
Zeitschrift: Helvetica Physica Acta

Band: 9 (1936)

Heft: V

Artikel: Systematische Untersuchungen an durch Resonanz erregten Röhren
mit Hilfe einer neuen Messmethode

Autor: Hardung, Viktor

DOI: https://doi.org/10.5169/seals-110631

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-110631
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Systematisehe Untersuchungen an durch Resonanz erregten
Röhren mit Hilfe einer neuen Messmethode

von Viktor Hardung.
(10. IV. 36.)

Inhaltsangabe: Aufgebaut auf dem Schalldüsenprinzip wird eine sehr
empfindliche Methode angegeben, die gestattet, in einem beliebig grossen Frequenzbereich

Resonanzen schwingender Hohlräume bis auf einige Promille genau zu
messen.

Die Methode wird angewendet, um die Frequenzen von offenen und ge-
dackten Pfeifen systematisch als Funktion von Länge, Querschnitt und
Mündungsweite zu untersuchen.

Auf Grund einer von Webster zuerst angegebenen allgemeinen theoretischen
Methode wird versucht, eine Theorie beidseitig offener Pfeifen zu geben. Dieselbe
besitzt methodisch einen gewissem Vorteil vor der Helmholtzschen Theorie, indem
sie die Resonanzfrequenz direkt, d. h. nicht auf dem Umweg über die Endkorrektion

zu bestimmen gestattet. Es ergibt sich daraus auch bei offenen Pfeifen
die Möglichkeit einer A/4-Schwingung, sobald wenigstens ein Rohrende eine
Verengung aufweist. Experimentell wurde dieselbe mit Sicherheit nur festgestellt,
wenn eine der beiden Pfeifenmündungen fast ganz geschlossen war.

In bezug auf eine genauere Wiedergabe der Resonanzfrequenzen ist jedoch
die Helmholtzsche Theorie in allen hier untersuchten Fällen weit überlegen.

Einleitung.

Die vorliegende Untersuchung entstund ursprünglich aus
einer Zusammenarbeit mit einem Vertreter der Musikwissenschaft,
Herrn Dr. M. Bukofzer in Basel. Im Verlaufe seiner
Untersuchungen1) entstand die Frage, wie sich bei einfachen gedackten
Pfeifen der erste Oberton (Duodezime) zum Grundton verhält.
Die Helmholtzsche Theorie gibt auf diese Frage eine eindeutige
Antwort, jedoch nur unter der Voraussetzung, dass die betreffende
Pfeife durch Resonanz erregt, mit einem Mündungsflansch
versehen und dass überdies die Wellenlänge gross gegenüber den
Querdimensionen der benutzten Pfeife ist. In den für die

Musikwissenschaft in Betracht kommenden Fällen sind diese
Voraussetzungen, ausser der letztgenannten nie erfüllt, denn in der Praxis
geschieht ja die Erregung durch Anblasen und ein Mündungsflansch

von der hier benutzten Art hätte keinen Sinn.

x) Zeitschr. f. Phys. 99, 643 (1936) Heft 9 und 10.
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Es schien mir deshalb auch von Interesse, einmal eine
Versuchsreihe unter den von der Theorie geforderten Bedingungen
anzustellen. Merkwürdigerweise liegen bis jetzt noch wenig
systematische Versuche in dieser Richtung vor1). Von der grossen Zahl
der Bestimmungen des überstehenden Pfeifenendes beziehen sich
alle auf praktische Fälle (Orgelpfeifen und andere Blasinstrumente).
Aus der grossen Zahl dieser Arbeiten seien hier nur die
Untersuchungen von Blaikley2) und von den neueren Arbeiten die
von S. H. Anderson und F. C. Ostensen3) genannt, die jedoch
mit Rücksicht auf die Praxis ebenfalls ohne Mündungsflansch
gemessen haben.

Die experimentelle Methode.

Im Gegensatz zu den älteren Bestimmungen der Mündungskorrektion

von Pfeifen, die mit einer unveränderlichen Tonquelle,
meist einer Stimmgabel gemacht sind, und bei denen die Pfeife
in ihrer Länge kontinuierlich verändert wird, wurde hier das
umgekehrte Verfahren gewählt. Die Pfeifen besassen feste Längen
und der zur Erregung benutzte Ton wurde kontinuierlich
verändert, bis Resonanz eintrat. Dass in bezug auf die Ermittlung
der Grundfrequenzen beide Verfahren gleichwertig sind, ist
selbstverständlich. Anders liegen indessen die Verhältnisse bei den
Obertönen. Nach der Helmholtzschen Theorie hängt das
überstehende Pfeifenende explizite nur von der Frequenz und den
Rohr- und Mündungsquerschnitten ab. Würde man nach der
älteren Methode das überstehende Ende als Funktion von Länge
bzw. Wellenlänge und Querschnitt bestimmen, so könnte man
dann nur mit Hilfe einer graphischen Methode ähnlich derjenigen,
die zur Auswertung der Helmholtzschen Gleichungen angewandt
wird, das Verhältnis von Oberton zum Grundton ermitteln. Dass
hingegen ein direkteres Verfahren bequemer und sicherer zum
Ziel führt, liegt auf der Hand.

Es wurden nun zuerst Versuche mit einfachen gedackten
Pfeifen angestellt, deren Querschnitt kreisförmig und über die

ganze Länge konstant war. Die Länge der aus Messingrohren
hergestellten Pfeifen (Wandstärke 0,05 cm) variierte zwischen 24 cm
und 4,5 cm. Ihre Durchmesser zwischen 0,6 und 1,8 cm. Zur
Erregung der Resonanz wurde ein Schwebungstongenerator benutzt.

1) H. P. Leopold, Über die Eigenschwingungen offener Pfeifen. Zeitsohr. f.
techn. Phys. 13, 222, 1932.

2) Blaikley, Phil. Mag. 5 (7) 339, 1879.
3) S. H. Anderson and F. C. Ostensen, Phys. Rev. 31, 267, 1928.
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In einen seiner Schwingkreise war ein Präzisionskondensator von
Seibt eingeschaltet, dessen fester und beweglicher Teil je aus
einem Block gefräst und in Steinen gelagert sind. Auf einem

grossen Teilkreis konnten dann die Zehntelgrade direkt abgelesen
werden. Durch Zuschalten fester Kondensatoren wurden
verschiedene Messbereiche eingestellt.

Die Erregung geschah bei den längeren Pfeifen, die am
leichtesten ansprachen, mit Hilfe eines Telephons, das in genügender
Entfernung (mindestens dem doppelten Mündungsdurchmesser)
von der Mündung aufgestellt war. Zur Erregung der kürzeren
Pfeifen diente ein grosser dynamischer Lautsprecher von Voigt
in Verbindung mit einem Hilfstongenerator und einem leistungsfähigen

Verstärker, dessen Endstufe eine Marconi-Px 25 Röhre
bildete1). Der Hilfsgenerator wurde verwendet, da der zur
Verfügung stehende Stimmgabelsatz nicht ausreichte, um den
Hauptgenerator über 1536 Hertz hinaus zu eichen. Die Messung geschieht
dann auf folgende Weise: Mit dem Hilfsgenerator wird die zu
messende Pfeife erregt. Darauf wird gleichzeitig der Hauptgenerator

eine Oktav tiefer eingestellt bis die Schwebungen verschwinden,

was natürlich nur möglich ist, wenn der Hauptgenerator den
ersten Oberton in genügender Intensität enthält.

Die Eichung des Schwebungstongenerators geschah mit einem
Stimmgabelsatz. Sie muss vor jeder Messung neu geschehen.
Überdies muss der Generator einige Stunden vor der Messung in
Betrieb gesetzt werden, um genügende Konstanz zu erhalten.
Auch bei Anwendung dieser Vorsichtsmassregeln war eine
mehrmalige Nachkontrolle der Eichung während der Messung nötig,
wobei im allgemeinen zwei Messpunkte genügten, da sich die
Eichkurven während nicht allzulanger Zeit immer parallel
verschoben. Um eine sichere Interpolation zu ermöglichen, wurden
die ursprünglich stark gekrümmten Eichkurven durch Benutzung
von Logarithmenpapier gestreckt. Die Feststellung der Resonanz
geschah nach einer meines Wissens bisher in dieser Form nicht
verwandten Methode, die auf dem Schalldüsenprinzip aufgebaut
ist. In den 0,3 cm dicken Boden der Pfeifen wurde in der Mitte
ein feines Loch von 0,03 cm Durchmesser gebohrt. Da am Boden

• der Pfeife die grössten Druckschwankungen auftreten, so wird
in der Überdruckperiode Luft in einem feinen Strahl aus der Düse
ausgestossen, während bei der Unterdruckperiode die Luft von

1) Der dynamische Lautsprecher und das Material für den Endverstärker
wurde mir in liebenswürdiger Weise von Herrn cand. phil. F. Auerbacher zur
Verfügung gestellt.
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allen Seiten angesaugt wird, wie dies in Fig. 1 schematisch

angedeutet ist. In einiger Entfernung hinter dem Loch entsteht
demnach ein gleichgerichteter pulsierender Luftstrahl. Bringt man

nun in denselben ein Thermoelement, das durch einen elektrischen
Strom vorgeheizt wird (Thermokreuz), so entsteht bei der Erregung
der Pfeife in einem angeschlossenen Galvanometer ein Ausschlag,
der von der Abkühlung des Thermokreuzes herrührt. Den anfangs
durch den Thermostrom entstandenen Ausschlag kompensiert man
am besten durch eine eingeschaltete Gleichspannung. (In der

Abbildung 1 nicht gezeichnet.)

'^-Thermokn

Fig. 1.

Versuchsanordnung zur Messung der Resonanzfrequenz.

Dass durch das Bohrloch im Boden der Pfeife keine nennenswerte

Verstimmung eintritt, wurde durch Erregung der Pfeife
mit einem aus einer Düse austretenden konstanten Luftstrom
nachgewiesen. Dieser Nachweis geschah folgendermassen : Nachdem

mit dem Tongenerator auf Schwebungslosigkeit eingestellt
war, wurde mit dem Finger das Loch im Boden der Pfeife

zugehalten. Bei den längeren Pfeifen traten dabei keine Schwebungen
auf. Bei der kürzesten und engsten Pfeife trat eine kleine
Verstimmung von 2—3 Hertz ein, die aber bei diesen hohen Tönen

(1700 Hertz) innerhalb der Messfehler liegt.
Da die theoretischen Berechnungen nur für einen Flansch

von unendlicher Ausdehnung Gültigkeit besitzen, wurde auch
noch untersucht, ob eine Vergrösserung des Flanschdurchmessers

von 7 auf 15 cm einen Einfluss auf die Frequenz hatte. Es ergab
sich indessen auch bei den kürzesten Pfeifen kein messbarer Unterschied

gegenüber den Werten mit einem Flanschdurchmesser von
7 cm.
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Die Genauigkeit (Reproduzierbarkeit) der gemessenen
Frequenzen schwankt zwischen einigen Promille in günstigen Fällen
und etwa zwei Prozent in ungünstigen Fällen.

Die Temperaturschwankungen betrugen im Maximum etwa
5° C. Bei der erreichten Genauigkeit genügt es, für die
Schallgeschwindigkeit die Formel C 331 j/1 + 0,004 ¦ t, die den
Einfluss der mittleren Zimmerluftfeuchtigkeit angenähert
berücksichtigt, zu verwenden. Der Temperaturkoeffizient der Stimmgabeln,

der von der Grössenordnung von 0,0001 ist, braucht nicht
berücksichtigt zu werden.

Zum Vergleich mit den experimentellen Resultaten sind auch
die nach der Helmholtzschen Theorie berechneten Werte in die
Tabellen aufgenommen. Aus derselben folgt für eine einfache
gedackte Pfeife die Formel

tg • (k ¦ Ô) »/4 • B • k I1)

B bedeutet dabei den Radius der Pfeife, ô die Endkorrektion und
k wie allgemein üblich die Grösse 27t/A. Die Berechnung geschieht
nach einem graphischen Verfahren.

Neben der Helmholtzschen Theorie ist von amerikanischen
Forschern2) eine allgemeinere Theorie der Luftschwingungen in
Röhren mit veränderlichem Querschnitt entwickelt worden, die
mit Erfolg von Stewart auf Trichterlautsprecher angewandt
wurde.

Während die Helmholtzsche Theorie im wesentlichen nur die
Endkorrektion einer Röhre zu berechnen gestattet, woraus man
dann die Resonanzfrequenz ermitteln kann, sobald man eine
Knotenstelle des Druckes oder der Bewegung in der Röhre kennt,
gibt diese neuere Theorie direkt die Resonanzfrequenz, woraus
man dann umgekehrt die Endkorrektionen berechnet. Für eine
einfache gedackte Pfeife erhält man auf Grund dieser Theorie
die Formel

tg • (k • l) -^5-
ë v ' k-S

l bedeutet dabei die gemessene Länge der Pfeife, S ihren
Querschnitt und C0 die sogenannte akustische Leitfähigkeit der
Mündung, die, wenn es sich um eine kreisrunde Öffnung handelt, in

x) H. Helmholtz, Theorie der Luftschwingungen in Röhren mit offenen
Enden. Ostwald's Klassiker der exakten Wissenschaften, Nr. 80, S. 68.

2) A. G. Webster, Acoustical Impedance and the Theorie of Horns and of
the Phonograph, Proc. Nat. Acad, of Sci. 5, 275, 1919.
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erstere Annäherung zahlenmässig gleich 2 • B gesetzt werden kann.
In Wirklichkeit stellt dieser Ausdruck eine obere Grenze dar.
Diese Gleichung lässt sich umformen. Es ist nämlich

tg ¦• (k • ô) cotg I kò

und da ò A\4 — l ist, kann man auch schreiben

tg(fe-<3)=cotg(|-fc<5) cotg(fcO ¥^r
Setzt man dann noch C0 2 ¦ B und S B2n, so erhält man

—7— tg (k ¦ ô) k ¦ B ¦ —
tg (kl) ë{ >

2

Eine Formel, die bis auf den Faktor | mit der Helmholtzformel
übereinstimmt. Wollte man die beiden Formeln identisch machen,
so musste man C0 4 • B wählen, was der oben erwähnten
Begrenzung des Ausdrucks C0 widerspricht. Eine wirkliche
Übereinstimmung mit der Helmholtzschen Gleichung ergibt sich nur für
den Fall, dass der Mündungsradius der Pfeife B1 klein ist gegen
den Radius B des Rohres. In diesem Fall ist nach Helmholtz
angenähert1)

k-7fB-=tg(kò) IP)

Die mit den einfachen gedackten Pfeifen gewonnenen Resultate
sind in den Tabellen 1 bis 5 zusammengestellt. Am Kopf der
Tabellen sind jeweils die Innendurchmesser der Pfeifen
eingetragen. Die 4 Zeilen der einzelnen Abschnitte geben die auf 19° C

reduzierten Frequenzen, die daraus berechnete Viertelwellenlänge,
die Endkorrektion und zuletzt das Verhältnis der Endkorrektion
zum Durchmesser der Pfeife. Der Index 0 bezieht sich jeweils
auf den Grundton, der Index 1 auf den ersten Oberton. Statt
Aj4 in der zweiten Zeile steht dann entsprechend 3A/4. Der Buchstabe

B vor einem Abschnitt bezeichnet die beobachteten Werte,
die römischen Zahlen die nach Gleichung I bzw. II berechneten
Werte.

x) Die Bezeichnungen R und R± sind gegenüber denen bei Helmholtz
vertauscht.

2) loc. cit.



untersucnungen durcü Kesonanz erregter Konren.

Tabelle i.

oil

Durchmesser 0,6 0,8 1,0 1,2 1,4 1,6 1,8

Rohrlänge 24 cm. Grundton.

»0 352 349 351 348 347 345 343

A„/4 24,35 24,57 24,40 24,60 24,70 23,85 25,00

B XolA-l ö0 0,35 0,57 0,40 0,60 0,70 0,85 1,00 Mittel:

ÒJd 0,58 0,71 0,40 0,50 0,50 0,53 0,55 0,54

n 354 353 352 351 349 348 347

V4 24,20 24,26 24,40 24,42 24,55 24,62 24,70

I A0/4 - Z <50 0,20 0,26 0,40 0,42 0,55 0,62 0,70 Mittel:

SJd 0,33 0,33 0,40 0,35 0,39 0,39 0,39 0,37

"o 351 348 346 344 342 339 338

A„/4 24,40 24,64 24,80 24,95 25,05 25,2.S 25,40

Ii;.0/4-?=(50 0,40 0,64 0,80 0,95 1,05 1,28 1,40 Mittel:

<50/d 0,67 0,80 0,80 0,71 0,75 0,80 0,78 0,76

Rohrlänge 24 cm. Oberton.

^i 1052 1052 1044 1042 1042 1043 1039

3 • V4 24,40 24,40 24,60 24,70 24,70 24,60 24,85

B SAi'4-^Ó! 0,40 0,40 0,60 0,70 0,70 0,60 0,85 Mittel:

V<* 0,67 0,50 0,60 0,58 0,50 0,38 0,47 0,54

"1 1063 1061 1056 1053 1050 1047 1043

3V4 24,20 24,24 24,37 24,42 24,46 24,57 24,65

I 3Ax/4 - Z (5X 0,20 0,24 0,37 0,42 0,46 0,57 0,65 Mittel:

ôjd 0,33 0,30 0,37 0,35 0,33 0,36 0,36 0,34

vi 1052 1044 1038 1033 1026 1020 1016

3V4 24,40 24,60 24,80 24,90 25,05 25,20 25,30

II 3?.1,A-l=61 0,40 0,60 0,80 0,90 1,05 1,20 1,30 Mittel:

ôjd 0,67 0,75 0,80 0,75 0,75 0,75 1 0,72 0,74
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Tabelle 2.

Durchmesser 0,6 0,8 1,0 1,2 1,4 1,6 1,8

Rohrlänge 16 cm. Grundton.

"o 521 519 517 512 506 509 508

V4 16,43 16,50 16,58 16,73 16,60 16,83 16,86

b;0/4-; «30 0,43 0,50 0,50 0,73 0,60 0,83 0,86 Mittel:

V«j 0,72 0,63 0,58 0,61 0,43 0,52 0,51 0,57

"o 528 526 524 520 518 515 513

V* 16,20 16,30 16,36 16,47 17,53 17,64 17,70

I V*-*=<»o 0,20 0,30 0,36 0,47 1,53 1,64 1,70 Mittel:

«yd 0,33 0,38 0,36 0,39 0,38 0,40 0,39 0,38

"0 520 516 510 506 501 497 494

A0/4 16,50 16,62 16,82 16,95 17,12 17,26 17,35

II A0/4-Z <50 0,50 0,62 0,82 0,95 1,12 1,26 1,35 Mittel:

<Vd 0,83 0,78 0,82 0,79 0,80 0,79 0,75 0,79

1-lohrlänge 16 cm. Oberton.

V\ 1571 1558 1561 1552 1548 1543 1556

3 Ax/4 16,36 16,50 16,46 16,57 16,60 16,66 16,50

B 3V4-'=<5i 0,36 0,50 0,46 0,57 0,60 0,60 0,50 Mittel:

ôjd 0,60 0,63 0,46 0,48 0,43 0,41 0,28 0,47

"1 1587 1580 1572 1566 1557 1550 1540

3Ax/4 16,20 16,27 16,34 16,40 16,50 16,57 16,70

I 3A/4-ï 0! 0,20 0,27 0,34 0,40 0,50 0,57 0,70 Mittel:

<V<* 0,33 0,34 0,34 0,33 0,32 0,32 0,29 0,34

"1 1561 1580 1572 1566 1557 1550 1540

3-V4 16,45 16,37 16,67 16,92 17,06 17,20 17,31

II 3A1/4-i=Ó1 0,45 0,37 0,67 0,92 1,06 1,20 1,30 Mittel:

ôjd 0,75 0,59 0,76 0,77 0,76 0,75 1 0,73 0,73
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Tabelle 3.

349

Durchmesser 0,6 0,8 1,0 1,2 1,4 1,6 1,8

Rohrlänge 12 cm. Grundton.

"o 697 694 658 683 681 676 674

A0/4 12,30 12,35 12,50 12,54 12,59 12,64 12,71

B AJ4:-l~ ô0 0,30 0,35 0,50 0,54 0,59 0,64 0,71 Mittel:

ôjd 0,50 0,44 0,50 0,45 0,42 0,40 0,40 0,45

"o 701 697 692 687 683 679 675

V* 12,22 12,33 12,40 12,50 12,56 12,63 12,70

I A0/4-i <50 0,22 0,33 0,40 0,50 0,56 0,63 0,70 Mittel:

ôjd 0,37 0,38 0,40 0,42 0,40 0,39 0,39 0,39

"o 687 679 670 662 654 648 639

A»/* 12,51 12,62 12,80 12,95 13,11 13,22 13,41

II V4-«.= <5„ 0,51 0,62 0,80 0,95 1,11 1,22 1,41 Mittel:

<V<* 0,83 0,78 0,80 0,79 0,79 0,76 0,78 0,79

Rahrlänge 12 cm. 1. C berton.

"i 2084 2065 2040 2030 2020 2004 1972

3 • Ai/4 12,32 12,46 12,60 12,66 12,72 12,80 13,00

B 3A1/4-ï=<51 0,32 0,46 0,60 0,66 0,72 0,80 1,00 Mittel:

ôjd 0,53 0,57 0,60 0,55 0,51 0,50 0,55 0,54

H 2104 2092 2075 2065 2055 2040 2028

sv* 12,22 12,30 12,40 12,44 12,50 12,60 12,67

I 3A1/4-i=ô1 0,22 0,30 0,40 0,44 0,50 0,60 0,67 Mittel:

«y«* 0,37 0,38 0,40 0,37 0,36 0,37 0,37 0,38

"i 2006 2040 2020 1995 1974 1956 1946

3V4 12,40 12,60 12,73 12,90 13,01 13,11 13,21

II 3A1/4-i=(31 0,40 0,60 0,73 0,90 1,01 1,11 1,21 Mittel:

V<* 0,67 0,75 0,73 0,75 0,72 0,71 0,67 0,71
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Tabelle 4.

Durchmesser 0,6 0,8 1,0 1,2 1,4 1,6 1,8

Rohrlängje 8 em. Grundton.

"o 1034 1027 1018 1017 1000 996 998

Ao/4 8,28 8,36 8,42 8,43 8,58 8,61 8,59

B A0/4-i <50 0,28 0,36 0,42 0,43 0,58 0,61 0,59 Mittel:

ôjd 0,47 0,45 0,42 0,36 0,41 0,38 0,33 0,40

vo 1040 1031 1020 1012 1003 993 985

Ao/4 8,23 8,32 8,40 8,47 8,55 8,65 8,71

I A0/4-i <50 0,23 0,32 0,40 0,47 0,55 0,65 0,71 Mittel:

ôjd 0,38 0,40 0,40 0,39 0,39 0,41 0,40 0,40

"o 1013 995 979 960 944 926 915

A„/4 8,46 8,62 8,77 8,94 9,09 9,26 9,36

ILA0/4-I--=<50 0,46 0,62 0,77 0,94 1,09 1,26 1,36 Mittel:

ôjd 0,77 0,78 0,77 0,78 0,78 0,79 0,76 0,78

Rohrläiige 8 cm. Ob srton.

n 3111 3106 3027 3061 3060 3020 2955

3 • Aj/4 8,28 8,27 8,38 8,41 8,42 8,53 8,68

B 3 Aj/4 -.l=61 0,28 0,27 0,38 0,41 0,42 0,53 0,68 Mittel:

ôjd 0,47 0,34 0,38 0,34 0,30 0,33 0,38 0,36

ri 3130 3100 3070 3040 3015 2992 2970

3 • Aj/4 8,22 8,30 8,38 8,46 8,53 8,60 8,66

I 3A1/4-i=(51 0,22 0,30 0,38 0,46 0,53 0,60 0,66 Mittel:

v<* 0,37 0,38 0,38 0,38 0,38 0.38 0,37 0,38

»-i 3040 2992 2942 2900 2860 2820 2790

3V4 8.45 8,59 ¦8,73 8,86 8,98 9,11 9,21

II 3A1/4-;=(31 0,45 0,59 0,73 0,86 0,98 1,11 1,21 Mittel:

ój/d 0,75 0,74 0,73 0,72 0,70 0,69 0,67 0,71
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Tabelle 5.
Rohrlänge 4,5 cm. Grundton.

Durchmesser 0,6 0,8 1,0 1,2 1,4 1,6 1,8

"o 1815 1766 1734 1708 1684 1667 1648

A„/4 4,72 4,85 4,94 5,02 5,08 5,14 5,20

B }J4-l ô0 0,22 0,35 0,44 0,52 0,58 0,64 0,70 Mittel:

ôjd 0,37 0,44 0,44 0,43 0,41 0,43 0,39 0,42

Vo 1810 1780 1752 1727 1700 1763 1646

Ao/4 4,74 4,82 4,89 4,96 5,04 5,12 5,21

I A0/4-4 <50 0,24 0,32 0,39 0,46 0,54 0,62 0,71 Mittel:

ôjd 0,40 0,40 0,39 0,39 0,39 0,39 0,40 0,39

"o 1762 1674 1630 1586 1543 1507 1470

Ao/4 4,87 5,17 5,26 5,41 5,56 5,69 5,83

II XJ4-l ô0 0,37 0,67 0,76 0,91 1,06 1,19 1,33 Mittel:

ôjd 0,62 0,84 0,76 0,76 0,76 0,74 0,74 0,76

Zu den in den Tabellen mitgeteilten Zahlen ist folgendes zu
bemerken. Von den berechneten Frequenzen stimmen die nach
Formel I ermittelten am besten mit den beobachteten Werten

Vlx
V. '-

s
cm i •

K^*"k •

— d cm

3,02
3,01

3,00
0,8

0,6

0.4

0,2

0,2 0,4 0,6 0.8 1,0 1,2 1,4 1,6 1,8

Fig. 2.

Endkorrektion <5 und Verhältnis vjv0 der 8 cm-Pfeifen.

überein. Das Verhältnis des ersten Obertones zum Grundton
weicht besonders für die längeren Pfeifen sehr wenig von drei ab,
was auch ohne weiteres verständlich ist, da ja dort die Endkorrektion

relativ wenig ausmacht. Bei sehr hohen Frequenzen, d. h.
kurzen Pfeifen, wird indessen das erwähnte Verhältnis grösser als
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drei. Um dies deutlich zu machen, sind in Fig. 2 die gemessenen
Endkorrektionen für die 8 cm Pfeife als Funktion des
Durchmessers aufgetragen. Die mit leeren Kreisen gezeichneten Punkte
sind aus dem Grundton berechnet, die mit gefüllten Kreisen aus
dem ersten Oberton. Nach vorgenommenem graphischen
Ausgleich sieht man leicht, dass die Kurve für die Oberschwingung
tiefer liegt. Die obere Kurve gibt das daraus berechnete
Verhältnis, Oberton zu Grundton wieder. Bedeutend grössere
Abweichungen vom ganzzahligen Verhältnis drei, ergeben sich nach
der Theorie (Gleichung I und II) für noch kürzere Pfeifen. Eine
Nachprüfung auf experimentellem Wege ist jedoch nicht mehr

1900

1800

1700

1600

öj c\9 V 73 A3 TT
Fig. 3.

Gemessene Frequenzen der 4,5 cm-Pfeifen.

möglich. Schon die Messung der Grundfrequenz der 4,5 cm Röhre
begegnete beträchtlichen experimentellen Schwierigkeiten. Die
einzelnen Messungen streuten dort sehr stark. Die in der Tabelle 5

angegebenen Werte sind aus einer grossen Zahl von Messungen
durch graphischen Ausgleich gewonnen worden. Die wirklichen
Messpunkte sind in Fig. 3 eingetragen (Ordinatenmasstab sehr
stark vergrössert). Obertöne konnten bei der 4,5 cm Bohre nicht
mehr angeregt werden. Anderson und Ostensen1) geben an, dass
keine Schwingung erregt werden kann, deren Viertelwellenlänge
kleiner als der Durchmesser ist. Bei den 2 weitesten 4,5 cm Röhren
ist, wie man leicht nachrechnet, diese Bedingung für den ersten
Oberton erfüllt. Es gelang jedoch auch nicht, den Oberton der
engeren 4,5 cm Röhren zu erregen, was jedoch auf einen Mangel

I
0

1" Hz.

¦\ o

8 8

0 rv o

0 0

• tNpt ®

T
d cm

o
o

1) loc. cit.
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an Einstrahlungsenergie zurückgeführt werden kann. Die engeren
Röhren erregten sich im allgemeinen nicht so stark wie die weiteren.
Die Schallintensität, die zur Erregung der kurzen Pfeifen nötig
war, konnte mit ungeschütztem Ohr kaum ertragen werden und
näherte sich demnach der Schmerzgrenze (ca. 1000 Dyn/cm2).
Wie aus den Tabellen leicht zu ersehen ist, werden die
Bestimmungen der Endkorrektion umso genauer, je kürzer die Pfeifen
sind, trotz der in diesen Fällen etwas verminderten Messgenauigkeit.

Der Mittelwert ôjd 0,42 bei den 4,5 cm-Röhren stimmt
gut mit dem Rayleighschen Wert 0,41 überein.

Vollständige Obertonreihe einer gedackten Pfeife.

Für die Zwecke dieser Untersuchung und für Messungen an
beidseitig offenen Pfeifen wurde ein Resonanzrohr hergestellt,
auf dessen offene Enden Flanschansätze aufgesteckt werden
konnten. In die Öffnungen derselben konnten nach Belieben
Verschlusstücke mit verschieden grossen kreisförmigen Öffnungen
eingesetzt werden. Zur Messung sind seitlich am Rohr drei Schalldüsen

angebracht und zwar eine in der Mitte und die beiden
anderen in der Nähe der Mündungen. Zur Messung der Obertöne
der offenen Rohre ist die mittlere Düse ungeeignet, da dann dort
ein Druckknoten entsteht. An der Stelle der Düsen ist das Rohr
durch übergelötete Ringe auf 3 mm verdickt. Die ganze
Rohrlänge, aussen gemessen, betrug 38,8 cm, die Dicke der Verschluss-
plättchen 0,2 cm und der innere Rohrdurchmesser 2,20 cm. Setzt
man an einem Ende einen Ring mit 2,20 cm Innendurchmesser
ein und verschliesst das andere Ende ganz, so erhält man eine
einfache gedackte Pfeife, deren Länge vom Boden bis zur Flanschebene

38,6 cm beträgt. (Länge des Rohres ohne Verschlussplatten
38,4 cm.) Die mit dieser letztgenannten Anordnung auf 19° C

reduzierten gemessenen Frequenzen sind in Tabelle 6 eingetragen.

Tabelle 6.
Obertonreihe einer gedackten Pfeife.

Frequenz
Verhältnis zum Grundton

216

1,00

646

2,99

1079

5,00

1523

7,05

Messungen an offenen Pfeifen mit veränderlichen Mündungsqucrsehnitten.

Eine systematische Untersuchung von beidseitig offenen
Pfeifen mit verschiedenen Mündungsquerschnitten schien mir
deshalb von gewissem theoretischen Interesse, weil man dort die
Resonanzen nach der Helmholtzschen Theorie streng nur rechnen

23
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kann, wenn man eine Annahme über die Lage des Schwingungs-
knotens macht. Dass sich derselbe bei einer symmetrischen
Anordnung in der Mitte der Röhre befindet, ist selbstverständlich.
Die Annahme dürfte aber kaum mehr gerechtfertigt sein, wenn
die beiden Rohrmündungen verschiedene akustische Impedanzen
besitzen. Es wurde deshalb eine Untersuchung solcher Fälle
vorgenommen.

Bei der ersten Messreihe blieb die eine Rohrmündung ganz
offen, wie an dem oben beschriebenen Versuch, während die
entgegengesetzte Mündung stufenweise verengert wurde. Die
gemessenen Frequenzen sind in den Tabellen 7—8 zusammengestellt.

Tabelle 7.
Offene Pfeife. Länge 38,8 cm d% konst. 2,20 cm d-, variabel.

Durchmesser
Gemessene

Resonanzfrequenzen

0,00 216 324 651

0,20 347 673

0,50 366 731

0,81 381 780

1,19 402 804

1,46 410 820

1,70 415 831

2,20 424 843

Tabelle 8.
Offene Pfeife. Länge 38,8 cm d2 konst. 1,19 cm dt variabel.

Durchmesser
Gemessene

Resonanzfrequenzen

0,00 209 280 621

0,50 332 700

0,80 352 747

0,99 374 754

1,19 387 784
1,46 387 782

1,70 388 790

2,20 402 804

d-L bzw. d2 bedeuten die Durehmesser der beiden Mündungen.

•¦•'•- In den- Fig. 4 und 5 sind die Werte der Tabellen 7 und 8

graphisch dargestellt.- Interessant ist hier jeweils der Anfang der
Kurven. Ausser den den Kurven angehörigen Punkten vb und vc
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die einer Aj2-Schwingung entsprechen, misst man hier noch den
Punkt va, welcher der A/4-Schwingung (gedackte Pfeife) entspricht.
Eigentlich sollte man überhaupt nur die Frequenzen va und vc er¬
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Offene Röhre.

V >-A
\
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—o— 9-A

*k

>K
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Fig. 4.

konst. 1,19 cm, dx variabel.

Offene Röhre, d,

1,0 2,0 cm

Fig. 5.

konst. 2,20 cm, d1 variabel.

halten, wobei vc sowohl als Oberton der ivSchwingung vc m Sva,
als auch als Oberton der vb-Schwingung vc m2vi gedeutet werden
kann. Dichtet man das eine Ende der Röhre sorgfältig mit Piceïn
ab, so sinkt die Intensität der Schwingung v„ etwa auf 1j10 des
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ursprünglichen Wertes. Sie verschwindet nur deshalb nicht ganz,
weil das zur Messung dienende Loch nicht mitverstopft werden
konnte. Man sieht daraus, dass schon eine sehr kleine Öffnung
die Äf2-Schwingung entstehen lässt, wobei sie in diesem Fall
zusammen mit der A\4-Schwingung existenzfähig ist. Man könnte
daraus die Vermutung ableiten, dass dies auch bei grösseren
Öffnungen an dem einen Pfeifen-Ende der Fall sein wird, sofern
nur eine genügende Asymmetrie in den akustischen Impedanzen
der beiden Rohrenden besteht. Wie später im theoretischen Teil
der Arbeit gezeigt wird, ist diese Möglichkeit nicht von der Hand
zu weisen.

Rein qualitativ kann man sich die Entstehung einer A/4-

Schwingung auf folgende Weise vorstellen. Man denkt sich zu
diesem Zwecke die einseitig verengte Röhre als Teil eines Kanals,
dessen Querschnitt sich an einer Stelle 1 unstetig von oo auf den
Rohrquerschnitt S0 (gleichzeitg Querschnitt der weiteren Mündung)
verengt. An einer Stelle 2, die dem entgegengesetzten Rohrende
entspricht, tritt noch einmal eine plötzliche Verengung auf den
Mündungsquerschnitt Sx ein. Nach einer kurzen Strecke Dicke
der Verschlussplatte) an der Stelle 3 springt dann der Durchmesser
wieder auf den Wert co. Denkt man sich eine einfallende Schallwelle

in der angedeuteten Richtung laufen, so werden an den
Stellen 1, 2, 3 Reflexionen und Phasensprünge auftreten. Die
einfallende Welle habe etwa im Innern zwischen 1 und 2 die
ursprüngliche Amplitude A0. Dann entsteht durch Reflexion an
der Stelle 2 eine Welle mit der Amplitude

M-l M S0 i)Al -M + Ï W0 M==t
und zwar erfolgt die Reflexion mit entgegengesetzter Phase, wenn
M > 1, was in unserem Fall auch zutrifft. Der durchgelassene
Anteil mit der Amplitude A2 besitzt indessen immer dieselbe
Phase wie A0 und wird durch die Formel

o
A9

M+ 1

wiedergegeben. Dieser Anteil wird indessen an der Stelle 3 wegen
der Vergrösserung des Querschnitts auf oo wieder mit derselben
Phase zurückreflektiert M < 1 bzw. 0 und zwar vollständig.

x) G. W. Stewart and R. B. Lindsay, Acoustics, New York D. van
Nostrana Co., 1930, p. 74. Deutsche Übersetzung: Gust. Schmidt, Berlin, Verl. Carl
Heymann, 1934.
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Verfolgt man das Spiel in diesem Sinne weiter, so wird nach vielem
Hin und Her wieder praktisch eine Welle mit der Amplitude A2
im Räume zwischen 1 und 2 von 2 nach 1 zu laufen und mit einem
Teil der ihr gleichphasigen Welle Ax eine stehende Welle erzeugen,
deren Bewegungsbäuche an den beiden Enden liegen. Die Welle A1
indessen wird sich mit einem Teil der Welle A0 zu einer stehenden
Schwingung zusammensetzen, deren Bewegungsknoten an der Stelle
2 liegt. An der Stelle 1 können jedoch nur Bewegungsbäuche
entstehen, d. h. nur Reflexionen mit gleicher Phase.

Auf experimentellem Wege konnten jedoch bei grösseren
Rohröffnungen kj4- Schwingungen nicht mit Sicherheit festgestellt
werden, wenigstens nicht mit der Resonanzmethode, jedoch wurde
an einer ähnlich gebauten Röhre aus Glas eine Schwingung
beobachtet, die sich auf diese Weise erklären lässt. Das betreffende
Rohr war 33,2 cm lang und an beiden Enden mit Messingplättchen
zugekittet, die mit einer Öffnung von 0,82 cm Durchmesser
versehen waren. Die Röhre wurde mit einem Luftstrom an einem der
Enden angeblasen, wodurch eine gewisse Asymmetrie zustande
kommt. Die beobachteten Frequenzen betrugen 428 Hz. und
670 Hz. Hielt man eine der Öffnungen zu, so wurden die
Frequenzen 226 Hz. und 691 Hz. gemessen. Rechnet man die
Resonanzen nach der elementaren Theorie, so erhält man die sicher zu
hohen Werte 515 Hz., 1030 Hz., 2060 Hz im ersteren Fall,
und die Werte 257 Hz., 771 Hz., 1285 Hz im letzteren Fall.
Die an der beidseitig offenen Röhre gemessene Frequenz 670
scheint demnach einer 3/1/4-Schwingung zu entsprechen, d. h.
der sicher zu hoch gerechneten Frequenz 771. Die A/4-Schwingung
selber trat nicht auf.

Tabelle 10.

1. Fall dx variabel d2 konst. 2,20 cm.

Durchmesser
Gemessene Frequenzen
Berechnete Frequenzen

2,20 1,46 0,80 0,50 0,20
424 413 380 366 347

430 421 416 389 334

0,00
0

0

2. Fall d± variabel d.2 konst. 1,19 cm.

Durchmesser
Gemessene Frequenzen
Berechnete Frequenzen

2,20 1,90 1,69 1,46 1,19 1,00 0,81
402 388 388 387 387 374 359

404 402 394 389 386 382 374

0,50
332

336

Zum Schluss sei noch erwähnt, dass die Frequenzen der
beidseitig offenen Röhren recht befriedigend gerechnet werden können,
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wenn man ähnlich wie bei der Helmholtzschen Theorie für die
gedackte Pfeife1) folgende Näherungsformel verwendet.

L l+ô1 + ô2=X =1 + ^1^+ R2 El + E*
2 2 \B1 R"2

In Tabelle 10 sind für die Grundschwingungen für einige
d-Werte die so berechneten Frequenzen den experimentellen Daten
gegenübergestellt.

Theoretischer Teil.

Der Grund, warum an Stelle der Helmholtzschen Pfeifentheorie

noch eine andere Theorie versucht wurde, lag neben dem
Interesse an einer Ableitung, die von andern Gesichtspunkten
ausgeht, an den im vorhergehenden Teil der Arbeit vermuteten
Resonanzfrequenzen beidseitig offener Pfeifen, die eher dem
Schwingungstypus einer einseitig offenen Röhre entsprechen.

Die folgende Ableitung lehnt sich an eine recht allgemeine
für Röhren beliebig veränderlichen Querschnitts geltende Theorie
an, die von A. G. Webster stammt2). Eine für den vorliegenden
Zweck besonders geeignete Darstellung derselben befindet sich in
dem Lehrbuch der Akustik von G. W. Stewart und R. B. Lindsay3)

und eine Anwendung auf konische Röhren auch im
Handbuchartikel von C. V. Raman, Musikinstrumente und ihre Klänge4).
Die im folgenden benutzte Bezeichnungsweise schliesst sich an
die letztgenannten Autoren an.

Die Achse der Röhre, deren Resonanzfrequenz bestimmt werden
soll, sei die x-Achse eines Koordinatensystems. Der mit x veränderliche

Querschnitt des Rohres sei S. Der durch die Schwingung
im Rohr erzeugte Überdruck über den an den ungestörten Stellen
des Raumes herrschenden Normaldruck sei p. Dann gilt in bezug
auf die x-Koordinate die Differentialgleichung:

d2p +d(lnS) ^ + h2p Q (1)
dx2 dx

k bedeutet dabei, wie allgemein üblich, die Grösse 2 TtjA. p enthält
natürlich auch einen von der Zeit abhängigen Faktor, der aus der
Differentialgleichung herausfällt. Eine ähnlich gebaute Gleichung

x) loe. cit.
2) loc. cit.
3) loc. cit.
4) Geiger-Scheel, Handbuch d. Phys., Bd. VIII, Kap. 8, Ziff. 48, S. 402.
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gilt auch für die TeilchenVerschiebung f, die wir jedoch nicht
benötigen, da £ aus p direkt abgeleitet werden kann.

Multipliziert man die Grösse f mit dem an der betreffenden
Stelle vorhandenen Querschnitt, so erhält man die sogenannte
Volumverschiebung X — S • £. Zwecks Einführung von
Randbedingungen versehen wir die oben eingeführten Variabein mit
den Indices 1 und 2, je nachdem es sich um die Werte am Rohrende

1 oder 2 handelt. Es kann dann gezeigt werden, dass zwischen
den betreffenden Grössen an den beiden Rohrenden die linearen
Beziehungen

p2 a-px + bXi (2)

X2 f-p1 + gX1 (3)

gelten. Die Grössen a, b, f, g sind dann auf Grund der Differentialgleichung

(1) bestimmte Funktionen, die von der geometrischen
Gestalt der Röhre, den X-Koordinaten der Rohrenden und von
den dort herrschenden Querschnitten abhängen. Wir führen nun
die akustischen Impedanzen

Zi—%- Z2 ^- (4)
Xi A2

ein. Zi kann nun durch Z2 ausgedrückt werden und umgekehrt.
Da die Grössen X von der Form konst. eimt sind, so wird

7 _ Vi Vi 1

X1 %coJL1 ico
X,

f--$- + ax.

(5)

und da f2\X2 icoZ2, so erhält man schliesslich

™gz.-ft (6)
ima + co* f ¦ L2

icoaZi + b

tcog — io*f • Zx

Wir gehen nun direkt zum Resonanzproblem über. Die
Gleichungen (6) und (7) sagen uns, dass, wenn die akustische
Impedanz an einem Ende gegeben ist, daraus auch die entsprechende
Impedanz am andern Ende berechnet werden kann. Denken wir
uns nun eine Schallwelle, die von rechts nach links einfällt, und
nehmen vorläufig an, das Rohr existiere noch nicht, sondern nur
der Mündungsflansch mit seiner entsprechenden Öffnung. In der
Öffnung herrscht dann der von der einfallenden Welle allein her-



360 Viktor Hardung.

rührende Schalldruck p3, der dort den Volumstrom ps/Z0 in der
Richtung von rechts nach links hervorruft. Z0 stellt hier die
Impedanz einer kreisrunden Öffnung schlechtweg dar und wird
durch den Ausdruck

Q0cok io0co
Z° ~2tT + -C"' (8)

dargestellt. C0 bedeutet dabei die akustische Leitfähigkeit. Sie

ist im Falle einer kreisrunden Öffnung in einer unendlich dünnen
Wandung einfach gleich dem Durchmesser derselben. q0 ist die
Dichte des Gases. p3 hat die Form const. ei(a, + kx).

Wenn nun die Pfeife vorhanden ist, so entsteht durch
Reflexion im Innern derselben an derselben Stelle der Mündung eine

Druckkomponente p2. Der gesamte Volumstrom von innen nach
aussen beträgt dann

¦y- Vi Vz Vi. Vs /q\^-2 7 y" — y • V>)

Am linken Ende des Rohres wird dann ein Überdruck p-,

entstehen, der gemäss den Beziehungen (2) und (3) von p2 und X2
am andern Ende abhängt. Das Verhältnis Pi/p3 bestimmt dann
die Verstärkung des Resonators oder besser gesagt Pi/p3 wird bei
Resonanz ein Maximum werden. Da p2fX2 Z2 kann man Gl. (9)
auch in der Form schreiben:

und nach X2 aufgelöst

Y _ %2 ^2 ~ Vs
2 "

z0

z2 -^y. (io)
^2 —^0

Nach Gleichung (3) wird

X2 i co f pi + g Pl wo Z1=-^~ icopi= pi

Auflösung nach px gibt

v —
X2 ZlVs IH)^1

icof + i- (Z%-Z0)-(icof-Zi + g)

Eliminiert man noch Z% mit Hilfe der Gleichung (7), so erhält
man die für manche Zwecke bequemere Gleichung

Vi ic»zi /12)
ps icoaZi+b — Z0(icog — co2 f • Zx)
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Die Grössen a, b, f, g können nun angegeben werden, wenn eine
Vollständige Lösung der Differentialgleichung (1) bekannt ist. Da
diese Gleichung 2 willkürliche Konstante enthält, kann ihre Lösung
in bekannter Weise in der Form

p A-u + B-v (13)

geschrieben werden. Berücksichtigt man noch, dass p mit f durch
die Gleichung

i 1 Ajl i)
fc2 C2 Q0 d X

zusammenhängt, so erhält man schliesslich für die Grössen a, b,

f, g folgende Determinantendarstellung1) :

«2

< < &
ß

Ut
M;

»i

uj Vi
Si Ux V-L

uj vj

/=- S2
U-,'

u2'
<

9
S2

~Si

ux vt
ttg' v2'

ß
u-l

Vi Ux Vj
Mj' vj

worin zur Abkürzung

v Q0kc2 ß u'
1 d u v'

1 dv
d X k d x

(14)

gesetzt ist. Da die betrachteten Röhren im wesentlichen
zylindrisch sind, verschwindet das mittlere Glied der Differentialgleichung

(1) für alle x, die nicht zu nahe an den Endpunkten xx
und x2 der Röhre liegen. Man kann deshalb als erste Näherung
die bekannte Lösung der vereinfachten Differentialgleichung

d x̂
+ k2-p 0 (15)

ansetzen, die bekanntlich durch die Funktion

p A • sin kx + B • cos kx (16)

dargestellt wird. Die Grössen a, b, f, g werden dann, wenn man
X1 0 und X2 l setzt

S2
a cos k-l

b
ß

Si
sin kl

s1
cos k l

S
ß

(17)

— sin k l

x) G. W. Stewart und R. B. Lindsay, loc. cit. Appendix III.
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wie man leicht nachrechnet. Durch Verwendung dieser
Ausdrücke in Gleichung (12) und durch O-Setzen des Nenners erhält
man dann schliesslich die Resonanzbedingung

tg • H - Ali • -Hu-^^-1- (18)

Wegen der Kleinheit von fc kann man das mit k2 multiplizierte
Glied im Nenner vernachlässigen und erhält so die übersichtlichere
Formel :

tg fc • l _
1 S2 Si \ ,jg.

yoi /

1 st 1

^0 2 S, Coi
1

0 + -,
s2

1 n

H, ¦ t t \ cjq2 O,

Die Grössen (701 und C02 kommen in die Gleichung hinein, wenn
man für Z0 und Z1 die Ausdrücke

Z0
f0cok i f0 co

(20)
2 n C02

f0cok if0co
Li —?; r-

2 TT C01

verwendet. Jeweils unter Vernachlässigung des reellen mit der
kleinen Grösse fc multiplizierten Terms. C01 und C02 bedeuten,
wie schon früher angedeutet, die akustischen Leitfähigkeiten der
beiden Mündungen, die in roher Annäherung gleich dem Durchmesser

derselben gesetzt werden können. Berücksichtigt man die
endliche Dicke ò der Verschlusstücke C, Fig. 4, so kann man die
Formel

_ 7l(dj2)2
0

ô + K-d

benutzen, was bei der Berechnung der in Fig. 8 dargestellten
numerischen Werte geschehen ist (Kurven 2, 3, 2', 3'). Die
Konstante K wird am besten experimentell bestimmt.

Die graphische Lösung der Gleichung (19) ergibt die der
Resonanz entsprechenden fc • l-Werte.

Es gibt aber auch, und darin liegt vielleicht der Wert dieser
Theorie, eine zweite Lösung des Resonanzproblems. Das sieht
man am besten aus der Gleichung (11). Der Nenner besteht dort
aus zwei Faktoren, setzt man den ersten Faktor Z2 — Z0 0, so
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erhält man die soeben gefundene Lösung. Setzt man aber den
zweiten Faktor gleich 0, so erhält man die Resonanzbedingung

fc • l • tg (fc • l)
Si

(21)

die mehr dem Schwingungstypus einer einseitig offenen Pfeife
entspricht (fc • l-Werte in der Nähe von n/2), aber nicht etwa mit
der Gleichung für die gedackte Pfeife identisch ist. Letztere
erhält man, wenn man Zx oo setzt, und lautet :

h-l-tgkl= + l'C°2
S,

(22)

Diskussion der theoretischen Formeln. Vergleich mit dem Experiment.

Betrachten wir zuerst das Verhalten der Gleichung (19).
Die nach ihr berechneten Frequenzen sind in Fig. 6, Kurve 2
aufgetragen. Um eine auch nur angenäherte Übereinstimmung mit
den experimentellen Daten zu erreichen, wurde für die Konstante
K der Wert 6,03 angenommen, was mit dem theoretischen Wert
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Fig. 6.

Theoretische Kurven für offene Pfeifen.

von K, der zwischen den Grenzen 0,786 und 0,848 liegt1) in starkem
Widerspruch steht.

Durch Vergleich von (22) mit der Helmholtzschen Formel
ergibt sich, wie schon im experimentellen Teil gezeigt wurde, für
C0 der Wert 2d, während unter Vernachlässigung von ô aus dem
obigen Wert K 6,03 für C0 0,1305 • d folgen würde.
Verwendet man die schon im experimentellen Teil erwähnte obere
Grenze C0 d1), so erhält man die Kurve 1, Fig. 6, die kaum mehr

x) Stewart und Lindsay, S. 54.
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liefert wie die elementare Theorie. Man sieht, dass sich diese
Kurven mit abnehmendem d nicht etwa dem Wert nähern, der
der 1/4-Schwingung entspricht, sondern einem bedeutend höheren
Frequenzwert. Einen im Prinzip ähnlichen Verlauf zeigt auch die
entsprechende experimentelle Kurve A in Fig. 5. Der bei ca.
280 Hertz liegende wirklich gemessene Punkt rührte nur von der
geringen Undichtigkeit des lose eingesetzten Rohrdeckels her. In
Wirklichkeit muss die Kurve in der Nähe von d 0 ebenfalls
steil auf den Wert von 220 Hertz absinken, da eine an einem Ende
vollständig geschlossene Röhre keine A/2 Schwingung entstehen
lassen kann, was der Versuch mit einem gut abgedichteten Deckel
ja bestätigte.- Auch die auf Grund der Helmholtzschen Theorie
im experimentellen Teil angegebene Näherungsformel, die den
Verlauf der gemessenen Werte recht gut wiedergibt, zeigt dieses

plötzliche Absinken sogar bis auf den Wert 0.

Es muss hier allerdings noch auf einen Mangel der Formel (19)
hingewiesen werden. Die rechte Seite ist nämlich in bezug auf die
Grössen S und C0 an den beiden Rohrenden nicht symmetrisch,
was physikalisch bedeuten würde, dass jeweils eine andere
Frequenz entstehen musste, wenn das Rohr von der einen oder der
andern Seite erregt würde. Der Versuch ergab aber immer in den
Fällen, wo er überhaupt möglich war, für beide Erregungsarten
dasselbe Resultat.

Die nach Gleichung (21) unter denselben Annahmen berechneten

Werte finden sich in den Kurven 1' und 2'. Auffällig ist hier,
dass der Querschnitt der Röhre und der Öffnung 2 nicht in der
Formel vorkommt. Geht man zur Grenze St 0 bzw. dx 0

über, so erhält man fc • l • tg kl — co, was einem fc • i-Wert von
ti/2 entspricht, d. h. einer genauen A/4-Schwingung ohne
Endkorrektion.

Es scheint demnach so, als ob in der Anwendung der Theorie
auf Röhren mit zwei Öffnungen eine prinzipielle Schwierigkeit
eintritt, deren tiefere Ursache noch nicht aufgedeckt ist. Die
Formel (22), die sich von vorneherein auf eine nur einseitig offene
Röhre bezieht, stimmt bis auf einen Zahlenfaktor auf der rechten
Seite mit der bewährten Formel von Helmholtz überein, wie schon
im ersten Teil der Arbeit gezeigt wurde.

Man könnte etwa einwenden, dass der Ansatz (16) für die
Funktion p der Tatsache der unstetigen Querschnittsänderung
an den Rohrenden nicht gerecht wird. Die Gleichung (19) liefert

ts klindessen auch für den Fall Sx S2 die Gleichung fc-, 0, die

einem fc • l-Wert von n entspricht, d. h. einer genauen A/2-Schwin-
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gung ohne Endkorrektion, was ebenfalls mit der Erfahrung in
Widerspruch steht, trotzdem in diesem Falle der Ansatz (16)
streng richtig ist.

Es wurde übrigens noch versucht, den Ansatz (16) durch
eine weitere Näherung zu ersetzen, indem eine den Verhältnissen
angepasste aber stetige Querschnittsform für die Röhre gewählt
wurde. Die Funktion S hätte in diesem Falle etwa die Gestalt

S S0-(S0-S1)-e-»*- (S0 - S2) • er» (»--». (23)

Der Koeffizient L in der Differentialgleichung (1) wird,
wie man leicht nachrechnet, nahe an den Rohrenden, aber noch
ausserhalb des Rohres, an zwei Stellen x0 und xx über alle Grenzen
wachsen. Durch den Ansatz

dp

y- fc (A ¦ cos kx - B • sin kx) [1 - e-»<»-«^]a [1 - e-h^rx)f (24)

ist dann eine Funktion hergestellt bzw. deren Differentialquotient,
der an den erwähnten Unendlichkeitsstellen von —g—— so stark

verschwindet, dass das Produkt

dp d(lnS)
dx dx

dort 0 wird. Die Funktion (24) erfüllt zwar im allgemeinen die
Differentialgleichung besser, genügt aber offenbar an den
Röhrenden den ihr gestellten Bedingungen schlechter als der einfache
durch Differentiation von (16) erhaltene Ausdruck. Führt man
nämlich die Rechnung mit dieser Funktion durch, indem man
dpjdx integriert, so erhält man für p bis auf vernachlässigbare
Grössen wieder die Funktion (16). Bei Verwendung dieser
Funktionen p und dp/d x in den Determinanten 14, erhält man an Stelle
der Gleichungen (19), (21) die folgenden Formeln:

tg fc l 1 f G ¦ S2 F • Si
k-l l \ ^02 ^01

kl ¦ tg (kl)
l • C01

F- Si

i zur Abkürzung gesetzt ist

Htr Mfr
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Si bzw. S2 bedeuten, wie immer die Querschnitte der Mündungen,
S0 den Querschnitt des zylindrischen Teiles der Röhre.

Dass diese Gleichungen keinen Fortschritt gegenüber den
alten Gleichungen darstellen, geht wohl ohne weiteres aus den
aus ihnen berechneten Kurven 3 und 3' in Fig. 6 hervor.

Basel, Physikalische Anstalt der Universität.
Abteilung für angewandte Physik.


	Systematische Untersuchungen an durch Resonanz erregten Röhren mit Hilfe einer neuen Messmethode

