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Zur Berechnung- des Torsionsmoduls quasiisotroper Vielkristalle
aus den Einkristallkonstanten

von W. Boas.

(30. XL 35.)

Zusammenfassung. Der Torsionsmodul quasiisotroper Vielkristalle war aus
dem Einkristallverhalten durch Mittelwertbildung über den gesamten
Orientierungsbereich unter der Annahme berechnet worden, dass sich die Vorgänge in
den einzelnen Kristalliten unabhängig voneinander abspielen. Der gegenseitigen
Beeinflussung der Kristalle im vielkristallinen Aggregat wird nun dadurch Rechnung

getragen, dass die Verhinderung der bei freien Kristallen mit der Torsion
gekoppelten Biegung berücksichtigt wird. Die so korrigierten Torsionsmoduln
stimmen gut mit den Beobachtungsergebnissen überein.

Bei der Bestimmung der elastischen Eigenschaften durch
Mittelung, die von Huber und Schmid angegeben worden ist1),
wird völlige Unabhängigkeit der Kristallite voneinander
vorausgesetzt, wobei diese zylindrisch angenommen werden und Kräfte
nur auf die Grundflächen wirken sollen. Während nun die
Übereinstimmung mit den Beobachtungsergebnissen beim F-Modul
durchaus befriedigend ist, ist der so berechnete Cr-Modul
systematisch kleiner als der experimentelle Wert2). In der vorliegenden
Mitteilung, die sich aufs Engste an die früheren Arbeiten an-
schliesst, soll für den Torsionsmodul eine Korrektur angebracht
werden, die die gegenseitige Beeinflussung der Kristallite
berücksichtigt.

Gerade bei der Drillung tritt die Bedeutung des kristallinen
Aufbaus stark hervor. Nach der Theorie der Kristallelastizität
ist die Torsion eines zylindrischen Kristallstabs mit einer Biegung
gekoppelt, die um so grösser ist, je grösser die Anisotropie des
Kristalls. Wird diese Biegung verhindert, so ist die Drillung durch
ein gegebenes Moment kleiner als bei frei zugelassener Biegung3) ;

der Torsionsmodul wächst also entsprechend. Das im Vielkristall
eingebettete Korn wird nun diese Biegung bestimmt nicht frei

x) A. Huber und E. Schmid, Helv. Phys. Acta 7, 620, 1934. Im folgenden
als I zitiert.

2) W. Boas und E. Schmid, Helv. Phys. Acta 7, 628, 1934. — W. Boas,
Helv. Phys. Acta 7, 878, 1934.

3) W. Voigt, Lehrb. d. Kristallphysik, § 316—317. — E. Goeks. Ann. d.
Phys. [5] 15, 455, 1932.
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ausführen können. Es wird deshalb eine Erhöhung des G-Moduls
des Aggregats verursachen. Im folgenden soll die Mittelung des
G-Moduls für das quasiisotrope Aggregat durchgeführt werden,
wobei völlige Verhinderung der Biegung vorausgesetzt sei. In
diesem Fall wird der reziproke Torsionsmodul statt durch
/4(s4 4 + S'S5) durch die Gleichung

\ * (•:, + o -* (';:,+ s;i) w
33

dargestellt. Die durch das zweite Glied bewirkte Korrektur
nimmt bei Metallkristallen beträchtliche Werte an, die z. B. bei
Zink bis zu 16% gehen1). G ist nun über die gesamte
Orientierungsmannigfaltigkeit zu integrieren.

I. Quasiisotropes Aggregat kubischer Kristalle.

Die Orientierungsabhängigkeit der in G auftretenden Grössen
hat hier folgende Form:

ss3 sn — 2 s • r
%«*+ «'•») ==s44 + 4s-F
y% («;: + o 2 s2 ¦ wt + rt + yd - ^ + Y: + y^i

2s2-[F-4F2 + 3x],
wobei

* *u-*i2- %*44» r=7'yî + y?y's + /. yï» x rir;r3
und 7i, y2 » 73 die Richtungscos der Kristallstabachse zu den drei
Würfelachsen sind. Damit wird

1 -, 4-4, r 2S2(F-4F2+3Z)_ _ Sii + 4 * i Sii_2Sjt

———— .fQ SSi Sll ' S44

i + M-r+N.x'
2s(s + 2s12) ht 6 s2

M ^_X_ -A*L und N
sxx • s44 sxx • s44

oder

wenn

x) E. Goens, Ann d. Phys. [5] 16, 793, 1933. Fig. 4, S. 804, wo

2 (S34 + 83ä)

S33'ì (S44 + S5b)
mit j; bezeichnet ist.
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Die Integration über den gesamten Orientierungsbereich erfordert
nun die Auswertung der Integrale

j j-/V *£ ^ und L-1 r r-df
in J 1+M-r+N- x inj 1+M-r+N-x'

die bereits von Bruggeman durch Reihenentwicklung
durchgeführt ist1). Man erhält also für den Torsionsmodul

— 1 9 «
G ^--J ——-L. (2)

s44 slx • s44

Die numerische Berechnung der bestimmten Integrale J und L
ist recht umständlich. Es wurde deshalb eine Näherungslösung

auf folgendem Wege gefunden. In (I) war — \ {s'4i + s'65)

gesetzt und g berechnet worden. Wir setzen hier nun entsprechend
Gl.(l):

4-1—LMttî+O if (3a)
G g in J sss

und bestimmen das Integral

F — /".*(*" + '") df. (3b)inj s33

Es wird

i (s',\+ O 4 s r + (2 _ s) + gu (2 «u - ») - 6 g2_Z_

»3ä 2s-F-sn
also, da

1

'r-d/ 0,2,
4tt

F 2*11-0,2*-(2s11-s)--^-/" j4tï ./ i £

,6s2 1 /• *¦<*/

d/
F

«n 4tï y i_Ai._r
Die Reihenentwicklung für diese Integrale ist recht einfach, und

l) D. A. G. Bruggeman, Dissertation Utrecht 1930, S. 66—67.
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man kann unter Benutzung der Bruggeman'sehen Berechnungen
schreiben :

F 2 sxl - 0,2 s -

2s-,, —s-
6 s2 M 1

Sil

ßs2

54/ i _ s

3 «u
1

.m
s" ^

•[P0 + mP1 + m2P2 + m 3P3 + •••]

[Go + mÇ1 + m2Q2 + m3g3 +•••], (4)

worm
m

6 2)

ist und die P4- und Qt nach Bruggeman folgende Zahlenwerte
besitzen :

i 0 1 2 3

Pi 1,0000
8,9947-10"3

- 3,3333-10-2
3,928-IO-4

8,730-IO-3
3,031-IO"5

-4,16-10-4
9,71-10-«

i 4 5 6 7

Pi
Qi

1,348-IO-4
4-10-8

-6,8-10-«
2,0-10-'

2,57-IO"6 -1,3-10-'
-1.1-10"8

Um die Zulässigkeit dieser Näherungslösung zu prüfen, wurde
für Silber G auf dem exakten Wege (Gl. 2) und mittels der Näherung
(Gl. 3 und 4) berechnet: der nach (2) berechnete Torsionsmodul
ist um 0,25% grösser als der nach (3), (4) berechnete. Es lässt
sich ferner ganz allgemein, unabhängig vom Kristallsystem,
zeigen, dass stets der exakt berechnete Torsionsmodul grösser ist
als der auf dem Näherungswege berechnete. Da nun der Unterschied

beider Wege sehr gering ist und die Korrektur des G-Moduls
keinesfalls zu gross werden kann, wurde die numerische Rechnung
stets mit den einfachen Formeln (3), (4) ausgeführt.

II. Quasiisotropes Aggregat hexagonaler Kristalle.

Bei den hexagonalen Kristallen hängen die elastischen
Eigenschaften nur vom Richtungscos y des Winkels zur hexagonalen
Achse ab. Die exakte Lösung führt hier, ebenso wie in (I), auf
geschlossene Ausdrücke, die In und arctg enthalten; die Rechnung
ist hier jedoch gegenüber der in (I) dadurch komplizierter, dass
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im Nenner ein Polynom 6. Grades von y auftritt. Aus den oben
angegebenen Gründen haben wir uns hier auf die Berechnung der
Näherungslösung beschränkt, die ähnlich der in (I) angegebenen
verläuft und die mit denselben Bezeichnungen und Abkürzungen
durchgeführt werden soll, da dann bei der numerischen Rechnung
schon früher benutzte Werte verwendet werden können.

Die beim Integral F in (3b) auftretenden Grössen haben
folgende Orientierungsabhängigkeit :

s'3SS A-y*+B-y2 + C,

lA (C + O 2 y2 ¦ {\-y2) ¦ [sxx (l-72) - (SXS + i/2 si4) ¦ (1 -2 y2)

- s33 ¦ y2]2 2 • {y2 - y*) -[A-y2+ % B]2,

worin wie in (I)

A sxx + s33 — (2 sX3 + s44) ; B — 2 slx + 2 sX3 + s44 ; C sxx

bedeuten. Dann wird

%(A; +s\:) _ yi.2A + y2-2A + 2C
B*

<3 ,-.,-. 2A
I B2 B3\ I B2 • Cy^-2AC-2BC+^ + ^2)-(2C2-JL^

yi-A + y2-B + C

und mit
B2

D=2G-^-72 A

F —-A + D-C-D-E-{A + B)-D-[ y"" äy—- (5)
15

V ' J y*-A+y2-B+C
V ;

worin E der in (I) berechnete Mittelwert des F-Moduls ist. Die
Berechnung des Integrals

i

/ y2 • dy
yi. A + y2- B + C

erfolgt nun analog wie in (I) verschieden, je nachdem, ob A
positiv oder negativ, ist aber in allen Einzelheiten der dort
durchgeführten so ähnlich, dass sie hier nur angedeutet zu
werden braucht.



Torsionsmoduln quasiisotroper Vielkristalle. 679

1. A positiv.

Bezeichnungen :

<? ]/-§-; tga=-^-l/4^cT-B^; ff -|/e-cosy.

Die Partialbruchzerlegung liefert hier:

y2 1 f y 7

yi. A + y2- B + C A-ia \y2 — 2 a y + q y2 + 2 oy+'g)'

und die Integration mit den entsprechenden Umformungen:

1 y2-dy 1

j Yi. A + y.. b + c - A 8 v- - (5a)
0 - z

/ 4v^cosy \ 1 /2Vesin|-
• In 1 + _ f + _ arctg l __\ 1—2 s/q cos y+ g/ A-i\/QSm^ Vgl
Die Argumente von In und arctg sind identisch mit den bei der
Berechnung von Ë in (I) Gl. (3) auftretenden, wodurch die
Zahlenrechnung hier sehr einfach wird.

2. A negativ.

Bezeichnungen :

a -l/l/Bl+iA'°.+_* und ß l/l/B2 + iA'C-B
V 2A' V 2A'

Die Partialbruchzerlegung lautet:

y2

yi. A' + y2- B + C

1 1 1 ß2

A' \2oc(«.2 +ß2)\y-a y + a.\
'

a.2 + ß2 y2 + ß2\\
die Integration liefert:

(5 b)

/ y^äy- -_J_.j« -In ^1-/?-arctg-U.
J -yi.A'+y2-B+C yB2+iA'C \2 oc-1 ^ ë

£ |

Auch hier sind wieder die Argumente von In und arctg identisch
mit denen in (I) Gl. (5).
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III. Vergleich mit den beobachteten Torsionsmoduln.

Mit Hilfe der Gleichungen (3), (4) und (5) und den
Einkristallkonstanten, die schon seinerzeit1) die Grundlage der Berechnung
gebildet hatten, worden nun die Torsionsmoduln ermittelt („korrigiert")

der Tabelle 1. Aus der Gegenüberstellung mit den früher
angegebenen Werten (Huber-Schmid) sieht man die Erhöhung
des Torsionsmoduls, die besonders bei starker Anisotropie des
Einkristalls ins Gewicht fällt. Die experimentellen Werte stammen
zum grössten Teil aus Messungen von Grünbisen2), aus denen
Bruggeman3)4) die dem quasiisotropen Aggregat wahrscheinlich
zukommenden Werte ausgewählt hat.

Mit alleiniger Ausnahme des Cadmiums, bei dem der
Beobachtungswert besonders unsicher ist, kommt stets der durch
Berücksichtigung der Verhinderung der Biegung der Kristallite korrigierte
Torsionsmodul dem experimentellen Wert erheblich näher als der
unkorrigierte Torsionsmodul. In einigen Fällen tritt sogar völlige
Übereinstimmung auf.

Tabelle 1.

Berechnete und beobachtete Torsionsmoduln.

Torsionsmqdul (1011 Dyn/cm2)

Metall berechnet
beobachtet

berechnet
BruggemanHuber-Schmid korrigiert

Aluminium
Kupfer
Silber
Gold
a-Messing
a-Eisen

Magnesium
Zink.
Cadmium

2,61
4,21
2,59
2,60
3,49
7,62
1,74
3,55
2,09

2,61

4,54
2,77
2,78
3,89
7,94
1,74
3,79
2,17

2,69
4,55
2,88
2,77
4,0

<8,3
1,8
3,95
1,93

2,61
4,78
2,90
2,89
4,24
8,21

4,01
2,27

Die Tabelle enthält schliesslich noch die Werte, die mit einer
völlig anderen Methode von Bruggeman berechnet worden sind3)4).
In diesem Verfahren werden von vornherein Bedingungen für die

1) W. Boas und E. Schmid, Helv. Phys. Acta 7, 628, 1934.

2) E. Grüneisen, Ann. d. Phys. 22, 801, 1907; 25, 825, 1908.

3) D. A. G. Bruggeman, Dissertation Utrecht 1930.

4) D. A. G. Bruggeman, ZS. f. Phys. 92, 561, 1934.
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an den Grenzen der Kristallite sich abspielenden Vorgänge
eingeführt und so die Wechselwirkung der Körner berücksichtigt.
Für die Durchführung der Rechnung werden dann allerdings
besondere Annahmen über die zu mittelnde Funktion und die
Kornform nötig. Wie die Tabelle zeigt, ist die Annäherung der
Messwerte durch die BRUGGEMAN'sche Methode und die hier
berechneten, korrigierten Torsionsmoduln gleich gut1).

Physikal. Institut der Universität Freiburg.

x) Ein näherer Vergleich der beiden Verfahren wird an anderem Orte
erfolgen.
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