Wahrscheinlichkeitsstroms, so dass auch
physikalisch kein Grund bestehen kann, weitere Relationen zu
erwarten.

Im Falle B2>4 M2 hat die Eigenfunktion im Aussenraum
oszillatorischen Typus; dann reicht eine passende Wahl ihrer
Amplitude und Phase, wie gewohnt, hin, um zu jedem vorgegebenen
Wert der Energie eine Eigenlösung zu konstruieren — wir
gewinnen ein kontinuierliches Spektrum. Andererseits folgt aus den
Stetigkeitsbedingungen für E2<4 M2 (exponentieller Abfall im
Aussenraum) eine Eigenwertbedingung für die Energie. Wir
wollen auf diesen Fall etwas genauer eingehen.

Es sei also

x \ t/4 M2--B2

reell. Ausserdem setzen wir zunächst voraus, dass auch die Grössen

x -, /(E+ä) {(E+a) (E+b)-4M2}
1 2

y ' (E+b) '

k -, /JË+c){(E+a)(E+b)-4M2}
2 2

y - ~
(E+a)

fc 11 /g±g {(E+f) (E+g) -'CT2)
3 2

y '"^ " ~
(E+g)

alle reell sind. Dann bekommen wir folgende Lösungen*) :

Ia)
Für r<g: Für r>o:

B Xi -\/kxr Jj+% (kx r) D Ae ]/xr H)+i (i xr)
C fii ^jk2 r Jj +i (k2r) G fia]/xr H)+i (i x r).

*) Unsere Bezeichnung der Bessel- und Hankelfunktionen stimmt mit der
bei E. Jahnkb und F. Emdb (Punktionentafeln) überein, ebenso die der weiter
unten benutzten Grössen Sn(2x).
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Die Stetigkeitsbedingungen (18) liefern dann nach kurzer
Rechnung :

Wenn 7 0:
'k1qJ^(kxQY

kx g ctg kx q
J+i(kxro)

Für 7>1:
kxQ </,-_£ (kx q)

l+E{(E+a)(E+b)-4M3
(E+b) (4M2-B2)

v K ; (21a)

(7+l)J3-+l(fcie)
fi{(fi+q)(fi+6)~4M2} xeSy_i(2«e)+(y+l)i8f,.+t(2«e:

(B+Ò) (4 M2 - B2)
"

(7+1) S,+i (2 x ß)

\eJi-i(k2Q) __x
jJj+i(k2Q)

E {(E+a) (E+b)-4M2} xqS^j (2 xq)+JSj+ì (2 xq)
(E+a)(4M2-E2)

'
~jSi+i(2xQ)

(21b)

4M2 (E+a) (E+b)-4M''
(E+a) (E+b) \~

' 4M2-E2
Entsprechend im Fall

lb)
Für r<ß: Für r>ß:

B /ii i/fc2 r J3-+i (k2 r) B jua]/xr Hj+i (i x r)
Also

h e Jj-i (K q)
1 —

E+c xo Sj_L (2 xq) +7 Sj+j (2 xß)

jJj+l(k2Q) E jSj+ì(2xQ)
wobei 7>1 ist (für 7 0 existiert keine Lösung). Schliesslich

IIb)
Für r<ß: Für r>ß:

F A, i/fe^ Jj+i (fc,r) B Aa i/xr BL i (i «r)

(22)

Also

fc3g J>-i(he)
(j+l)Jj+i(ksß)

1 __
g+/t ^g^-|(2xß)+(7+l) Sj+i(2xg)

E (j+l)Sj+i(2xQ)
(j>0).

Ganz ähnliche Eigenwertbedingungen liessen sich auch für
imaginäre kt angeben, da jedoch alle etwaigen Lösungen dieser
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Art physikalisch nicht von Interesse sind (vgl. dazu den folgenden
Paragraphen), verzichten wir auf die Angabe jener
Eigenwertbedingungen.

§ 4. Diskussion der Lösungen.

Es ist von vornherein zu erwarten, dass eine auf der Dirac-
gleichung beruhende Theorie Zustände negativer Energie liefert.
Im Fall verschwindender Wechselwirkung wird unser Zweiteilchensystem

(im Schwerpunktssystem) offenbar folgende möglichen
Energiewerte besitzen:

K) B ]/tj*2+M2 + fpt't+TM2 2 ypZ+M2.
ß) E ± (i/p**+M* - /pP2+M2) 0

y) E — i/pXt+M2 - ^pP2+M2 -2 yp2+M2.

Die Lösungen der Gruppen ß) und y) können natürlich nur
mit den Ideen der Löchertheorie interpretiert werden, sind aber
für unsere Betrachtungen sinngemäss auszuschliessen. Genauer
gesagt, beschränken wir uns im Fall beliebig grosser Wechselwirkung

auf diejenigen Zustände, die bei adiabatischer Ausschaltung

der Wechselwirkung in die Zustände der Gruppe a)
übergehen. Damit sind unter anderen auch alle Lösungen der trivialen
Gleichungssysteme II a) und III a) von der Betrachtung
ausgeschlossen, da sie offensichtlich alle in Zustände der Gruppe ß)

(E 0) übergehen.
Ist die Wechselwirkung hinreichend schwach, so sind die

zulässigen Energieterme der Gruppe «) mit denen der unrelativistischen

Theorie identisch. In diesem Grenzfall (V<^.M) ist
offenbar

kx k2 ]/m {& + *±^ (E' E-2 M)
und

k^]/MÌE'+ f-±/
v3

so dass in der Gruppe I) die Grösse % (a+b), in der Gruppe II)
dagegen Y2 (f+g) mit dem unrelativistischen Potential Vu
übereinstimmt. Es existieren hier bekanntlich gebundene Lösungen
nur für positives Vu, d. h. reelle kt. Die fc* bleiben nun auch für
beliebig grosse Wechselwirkung dann und nur dann reell, wenn
alle im betr. Lösungssystem vorkommenden Potentialkonstanten
a, b, positiv sind. In diesem Falle lässt sich die adiabatische
Verschiebung irgendeines Eigenwertes vom unrelativistischen Fall
zu beliebig hohen Potentialwerten verfolgen. Man erkennt aber aus
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der Tabelle auf Seite 52, dass lauter positive Potentialkonstanten
nur in besonderen Fällen auftreten, insbesondere für keine
Linearkombination der cui in den Systemen I) und II) zugleich, so dass
im allgemeinen ein im Unrelativistischen vorkommender Energieterm

bei hohen Potentialwerten gar nicht mehr existiert. Der
physikalische Grund hierfür ist leicht einzusehen: in unserer
Wellengleichung ist, wie in der Diracgleichung, der Spin nicht
diagonal, die Potentialmöglichkeiten sind aber derart, dass mit
einer Anziehung für gewisse Spinkomponenten eine Abstossung
anderer verbunden ist. In dem Gebiet, in dem keine der
Spinkomponenten mehr klein ist, verglichen mit einer anderen, bleibt
daher die Stabilität des Eigenwertes nur unter ganz besonderen
Umständen erhalten.

Es ist hierbei übrigens nicht gesagt, dass Lösungen für andere
als lauter positive Potentialkonstanten überhaupt unmöglich sind.
Man kann aber leicht verifizieren, dass alle weiteren Lösungen —
und hierzu gehören alle etwaigen Lösungen mit imaginären k{ —¦
beim adiabatischen Ausschalten der Wechselwirkung in Zustände
der Gruppe ß) (oder y) übergehen müssen. (Für die Zustände der
Gruppe y) ist die Forderung lauter negativer Potentialkonstanten
charakteristisch.)

Setzen wir nun den experimentellen Wert der Bindungsenergie
des Deuterons in irgendeine der Gleichungen (21) bis (23) ein,
so ergibt sich jeweils eine Beziehung zwischen ß und V, das als
Faktor in a, b auftritt. In der so erhaltenen Gleichung können
wir insbesondere auch den Grenzübergang ß—>-0, V—> co

vollziehen. Man erkennt, dass bei diesem Vorgehen sich in gröbster

Näherung folgende Relationen ergeben:

Ia) 7 0:
kx ß ctg kx ß + co

Also 7
kx q nn, n>l

und insbesondre, wenn die eingesetzte Energie die des tiefsten
Zustandes der Gruppe sein soll:

kx ß n

Entsprechend liefert die Stetigkeitsbedingung für />1: entweder

feig J3_| (he) _ œ
Ji+l (ho)

oder

KqJj-i (he)
œ

J1+i(he)
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d. h. falls wieder endliche Bindungsenergie für den tiefsten Zustand
vorausgesetzt wird:

kxQ xO + i)
oder

k2Q= xd+i)

xO+è) ist die erste positive Nullstelle der Besselfunktion
Jj+i (x). Für 7 1 ist xd) 4,49. Ganz analog wird in den
anderen Gruppen:

lb)

also

IIb)

also

h e >h-\ (h e) ^
Ji+ì(he)

k2Q= Xiì+Ì).

he Ji-i (he) _ _ œ
Ji+i(he)

k3Q=xÜ+i), [x(ì) Jl].

Übereinstimmend ergibt sich also in allen Fällen, dass, falls
in der Grenze q 0 ein Zustand endlicher Bindung existieren soll,

V ~ h ~ -COnSt (25)

gelten muss.

(Eine Sonderbetrachtung erfordern allerdings die Fälle, in
denen eine der Potentialkonstanten verschwindet. Dann ist offenbar

auch Vi ~ fc möglich; andererseits ergeben sich auch dann

Beziehungen der Form fcß=const, so dass in diesem Fall V— —=-
zu fordern ist, was mit dem Ergebnis der unrelativistischen Theorie
übereinstimmt.)

Jedenfalls lässt sich aber in keinem Falle die endliche
Bindungsenergie des Deuterons mit einem Grenzübergang der Form

V
COnst

(26)
ß3

vereinbaren, wie er für die normierbare (5-Funktion charakteristisch
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ist. Die Gültigkeit dieser Beziehung ist nämlich damit äquivalent,
dass in der Grenze die Wechselwirkungsenergie durch

C- f{xp* (xN, xp) coi xp (xN, xp)}xn^x dx
xp=-x

gegeben ist, wo C eine endliche Konstante ist. Dies wäre im Sinne
von Stueckelberg4) ein befriedigender Ansatz im Rahmen einer
allgemeinen Theorie. Bei Gültigkeit einer Beziehung wie (25)
lässt sich hingegen das Resultat des Grenzüberganges gar nicht
unabhängig von der Grenzbetrachtung formulieren und dürfte
formal kaum befriedigend sein.

Andererseits zeigt jedoch die Überlegung, dass es sicher nicht
erlaubt ist, beim Übergang zu unendlich kurzer Kraftreichweite
unrelativistisch zu rechnen. Denn bekanntlich3) ergibt die
unrelativistische Theorie statt (25) die Forderung

y .consl (27)
e2

Daher können die Überlegungen von Thomas2), der unter
Annahme von (27) den Nachweis führt, dass die Bindungsenergie
von B3 unendlich wird, einer Kritik nicht standhalten und müssten
in einer relativistischen Theorie wiederholt werden. Wir glauben
jedoch auf Grund der formalen Überlegungen des vorhergehenden
Absatzes, dass das Ergebnis (25) der Theorie des Deuterons bereits
zeigt, dass die Erwägung der Möglichkeit von Nahekräften nicht
sehr sinnvoll sein dürfte.

Lässt man trotzdem den Grenzübergang mit (25) zu, so kann
man, wie auf S. 61 schon erwähnt, höchstens in einem der beiden
Systeme I) oder II) einen gebundenen Zustand in der Grenze
erwarten. Im Falle des Systems II) ist dann eindeutig der
Zustand mit 7 0 und fc3ß n der tiefste und in der Grenze einzige.
(Für die Existenz anderer Zustände wäre nämlich fc3 ß const > n
erforderlich.) Hingegen gibt es, falls stabile Zustände in der Gruppe
I) existieren, noch verschiedene Möglichkeiten, je nachdem

1. yad .4,49.. >]/bc7r
oder

2. yäd.4,49 <i/Ycn

gilt. Im ersten Fall wird offenbar der tiefste Zustand gegeben
durch

he — n
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und gehört zum Eigenwert j 0, im anderen Fall aber ist der
durch

k2 ß 4,49

charakterisierte, zu I a) 7 1 gehörende der stabile. Andere
Zustände treten sicher nicht in Konkurrenz, und nur im Falle
ya d 4,49 "[/è c n bleiben beide in der Grenze gebunden.

Auf Grund des vorher Gesagten möchten wir aber diesen
Ergebnissen keine grosse Bedeutung zusprechen.

§ 5. Beziehungen zur unrelativistischen Theorie, Relativitätskorrektionen.

Wir möchten zum Schlüsse unsere Gleichung für endliche
Potentialfunktionen betrachten. Sie kann hierbei nur die Aufgabe
erfüllen, die relativistischen Korrektionen approximativ zu liefern.
Überlegungen solcher Art wurden mehrfach an Hand der Schrö-
dinger-Gordon'schen Wellengleichung angestellt1). Insbesondere
ist der Ansatz von Feenberg dem unseren ganz analog. Eine
Berücksichtigung der Spinabhängigkeit der Kräfte konnte dort
natürlich nicht erfolgen.

Es ist zweckmässig, hier die Näherung der Pauli'schen
Spintheorie zu betrachten. Das Wesentliche hierzu können wir wieder
aus der Tabelle auf Seite 52 ablesen. In der Pauli'schen Näherung
wird unsere Wellenfunktion die vier grossen Komponenten xp33,

xp3i, xpi3, xpM besitzen, daraus folgt nach der Tabelle, dass im
System I)

-K+M5), _(«,+«,), (u3+Ul)

gross sind, im System II) nur
1

/ x

y 2
K x 5;

Das System I) gibt also im unrelativistischen Grenzfall die Triplett-
zustände, das System II) die Singlettzustände. Ferner sind im
System I a) die grossen Komponenten mit den Kugelfunktionen
3/,-_iUnd YJ+1 multipliziert, im System lb) mit Ys. Es besteht also
die folgende Zuordnung:

la) s 1 7 l+l
I b) s 1 7 / (28)

II b) s 0 (7 l)

Den Grundzustand des Deuterons muss uns daher das System
I a) liefern; das zugehörige „Potential" ist \ (a+b). Der für die
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Streuung wichtige Singlettzustand (System IIb)) hat hingegen
das Potential § (f+g)-

Die Charakterisierung der verschiedenen möglichen Potentialansätze

durch die bisher benutzten Grössen a, b, ist freilich
in diesem Zusammenhang unvorteilhaft.

Eine bessere Übersicht gewinnt man, wenn man die
Komponenten der Wellenfunktion in vier Gruppen aufteilt im Sinne
der Pauli'schen Zerspaltung in grosse und kleine Komponenten.

Wir schreiben also die Komponenten in folgender Reihenfolge :

1. oc 3,4 ß 3,4

2. a 1,2 /5 3,4

3. a 3,4 ß= 1,2

4. a 1,2 ß 1,2,

wo a den ersten, ß den zweiten Index von xpaß bedeutet. Die fünf
Wechselwirkungsansätze lassen sich dann sehr übersichtlich in
der Gestalt von Übermatrizen schreiben, die als Elemente ausser
der Einheitsmatrix nur die Pauli'schen Spinoperatoren des
Protons und Neutrons enthalten. Es ist nämlich bei dieser
Anordnung :

I -(aNÔp'
I — (aNap)

-(a»op) I
(aNap) I

^2

'&np)

[oNop)

(aNap)-(aNap)
-(aNap)-(aNap)

N~Pa a
N^Lla a

N~Fa a

-I ï'ra a

> w5

(29)

Die Ansätze cox und co2 entsprechen also dem spinunabhängigen
Potential der unrelativistischen Näherung, während co3 und coi
dort den Spinoperator (aNap) mit den Eigenwerten +1 für den

Triplett-, —3 für den Singlettzustand enthält.
a>5 gibt im unrelativistischen Grenzfall kein Wechselwirkungs-

potential. Das gleiche Ergebnis hätten wir natürlich durch Ein-
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setzen der Werte von \ (a+b) bzw. \ (f+g) aus der Tabelle (S. 52)
gewinnen können.

Unter Benutzung der Darstellung (29) lassen sich natürlich
auch leicht höhere Näherungen der Pauli'schen Spin théorie
bequem bestimmen.

Eine weitere mögliche Ergänzung des Bisherigen besteht darin,
dass man den Majorana'sehen Operator des Koordinatenaustausches

einführt. In den Paragraphen, in denen uns im wesentlichen
der Grenzfall der <5-Funktion interessierte, wäre seine Mitnahme
sinnlos gewesen, und eine Ergänzimg in dieser Richtung ist jetzt
noch leicht möglich. Wie stets im Zweikörperproblem besteht
der Einfluss des Majoranaoperators lediglieli darin, dass in den
Wechselwirkungstermen die Änderung

Y„—M-l)" Yn

vorgenommen werden muss.
Daher müssen hier folgende Ersetzungen in den radialen

Differentialgleichungen (12), (13), (14) vorgenommen werden:

T a) d —? (-1 yd a —> (—1)> ' la

c—>(—iyc i>—^(-ly^b
lb) b—?(—1)'& c—>(-+ytlr

a —> (—I)1 a
(30)

ii b) / —? (—i yf h —> (—iy+1 h

g~-^(-ì)jg
mit entsprechenden Änderungen in allen nachfolgenden
Gleichungen. Auch hierauf wollen wir nicht ausführlicher eingehen.

Im Prinzip ermöglichen unsere Gleichungen also für irgendeine

beliebige Wahl des Potentialansatzes die Änderungen gegenüber

einer unrelativistischen Theorie abzuschätzen. Wir möchten
jedoch hier im Hinblick auf die vielen Möglichkeiten darauf
verzichten, zahlenmässige Angaben zu machen. Grössenordnungs-
mässig bleiben die Abschätzungen von Margenau (1. c.) sicherlich
auch hier bestehen, und zwar einschliesslich des verkleinernden
Faktors 4, auf den Feenberg (1. c.) hingewiesen hat. Bei
Gleichsetzung aller Potentialkonstanten genügen nämlich, wie leicht zu
sehen ist, unsere ^-Funktionen identisch denselben Wellengleichungen

zweiter Ordnung wie die Feenberg'schen, und es ist klar,
dass die bei uns tatsächlich auftretende Verschiedenheit der
Potentialkonstanten in grössenordnungsmässiger Hinsicht nichts
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ändern wird und auch hier erst bei Benutzung einer Kraftreichweite

<1()-13 cm die Relativitätskorrektionen von Bedeutung
wären.

Herrn Prof. Dr. W. Pauli möchte ich für die Anregung zu
dieser Arbeit sowie für zahlreiche fördernde Ratschläge und
Diskussionen bestens danken.

Zürich, Physikalisches Institut der E. T. H.
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