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Theorie der Löschgittersteuerung in Gasentladungen
von F. Lüdi.

(Mitteilung aus dem physikalischen Laboratorium der
A. G. Brown, Boveri & Cie., Baden, Schweiz.)

(18. VII. 36.)

Inhalt: In § 1 wird eine Vorstellung für den Löschvorgang in einer Queok-
silberdampf-Gleichstrombogenentladung, welche durch speziell konstruierte
„Löschgitter" mittels negativer Spannungen verlustlos unterbrochen werden kann,
entwickelt. Die quantitative Durchführung, eine Ausdehnung der ScHOTTKY'schen
Theorie der positiven Säule auf den nichtstationären Fall, enthält sowohl die
ScHOTTKY'sche Beziehung zwischen Neubildung der Ladungsträger und dem
Rohrradius für kleine Weglängen wie auch die ToNKS-LANGMunt'sche Beziehung für
grosse Weglängen als Spezialfall. In § 5 wird die Löschzeit berechnet und mit der
experimentell bestimmten (IO-4 sec) grössenordnungsmässig übereinstimmend
gefunden. Ferner wird die Beziehung zwischen einzustellender Dampfdichte und
Gitterlochdurchmesser aufgestellt und mit dem Experiment verglichen.

Einleitung.

Herrn E. Kobel ist es vor einiger Zeit gelungen, durch
Versuche, die im Physikalischen Laboratorium der A.-G. Brown,
Boveri & Cie. gemacht wurden, Gleichströme in
Quecksilberdampfentladungen bis zu 100 Ampères und mehr an einer Anode
mittels speziell konstruiertem Gitter mit Spannungen (Grössenordnung

+ 100 Volt) in taktmässiger Aufeinanderfolge zu zünden
und zu löschen1). Die technische Bedeutung dieser Tatsache,
welche entgegen früherer Behauptungen in der Literatur realisiert
werden konnte, lässt es gerechtfertigt erscheinen, eine
weitergehende theoretische Deutung des LöschVorganges zu versuchen.
Zwar hat schon Kobel in seiner Arbeit eine solche zu geben
versucht und in der Störung der Quasineutralität durch das negative
Gitter das Wesentliche gesehen. Wir wollen diese qualitativen
Vorstellungen näher präzisieren und sehen, wie weit sich eine
den einzelnen Experimenten angemessene Theorie aufstellen lässt.
Bei der Kompliziertheit der Gasentladungsphysik müssen auch
hier weitgehende Vereinfachungen in der Problemstellung getroffen
werden und es ist daher angebracht, in einem ersten Paragraphen
verschiedene Gesichtspunkte zu vergleichen, um dann denjenigen
näher zu verfolgen, welcher den Tatsachen am meisten entspricht.

x) E. Kobel, Bulletin S. E. V. Jahrgang XXIV, Seite 41, 1933.
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§ 1. Problemstellung.

Das Gitter um die Anode ist als topfförmiger Körper gebildet,
in dessen Boden die Gitterlöcher gebohrt sind. Sie haben einen
Durchmesser von ca. 1 bis 3 mm und sind etwa 10 mm von der
Stirnseite der Anode entfernt. Seitlich befinden sich keine Gitterlöcher.

Fig. 1. Die naheliegendste Vorstellung zur Erklärung des

Löschvorganges wäre nun die, dass bei Anlegen der negativen
Gitterspannung bei positiv bleibender Anode durch den positiven
Ionenstrom auf das Gitter ein so grosser Dunkelraum entsteht,
dass die Löcher „zugemacht" werden und die Verhinderung des

weiteren Elektroneneintritts in die Gitterlöcher durch das abstos-
sende Feld, welches ja im Dunkelraum vorhanden ist, zustande
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Fig. 1.

kommt. Doch kommt diese Anschauung nicht in Betracht, denn
die Dunkelraumdicke macht selbst bei so kleinen Löchern, wie
Kobel durch Messungen des positiven Gitterstromes in Funktion
der negativen Gitterspannung und Berechnung aus dem
Langmuir'sehen Raumladegesetz feststellte, nur ca. 10% des
Lochdurchmessers aus. Darüber greift aber das elektrische Feld in
erster Näherung nicht hinaus. Die eintretende Unstabilität der
elektrischen Entladung muss also in erster Linie auf den Verlust
an positiven Ionen zurückgeführt werden, wodurch die
Quasineutralität gestört wird. Nun könnte man weiter denken, dass
das elektrische Feld im ersten Moment beim Anlegen der negativen
Spannung an das Gitter noch nicht durch die positive Raumladeschicht

abgeschirmt ist und deshalb eine für positive Ionen auf
grössere Distanzen anziehende Wirkung hat. Dazu ist jedoch zu
bemerken, dass die negative Gitterspannung nicht plötzlich in
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ihrem Maximalwert angelegt wird, sondern dass diese meist nach
einer Sinuskurve1) (50 Per.) allmählich (im Vergleich zur Löschzeit

~ 10~4 Sek.) ansteigt und der Dunkelraum schon bei kleinen
Spannungen genügend Zeit zur Ausbildung hat, wodurch die
negative Spannung dauernd abgeschirmt bleibt. Die plötzlich
eintretende Löschung bei einem bestimmten negativen Spannungswert

muss also ihre Erklärung in einer anderen Ursache finden.
Wollen wir auch noch einen möglichen schwachen Feldeingriff
über den Dunkelraum in das Plasma hinein in Betracht ziehen,
so wäre doch dieser Effekt schwer abzuschätzen. Die Tatsache,
dass es über einer bestimmten Lochgrösse (0=8 mm) trotz
grossen negativen GitterSpannungen (— 300 Volt) und sehr kleiner
Hg-Dampfdichte (entsprechend 15° C) nicht mehr möglich ist,
den Bogen zu löschen, lässt es als sehr unwahrscheinlich erscheinen,
dass das elektrische Feld in einer Stärke über den Dunkelraum
hinausgreift, die grösser ist als das in bekannter Weise in jeder
Bogenentladung vorhandene radiale Potentialgefälle; ein solches
existiert auch in einer Entladung, in der die freie Weglänge gross
im Vergleich zum Rohrdurchmesser ist. Die starke Abhängigkeit
der Löschfähigkeit vom Lochdurchmesser lässt uns nun vermuten,
dass der Löschvorgang im Zusammenhang mit der Ausbildung
der Dunkelraumdicke und deren Grösse im Verhältnis zum
Lochdurchmesser steht. Zu dieser Vorstellung werden wir geführt
durch eine Beobachtung, welche schon in Fig. 1 angedeutet ist.
Auf einer Anode, die dauernd während einigen Stunden nur Gleichstrom

führte, auf die also nur Elektronen auftrafen, waren nachher
bei Zerlegung der Apparatur sehr deutlich die Gitterlöcher nach
Lage und Grösse durch Zerstäubung des Anodenmaterials sichtbar
abgezeichnet. Das würde also heissen, dass durch das Löschgitter

die Entladung vor der Anode in eine grosse Zahl von Kanälen
aufgeteilt wird, welche den Bogenstrom führen. Bei den relativ
kleinen Dampfdichten, wie sie Kobel als Bedingung für das

gute Funktionieren der Steuerung erkannte, ist dies verständlich,
da die Elektronen im Raum zwischen Anode und Gitter, den wir
den Löschraum nennen wollen, nur wenige Zusammenstösse mit
den Gasmolekülen erfahren und daher selten aus ihrer durch das

Längsfeld zwischen Anode und Gitter bestimmten Bahn abgelenkt
werden. Durch das Gitter wird nun erstens der Löschraum von
einer positiven Ionenüberschwemmung aus der Bogenentladung
geschützt; die positiven Ionen, die im Löschraum zur
Aufrechterhaltung der Quasineutralität und somit des kleinen Bogen-

Siehe die Oszillogramme in Kobel's Arbeit loc. cit.
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abfalls nötig sind, werden von den Elektronen auf ihrem Weg in
den Kanälen erzeugt. Infolge des geringen Verhältnisses von
Ionengeschwindigkeit zu Elektronengeschwindigkeit braucht es zur
Neutralisierung der negativen Raumladung nur eine kleine
Neubildung positiver Ionen (grosse Punkte in Fig. 1). Dass kein
Überschuss an Ladungsträgern im Löschraum vorhanden ist,
zeigt sich schon dadurch, dass der Bogenabfall durch die Löschgitter

um ca. 5 Volt erhöht wird. Zweitens wird durch die
Aufteilung der Entladung in viele Kanäle die begrenzende Oberfläche
des Plasmas stark vergrössert. Unsere Vorstellung geht dann
dahin, dass die positiven Ionen durch die „Kanalwände" in den
plasmafreien Raum diffundieren, wo sie vom negativen
Gitterpotential (welches nicht in das Plasma dringt) auf das Gitter
gezogen und dort neutralisiert werden. Was bedeutet unter diesen
Umständen das Anlegen eines negativen Gitterpotentials und
wodurch ist der sehr bestimmte Wert zur Löschung charakterisiert
Diese Frage lässt uns die Theorie der positiven Säule, wie sie zuerst
von Schottky1) und später von Tonks und Langmuir2) in
allgemeiner Form und auf anderer Basis gegeben wurde (dort wird
auch der Fall für Weglänge gross gegen Rohrdurchmesser behandelt)

beantworten. Danach existiert in der positiven Säule einer
Gasentladung stets ein kleines radiales Potentialgefälle, welches
die Ladungsträger seitlich an die Rohrwand zieht, wo sie rekombiniert

werden. Das Wichtige an dieser Vorstellung ist nun nicht,
dass sich dieses Gefälle in Abhängigkeit vom Rohrdurchmesser
so einstellt, dass gerade so viele Ladungsträger nach der Seite
hin verschwinden, wie in der Säule gebildet werden, sondern,
dass dieses weitgehend unabhängig vom Bohrdurchmesser ist und
nur durch die Elektronentemperatur bestimmt wird, und dass
die Neubildung der Ladungsträger vom Rohrdurchmesser abhängig
wird, da sich Verlust zu Neubildung wie Oberfläche zu Volumen
verhält. Für zylindrische Volumen wächst daher die Oberfläche
im Verhältnis zum Volumen mit abnehmendem Radius wie 1/r.
Darin liegt die Erklärung des zunehmenden Längsgradienten
(welcher für die Neubildung verantwortlich ist) mit abnehmendem
Radius. Wir sehen daraus auch, dass die Elektronentemperatur
mit abnehmendem Radius und damit das radiale Potential eher
zu- statt abnimmt, da bei steigendem Längsgradienten den
Elektronen mehr Energie zugeführt wird. Der Zusammenhang zwischen
sekundlicher Neubildung X, dem Röhrenradius a und der Elek-

W. Schottky, Phys. Z. S. 25, Seite 342 und 635, 1924.
L. Tokks und I. Langmuir, Physical Review Vol. 34, S. 876, 1929.
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tronentemperatur Te ist für Weglänge gross gegen Rohrdurchmesser

nach Tonks-Langmuir gegeben durch:

aX s0(2k TJm,)1!* (1)x)

(s0 reine Zahl, Grössenordnung 1, k Boltzmann'sehe Konstante,
m,ß Masse des positiven Ions.) Wir fassen jetzt unsere Kanäle
einzeln als solche positive Säulen, in denen die freie Weglänge
gross ist im Vergleich zum Kanaldurchmesser, auf. Wenn wir
annehmen, dass X nur bis zu einem Grenzwert 2max (begrenzt durch
die Zusammenstösse) wachsen kann, so finden wir einen kritischen
Radius «kritisch B0, bei dem gerade Gleichung (1) noch erfüllt ist.
Wenn der Radius noch kleiner wird, so bricht die Entladung,
da mehr Ionen abfHessen als neue gebildet werden, in sich zusammen.
Die Verkleinerung des Radius des Plasmakanals geschieht durch
die Dunkelraumdicke in Abhängigkeit von der negativen
Gitterspannung. Auch diese Vorstellung wird durch das Experiment
gestützt. Die grosse Abhängigkeit der Dampfdichte vom
Lochdurchmesser (grosse Löcher, kleine Dampfdichte) heisst dann

</,'>, i > ¦ > > > ¦ ¦,'» 111 ¦,>,'' '',' > ' ,' '• I • ' /,l, '''Il r— ¦,•,.•,',::.;, .v .;>,-,*, ,,:
Fig. 2.

nichts anderes, als dass die Einstellung der Dampfdichte ein X

erlaubt, das so nahe dem Grenzwert Amax ist, dass der Kanalradius
durch die Dunkelraumdicke auf den kritischen Wert verkleinert
werden kann. X steigt zuerst noch bei Anlegen der negativen
Gitterspannung auf den Wert Amax, was sich in unveröffentlichten
Oszillogrammen durch Erhöhung des Bogenabfalles ausdrückt,
der erst.beim Löschen plötzlich auf die volle Anodenspannung
springt.

Es sei bemerkt, dass das Bild der Kanäle über den
Gitterlöchern wesentlich ist. Kobel konnte zeigen, dass ein Gitter
mit demselben Lochdurchmesser und derselben Lochhöhe, welches
in die positive Säule weiter weg von der Anode gebracht wurde,
sich jedoch über den ganzen Rohrquerschnitt erstreckte, unter
keinen Bedingungen imstande war, die Entladung zu löschen.
Das ist nach unserer Vorstellung verständlich, denn hier kommen
vom Plasma auf der Rückseite des Gitters, wo die Kanäle wieder

x) loc. cit. Gleichung 46.
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verwischt sind, durch das Längsfeld auch positive Ionen in die
Löcher, welche dadurch überschwemmt werden (Fig. 2) ; es ist
so, als wenn in Fig. 1 die Anode einen Überschuss an positiven
Ionen in die Kanäle schicken würde. Solange sich Kanäle
ausbilden können, spielt ihre Länge, d. h. der Abstand Gitter—Anode,
wie aus obigen Überlegungen hervorgeht, praktisch keine Rolle;
auch dieser Punkt ist durch das Experiment gestützt.

Wir besprechen nun noch die Wirkungen, die der Entzug
von positiven Ionen haben kann. Wir unterscheiden zwei Möglichkeiten

:

a) 1. Die positiven Ionen diffundieren in die Räume zwischen
den Kanälen und gehen verloren durch Wegziehung an das
Gitter.

2. Dadurch kommen weniger Ionen in die Gitterlöcher und
„lösen" dort weniger Elektronen aus (Umkehrung des
Zündmechanismus nach Klemperer und Steenbeck1)).

3. Dies tritt ein, wenn die seitliche Wegdiffusion grösser als
die Neubildung wird.

4. Es ist dann für die r-te Auslösung

n n0 (NyY (1—a)r (2)

d. h. n0 Elektronen gehen zuerst vom Gitterloch im stationären

Zustand pro Sekunde aus; diese erzeugen auf dem
Weg zur Anode n0N Ionenpaare (N die von einem Elektron
auf dem Weg erzeugte Paarzahl), davon geht der Bruchteil oc

durch seitliche Diffusion verloren, so dass nur noch
n0N—an0V Ionen an das Gitterloch ankommen, welche
insgesamt n0N (1—a) y Elektronen auslösen u.s.f. Für das
r-te Mal ergibt sich Gleichung (2). y bedeutet auch hier
einen Ausbeutefaktor, der im Gegensatz zum Ausbeutefaktor

an der Kathode einer Glimmentladung (nach
Seliger) infolge seiner raumladekompensierenden Wirkung
^> 1 ist. Es ist (Ny) 1, da für den stationären Zustand
die von einem Elektron erzeugten Ionen gerade wieder ein
Elektron auslösen. Wenn also a > 0 wird, so strebt n
nach einer genügenden Zahl r von Laufzeiten gegen Null.

b) 1. Gleich wie bei a).
2. Durch Wegdiffusion wird die Quasineutralität gestört,

wodurch der Widerstand des Plasmas wächst und deshalb
der Strom raumladebegrenzt wird.

3. Gleich wie bei a).

x) H. Klemperer und M. Steenbeck, Zeitschr. f. techn. Phys. XIV 341,1933.
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Es ist ersichtlich, dass bei beiden Vorstellungen der Verlust
an positiven Ionen massgebend ist, gleichgültig wie nachher die
Auswirkung verläuft. Die Aufgabe wird es also sein, den zeitlichen
Verlauf dieses Abklingvorganges quantitativ zu erfassen. Wir legen
die Auffassung b) den weiteren Betrachtungen zugrunde, da sie

uns der Aufgabe näher zu kommen scheint, werden aber sehen,
dass Punkt 2 noch näher zu präzisieren ist, um dem Problem die
lösbare Form zu geben.

§ 2. Aufstellung und Diskussion der Differentialgleichung.

Wir folgen hier der ScHOTTKY'schen Methode, da sie uns in
der Handhabung für diese Frage einfacher als die Tonks-Lang-
MuiR'sche erscheint. Dabei ist allerdings zu berücksichtigen, dass
Schottky seine Theorie für dichte Gase abgeleitet hat, während
wir hier eine solche für dünne Gase brauchen; aber wir werden
sehen, dass durch eine weitere sinngemässe Interpretation des

ScHOTTKY'schen Diffusionskoeffizienten auch der Tonks-Lang-
MUiR'sche Fall grosser Weglängen in dieser Behandlung enthalten

Fig. 3.

ist. Wir betrachten also den Querschnitt eines Plasmakanals
Fig. 3 und stellen die Kontinuitätsgleichung auf (das Ganze

gilt z. B. für die Kanallänge 1). Schottky betrachtet den stationären

Fall, für welchen gilt

div S?— N 0

Wir haben den nichtstationären Fall zu betrachten und
müssen statt dessen von der allgemeinen Kontinuitätsgleichung
ausgehen.

dn^=divR-.rV (3)
dt
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welche in Zylinderkoordinaten heisst:

dn„ 1 d (rS?)

dt r dr
N. (4)

np ist die Ionendichte zur Zeit t an der Stelle r (Fig. 3), & die
radiale Ionenstromdichte und N die pro Sekunde erzeugte
Ionendichte. Bevor wir weiter gehen, müssen wir Punkt b) 2 näher
diskutieren. Dieser ist nicht so zu verstehen, dass nur die positiven
Ionen weggenommen werden, während die Elektronen, welche
infolge ihrer grossen Beweglichkeit den Hauptteil des Stromtransportes

ausmachen, in ihrer Zahl erhalten bleiben. Das würde
infolge der PoissoN'schen Gleichung zu Potentialen führen, welche
das verfügbare Anodenpotential weit überschreiten; das
Anodenpotential cp muss der PoissoN'schen Gleichung

A cp — 4 ti e (np — ne) (5)

genügen. Da die Stromdichten in den Kanälen im stationären
Fall bis zu 3 A/cm2 gehen, muss der Überschuss der Elektronendichte

ne gegen die Ionendichte nv selbst beim Löschvorgang bis
hinab zu Stromdichten von 10~4 A verschwindend klein sein1),
d. h. es kann nc ne n gesetzt werden. Die Elektronen (und
damit der Bogenstrom I ne ¦ e • v) nehmen also in gleicher Zahl
ab, wie die Ionen, was praktisch Erhaltung der Quasineutralität
bis zum Ende des Löschvorganges bedeutet. Also: zuerst Störung
der Quasineutralität durch den Entzug von positiven Ionen;
die Störung kann aber infolge der PoissoN'schen Gleichung nur
äusserst gering sein, d. h. Erhaltung der Quasineutralität bei
gleichzeitiger Elektronenabnahme und damit Verschwinden des

Bogenstromes. Nun können wir die Differentialgleichung (4)
schreiben, wenn wir auch hier mit Schottky die Neubildung
N Xn proportional der Elektronendichte n setzen:

dn 1 d(r«)
— An. (6)

dt r d

Damit wir auch hier eine Differentialgleichung in n bekommen,
müssen wir versuchen, $? als Funktion von n zu erhalten. Schottky
macht dies, indem er & als ambipolaren Diffusionsstrom

® — D ¦ grad n (7)

ansetzt, wobei D der effektive oder ambipolare Diffusionskoeffi-

M W. Schottky, loc. cit. Seite 636.
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zient bedeutet, der verschieden vom thermischen ist. Wir müssen
sehen, ob Gleichung (7) formell auch für grosse Weglängen gilt.
Wir gehen deshalb auf die ScHOTTKY'sche Ableitung etwas näher
ein. Danach wird der positive Wandstrom ^+ durch den reinen
thermischen Diffusionsstrom $J und den elektrischen Feldstrom
8% ausgedrückt.

analog der negative Wandstrom (8)

die elektrischen Ströme hervorgerufen durch das radiale
elektrische Feld verhalten sich wie ihre Beweglichkeiten (mit
umgekehrtem Vorzeichen)

KlK=-\-r- (9)

Für den unipolaren Wandstrom bei stark negativ aufgeladenen
Wänden (entsprechend unserem Fall, wo die „Kanalwände" durch
das Gitter negativ aufgeladen werden) ist S?~ 0 also Rjj — ^7
also kann $* mit (9) auch durch den reinen Elektronendiffusionsstrom

ausgedrückt werden

sç -st -^sç (10)

und damit

®+ ^+-|^I (H)

da aber fôj <^ JÇ* (dies ist bei Tonks-Langmuir, Seite 887, näher
begründet ; da das radiale Potential ~ 1 bis 3 Volt ist, so ist auch
noch bei grossen Weglängen $J <^ $+) folgt weiter

^+ -p- K- (12)

Der Elektronendiffusionsstrom ist durch das Elektronenkonzentrationsgefälle

und durch den thermischen Elektronendiffusionskoeffizient

D~ bestimmt

$%~ — D~ grad n
also

^+ -Dgradn (d ^dA. (13)
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Der ambipolare Fall unterscheidet sich nur unwesentlich
vom obigen, es ist statt ^~ 0 $~ $+ S? zu setzen; bei
Vernachlässigung von KJ gegen föjj tritt derselbe Ausdruck (13) auf,
d. h. durch die negative Aufladung der Wände wird ein gewisser
positiver Sättigungsstrom nicht überschritten. Hierin sehen wir
die nähere Begründung, dass das Feld nicht in das Plasma
eingreift (vgl. § 1). Aus dem Gang der Rechnung ist weiter ersichtlich,
dass auch in unserem Fall grosser Weglängen noch ein effektiver
Diffusionskoeffizient definierbar ist, wenn das Verhältnis der
Beweglichkeiten in (9) durch das Verhältnis der Geschwindigkeiten
ersetzt wird.

Das Verhältnis der elektrischen Wandströme ist ja durch das
Verhältnis der Geschwindigkeiten bestimmt, gleiche Teilchendichte

vorausgesetzt. Nun ist die durch das Feld E erzeugte
Geschwindigkeit u unter Voraussetzung, dass die Geschwindigkeitszunahme

pro Weglänge klein gegen die thermische Geschwindigkeit
ist

i eE
tu i t

m

für die Beschleunigungszeit t ist t l/v zu setzen (l mittlere
Weglänge, v thermische Geschwindigkeit) also

u=^-^-E kE (14)
mv

wobei k die Beweglichkeit ist1).
Ist dagegen die Weglänge grösser als der Rohrdurchmesser,

so sind die Teilchen dem freien Fall unterworfen und ihre Geschwindigkeit

wird ^ (15)V-
m

und das Verhältnis dieser Geschwindigkeiten für verschiedene
Massen ist statt dem Verhältnis der Beweglichkeiten (14) in (9)
einzusetzen. Wir sehen, der thermische Diffusionskoeffizient der
positiven Ionen spielt auch hier keine Rolle, diese werden eben
durch die vorauseilenden Elektronen nachgezogen. Wesentlich
dagegen ist, dass auch in diesem Falle ein thermischer Diffusionskoeffizient

der Elektronen existiert. Nun sollen aber die Elektronen
auch in stark verdünnten Gasen, wie in der Einleitung der Tonks-
LANGMum'schen Arbeit betont wird, eine Temperaturgeschwindig-

x) H. Knoll, F. Ollendorf und R. Rompe, Gasentladungstabellen.
Verl. Julius Springer, Berlin 1935.
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keit (entsprechend T~) besitzen und der Boltzmann'sehen
Verteilung gehorchen; dies schliesst nach unserer Auffassung aber
auch die Diffusion von höheren Konzentrationen zu geringeren
ein, also die Existenz eines Elektronendiffusionskoeffizienten.
In der üblichen Definition

D- ilv-
ist allerdings der Begriff der Weglänge etwas dunkel, möglicherweise

ist sie im Sinne Gabor's1) als Relaxationsstrecke zu deuten.
Aus dem Vergleich mit dem Vorhergesagten über den unipolaren
Wandstrom ist ersichtlich, dass auch für grosse Weglängen l
bei negativ geladenen „Wänden" ein Sättigungsstrom auftritt,
der nicht von der negativen Aufladung der Wand abhängt, d. h.
das Feld greift auch hier nicht in den Kanal ein. Durch das Feld
wird lediglich die Konzentrationsverteilung der Elektronen so

geändert, dass der Feldstrom ®Te gleich dem Diffusionsstrom ^mit umgekehrtem Vorzeichen bleibt. Wir können jetzt also auch
für verdünnte Gase die radiale Stromdichte in Fig. 3 durch
Gleichung (7) ausdrücken, wobei aber

u +
D — -D- (16)

u~

zu setzen ist. Zur Vereinfachung werden wir für das Folgende D
räumlich konstant annehmen, also das Verhältnis von mittleren
Geschwindigkeiten bilden. Ebenso müssen wir, um das Problem
lösbar zu machen, D auch zeitlich konstant annehmen; dies ist
durch die Erläuterungen über die Erhaltung der Quasineutralität
weitgehend ermöglicht, da sich bei Abnahme des Stromes an
den inneren elektrischen Verhältnissen nicht viel ändert. Beide
Annahmen werden durch die Resultate gerechtfertigt.

Die Differentialgleichung (6) lautet jetzt mit diesen
Festsetzungen :

dn 1 d /„ dn \ ,HmD——-r)+Xn. (17)
dt r dr

Wir sehen, ohne das linke Glied ist sie identisch mit der
ScHOTTKY'schen Gleichung mit Besselfunktionen als Lösung, und ohne das
Glied in X ist sie mit der Wärmegleichung identisch.

x) D. Gâbob, Phys. Z.S. 34, S. 38, 1933.
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§ 3. Lösung der Differentialgleichung.1)

Gleichung (17) ist zu integrieren unter folgenden Bedingungen:
1. Für t=0 ist n=n<, (r) beliebig vorgesehen I

dn (18)
2. Für r=B ist D A - + F ¦ n=0 für alle Zeiten v ;

dr

(es fliesst von innen auf die Oberfläche ein der Diffusionsstrom

— D -r—, nach aussen ab F ¦ n, F Geschwindigkeit der Ionen
senkrecht auf die Oberfläche).

Das Vorhandensein von t in Gleichung (17) macht folgenden
Ansatz für das Partikulärintegral möglich

n c ¦ emt ¦ y (r) (19)

wo co ein noch freier Parameter ist. Es wird

¦r)+Xy^D(^L + ^^L)+XyÌ \ drà r drcoy
1 à /D dy
r dr \ dr

oder
d2y 1 dy
dr2 r dr

fc2y 0, X—-^=fc2. 2) (20)

Diese Differentialgleichung stimmt mit der ScHOTTKY'schen
in der Form überein, die einzige bei r 0 beschränkte Lösung
dieser Gleichung ist die Bessel'sche Funktion nullter Ordnung:

y Jo (kr) (21)

Sie muss noch der Randbedingung genügen:

D-^-l +F-y(B) 0 D^J^L/ +F-J0(kB)
drIr=R dr /r=R

Es gilt aber für die Ableitung der Besselfunktion

£ -*<¦>
also

-DkJx(kB) +FJ0(kB) 0

oder
J0(kB) D

Jx(kB) F-B kB. (22)

xj Die Rechnung dieses Paragraphen einschliesslich der wesentlichen
Randbedingung (18) verdanke ich der Hilfe von Herrn Dr. Kabl Schnetzleb aus Heidelberg.

Ich möchte ihm aber an dieser Stelle auch für weitere kritische Diskussionen
auf brieflichem Weg aufs beste danken.

-) Nicht zu verwechseln mit dem Boltzmann'schen k.
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Nun ist von der Differentialgleichung Au+k2u 0 mit der

Randbedingung dr + au 0, a > 0 bekannt, dass sie keine

komplexen oder negativen Eigenwerte hat (siehe z. B. Courant-
Hilbert, Kap. VI, § 1). k2 ist also positiv, d. h. k reell. Man
kann also die Eigenwerte fcf graphisch finden, indem man die
Kurven

Jo (x) D
y und y - x, (x fc B) (23)

Jx(x) " F-B
zeichnet und ihre Schnittpunkte xf bestimmt. Der i-te Eigenwert
ist dann fe* -4-.

Nun ist J0 ($) weitgehend ähnlich dem gewöhnlichen cosinus
ebenso ist Jx (x) „ „ „ „ sinus

J (x)also r°,.., „ „ „ „ cotangens.Jx(x) " " " "
Ferner ist zu bemerken, dass wir das Kurvenbild nur bis zur
ersten Nullstelle von J0 verfolgen müssen, da J0 von da ab negativ
wird, die Teilchendichte n (Gleichung (19)) aber nicht negativ
werden kann. Damit beschränken wir uns auf den ersten,
physikalisch sinnvollen Eigenwert kx k, es ist weiter xx — x_x
kx —k_x; da J0 (x) eine gerade Funktion ist, sind die zu kx
und fc_! gehörigen Eigenfunktionen identisch, man kann sich also
auf + fc+1 beschränken. Das Kurvenbild sieht also ungefähr
folgendermassen aus. Fig. 4:

Kx)
J,M

2 \ 3

y= FR

Fig. 4.

Die Lösung (19) lautet also

n C ¦ emt JB(kr)
co X — Dk*

(24)
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sobald co < 0 wird, bricht die Entladung zusammen, da.nn ist

r — (25)
— co

die Relaxationszeit. Gleichung (22) ist die Bestimmungsgleichung
für fc in Abhängigkeit vom Radius und damit auch die Gleichung
für den kritischen Radius B0, da für B0 co in (24) Null wird, d. h.
die Entladung gerade noch stabil ist.

§ 4. Diskussion der Lösung.

Wir betrachten zwei Grenzfälle, die sich leicht diskutieren
lassen. Aus der Fig. 4 sehen wir, dass für D^> F • B durch die
Gerade „kleine x abgeschnitten" werden; dann ist J0 (x) in (22)

~ cos x ~ 1, Jx (x) ~ sin x ~ x, also wird (22)

J_
x

oder mit x kB

und damit
1 1

Wir sehen, für den kritischen Radius B0 für den gilt

X -I-Amax -r)

D

F-B

k2
F

DB

1 1
(26)

(27)

wird co 0 und r co, d. h. die Entladung ist stabil. Wenn B
< BB wird co < 0, die Entladung bricht zusammen. Die
Beziehung (27)

^max ' B0 — F

ist mit der ToNKS-LANGMUiR'schen (1) für grosse Weglängen
identisch, da F — vv die Geschwindigkeit der Ionen in der
ToNKS-LANGMum'schen Bezeichnung ist; denn es gilt:

vv -]/2kTejmp

was man direkt einsehen kann, wenn man bedenkt, dass die
Elektronentemperatur Te ein radiales Potential gemäss kTe eV
erzeugt, welches den positiven Ionen obige Geschwindigkeit
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erteilt1). Für B > jR0 entfernt man sich vom kritischen Wert
^max zu kleineren X, wo natürlich die Entladung stabil bleibt,
da genügend Ionen erzeugt werden, um die Verluste zu decken.
Die ToNKS-LANGMUiR'sche Gleichung folgt also hier als Spezialfall

unserer allgemeinen Formel für D^>F ¦ B. Wir zeigen,
dass im zweiten Grenzfall D <^.F ¦ B die ScHOTTKY'sche Beziehung
zwischen Radius und Neubildung folgt. Für diesen schneidet die
Gerade in Fig. 4 grosse Argumente x ab. Für grosse x kann J0
in der Nähe der ersten Nullstelle (2,4) folgendermassen dargestellt
werden :

J0 (x) ~ cos x ~ sin (2,4 — x) ~ 2,4 — x
Jx (x) ~ sin x ~ 1

also wird Gleichung (22)

2,4 — x
_

D

i~~- f-b'x
oder x 2,4 mit Voraussetzung D <^F ¦ B und damit

fc2

also wird

2,4 \ 2

~R~

X-Diif ' (28)

Die Stabilität der Gasentladung verlangt co 0, also

Die Verkleinerung des Radius verlangt auch hier ein Grösser-
werdenvon X; jedoch liegt hier Xmax sehr hoch und kaum erreichbar,
da, wie wir noch sehen werden, diesem Fall kleine Weglängen
entsprechen, wo also genügend Zusammenstösse stattfinden, um
die Neubildung dem kleiner werdenden Radius anzupassen.
Gleichung (29) ist nun mit der ScHOTTKY'schen Beziehung zwischen
der Neubildung X und dem Radius B für kleine Weglängen
identisch2).

x) Genauere Begründung siehe F. Lüdi, Helv. Phys. Acta, Vol. VIII,
Fase. Tertius, 277, 1935.

2) loc. cit. Seite 638, Gl. 10.
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§ 5. Bestimmung des Verhältnisses für grosse und kleine
r ¦ R

Weglängen.

Wir müssen noch zeigen, dass bei grossen Weglängen D^>F- B
und bei kleinen Weglängen D <^F ¦ B ist. Für grosse Weglängen
berechnen wir D aus dem Verhältnis der mittleren Geschwindigkeiten

(15) für verschiedene Massen. Dabei nehmen wir für den
Elektronendiffusionskoeffizienten die Gültigkeit des gewöhnlichen
Ausdruckes an, trotzdem man dagegen Bedenken einwenden kann.
Es wird also Gleichung (16)

iY- 2eV

i-i/2eF f m+
V m~

setzen wir noch für

so kommt

D

v- l/3fcT" (31)
r m~

f m+

andererseits setzen wir für F auch eine mittlere Geschwindigkeit,
da nicht alle Ionen aus der Mitte kommen.

i OT"*

sodass also

D l

2 k T
(32)

F • B B
(33)

wird. Wir sehen, wenn die Weglänge ca. 5 bis 10mal grösser als
der Radius ist, so ist die Entwicklung nach kleinen x, welche zum
ToNKS-LANGMUiR'schen Ausdruck für den kritischen Radius
führte, gerechtfertigt.

Für kleine Weglängen ist D aus (13) mit (14) und (31)

D M V-8^- ]/-£- (34)

unter der vereinfachenden Annahme, dass die Weglängen für
Elektronen und Ionen gleichgesetzt werden. Da die elektrische
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Ionengeschwindigkeit in dichten Gasen klein gegenüber der
thermischen ist, so ist F am Rand durch die thermische Geschwindigkeit

bestimmt. Wir setzen sie gleich der halben mittleren
thermischen, da nicht alle Ionen senkrecht von innen auf die Wand
fallen.

F 1^=1-1/1^. (35)
V m+

Trotzdem ist natürlich im Innern der gerichtete elektrische
Strom grösser als der thermische, weil sich die hohen thermischen
Geschwindigkeiten allseitig kompensieren und nur ein geringer
Überschuss als Diffusionsstrom zur Geltung kommt. Am Rand
jedoch fehlt die kompensierende Wirkung der allseitig gerichteten
thermischen Geschwindigkeiten, da nach Voraussetzung keine
Ionen zurück ins Plasma kommen, weil sie vom Feld oder von
der Wand abgefangen werden. Wir haben es also dort mit dem
sogenannten „Ausströmungsstrom" zu tun. Beim Diffusionsproblem

kann bekanntlich die Ausströmungsgeschwindigkeit nicht
(oder nur wenig) grösser als die thermische sein. Wir bekommen
schliesslich aus (34) und (35) für

D / T-u ^JlJl_. (36)
F ¦ B B T+ ^ '

Wir können noch fragen, wann die Voraussetzung elektrische
Geschwindigkeit u+ klein gegen thermische v+ ist. Die
Feldgeschwindigkeit ist nach (14) und dem entsprechenden Ausdruck (31)
für die positiven Teilchen:

u+ | e 11/ L_. E.

Für E setzen wir VfB als Mittelwert, und weiter für das radiale
Potential e V ~ fc T~ also

u+ il "i/ +{T+ ¦ fc T-\ m+fc1+

und damit das Verhältnis zur thermischen Geschwindigkeit

V m+

-i/3fea+
y m+

Or!
B T
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also denselben Ausdruck wie für DjF • B. Wir können sagen, dass
für kleine Weglängen im Vergleich zum Rohrradius und kleines
Verhältnis für Elektronentemperatur zur Ionentemperatur die
Voraussetzung (D <^F ¦ B), welche zur ScHOTTKY'schen Beziehung
(29) führte, erfüllt ist. Numerisch ist das Verhältnis T~jT+ schon
bei Drücken von ca. 0,1 mm auf ~ 10 gesunken, so dass bei diesen
Drücken und Rohrradien, die einige 30 Weglängen umfassen,
die ScHOTTKY'schen Formeln gelten.

§ 5. Vergleich der Resultate mit den Experimenten.

Aus Gleichung (26) können wir die Löschzeit abschätzen.
F berechnet sich aus (32) für Quecksilber-Ionen in einer
Entladung in kleinen Dampfdrücken, deren Elektronentemperatur
~ 30,000° Kelvin ist1), zu F ~ 0,8 • IO5 cm/sek. Damit die
Entladung stabil brennt, muss co in (26) gleich Null sein, also

B0 • XmaK 0,8 ¦ 105.

Für einen kritischen Radius Bn ~ 2 mm, für welchen bei den
Experimenten von Kobel gelöscht wurde, wird also Amax~ 4 • IO5
Tonks und Langmuir finden in einer Quecksilberdampfentladung,
unter ähnlichen Bedingungen wie oben, bei 15,5° C und einem
Rohrradius von 1,6 cm, wo die Entladung stabil war, für X ~ 7 • 104

(Tabelle I, Seite 893) ; dieser Wert ist also noch erheblich von Amax

entfernt. Wird nun der Radius durch die Dunkelraumdicke nur
um ein Hundertstel unter den kritischen B0 verkleinert, so wird
t in (26) für einen kritischen Lochradius von 2 mm

0,99 'Ro 2-10-*sek
(0,99 - 1) 0,8 • IO5

mit noch kleiner werdendem Radius wird die Relaxationszeit
noch kleiner; so dass wir also sagen können, dass die Dunkelraumdicke

bei zunehmender negativer Spannung den Gitterlochradius
auf den kritischen Wert verkleinert, währenddessen die Entladung
noch stabil bleibt und sich die Verkleinerung des Lochdurchmessers

nur in einer kleinen Erhöhung des Bogenabfalles ausdrückt,
dass dann aber bei nur ganz kleiner Unterschreitung des kritischen
Wertes die Entladung plötzlich zusammenbricht. Damit finden
die Oszillogramme in der Arbeit von Kobel (siehe besonders

x) Tonks-Langmuie, loc. cit. Seite 893, Tabelle II.
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Fig. 3—4 und 5 mit der scharf bestimmten Löschspannung) ihre
zwanglose Erklärung. Auch die berechnete Löschzeit von ~ IO-4
Sekunden stimmt grössenordnungsmässig mit den auf Kathoden-
strahloszillogrammen experimentell gefundenen überein. Wir geben
hier ein solches von Kobel aufgenom- menés Kathodenstrahlos-
zillogramm des Löschvorganges wieder, Fig. 5.

Auf diesem Oszillogramm wurde die Anodenspannung bei
einer 50 periodigen Löschung mit einer Braun'schen Röhre oszillo-
graphiert. Da die Zeitablenkung durch ein Kippgerät geschieht,
so ist beim Rückweg des Kathodenstrahles der zeitliche Vorgang

0,00052 «¦—

^\« i

a

nr 0,0074

0.02 S

Fig. 5.

stärker auseinandergezogen. An ihm können wir den
Löschvorgang von rechts aussen nach links verfolgen (Kurvenpfeil).
Die Spannung steigt vom Spannungsabfall (63 Volt) über die
Anodenspannung (234 Volt) auf 603 Volt. Diese Überspannung
entsteht durch die Induktivität des äusseren Stromkreises bei
der plötzlichen Unterbrechung des Stromes, welche nicht von den
Bestimmungsstücken des äusseren Stromkreises abhängt, sondern
nur durch die inneren physikalischen Verhältnisse der Entladung
bestimmt ist. Dort, wo die Spannung das Maximum erreicht hat,
ist der Löschvorgang beendet; der weitere zeitliche Verlauf der
Spannungskurve ist durch die Entladung des eingeschalteten
Kondensators bestimmt.

43
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Wir sehen, die Löschzeiten sind entsprechend dem Mechanismus

der Ionenbewegungen von viel niedrigerer Grössenordnung
als die Zündzeiten einer Glimmentladung (IO-8 Sek. und weniger),
entsprechend den bekannten Versuchen von Rogowsky und der
Theorie und von Hippel und Frank, welche die viel schnellere
Elektronenbewegung dafür verantwortlich machen. Wir können
nun weiter nach der Abhängigkeit der Dampfdichte im
Entladungsgefäss vom Gitterlochdurchmesser fragen. Kobel hat
verschiedene Lochdurchmesser, von 1 bis 8 mm, untersucht und
gefunden, dass die Dampfdichte stark variieren musste, um eine
einwandfreie Steuerung zu ermöglichen. Auch hat sich gezeigt,
dass bei ein und demselben Lochdurchmesser die Dampfdichte
nicht stark verändert werden durfte (ca. entsprechend + 8° C),
um gutes Funktionieren der Steuerung zu ermöglichen. Auch
diese Tatsachen können wir gut verstehen. Mit Änderung der
Dampfdichte ändert sich X^^. Die Dunkelraumdicke muss sich
also ebenfalls ändern. Nun ist aber die Änderung der Dunkelraumdicke

nur klein, bei negativen Spannungen bis zu — 300 Volt
nur einige Zehntelmillimeter. Grössere negative Spannungen
können nicht verwendet werden, da sonst leicht Rückzündungen
am Gitter selbst auftreten, wodurch seine Löschfähigkeit zerstört
wird. Bei den kleinen Drücken, die in Quecksilberdampfentladungen

vorkommen, ist die Ionisierung X in erster Linie durch
die Zusammenstösse der Elektronen mit den Hg-Atomen bestimmt.
Wir dürfen daher Amax annähernd proportional der Dampfdichte ô

setzen Amax c • ô, damit folgt aus (27), dass

ô ¦ B0 -^- konst. (38)

innerhalb weiter Grenzen konstant sein soll, da die Elektronentemperatur

und damit F bei gleichen Strömen und nicht zu
grossen Dampfdichten ebenfalls weitgehend konstant ist. Für
kleine Weglängen (grosse Dampfdichten) hätten wir nach der
ScHOTTKY'schen Formel (29) quadratische Abhängigkeit der
Dampfdichte vom Radius. Wir stellen in der folgenden Tabelle
die bei verschiedenem Lochdurchmesser und verschiedener Dampfdichte

gemessenen Resultate zusammen ; dabei ist die Dunkelraumdicke

d, welche aus dem Lochradius B den kritischen Radius
jR0 B — d bestimmt, aus Messungen des positiven
Ionenstromes aus dem LANGMum'schen Raumladegesetz berechnet.

Die ersten drei Zeilen sind Auswertungen der Oszillogramme
Fig. 3, 4 und 5 in der Arbeit von Kobel; sie gehören zum selben
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Lochdurchmesser; variiert wurde die Dampfdichte und die
Gitterspannung. Die drei folgenden Zeilen entsprechen unveröffentlichten

Messungen von Kobel an Gittern mit verschiedenem
Lochdurchmesser bei verschiedener Dampfdichte und verschiedener
Gitterspannung. Bei der grossen Variation des Lochdurchmessers
(von 1 bis 1 : 10) und in Anbetracht der Experimente mit
verschiedenen Gittern bei verschiedenen Bedingungen kann die
Übereinstimmung der gemessenen Resultate mit der Forderung der
Theorie nicht als schlecht bezeichnet werden (man vergleiche die
zweite 'Und die sechste Zeile, eine relativ gute Übereinstimmung

Tabelle 1.

Temperatur

°C

Hg-Dampf-
druck

ô mm

Negative
Gitterspannung

Volt mm
B0-ô

25 0,002 0 0,45-0 0,45 0,0009
46 0,010 60 0,45-0,08 0,37 0,0037
61 0,029 280 0,45-0,27 0,18 0,0052
46 0,010 250 0,8 -0,25 0,55 0,0055
35 0,0045 250 1,25-0,25 1,00 0,0045
15 0,00085 300 4,0 -0,27 3,73 0,0032

bei ganz verschiedenen Daten). Die erste Zeile weicht allerdings
beträchtlich vom Mittelwert ab. Doch «diese Abweichung können
wir gut verstehen. Bei dieser kleinen Dampfdichte war der kritische
Radius schon grösser als der Lochradius, so dass das Gitter zur
Aufrechterhaltung der Entladung schwach positiv sein musste;
dadurch bleiben die positiven Ionen dem Löschraum erhalten.
Aber auch die Abweichungen der dritten, vierten und fünften
Zeile von der zweiten und sechsten Zeile sind zu verstehen. Die
Tatsache, dass Gleichung (38) dort relativ gut erfüllt ist, wo die
Dunkelraumdicke klein im Vergleich zum Gitterlochradius ist
(zweite und sechste Zeile der Tabelle I), deutet darauf hin, dass

für ebene Verhältnisse die Berechnung der Dunkelraumdicke
nach dem LANGMUiR'schen Raumladegesetz zu kleine Werte
liefert; das ist auch verständlich. Man sollte sich zur Berechnung
der Dunkelraumdicke auf den zylindrischen Fall stützen (siehe
etwa H. Barkhausen, Elektronenröhren, Bd. 1, S. 39, oder
ausführlicher I. Langmuir, Phys. Rev. 1913, II, 458), bei dem eine
stärkere Abhängigkeit der Dunkelraumdicke von der Spannung
zu erwarten wäre; jedoch hätte man den Fall zweier konzentrischer
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Zylinder zu berücksichtigen, den die Ladungsträger emittierenden
(hier der Glimmsaum) und den äusseren, die Ladungsträger
auffangenden Zylinder. Der Abstand zwischen den beiden Zylindern
respektive das Verhältnis ihrer Radien geht neben dem Radius
des äusseren Zylinders als transzendente Funktion in die
Raumladungsgleichung ein und es ist deshalb nicht möglich, die Gleichung
nach dem Radius des inneren Zylinders aufzulösen, der mit dem
gegebenen Lochradius die Dunkelraumdicke bestimmen würde.
Ausserdem ist noch zu bedenken, dass die Dunkelraumdicke infolge
des Vorhandenseins von Diffusionselektronen etwas grösser sein

Fig. 6.

dürfte, als die nach dem Raumladegesetz für nur eine Sorte von
geladenen Teilchen bestimmte Dicke, also ganz im Sinn der
Abweichungen in Tabelle I.

Endlich sei noch ein Versuch erwähnt, der unsere Vorstellung
über den Löschvorgang, wobei das Bild der Plasmakanäle wesentlich

ist, besonders deutlich unterstreicht. Kobel Hess ein Gitter
anfertigen, das aus Maschen, die durch Aufwicklung von 0,25 mm
Nickeldraht auf ein Gerüst im Abstand von 0,65 mm hergestellt
war. Trotzdem die Maschenweite von derselben Grösse wie die
kleinen Gitterlöcher war, konnte mit diesem Gitter nicht gelöscht
werden, obwohl bei Anlegen der Gitterspannung eine Erhöhung
des Bogenabfalles bemerkbar war. Bei dieser Anordnung konnten
sich keine Kanäle ausbilden, da diese kreuz und quer verliefen,
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und ausserdem der Abstand zwischen den einzelnen Plasmaschichten
infolge der geringen Drahtdicke zu klein war.

Zum Schluss ist es mir eine angenehme Pflicht, auch Herrn
E. Kobel für die Besprechung seiner aufschlussreichen Experimente
bestens zu danken.

Die Arbeit ist zwar hier in Zürich am Institut für technische
Physik der E.T.H. beendet, aber sie wurde zum grössten Teil in
Baden ausgeführt.
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