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Théorie de la diffraction de la lumiére par les Ultrasons
par R. Extermann et G, Wannier.
(19. VII. 36.)

Premiére partie.

On sait qu'un fluide dans lequel se propagent des ultra-sons
peut diffracter une onde lumineuse qui le traverse.

L’explication qualitative de ce phénomeéne est que les ultra-sons
stratifient optiquement le milieu qu’ils parcourent, lui donnant
ainsl les propriétés d’un réseau optique. Gréce & cette image,
on peut prévoir la direction des ondes diffractées, rhais elle ne
suffit pas pour calculer leurs.intensités.

On peut alors chercher comment se déforme une onde plane
qul traverse un milieu stratifié, mais en fait I’exactitude de cette
méthode ne dépasse jamais celle d'une premiére approximation.
Lucas et Biquarp?!) ont donné un traitement correct du probléme
suivant cette idée, qui n’a malheureusement pas abouti & des
résultats numériques complets. D’autre part, la théorie simplifiée
de Raman et NaTH?) donne des résultats qui ne sont justes que
pour de faibles épaisseurs du milieu stratifié, comme nous le
montrerons.

La méthode fondamentale pour résoudre le probléme consiste a
calculer & priori toutes les « ondes » possibles dans le milieu stratifié,
c’est-a-dire ses fonctions propres. L’onde plane & l'entrée est
introduite alors comme condition aux limites. Ce chemin a été
indiqué par L. BrinLouin®), qui n’a cependant pas pu donner
de résultats numériques. C’est celul que nous avons suivi dans
ce travail.

1. Esquisse de la méthode.

a) Etant donné une onde plane extérieure de vecteur d’onde F,
le vecteur de l'onde intérieure doit avoir la méme composante
tangentielle x4 (Fig. 1)

ky=p
b) Il y a une infinité de vecteurs & qui ont la composante

tangentielle . Mais les équations du probléme dans lequel le
milieu est stratifié montrent:
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Premiérement que ceux qui sont possibles forment une suite
discréte ... kg, Ky, ks, ... correspondant & des valeurs discrétes

<o, Ui, by, ... de la composante selon Oz. (Fig. 2.)
k,k=p+1l,r=... —1,0,1,2, ...
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Secondement qu’a un vecteur d’onde k, satisfaisant aux
conditions précédentes, la stratification du milieu associe une

suite de vecteurs d’onde k,, qu’on obtient & partir de 7::,,
kpn=F +nb n=...-2 —1,012, ...

b étant le vecteur d’onde des ultra-sons. (Fig. 3.)
c) b montre qu’a une onde incidente k correspond, dans le
milieu, une double infinité d’ondes planes Em (r=...—1,0, + 1,
gn=...—1,0,1, 2, ...). Nous appelons couche ’ensemble
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des ondes de méme indice r (les vecteurs d’'une méme couche r
ont tous méme composante [, selon 0zx); et ordre I’ensemble des
ondes de méme indice n (les vecteurs d’'un méme ordre n ont tous
méme composante u + nb selon Oy). (Fig. 4.)
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d) Pour déterminer les amplifudes complexes E,, des ondes

k,n, on exprime qu’elles proviennent d’une seule onde extérieure k
d’amplitude 4; en d’autres termes, que si I’on renversait le sens
du phénomene, elles interféreraient dans le plan 2 = 0 pour se

réunir en une seule onde plane k. On trouve:
0, st n+t0
s‘ Ern - ’
y <A, si n=0

e) A la sortie du faisceau d’ultra-sons (r = d), les différentes
ondes ont parcouru des chemins optiques différents. Elles inter-
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ferent. donc -autrement qu’a l'entrée.. Nous montrerons que les
ondes d’ordre interférent entre elles pour donner une seule onde
diffractée d’amplitude Sn. -

7;8"”——S‘Em eXp [’bl d}

Cette equatlon permet de calculer lmten51te des raies dlffractees
ce qui est le but de notre travail. PR

k.,
Fig. 5.
Conditions aux limites.

1I. Théorie mathematwgue

Dans un milieu ot =1, on peut éliminer H des equatlons
de MaxwgLL, et I’on obtient 1’ equatlon d’onde pour une constante
diélectrique e quelconque.

= > g 1 02 (sE)
AE —grad (divE
grad (div B) — —5- —",
ou E est le vecteur électrique dans le milieu.
Dans notre cas, ¢ a la forme:

e =gy + 2¢& cos (by — »i) | (2)

ol g est la constante diélectrique du milieu au repos et & une

(1)
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constante qui dépend de la compressibilité du milieu et de I’ampli-

tude des ultra-sons. b est le vecteur d’onde des ultra-sons (supposé
paralléle & Oy) et » leur fréquence.

Pour préparer nos calculs numériques, nous allons rappeler
comment on résoud (1) par les fonctions de Marmieu. Nous
introduirons ainsi certaines hypothéses simplificatrices, énumérées
ci-dessous et d’ailleurs aisément justifiables.

Az

oy

Ll

;— /
Fig. 6.

Dispositif expérimental et axes de référence.

1) Nous nous référons & un systéme d’axes Oz y 2z tel que
le vecteur k& de 'onde incidente se trouve dans le plan 20y, Oy

étant paralléle au vecteur b de 'onde ultra-sonore. Nous choisissons,
des deux polarisations, celle dont le vecteur électrique est paralléle

a 'axe des 2. Dans ce cas, puisque E ne dépend pas de ¢,

.

div E = 0.

2) Le fait que la fréquence des ultra-sons est trés petite par
rapport a celle de la lumiére nous permet de négliger la dépendance
temporelle de &.%)

On se rend compte facilement que, dans ce cas, ’équation (1)
est séparable et donne pour K:

E = exp[i (lz— wi)] u(y) 3)
ou u(y) satisfait I’équation différentielle de MaTHIEU?)
2
bizg;Jr(aJrzecosby)u:o (4)

*) Nous reprendrons cette question dans la seconde partie de ce travail.
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avec
kP —12 B
b . b2 ¢
Les valeurs propres a sont encore indéterminées, | n’étant pas
connu.
D’aprés le théoréme de FrLoQuer, toute solution stable de (4)

est de la forme:
u(y) = exp [1py] @ (by) (6)

ou @ est une fonction périodique de période 1 et x4 une constante
réelle déterminée & un multiple de b pres.
Si 'on développe @ en série de FOURIER

@ = > E,exp [inby]

I’équation (4) se transforme en une formule de récurrence pour
les coefficients F,,: '

[a,_ (_g + n)] Ep+0[Epy+ Eny] =0 (7

La suite des E, ne converge que pour certaines valeurs propres
du parameétre a. On peut par exemple exprimer la condition de
convergence en annulant le déterminant des coefficients des H,,
dit déterminant de Hinw:

0 n\? a 0
*Z( ‘é—o) T T4 0 0 0 0
w\2
0 —0 1-+-)—a -0 0 0 0
A% |
)2
0 0 0 ~#8 (1+3~)-—a 8 0
7] u\? a 0
¢ 0 g ¢ 4 (”25) 4 4

Cette équation montre que a est racine dun polynome de
degré infini, il posséde donc un spectre discret de valeurs possibles

a, (u).
Dans la limite § = 0, on trouve en particulier

ar(,u)z(f;—+r)2 r=...—2,—1,0,1,2, ...

A chaque valeur a,(u) correspond une valeur l,.(u) en vertu de
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(5) et une suite E,y, E,y,..... donc une fonction propre,
@, (by, p) définie & un facteur pres.
La solution générale de (4) s’écrit alors, en vertu de (6):

E = exp[—iwt] Y exp[ipy] X exp [il (1) 2] 2, (by, u) ()

ou, en composantes de FoURIER

E = exp[—iwt] ¥ exp [ipy] > B,y exp [0 {l,(») x + nby}] (10)
u rn
ou la premiére somme, qui pourrait étre une intégrale, s’étend sur
toutes les valeurs possibles de u. Celles-ci vont étre déterminées
par les conditions aux limites.

Superposons donc des ondes de la forme (10) pour retrouver A
entrée du milieu (z = 0) I'onde plane

E = exp [i(kr —wi)] (11)
Cette superposition donne
exp[ hyy] = D) exp [ipy] D Brnexp linby]  (12)
o rn :

Comme > E,, exp [inby] est périodique, il faut que,
" Cky—pu (13)

En effet, si nous remplacons dans cette expression y par y + 4,
o A =2mn/b est la longueur d’onde des ultra-sons, les sommes
de FourIERr restent invariantes, et puisque le premier membre
est multiplié par exp[ik,A], il faut que k, = u.

(13) porté dans (10) donne:

S‘ B, nexp [i{l,z 4+ (u + nb) y— wt}] (14)

Il y a donc une infinité double d’ondes planes dans le milieu.
La condition (12) s’écrit maintenant pour chaque onde séparément

1, si m=0

5 — 15
;Ern 0, Si n:':() ( )

ce qui signifie que le vecteur électrique est nul sur la face d’entree
a la suite d'un phénomeéne d’interférence pour tous les ordres
sauf 'ordre zéro. Ceci ne sera plus vrai apres que les ondes auront
traversé les ultra-sons sur une distance d. Chaque ordre n donnera
donc une onde extérieure ayant la composante tangentielle y + nb

des ondes composantes k,,. Cette onde extérieure d’ordre. n a un
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vecteur k, et une amplitude S,. Le vecteur k, dont la grandeur

est évidemment |k,| = k a une direction déterminée par la con-
struction de la figure 5; on trouve, pour S,:
i, == Z E, . exp [vl,d] (16)

r

On peut donner & cette formule une forme plus commode
en la transformant au moyen de (5), en remarquant que b &Lk
et &g ~a, ~1. On obtient

S, = D, E,, exp [—1ia, D] (17)

ou les .a,, sont les valeurs propres des fonctions de MATHIEU et
b2d

D—1 "% 18

by (18)

I1II. Calculs numériques et résultats.

Pour effectuer les calculs numériques, il faut spécifier le
probleme qu’on veut traiter, c’est-a-dire choisir, pour les trois
parameétres u, 6 et D dont dépend la solution générale, des valeurs
correspondant aux données expérimentales. Ces grandeurs sont
définies par les formules (13), (5) et (18).

Nous avons choisi 4 = 0, ce qui correspond au cas ou le

rayon lumineux incident est perpendiculaire & la direction des
ultra-sons.

Pour 6, nous avons choisi trois valeurs correspondant a des
cas pratiques, pour donner des résultats complets en fonction
de D. Nos calculs qui suivent les formules du chapitre II se divisent
en 4 parties:

A) Calcul des valeurs propres a correspondant & une solution
de période b de I'équation de MaTHIEU (4).

B) Calcul des coefficients de Fourier des fonctions propres
correspondantes (formule de récurrence (9)).

C) Superposition de ces fonctions qui ont encore un facteur
arbitraire, de facon a obtenir & l'entrée l’onde plane incidente
(équation 15).

D) Superposition de ces fonctions & la sortie (calcul des inter-
férences des ondes de méme ordre pour différentes épaisseurs du
milieu stratifié, d’aprés 1'équation (17)).

A, B. Nous discuterons séparément les calculs (A) et (B)
dans un travail purement mathématique qui paraitra prochaine-



Théorie de la diffraction par les Ultrasons. 529

ment*), parce que les méthodes employées n’ont qu’un intérét
technique. Qu’il nous suffise de dire ici qu’il faut des méthodes
plus développées que celle de HiLL pour déterminer les a,. D’autre
part, pour g = 0, les solutions se partagent en fonctions symétriques
et antisymétriques; ces derniéres n’intervenant pas & cause de
la symétrie du probléme, nous ne faisons usage que d’une fonction
propre sur deux. Pour les valeurs propres des fonctions symétriques,

on a le tableau suivant:

- 1 3 10
a — 1,0701208 | — 4,3330165 | —16,9015383
a + 1,7072688 | + 1,7196843 | — 5,0519853
g 4,1624547 57430318 | + 5,5813190
aq 9,0574884 9,5792585 14,5577702
a 16,0317899 16,2896362 20,4580965
a 25,0202129 25,1827141 27,1983757
a 36,0139896 36,1261638 37,4377369
a; 49,0102578 49,0024204 50,0401104
g 64,0078438 64,0706382 64,7906233

Les résultats des calculs B ne sont pas donnés ici parce qu’ils
sont implicitement contenus dans C.

C. Pour déterminer les facteurs arbitraires des fonctions
propres, nous avons fait usage des méthodes de l'algebre élé-
mentaire (résolution d’un systéme linéaire d’équations homogeénes).
Le résultat de ce calcul est le tableau complet des FE,, que nous
publions ici pour 6 =1, 6 = 3 et 0 = 10.

Tableau 1.
Valeurs des E,, pour 6 = 1.

Ordre 0 | Ordre 1 | Ordre 2 | Ordre 3 | Ordre 4 | Ordre 5
Couche 0 | +0,62655 |+ 0,33530 |+ 0,06750 |+ 0,00670 | + 0,00040
Couche 1 | +0,36010 | — 0,30740 | — 0,14265 | — 0,01975 | — 0,00140 | — 0,00005
Couche 2 | +0,01335 |- 0,02780 |+ 0,07460 |+ 0,01575 | +0,00130 |+ 0,00005
Couche 3 —0,00010 |+ 0,00055 | — 0,00270 | —0,00040
Couche 4 +0,00010

D. Le calcul des interférences, d’aprés ’équation (17) ne pré-
sente aucune difficulté, mais demande beaucoup de temps si 1'on
veut des résultats complets; nous ’avons graphiquement.

*) Commentarii  mathematici Helvetici.
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Nous publions nos résultats sous forme de courbes qui donnent
I'intensité de chaque raie en fonction du parameétre D, 0 étant
constant dans chaque graphique.

Pour terminer la discussion de nos résultats, nous les com-
parerons avec ceux de la théorie de Raman et Narm.

Nos solutions sont des fonctions presque périodiques de D,
comme c’est toujours le cas lorsqu’on fait interférer des ondes
dont les longueurs d’onde ne sont pas commensurables. On trouvera
donc toujours des épaisseurs pour lesquelles la solution reprendra
presque une forme déja rencontrée. On aura en particulier certaines
épaisseurs pour lesquelles on retrouvera presque toute l'énergie
dans l'ordre 0 (p. ex. D = 2,8 pour 0 = 1).

Le nombre d’ordres qui apparaissent est d’autre part stric-
tement limité par 1’étendue du tableau des E,,.

Ces deux caractéristiques de la solution du probleme sont
perdues dans 'approximation qu’en ont donné RamMaNn et NATH.
Il serait toutefois pratique de connaitre le domaine de validité
de leur théorie, & cause de son extréme simplicité. Nous remarquons
a cet effet que la solution de notre équation de départ

B | 0°H
oz Oy

se réduit 4 la solution de Raman et NATH

+ k% (e + 2¢ cosby) =0 (a)

E=exp|ik1/eo+2¢ cosbya]=exp[ik}/e, x exp[@k—cosby] (b)

si 'on néglige le terme gzﬁ . Si 'on fait I'analyse de FoURIER

du second facteur, on trouve, pour les amplitudes S,, les fonctions
de Bessen. Cette solution n’est évidemment plus valable s1 le
terme négligé dans (a) devient comparable au terme 2 k2 ¢; cos by E.
En dérivant (b), on obtient

0%E k*etd?b% . ike; db?
3y [ e s oy 4 e cos by
et les conditions de wvalidité deviennent
2 212 ‘
18 _peq 3T opegag (c)
k '\/80 2 80

Ces deux relations se sont vérifiées dans les cas pratiques que

nous avons calculés. Pour les courbes publiées, la premiére des
*
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conditions (¢) est contenue dans la seconde*). La limite supérieure
de validité de la solution de Ramaw et NaTH est indiquée par
la ligne R sur les graphiques; les expériences dépassent nettement
cette limite..

Nous espérons publier prochainement la Seconde partie de ce
travail ol nous traiterons le probleme avec plus de généralité
par une méthode analogue & celle d’EwaLp-LAue employée dans
I'optique des Tayons X. |

Nous tenons & remercier en terminant Monsieur le Professeur
J. WEIGLE, qui nous a proposé le probléme en nous signalant les
rapports qu’'on pouvait établir entre la diffraction de la lumiére
par les ultra-sons et celle des rayons X par les cristaux.
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