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Zur Theorie der Neutron-Proton Wechselwirkung

von N. Kemmer *).
(16. XII. 36.)

Inhaltsiibersicht: Zur Beschreibung des aus einem Neutron und einem
Proton bestehenden dynamischen Systems wird eine Wellengleichung angesetzt,
der die Dirac’sche Gleichung des Einkérperproblems zugrundeliegt. Die mathe-
matischen Eigenschaften der Gleichung werden untersucht. Der Ansatz ist nur
dann relativistisch invariant, wenn die rdumliche Abhangigkeit der Wechsel-
wirkung die Form der J-Funktion hat (Nahewirkung). Fiir Potentialfunktionen
endlicher Ausdehnung geben die Rechnungen nur eine ungefihre Abschitzung
der Relativitatskorrektionen, haben aber gegeniiber den bisher gemachten?)
analogen Abschidtzungen den Vorzug, dass sie den Spin in relativistisch konse-
quenter Weise beriicksichtigen. Es bleiben jedoch auch hier die relativistischen
Korrektionen fiir Kraftreichweiten der iiblich angenommenen Gréssenordnung
sehr klein. Sie verindern aber beim Ubergang zur Nahekraft das Ergebnis sehr
erheblich; aus diesem Grunde konnen die unrelativistischen Rechnungen von
TrOMAS?), der die Unvertréiglichkeit der Annahme einer Nahewirkung mit den
experimentell bekannten Werten der Bindungsenergien leichter Kerne nachweist,
nicht als entscheidend angesehen werden. Wéahrend es nicht unternommen wird,
die Thomas’schen Rechnungen fiir H3 relativistisch auszubauen, wird darauf
hingewiesen, dass hier wie bei Thomas die Annahme der normierbaren §-Funktion
fiir die Wechselwirkung bereits mit einer endlichen Bindungsenergie des Deuterons
unvertraglich ist, so dass eine formal befriedigende Darstellung der N.-P.-Wechsel-
wirkung als Nahewirkung ohnehin nicht mdéglich erscheint.

§ 1. Allgemeine Ansiitze.

Wir betrachten ein Zweiteilchensystem, das aus einem Neu-
tron (N) und einem Proton (P) besteht, deren Massen wir beide
gleich M annehmen. Wie in der Diracgleichung wird dem Neutron
der Impulsvektor pY und der Matrixvektor o zugeordnet, wobel
die oY zusammen mit «¥ = £¥ den iblichen Vertauschungsrela-
tlonen

afaf}v—kafag:Z@M (u,v=1,...,4)

gentigen. Entsprechend werden die Gréossen pf, «f und of = g%
fiir das Proton definiert. Ebenso gilt auch:

PP PP __ _
o iy I % oc‘uf_QcSM (w,v=1,...,4).

*) Jetzt Beit Scientific Research Fellow, Imperial College of Science and
Technology, London.
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Alle N-Operatoren sind mit allen P-Operatoren vertauschbar,
insbesondre gilt also:

NP _ _P.N__
o, o, —o ocM_O.

Wenn wir fiir jedes der zwei Matrizensysteme von der tiblichen
vierrethigen Darstellung ausgehen, bekommen wir unmittelbar
eine 16-rethige Darstellung des Gesamtsystems. Dementspre-
chend wird unsere Wellenfunktion v sechzehn Komponenten v, ,
(a=1,...4; p=1,...4) besitzen, die sich wie die Produkte
der Komponenten zweier Losungen der Diracgleichung, ) ¢,
transformieren werden.

Es soll nun dieses y der Wellengleichung

[—E+H] yp (2 2P) =
[—E + (p¥ %) + (pP &?) + M (B7 + B7) + L] p («V, 2F) = 0 (1)

geniigen, wo £2 den Wechselwirkungsterm symbolisiert. (In unserer
Bezeichnung haben F, p, M alle die Dimension einer Lénge, sie
unterscheiden sich um h-¢, bzw. i, bzw. h-¢~! von den entspre-
chenden, in (CGS-Einheiten gemessenen Grossen.) - Bekanntlich
muss sich nun

[aw> ant{y* Hy}

wie die 44-Komponente eines Tensors transformieren. Abgesehen
vom Term mit £ ist dies fir alle Glieder ohne weiteres gewahr-
leistet; fiir die Wechselwirkung lésst jedoch diese Forderung nur
die folgenden 5 Ansétze mit ithren Linearkombinationen offen?):

2 = — const. w;* 0 (x¥ —=xP).
o = ¥ B
wy = 1 —(a¥uF)
oy = BYB7[(57 5") + (5V5")]
w, = (¥ 5F) — TN TP

oy = BN BP [N P
Dabe1 1st

und
I'= —1a,0505.

Es 1st sehr wesentlich, dass fiir die Abstandsfunktion in der
Wechselwirkung keine andere als die o-Funktion genommen
werden kann, ohne die relativistische Invarianz zu zerstoren.
Wohlbekannt ist, dass eine Wechselwirkung in relativistisch
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invarianter Weise im allgemeinen nur mittels intermedisrer Felder
(Retardierung) beschrieben werden kann. Von STUECKELBERG?)
wurde aber darauf hingewiesen, dass auch noch die Moglichkeit
Jenes Nahewirkungsansatzes besteht¥).

Im Sinne der Uberlegungen von BrocHNIZEW, MARGENAU
und FreEnBERG') diirfte diese Gleichung aber auch bei nicht-
singuldrer Wechselwirkungsfunktion eine Abschitzung fir die
Grossenordnung der Relativititskorrektionen geben, die bei den
iblich angenommenen Kraftreichweiten auftreten. Jedenfalls ist
es zunéchst bequem, die 6-Funktion durch eine reguldre Funktion
zu ersetzen, ohne Riicksicht auf mangelnde Invarianz. Wir
schreiben allgemein

Qi=—-V () w, r=|z¥—2zF|)

konnen uns aber immerhin auf den Fall beschrinken, dass V
nur in einem kleinen Bereich r<p merklich von null verschieden
ist. Speziell wird im folgenden das ,,Kastenpotential*

Vir)=1V ftir r=yp (3)
Vir)=0 fir r>p

benutzt werden. Um auf den relativistisch invarianten Grenzfall
zu kommen, hat man V = const. o3 zu setzen und den Grenz-
iibergang zu p = 0 zu vollziehen.

§ 2. Reduktion und Separation der Wellengleichung.

Wir betrachten den Operator
H = (p¥a®) + (pPar) + M (B¥+ p5) — 0 V(1) .

Der Schwerpunktsimpuls p¥ + p¥ ist mit H vertauschbar,
also ein Integral; wir berticksichtigen von vornherein nur jenen
Zustand, in dem er den FEigenwert null hat, rechnen also im
Schwerpunktssystem. Wir kénnen uns dann auf die Form

H=(ap)+8M—aoV(r) (4)

*) Beim obigen Nahewirkungsansatz existiert freilich nicht mehr ein Unter-
schied zwischen gewodhnlichen Kraften und Heisenberg-Majorana’schen Austausch-
kriaften, wie sie zur Erklarung der Massendefekte schwerer Kerne notwendig
scheinen. Dies ist bereits ein Grund, diesen Ansatz abzulehnen; wir ziehen es
jedoch vor, ohne Benutzung der Theorie der schweren Kerne zum gleichen Ergebnis
zu gelangen. '

4
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beschrianken, wobei

(5)

B = e T mi:ocfv——ocip}

Pi=3%p)—p)=p"=—p, B=F" T8
gesetzt wurde. Ein weiteres Integral ist dann der Drehimpuls

M; = m; + s,
mit
My = TpPy — XPx (v, k, I zyklisch)
und

8; = h/2i («¥a¥ +o«Paf) (i, k, I zyklisch).

Wir bemerken, dass s; auch als
$; = hijdu (op 0y — oy 0z

geschrieben werden kann, und dass ausserdem, wegen

2
i

a¥oal =1 —1a
1 %
und

BY g =62 —1

auch alle w; als Funktionen der Matrizen «; und g allein aus-
gedriickt werden koénnen; im Folgenden wird uns daher aus-
schliesslich dieses System von nur vier 16-reihigen Matrizen zu
beschéftigen haben. Es ist leicht zu sehen, dass es reduzibel ist.

Hierzu genfiigt es, eine von der Einheit verschiedene mit allen
vier Matrices vertauschbare Matrix anzugeben*). Setzen wir

vio=—ipVey oyl = — el
yY = p~ yy = —p*

so 1st eine solche durch
4
_ N P N P
=T F,(‘E‘I?#y,m—l)
#:

gegeben, wie leicht nachzurechnen ist. Eine genauere Unter-
suchung ergibt fiir die 16 Eigenwerte dieser Matrix die Zahlen

+1..... 10-mal
—3 ..... 5-mal
+5..... 1-mal,

*)} Herrn Dr. V. BARGMANN bin ich fiir den angefiihrten Reduzibilitats-
beweis sowie fiir anregende Diskussionen zu grossem Dank verpflichtet.
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woraus gruppentheoretisch folgt, dass unsere 16-reihigen Matrizen
m ein 10-, ein 5- und ein einreihiges Teilsystem zerfallen. Die
Teilmatrizen erweisen sich als irreduzibel. Wegen Spur («;) =
Spur (f) = 0 entspricht bei der einreihigen Darstellung allen vier
Matrizen die Null; fiir die anderen beiden Darstellungen wire es
leicht, die Matrizen anzuschreiben. Fir das Folgende ist es jedoch
zweckméssiger, diejenige Kombination der y,;, die zum Zerfallen
fiihrt, nur anzugeben, im iibrigen aber bei Anwendung der «-Ope-
ratoren auf die Definition (5) sowie die iibliche Darstellung

0 o¥:? I 0)
N, P __ i ¥ N, P ___
0= (o o) 7= (o

/

zurlickzugreifen, und zwar natiirlich so verstanden, dass ocf: auf
den ersten, o} auf den zweiten Index von vy, ; wirkt.

In der nachfolgenden Tabelle bedeuten die u, die zum Zehner-
system (I) gehorenden Komponenten, die v, die des Funfer-
systems (II), schliesslich w die einzelne sechzehnte Komponente.
Die angegebene Transformation der v, ; hat ausserdem die Eigen-
schaft, dass das Teilsystem der drei Matrizen s;, die die infini-
tesimalen Drehungen des Spinraums beschreiben, noch weiter
ausreduziert erscheint: bei Drehungen des Spinraums transfor-
mieren sich jeweils drei in der Tabelle nebeneinanderstehende
Komponenten unter sich nach der irreduziblen Darstellung ®,
der Drehgruppe, wéhrend jede der einzeln stehenden Komponenten
in sich tibergeht (Darstellung ®,). Dies ist in der fiinften Spalte
der Tabelle hervorgehoben. In der folgenden Spalte steht der
zur jeweiligen Komponentengruppe gehorende Eigenwert der
Matrix 4 f2 —1 = w,, die Diagonalform annimmt und den Spie-
gelungscharakter im Spinraum beschreibt. Schliesslich hat die
obige Wahl der u, v, w noch die Eigenschaft, dass auch die anderen
vier w; auf Diagonalform sind; ihre Eigenwerte werden in den
folgenden Spalten angegeben. Die letzte Spalte bringt endlich
die Abkiirzungen, die wir fiir Produkte dieser Eigenwerte mit V
benutzen, um in der folgenden Darstellung von den speziellen
Unterschieden der verschiedenen w; unabhéngig zu sein.

Wir suchen nun nach einer Losung unserer Wellengleichung,
die zur Drehimpulsquantenzahl j gehort. Ausserdem soll die
Losung entweder

a) den Spiegelungscharakter (—1)7+1!
oder

b) den Spiegelungscharakter (—1)’
besitzen.



N. Kemmer.

52

(38h — 5y _ TR LVIH) B — o I
|
(BFih - Vo — Togh —STh) & — 5,
| 6 3 G
(S L Vedh) Hw = Ta | (FEh-LEh LT L VIR G — By | (T8 L TTh) Gy SRR
| 1
(BVh — Ve L 1oh FR) E — Ty
G
(F¥eh — T5h) N 0Ly | (Wh — i T — VTA) S — 6y | (TEA _FT4) LA
1 !
4 A
(VWi —B2ih) lﬂw =t | (B — Ve —TEh | TAY G =0y | (BEA T Ble, 5
T
I
(B 5o —TEh _FTAY T Ty
A ‘ a
(Vb L 72h) le = by | (AL EA LAY T Ty | (Bh L TTA) == )
9l[9qBL
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Da wir aus der Tabelle das Verhalten der einzelnen Kompo-
nenten bei Drehungen und Spiegelungen des Spinraums iiber-
sehen, lassen sich nach bekannten Formeln*) die zugehorigen
Raumfunktionen sofort angeben, die auf eine Losung mit den
bekannten Eigenschaften fihren. Wir fithren hierzu die folgenden
symbolischen Abkiirzungen ein:

ij{m)__ﬁ. (_]/ (7+m) (;l*_m‘f“l) Y;m%l};

X

Y 4 ] /(fi+m+12) (j—m) Y§m+1))

V2 7_}_ 1 Qégm) - ( 1. ‘I/ (?+m) (;+7n+ ) 17j(l_m-.l);

(6)

— Y Gm+D)—m+ 1) Y™ ; + ]/ (j—m) (g—mﬂ) i +1))

Y27i+18Mm= ( 3 ] / @"m)(ﬂzj“mm Yo,

RGTIET RS S vyr).

Hierbei sind die Y die normierten Kugelflichenfunktionen

in gewohnter Bezeichnung. Es ergeben sich dann die folgenden
Losungsansitze: (—j<<m<+9)

Ia)
Al ¥ Az r
(uh Ug s %3) = %572)1 ( ) ! Sﬁﬁ)l .AMAQ
r r
o =y DO
y
B! (r) B2() ()
(’11;5, Ug ‘167) :9{?@] . +8§ﬁ)1 i ; L
C(r
(ug; Ug; 1g0) = B i ) J

*) Vgl. etwa: B. L. v.D. WAERDEN, Die gruppentheoretische Methode in
der Quantenmechanik, Leipzig, Springer, 1932, S. 70.
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Ib)

\uln “2, us) - ngm) AT(T)
au, =0
(155 g3 ) =B 200 |
P
oL (v 2 (r
s 3 00—, ) g O
IT a)
v, =0
(va; 53 0) = )
Vg = 0 J
1T b)
F(r) )
(m)
N Yj. .
H'(y H?(r
(Vg5 V35 D) = K™, T( ) S ’r( )
G (7)
— Ym) T\ /7
v Y?. . |
III a)
my (1)
) = Y:(’ },7,”,,7‘,,,
III b)
w=20.

(10)

(11)

Durch Einsetzen in die Wellengleichung folgen dann als Diffe-
rentialgleichungen fiir die verschiedenen Radialkomponenten :

Ia)
29 .[d 9 2(7+1).(d (3+1) ]
@)Dt 20 (L I\ 20D (4 GHD) 4e g
V2i+1 \dr r V25+1 \dr r |
. . 29 . [fd
Al — B b et =D =0
(H+a)) 2 My +1/2j+1®(d’r+7‘)
: : 2(¢+1)./d (3+1)
E 1) A2—2M(G+1)B2—— 24— - ~"—"]| D=0
(B+a) (j+1) 42 —2 M (j 1) Wﬂw(dw :

(12)
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‘1 2j@+n.(d j
E+ ne 1M g2 1) pt
(E+c) 7 (5+1) ]/2?.4_1@‘6“ .
9 r r
: - 2j(G+1) . (d ]
E+b)j Bt — 29t a1\
(bl S ¥ £ A T
. . 27 (j+1).[d  (j+1)\
E-+b) (j+1) B*- 1R 1 e e T B
(E-+b) (j+1) 2 M (j+1) 4 V2j+1"’ 7 - |
Ib)
. . 2i(j+1)./d g
E+b DB—2Mj(j+1)4—219T0 (% I\
(E+b)7 (1+1) i (j+1) szHa,(dT T)
__27*9:21,),?@ fl__!_(]_':i) cz — 0
V27+1 \dr r
: 29+ . (d ]
E cr AT 2 L )\B — 0
(Be)g Jajrt\ar Ty
: %7 (j+1) . [ d  (j+1)
E NO%2——~ AN - S M -} W © == )
(E+4 ) ]/2j+1% dr r
(E+a)j (j+1) A —2 Mj (j+1) B =0/
II a)
(E+h) H —0
I1b)
2; . [d
E+HF—2M 41 (% _1\m
(B+) &b ]/23;-{-1?](617' ?4)
2G+1)./d (j+1)
e / —+—---'--——— HZ :0
V27+ (dfr r
: 2i . [d
E+h) j H _2] x(2  I\p 0
(E+h) g +]/2j+1rb(d'r+fr
(B-+h) (j+1) H? — ]2—/;123 ; (Edu,_.(“ 1>) F _0
9 r r
(E+q) G—2 MF R
111 a)
(B+1o) K ~ 1

[T h) —]

55

[ (12)

(13)

(14)
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Die Bedeutung der ,,Potentialkonstanten” a, b, ... k wurde
in der Tabelle auf Seite 52 erklirt. Die Differentialgleichungen sind
auch fir den Fall j = 0 gtiltig; aus diesem Grunde ist das Kiirzen
durch § in einigen Gleichungen vermieden worden. Aus Symmetrie-
griinden 1st mehrfach auch ein analoger Faktor (7+1) stehen-
gelassen worden.

Die beiden Tille ITa) und III a) geben zu trivialen Glei-
chungen Anlass, die, wie sich spiter ergeben wird, von geringem
Interesse sind. Wir erhalten also im wesentlichen drei Systeme
radialer Differentialgleichungen, deren Lgsung wir im néchsten
Paragraphen im Spezialfall des Kastenpotentials vornehmen
wollen.

§ 3. Integration der radialen Differentialgleichungen im Falle des
Kastenpotentials.

Wéhrend bisher die Grossen a, b, ... k auch noch irgend-
welche Funktionen von r hitten sein dirfen, beschréinken wir uns
nun auf den durch Gleichung (3) gegebenen Fall. Fiir r< o gelten
dann die Gleichungen (12) bis (14) mit konstanten a, ...k, fir
r>p dieselben Gleichungen mit e¢=b=...=k=0. Mittels ein-
facher Rechnung bekommt man in diesem Fall die nachfolgenden
Differentialgleichungen zweiter Ordnung:

Ia)
{(E+d) (B+a) (E+b)—4 M?)

+ 4 (E+b) ( 3 W“ND —0

dr2 g2
(15)

[(Ew) {(B+a) (B-+b)—4 M?)

+ 4 (B+a) ( dd; . (7;1))] i (j4+1) C =0
Ih)
{(EH) {(E+a) (E-+b) —4 M?)
+4 (E+a) (dd; 1 (?;1))] i) B=0 (16
11 b)

{(eqh) {(B+f) (B+g)—4 M2}+4 (E-+g) ( dd;_,_ ] (5’;@‘:1))] F=0 (17)
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Thre Lisungen lassen sich sofort angeben, es sind bekanntlich,
bis auf den Faktor 74, Zylinderfunktionen von halbzahligem
Index; da aber alle weiteren Radialkomponenten durch Diffe-
rentiation aus € und D, bzw. B, bzw. F erhalten werden konnen,
ist hiermit die Integration bereits vollsténdig erreicht. Es miissen
nur noch die Lisungen im Gebiet r< o an die des Gebiets r>p
angeschlossen werden; man wiirde zunichst meinen, dass zu
verlangen ist, dass alle Komponenten einer Eigenlosung sich an der
Grenze des Potentialtopfs stetig verhalten; eine genauere Betrach-
tung zeigt jedoch, dass diese Forderung nicht erfilllbar ist. Die
physikalisch richtige Stetigkeitsforderung kann man dadurch
finden, dass man den Grenziibergang von einem stetig verdnder-
lichen Potential zum Fall des ,,Kastens'* verfolgt. Es lautet z. B.
die erste Gleichung aus (12) bei beliebigem Potentialverlauf nach
geringer Umformung:

a o o _ VY21 D (ﬁAl_l_(?ﬂLl) 2)
o i — G+ 4 ="V @ea ) D+ (L = 4

Wir integrieren beide Seiten von einem Punkt r; mit 0<r; <o
bis zu 7y, mit r,>>p und erhalten:

[7 AT —(j+1) Az]T2

/d [—Wwﬂ(md )D+( “““““ a4 U )}

r

Unter der einzigen Voraussetzung, dass die Eigenfunktionen
beschrankt sind, ist das Integral rechts eine stetige Funktion der
Grenzen; dies gilt auch noch, wenn d (r) bei ¢ einen endlichen
Sprung erleidet. Daraus folgt aber sofort die Stetigkeit von
9 A1—(j4+1) A% an der Stelle p.

Analog kinnen wir bei allen weiteren Gleichungen schliessen;
es ergibt sich so die Forderung der Stetigkeit der folgenden Linear-
kombinationen radialer Eigenfunktionen:

Ia)
D, 74— (3+1) 42

__ —2iy2il 4 1\, 2Mj(i+1)
(E+a) (E+b) — 47»12[(]3”)(61,,,",,,)1) . C},

1 (G+1) €, g (+1) (B*+B?)
2GR (g 4020 p)

4 M? dr r
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Ih)
JGH1)B, j(=1) (recy — T2UI0FD Y241 4 B )
Hie dr
IIb)
i : ——u2’i]/2j+1 d 1
1 B e e | T 20
B, jH— (j+1) H AL (dT T) (20)

Weitere Stetigkeitsforderungen sind nicht mehr erfiillbar.
Aus den obigen Bedingungen allein folgt bereits die Stetigkeit der
Radialkomponente des Wahrscheinlichkeitsstroms, so dass auch
physikalisch kein Grund bestehen kann, weitere Relationen zu
erwarten.

Im Falle E2>4 M? hat die Elgenfunktlon 1m Aussenraum
oszillatorischen Typus; dann reicht eine passende Wahl ihrer Am-
plitude und Phase, wie gewohnt, hin, um zu jedem vorgegebenen
Wert der Energie eine Eigenlosung zu konstruieren — wir ge-
winnen ein kontinuierliches Spektrum. Andererseits folgt aus den
Stetigkeitsbedingungen fiir £2<<4 M? (exponentieller Abfall im
Aussenraum) eine Eigenwertbedingung fiur die Energie. Wir
wollen auf diesen Fall etwas genauer eingehen.

Es se1 also
% = 3 yIIE—E®

reell. Ausserdem setzen wir zun#chst voraus, dass auch die Grossen

(E-+d) {(+a) (B+5)—4 M7}

=3 (E+b)
by — 37/ E+) {F+a) @10 — 433
2 2 (F+a)
ky — 31/ {(E+]) (E+g) —4 M7
(E-+g)

alle reell sind. Dann bekommen wir folgende Lésungen®):
Ia)

Fir r<p: Fir r>o:
= Ay Yhyr Iy (By 1) = Ao Yxr Hi g (3 2r)
= P ]/k27°Jj+% (Fa ) C = g ]/7‘” Hj (i =7).

*) Unsere Bezeichnung der Bessel- und Hankelfunktionen stimmt mit der
bei E. JarNkE und F. EmMpE (Funktionentafeln) iitberein, ebenso die der weiter
unten benutzten Grossen §,,(2x).
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Die Stetigkeitsbedingungen (18) liefern dann nach kurzer
Rechnung:

Wenn 73 = 0: 7
kiod_y(ki0)
kjoctghkyo= F—13% )
10 C g 10 ( J_{__é (k )
2
_ E{(E+a)(E+b)—4M } (x0+1). (@1a)
(E+b) (4 M?—E?)
Fiar 9>1:
[ Fio oJ ;—%(kl 0) 1 )
(7+1) ;14 Ry 0)
E{ (E+4a) (E+b)—41 7\/_[2} 208,31 (22 0)+(7+1) S;4+1(2 xo)}
(E+0) (4 M*?— E?) (7+1) ;44 (2 %0)
| kao J;i_3 (ks 0)
- s = —1 (21b)
[ 713 (kg 0)
E{(E+a) (E+b)—4 M?} x9S,y (2%0)+jS;13 (2% e)}
(E+a) (4 M?— E?) jS;43 @ xe)
. 4aM 1+(Ej{—7ai)7(E+b) 4 M2\?
"~ (E+a) (E+b) 4 M?_E? ) ' )
Entsprechend im Fall
Ib)
Fir r<p: Fir r>p:
B = p; kot Jjey (kyr) B = pg Yxr Hj g (ixr).
Also
]‘;29 Ji—% (kz Q)__ e R E+C ”0 Sa—— (2 %Q)’l“? Sa+z (2 %Q) (22)

1514 (ke 0) E

? S?-F’z’ (2 %0) ,

wobel 7>1 ist (fiir j = 0 existiert keine Losung). Schliesslich
IT b)
Fir r<p Fiir r>p:
F =7, ykgr Jjpy (ksr) F=2,yxrHj, j(inr)
Also
kse J5-3 (ks 0) _Eth %08, @%0)+(+1) S:4(2%0) g

(1) T (hs0) K (7+1) 843 (2 % @)

(7>0).

Ganz &hnliche Eigenwertbedingungen liessen sich auch fir
imagindre k; angeben, da jedoch alle etwaigen Losungen dieser
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Art physikalisch nicht von Interesse sind (vgl. dazu den folgenden
Paragraphen), verzichten wir auf die Angabe jener Eigenwert-
bedingungen.

§ 4. Diskussion der Lésungen.

Es 1st von vornherein zu erwarten, dass eine auf der Dirac-
gleichung beruhende Theorie Zustinde negativer Energie liefert.
Im Fall verschwindender Wechselwirkung wird unser Zweiteilchen-
system (im Schwerpunktssystem) offenbar folgende méglichen
Energiewerte besitzen:

«) B = yp i + pPiL Mt = 2 y/pPL M2,
B) E= 4 (Yp¥*+ M —yp"+ M?) = 0
7) B —yp MR ypP M = 2y M

Die Losungen der Gruppen f) und yp) kénnen natiirlich nur
mit den Ideen der Lochertheorie interpretiert werden, sind aber
fiir unsere Betrachtungen sinngemiiss auszuschliessen. Genauer
gesagt, beschrinken wir uns im Fall beliebig grosser Wechsel-
wirkung auf diejenigen Zustinde, die bei adiabatischer Ausschal-
tung der Wechselwirkung in die Zustéinde der Gruppe «) iiber-
gehen. Damit sind unter anderen auch alle Lisungen der trivialen
Gleichungssysteme IIa) und IITa) von der Betrachtung aus-
geschlossen, da sie offensichtlich alle in Zustinde der Gruppe p)
(E = 0) tibergehen.

Ist die Wechselwirkung hinreichend schwach, so sind die zu-
lassigen Energieterme der Gruppe «) mit denen der unrelativi-
stischen Theorie identisch. In diesem Grenzfall (V€M) ist
offenbar

by = k= )/ M (B+ ") @ =E—2M)

k= |/ (4 129),

so dass in der Gruppe I) die Grosse 15 (a+b), in der Gruppe II)
dagegen 15 (f+¢) mit dem unrelativistischen Potential 1, tber-
einstimmt. Es existieren hier bekanntlich gebundene Losungen
nur fir positives V,, d. h. reelle k,. Die k; bleiben nun auch fir
beliebig grosse Wechselwirkung dann und nur dann reell, wenn
alle im betr. Losungssystem vorkommenden Potentialkonstanten
a, b, ... positiv sind. In diesem Falle lasst sich die adiabatische
Verschiebung irgendeines Eigenwertes vom unrelativistischen Fall
zu beliebig hohen Potentialwerten verfolgen. Man erkennt aber aus

und
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der Tabelle auf Seite 52, dass lauter positive Potentialkonstanten
nur in besonderen Fillen auftreten, insbesondere fiir keine Linear-
kombination der w; in den Systemen I) und II) zugleich, so dass
1m allgemeinen ein im Unrelativistischen vorkommender Energie-
term bei hohen Potentialwerten gar nicht mehr existiert. Der
physikalische Grund hierfiir ist leicht einzusehen: in unserer
Wellengleichung ist, wie in der Diracgleichung, der Spin nicht
diagonal, die Potentialmoglichkeiten sind aber derart, dass mit
einer Anziehung fiir gewisse Spinkomponenten eine Abstossung
anderer verbunden ist. In dem Gebiet, in dem keine der Spin-
komponenten mehr klein ist, verglichen mit einer anderen, bleibt
daher die Stabilitit des Eigenwertes nur unter ganz besonderen
Umsténden erhalten.

Es ist hierbei tibrigens nicht gesagt, dass Losungen fiir andere
als lauter positive Potentialkonstanten tiberhaupt unmdoglich sind.
Man kann aber leicht verifizieren, dass alle weiteren Losungen —
und hierzu gehoren alle etwaigen Losungen mit imaginéren k; —
beim adiabatischen Ausschalten der Wechselwirkung in Zustédnde
der Gruppe f) (oder y)) tibergehen miissen. (Fiir die Zustédnde der
Gruppe y) ist die Forderung lauter negativer Potentialkonstanten
charakteristisch.)

Setzen wir nun den experimentellen Wert der Bindungsenergie
des Deuterons in irgendeine der Gleichungen (21) bis (23) ein,
so ergibt sich jeweils eine Beziehung zwischen ¢ und V, das als
Faktor in @, b ... auftritt. In der so erhaltenen Gleichung kiénnen
wir Insbesondere auch den Grenziibergang o—>0, V—>
vollziehen. Man erkennt, dass bei diesem Vorgehen sich in grob-

ster Ndaherung folgende Relationen ergeben:
La) 9= 0;
ky o ctg ky o= + o
Alsg kio=nmn, n>1

und insbesondre, wenn die eingesetzte Inergie die des tiefsten
Zustandes der Gruppe sein soll:

kl Q = 7T
Entsprechend liefert die Stetigkeitsbedingung fir j>1: entweder

ko Ja'——é; (Fy 0)
Ja'+% (k1 0)

kyo Jw%‘ (kz Q)
JH—% (k'z Q)

oder

:OO’
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d. h. falls wieder endliche Bindungsenergie fiir den tiefsten Zustand
vorausgesetzt wird:

oder

z(i+%) ist die erste positive Nullstelle der Besselfunktion
Jiry(x). Fir j=11ist 23) = 4,49... Ganz analog wird in den
anderen Gruppen: .

1b)
koo ;-3 (ks 0) o B
Jj+% (sz)
also
kz@ — g;(7+ ).
11 b)
kso Jiy (kse) _
J;. 3 (ks0)
also

Ubereinstimmend ergibt sich also in allen Fillen, dass, falls
in der Grenze ¢ = 0 ein Zustand endlicher Bindung existieren soll, -

Py e o (25)

gelten muss.

(Eine Sonderbetrachtung erfordern allerdings die Fille, in
denen eine der Potentialkonstanten verschwindet. Dann ist offen-

bar auch V% ~ k moglich; andererseits ergeben sich auch dann

; g o 6
Beziehungen der Form k p=const, so dass in diesem Fall I = %{;—%ﬁ

zu fordern 1st, was mit dem Ergebnis der unrelativistischen Theorie
tibereinstimmt.)

Jedenfalls ldsst sich aber in keinem Falle die endliche Bin-
dungsenergie des Deuterons mit einem Grenziibergang der Form

const

¥y

(26)

vereinbaren, wie er fiir die normierbare d-Funktion charakteristisch
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ist. Die Giiltigkeit dieser Beziehung ist n#mlich damit dquivalent,
dass in der Grenze die Wechselwirkungsenergie durch

C - /{qp* (2¥, 2P) w; p (a¥, 2P)} vy d @

P=z

gegeben ist, wo C eine endliche Konstante ist. Dies wire im Sinne
von STUECKELBERG?) ein befriedigender Ansatz im Rahmen einer
allgemeinen Theorie. Bei Giiltigkeit einer Beziehung wie (25)
lasst sich hingegen das Resultat des Grenziiberganges gar nicht
unabhéngig von der Grenzbetrachtung formulieren und dirfte
formal kaum befriedigend sein.

Andererseits zeigt jedoch die Uberlegung, dass es sicher nicht
erlaubt ist, beim Ubergang zu unendlich kurzer Kraftreichweite
unrelativistisch zu rechnen. Denn bekanntlich®) ergibt die un-
relativistische Theorie statt (25) die Forderung

s OISR (27)

Daher konnen die Uberlegungen von Twuomas?), der unter
Annahme von (27) den Nachweis fithrt, dass die Bindungsenergie
von H? unendlich wird, einer Kritik nicht standhalten und miissten
in einer relativistischen Theorie wiederholt werden. Wir glauben
jedoch auf Grund der formalen Uberlegungen des vorhergehenden
Absatzes, dass das Ergebnis (25) der Theorie des Deuterons bereits
zeigt, dass die Erwigung der Moglichkeit von Nahekréften nicht
sehr sinnvoll sein dirfte.

Lasst man trotzdem den Grenziibergang mit (25) zu, so kann
man, wie auf S. 61 schon erwihnt, hichstens in einem der beiden
Systeme I) oder II) einen gebundenen Zustand in der Grenze
erwarten. Im Falle des Systems II) ist dann eindeutig der Zu-
stand mit § = 0 und k; ¢ = & der tiefste und in der Grenze einzige.
(Fir die Existenz anderer Zustinde wire ndmlich k30 = const > =
erforderlich.) Hingegen gibt es, falls stabile Zustédnde in der Gruppe
I) existieren, noch verschiedene Moglichkeiten, je nachdem

1. Yad.4,49.. >ybexn
oder :

2. Yad.449  <yben

gilt. Im ersten Fall wird offenbar der tiefste Zustand gegeben
durch
ko==
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und gehort zum Eigenwert j = 0, im anderen Fall aber ist der
durch
kzg == 4,49 ..

charakterisierte, zu Ia) j =1 gehorende der stabile. Andere
Zustande treten sicher nicht in Konkurrenz, und nur im Falle
Yad 4,49 = y/be . w bleiben beide in der Grenze gebunden.

Auf Grund des vorher Gesagten méchten wir aber diesen
Ergebnissen keine grosse Bedeutung zusprechen.

§ 5. Beziehungen zur unrelativistischen Theorie, Relativitiitskorrektionen.

Wir mochten zum Schlusse unsere Gleichung fiir endliche
Potentialfunktionen betrachten. Sie kann hierbei nur die Aufgabe
erfiillen, die relativistischen Korrektionen approximativ zu liefern.
Uberlegungen solcher Art wurden mehrfach an Hand der Schro-
dinger-Gordon’schen Wellengleichung angestellt!). Insbesondere
15t der Ansatz von FEENBERG dem unseren ganz analog. FEine
Beriicksichtigung der Spinabhéngigkeit der Krifte konnte dort
natirlich nicht erfolgen.

Es ist zweckmiéssig, hier die Naherung der Pauli’schen Spin-
theorie zu betrachten. Das Wesentliche hierzu konnen wir wieder
aus der Tabelle auf Seite 52 ablesen. In der Pauli’schen N&herung
wird unsere Wellenfunktion die vier grossen Komponenten wss,
Waa, Va3, Waa Desitzen, daraus folgt nach der Tabelle, dass im
System I)

(q +s5), (19 +14g) , = (Ug+uy)

71
]/ 2 /2
gross sind, im System II) nur

V 5 (01+5) -
Das System I) gibt also im unrelativistischen Grenzfall die Triplett-
zustinde, das System II) die Singlettzustinde. Ferner sind im
System I a) die grossen Komponenten mit den Kugelfunktionen
Y, ;und Y,,, multipliziert, im System Ib) mit Y;. Es besteht also
die folgende Zuordnung:

Ta) s=1 j3=1041
Iby s=1 Jj=1 (28)
IIb) s=0 (G=1I.
Den Grundzustand des Deuterons muss uns daher das System
I a) liefern; das zugehorige ,,Potential*® ist 4 (a+b). Der fiir die

|
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Streuung wichtige Singlettzustand (System II b)) hat hingegen
das Potential % (f+g).

Die Charakterisierung der verschiedenen méglichen Potential-
ansitze durch die bisher benutzten Grossen a, b, ... ist freilich
in diesem Zusammenhang unvorteilhaft.

Fine bessere Ubersicht gewinnt man, wenn man die Kom-
ponenten der Wellenfunktion in vier Gruppen aufteilt im Sinne
der Pauli’schen Zerspaltung in grosse und kleine Komponenten.

Wir schreiben also die Komponenten in folgender Reihenfolge:

1. «a=84 f=34
2 a=12 pf=384
3, «=284 f=12
4 «=12 p=12

wo o den ersten, f den zweiten Index von ,, bedeutet. Die fiinf
Wechselwirkungsansitze lassen sich dann sehr iibersichtlich in
der Gestalt von Ubermatrizen schreiben, die als Elemente ausser
der Einheitsmatrix nur die Pauli’schen Spinoperatoren des
Protons und Neutrons enthalten. Es ist n&mlich bel dieser
Anordnung:

I I —(@¥o™)\ )
| —1 I — (GNP
I R B LR — (s %57 (GIJ ) ’
I — (Yo" I
okt (57 57P)
_ — (V") — (e o") 29
g o W(EN—EP)_(EN;P) o b ( )
(5757) 557)
(¥ aF) —1 I
_ (e¥ehy —I - —1
Oy = —1 (5%5P) » W5 =1 _q
—1 (6¥e?) I

Die Ansitze w, und w, entsprechen also dem spinunabhéngigen
Potential der unrelativistischen N#herung, wéhrend w; und w,
dort den Spinoperator (¢¥¢?) mit den Eigenwerten +1 fiir den
Triplett-, —3 fir den Singlettzustand enthélt.

wy gibt im unrelativistischen Grenzfall kein Wechselwirkungs-
potential. Das gleiche Ergebnis hatten wir natiirlich durch Ein-
5
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setzen der Werte von 1 (a-+-b) bzw. % (f+¢) aus der Tabelle (8. 52)
gewinnen konnen.

Unter Benutzung der Darstellung (29) lassen sich natiirlich
auch leicht hdohere Niaherungen der Pauli’schen Spintheorie
bequem bestimmen.

Eine weitere mogliche Ergéinzung des Bisherigen besteht darin,
dass man den Majorana’schen Operator des Koordinatenaustau-
sches einfithrt. In den Paragraphen, in denen uns im wesentlichen
der Grenzfall der é-Funktion interessierte, wire seine Mitnahme
sinnlos gewesen, und eine Ergiinzung in dieser Richtung ist jetzt
noch leicht mdaglich. Wie stets im Zweikorperproblem besteht
der Einfluss des Majoranaoperators lediglich darin, dass in den
Wechselwirkungstermen die Anderung

Y, — ()" Y,

vorgenommen werden muss.

Daher miissen hier folgende Ersetzungen in den radialen
Differentialgleichungen (12), (13), (14) vorgenommen werden :

Ia) d—> (—1)7d a— (—1)+1a
c—> (—1)¢ b—> (—1)7+1p
Ib)y b—>(—1)b ¢c—> (—1)i*l¢

(30)

if h—>(—=1)i1h

Ih) f—> (-1
1

mit entsprechenden Anderungen in allen nachfolgenden Glei-
chungen. Auch hierauf wollen wir nicht ausfiihrlicher eingehen.

Im Prinzip erméglichen unsere Gleichungen also fir irgend-
eine beliebige Wahl des Potentialansatzes die Anderungen gegen-
iber einer unrelativistischen Theorie abzuschédtzen. Wir mochten
jedoch hier im Hinblick auf die vielen Méglichkeiten darauf ver-
zichten, zahlenméssige Angaben zu machen. Grossenordnungs-
méssig bleiben die Abschiitzungen von MARGENAU (l. c.) sicherlich
auch hier bestehen, und zwar einschliesslich des verkleinernden
Faktors 4, auf den Feensrra (l. c.) hingewiesen hat. Bei Gleich-
setzung aller Potentialkonstanten geniigen namlich, wie leicht zu
sehen 1st, unsere y-Funktionen identisch denselben Wellenglei-
chungen zweiter Ordnung wie die Feenberg’schen, und es ist klar,
dass die bei uns tatsichlich auftretende Verschiedenheit der
Potentialkonstanten in grossenordnungsméssiger IHinsicht nichts
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andern wird und auch hier erst bei Benutzung einer Kraftreich-

weite <1012 em die Relativitdtskorrektionen von Bedeutung
waren.

Herrn Prof. Dr. W. Pavir mochte ich fir die Anregung zu
dieser Arbeit sowie fiir zahlreiche fordernde Ratschlige und Dis-
kussionen bestens danken.

Zirich, Physikalisches Institut der E.T. H.
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