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Zur Berechnung des Torsionsmoduls quasiisotroper Vielkristalle
aus den Einkristallkonstanten
von W. Boas.
(30. XI. 35.)

Zusammenfassung. Der Torsionsmodul quasiisotroper Vielkristalle war aus
dem Einkristallverhalten durch Mittelwertbildung iiber den gesamten Orientie-
rungsbereich unter der Annahme berechnet worden, dass sich die Vorgénge in
den einzelnen Kristalliten unabhingig voneinander abspielen. Der gegenseitigen
Beeinflussung der Kristalle im vielkristallinen Aggregat wird nun dadurch Rech-
nung getragen, dass die Verhinderung der bei freien Kristallen mit der Torsion
gekoppelten Biegung beriicksichtigt wird. Die so korrigierten Torsionsmoduln
stimmen gut mit den Beobachtungsergebnissen iiberein.

Bei der Bestimmung der elastischen Eigenschaften durch
Mittelung, die von HuBEr und ScumMID angegeben worden ist?),
wird vollige Unabhingigkeit der Kristallite voneinander voraus-
gesetzt, wobel diese zylindrisch angenommen werden und Kréfte
nur auf die Grundflichen wirken sollen. Wihrend nun die Uber-
einstimmung mit den Beobachtungsergebnissen beim FE-Modul
durchaus befriedigend ist, ist der so berechnete G-Modul syste-
matisch kleimner als der experimentelle Wert?). In der vorliegenden
Mitteilung, die sich aufs Engste an die fritheren Arbeiten an-
schliesst, soll fir den Torsionsmodul eine Korrektur angebracht
werden, die die gegenseitige Beeinflussung der Kristallite bertick-
sichtigt. .

Gerade bei der Drillung tritt die Bedeutung des kristallinen
Aufbaus stark hervor. Nach der Theorie der Kristallelastizitat
1st die Torsion eines zylindrischen Kristallstabs mit einer Biegung
gekoppelt, die um so grosser ist, je grisser die Anisotropie des
Kristalls. Wird diese Biegung verhindert, so ist die Drillung durch
ein gegebenes Moment kleiner als bei frei zugelassener Biegung?);
der Torsionsmodul wichst also entsprechend. Das im Vielkristall
eingebettete Korn wird nun diese Biegung bestimmt nicht frei

1) A. HuBkr und E. Scamip, Helv. Phys. Acta 7, 620, 1934. Im folgenden
als T zitiert. _

*) W. Boas und E. Scamip, Helv. Phys. Acta 7, 628, 1934. — W. Boas,
Helv. Phys. Acta 7, 878, 1934.

3) W. Voiet, Lehrb. d. Kristallphysik, § 316—317. — E. Goexs, Ann. d.
Phys. [5] 15, 455, 1932.
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ausfithren kénnen. Es wird deshalb eine Erhohung des G-Moduls
des Aggregats verursachen. Im folgenden soll die Mittelung des
G-Moduls fir das quasiisotrope Aggregat durchgefithrt werden,
wober vollige Verhinderung der Biegung vorausgesetzt sei. In
diesem Fall wird der reziproke Torsionsmodul statt durch
% (s,, + §,,) durch die Gleichung

1 , , 3 (s5: + s41)
ﬁ"z%(su—i_ssa)_ 2('8’ 5) (1)

33

dargestellt. Die durch das zweite Glied bewirkte Korrektur
nimmt bei Metallkristallen betrichtliche Werte an, die z. B. bel
Zink bis zu 169, gehen'). @ ist nun iiber die gesamte Orientierungs-
mannigfaltigkeit zu integrieren.

I. Quasiisotropes Aggregat kubischer Kristalle.

Die Oriéntierungsabhé,ngigkeit der in G auftretenden Grossen
hat hier folgende Form:

8’33———811_28'_['
%(3;4+3;5):544+43'F _
Yo ($h: 4 8en) =282 [(»° + 98 + v — (0t +y: + 904
—2s2-['—4 T2+ 8],
wobel ' .
S=8pn—81a— Yy, I'=yy.+yiy+v,v,, x=v.7.7

und y;, ¥s, ¥3 die Richtungscos der Kristallstabachse zu den drei
Wiirfelachsen sind. Damit wird

1 2s2(I'—4124 3y
2 e AsT —
G~ fatis spu—2sT
oder '
1_ 2 p
—  Sa S11 " Saa ,
1+M-I'+N. g
wenn
2
M:28(8+2812) und N:—L.
$11° Saa $11° Sma

1) E. GQENS, Ann d. Phys. [56] 16, 793, 1933. Fig. 4, S. 804, wo
¥ (s55 + s%32)
3.{;3% (3;4 + 3;5)

mit y bezeichnet ist.
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Die Integration iiber den gesamten Orientierungsbereich erfordert
nun die Auswertung der Integrale

1 df 1 I-af
e :  und L= ,
in )14 M-T+N-, ™ din) 1T M-T+N 4

die bereits von BrRuUGGEMAN durch Reihenentwicklung durch-
gefiihrt istl). Man erhilt also fiir den Torsionsmodul

L, L @)

S44 S11 * Saq

a:

Die numerische Berechnung der bestimmten Integrale J und L
1st recht umstédndlich. Es wurde deshalb eine N#herungslosung

auf folgendem Wege gefunden. In (I) war _;" =31 (s, +5.)

gesetzt und g berechnet worden. Wir setzen hier nun entsprechend
Gl. (1):

1 ’ 9 /9
_i:_i__ 1 f 2(834;1_835) df (3&)
G g 4n=n Sys
und bestimmen das Integral
1 /2 g
F o 1 f 2 (834’+ 8:15) df k (3b)
47 8,4
Es wird
3 (sh: + 85s) ,. - $11 (28, —5) — 6%y
7 =4s-I'+ (28;—9) + 35 T — sy ,
also, da

Z%fl’-dfzo,z,

F =98y —028— (285 — f i

4mnJ 1 _25.p
SNl
C6sr 1 j‘ x-af
N siu 47 128 p
11

Die Reihenentwicklung fiir diese Integrale ist recht einfach, und

1) D. A. G. BruceEMAN, Dissertation Utrecht 1930, S. 66—67.
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man kann unter Benutzung der BrRuceEmMAN’schen Berechnungen
schreiben :

Iﬂ:QSll‘**O,QSM

6s2 1 1
(2811—8— -—) . ————[Py+m Py + m2Py+m3Py 4]
3544 '
6 &2 1 , .
— . s [Qo+ Mm@+ m 2Qg+ m 3Q -], (4)
Sii 1 — 2
3 544
worin 1
m=- 811 -
6 2s

ist und die P; und @; nach BruceemaN folgende Zahlenwerte
besitzen :

; 0 1 2 3

P, || 1,0000 ~3,3333-10— | 8730-10~% | —4,16-10~4

Q. || 89947-10 | 3,028-10~4 3,031+10-5 0,71-10-¢
i 4 5 6 7

P, | 1,348-10- — 6,810~ 2,57-10-8 | —1,3-107

Q 4-10-8 2,0-10~7 ~1,1-10-8% |

Um die Zulédssigkeit dieser Naherungslosung zu priifen, wurde
fiir Silber G auf dem exakten Wege (Gl. 2) und mittels der Ndherung
(Gl. 8 und 4) berechnet: der nach (2) berechnete Torsionsmodul
1st um 0,259, grosser als der nach (3), (4) berechnete. Ks ldsst
sich ferner ganz allgemein, unabhéngig vom Kristallsystem,
zeigen, dass stets der exakt berechnete Torsionsmodul grosser ist
als der auf dem Niherungswege berechnete. Da nun der Unter-
schied beider Wege sehr gering ist und die Korrektur des G-Moduls
keinesfalls zu gross werden kann, wurde die numerische Rechnung
stets mit den einfachen Formeln (8), (4) ausgefiihrt.

II. Quasiisotropes Aggregat hexagonaler Kristalle.

Bei den hexagonalen Kristallen hédngen die elastischen Eigen-
schaften nur vom Richtungscos » des Winkels zur hexagonalen
Achse ab. Die exakte Losung fiihrt hier, ebenso wie in (I), auf
geschlossene Ausdriicke, die In und arctg enthalten; die Rechnung
ist hier jedoch gegeniiber der in (I) dadurch komplizierter, dass



678 W. Boas.

im Nenner ein Polynom 6. Grades von y auftritt. Aus den oben
angegebenen Griinden haben wir uns hier auf die Berechnung der
Naherungslosung beschriankt, die dhnlich der in (I) angegebenen
verlduft und die mit denselben Bezeichnungen und Abkiirzungen
durchgefithrt werden soll, da dann bei der numerischen Rechnung
schon frither benutzte Werte verwendet werden konnen.

Die beim Integral F' in (8b) auftretenden Grossen haben
folgende Orientierungsabhéngigkeit:

Sys = Ayt + B-y? + C,
Vo (s, + 85) =29 (1=p?) [511 (1—p®) — (513 + Yo $aa) - (1 —2%7)
— Sys pPE =2 (p2—pY - [4 - p2 + 14 B]?,
worin wie 1n (I)
A=581+ 833~ 2513+ Sa); B=—253+283+8u; C=sy

bedeuten. Dann wird

Vo (ssa +54) 4. o0 41 on B
5 =—y4- 24 +92-24+2C Vi
- y*-A+yB+C ’
und mit
2
Fe2. 4+D-CD-E—(4+B)-D- oty (5)
15 6A¢A+y&B+C’ |

worin F der in (I) berechnete Mittelwert des E-Moduls ist. Die
Berechnung des Integrals

1

yt-4d+9y*-B+C

0

erfolgt nun analog wie in (I) verschieden, je nachdem, ob 4
positiv oder negativ, 1st aber in allen Einzelheiten der dort
durchgefiihrten so #hnlich, dass sie hier nur angedeutet zu
werden braucht.
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1. A positiw.
Bezeichnungen:

L L (Y
Q“]/A’ tga~—§-]/4AC—B2; G:]/Q'COS-Q—-

Die Partialbruchzerlegung liefert hier:

y? 1 vy vy ] |
YA+ B+ C Ad-doly*—20y+0 7 +20y+0

und die Integration mit den entsprechenden Umformungen:

/]_ y2- dy - 1 m
Jyt-Ad+y*-B+C A-S\/écoséi (52)

0

4\/@005i 1 24/08in—
. ]_n 1 + z -+ - : arctg (_H_“__“ 3 2 )
1-24/gcos 5+ ¢ A-4\/@sin§ @~ :

Die Argumente von In und arctg sind identisch mit den bei der
Berechnung von F in (I) Gl. (8) auftretenden, wodurch die Zahlen-
rechnung hier sehr einfach wird.

; 2. A negatwv.
Bezeichnungen:
& = ]/VB2+4A~.’C+ B und B = l/§2+4A,0_B.,
24 24

Die Partialbruchzerlegung lautet:

2

4 -
wy"‘-A’—}—yz-B—i—Cm
| o? 1 11, P 1
A" |20 (o + §?) [y_fwa] a2 pr 244
T : . :
die Integration liefert (5h)
1
yi-dy 1 o at+1 | 1)
= o —+ln —— —f-arctg—1.
Of—y4~A’+y2-B-|-C VB4 4C |2 al prarctg g

Auch hier sind wieder die Argumente von In und arctg identisch
mit denen in (I) GL (5).
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III. Vergleich mit den beobachteten Torsionsmoduln.

Mit Hilfe der Gleichungen (3), (4) und (5) und den Einkristall-
konstanten, die schon seinerzeit!) die Grundlage der Berechnung
gebildet hatten, warden nun die Torsionsmoduln ermittelt (,,korri-
giert’) der Tabelle 1. Aus der Gegeniiberstellung mit den frither
angegebenen Werten (HuBer-ScuMID) sieht man die Erh6hung
des Torsionsmoduls, die besonders bei starker Anisotropie des
Einkristalls ins Gewicht fallt. Die experimentellen Werte stammen
zum grossten Teil aus Messungen von GRUNEISENZ), aus denen
Brucorman®)?) die dem quasiisotropen Aggregat wahrscheinlich
zukommenden Werte ausgew#hlt hat.

Mit alleiniger Ausnahme des Cadmiums, bei dem der Beob-
achtungswert besonders unsicher ist, kommt stets der durch Beriick-
sichtigung der Verhinderung der Biegung der Kristallite korrigierte
Torsionsmodul dem experimentellen Wert erheblich néher als der
unkorrigierte Torsionsmodul. In einigen Fiallen tritt sogar véllige
Ubereinstimmung auf.

Tabelle 1.
Berechnete und beobachtete Torsionsmoduln.
Torsionsmadual (101! Dyn/cm?)
Metall berechnet berechnet
— beobachtet
Huber-Schmid | korrigiert Bruggeman
!,

Aluminium . . 2,61 2,61 2,69 ; 2,61
Kupfer . . . 4,21 4,54 4,55 | 4,718
Silber . . . . 2,59 . 2,77 ’ 2,88 2,90
Gold . . . . 2,60 2,78 2,77 2,89
o-Messing . . 3,49 3,89 , 4.0 4,24
a-Eisen . . . 7,62 7,94 < 8,3 8,21
Magnesium . . 1,74 1,74 1,8 —
Zink. . . . . 3,55 3,79 3,95 4,01
Cadmium . . 2,09 219 i 1,93 2,27

Die Tabelle enthalt schliesslich noch die Werte, die mit einer
vollig anderen Methode von BRucceEMAN berechnet worden sind?®)4).
In diesem Verfahren werden von vornherein Bedingungen fir die

1) W. Boas und E. Scamip, Helv. Phys. Acta 7, 628, 1934.

2) E. GRUNEISEN, Ann. d. Phys. 22, 801, 1907; 25, 825, 1908,
%) D. A. G. BrRucGEMAN, Dissertation Utrecht 1930.

4) D. A. G. BrucceMaN, ZS. f. Phys. 92, 561, 1934.
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an den Grenzen der Kristallite sich abspielenden Vorgénge ein-
gefilhrt und so die Wechselwirkung der Kérner berticksichtigt.
Fir die Durchfihrung der Rechnung werden dann allerdings
besondere Annahmen iiber die zu mittelnde Funktion und die
Kornform nétig. Wie die Tabelle zeigt, ist die Ann#éherung der
Messwerte durch die BrucceEman’sche Methode und die hier
berechneten, korrigierten Torsionsmoduln gleich gut?).

Physikal. Institut der Universitéat Freiburg.

1) Ein nadherer Vergleich der beiden Verfahren wird an anderem Orte
erfolgen.
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