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Eine vereinfachte Ableitung der Klein-Nishina-Formel
von Gregor Wannier.

(25. XL 35.)

Seit der Ableitung der Streuformel von Klein und Nishina aus der Dirac-
schen Strahlungstheorie durch Waller1) sind die Methoden auf diesem Gebiete
erheblich vereinfacht worden. Trotzdem ist in der Literatur noch keine
durchsichtigere Ableitung zu finden; diese Lücke soll die vorliegende Arbeit ausfüllen.

Die Streuung von Licht am freien Elektron ist ein Doppel-
prozess, bei dem ein Lichtquant der Frequenz cos, der
Fortpflanzungsrichtung ns und der Polarisationsrichtung As übergeht in
ein solches der Frequenz cos,, der Fortpflanzungsrichtung ns, und
der Polarisationsrichtung As>; zugleich geht ein Elektron aus
seinem Ruhezustand En m c2 mit Spin an> in einen Zustand
Em mit Spin am> über. Der Prozess gehorcht bekanntlich dem
Energie- und Impulssatz, d. h.

m c2 + h cos — Em — h cos, 0

h cos ns — c p m — h cos, nS' 0. (1)

Dies ergibt für die ausgestrahlte Frequenz

T-(l-nsnS'). (2)
% cos' h cos m ci

Nehmen wir gleich an, der Anfangsspin an> sei nicht bekannt
und der Endspin am, werde nicht beobachtet, so erhalten wir für
die Übergangswahrscheinlichkeit W (m, s') den Ausdruck2)

2 n 1 JL „ss' 2

TF(TO,S')= 2
IV £i n/ M/ff

Vn'
nm

Q{m,s')-t. (3)

yn'm' ist das Ubergangsmatrixelement des Prozesses und p (m, s')

x) I.Waller, Zs. f. Phys. 61, 1930, 837.
2) Für eine ausführlichere Darstellung dieser Ableitung siehe irgend eine

Darstellung der Quantenelektrodynamik, z. B. Fermi, Rev. of mod. Phys. 4,
1932, 87 oder Wenzel, Handb. d. Phys. Bd. XXIV, 1.
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die Dichte der Endzustände bezogen auf ihre Energie h cos, + Em.
Dies ergibt bekanntlich

Û coh d cos> Q cof, Emp{m,s)= r-1^ — dco --dco (4)ev • in3c3 d{hcos,+Em) Ì7z3c3hcos me2 w

wo ü Volumen des Raumes, in dem der Prozess sich abspielt,
m Masse des Elektrons, c Lichtgeschwindigkeit, d co

Element der Einheitskugel für die gestreute Strahlung s'. Bei
festgehaltener Polarisation Ar steht hier noch ein Faktor \.

Weiter gilt bekanntlich in zweiter Näherung

wo e das elektrische Elementarquantum und

-Ljn'm'jr. e'\_-V/jîiJ (S)^m (S') Kl (S')Jlm(S)\ rn,
nm (*,*)~èU.-Er+*«B.+ E.-Ef-W (6)

mit
i cos ns x

j{s) A,~*-e c

~ - (6 a)
i co., n„, x

k (s') As, <x • e c

Gleichung (6) enthält die davon abgeleiteten Matrixelemente ;

mit a und ß bezeichnen wir die bekannten Operatoren der Dirac-
gleichung.

Aus der ÜbergangsWahrscheinlichkeit erhalten wir den
Wirkungsquerschnitt a des Elektrons durch die Beziehung

a f—W{m,s') =2n fs{&)d&. (7)
<u 0

Dann ergibt sich für den differentiellen Wirkungsquerschnitt
s {&) auf Grund von (3), (4), (5):

sW ei^S S |ÄS'r'<*.o[". w
mc ws n'm'=i

Den Summenausdruck muss man sich über alle Polarisationen
gemittelt denken. Seine Berechnung bildet nun die Aufgabe der
folgenden Seiten.
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IL
Die ungestörten Eigenfunktionen des Elektrons sind Spinoren

mit vier Komponenten und genügen der Gleichung

{E + cap +ßmc2) y> 0. (9)

Sie sind von der Form
i * *¦

rrVn*
V"' Cr, Pn) «"' (Pn) ¦

,-q
(1°)

wie in Fermi, Seite 116, genauer ausgeführt wird. Dabei kann
einerseits n' 4 Werte annehmen, andererseits besitzen die Spinoren
«"' 4 Komponenten, sodass eine Matrix un' entsteht. Sie ist
unitär, einerseits wegen der Orthogonalität und Normalisierung
der yt£, andererseits wegen ihrer Vollständigkeitsrelation.

Wir haben nun die Matrixelemente der Ausdrücke (6a) zu
untersuchen; sie lauten

a>s nsx

Inf (*) / {V (p,), (Â. Z) r' (Pn)} e

%

~~ir~dr. (11)

Die geschweifte Klammer steht hier wie im folgenden für
das skalare Produkt zweier Spinoren. Ausgeschrieben bedeutet
es also

wsnsx

£7>)=/ 2 fï(Pi)(A<)V>UPn)el C d*- (lla)
», f=i

Das Einsetzen von (10) in (11) zeigt, dass die eigentlichen
Integrale einen Impulssatz zur Folge haben und sich dann auf 1

reduzieren, sodass nur die Spinorprodukte übrig bleiben. Setzen
wir, diese in (6) ein, so wird

Kn'm' V {»"'(P™)* (Jfj) »'' (p,.)} {fi1' {Pl), (A.Z) uy {pn)}
nm h En + hcos-FS{px)

V {""'(P»), (jh «) U1' {plt)} {fi'' {ph), {Äs, q) «"' {pn)}
¦ ^ En-hcosr-Ei'{ph)

' l '

Die Impulssätze haben die Form

» ; h cos » - » h co., *.
r« "I n« Pî, Pm + ««'

c c

%cos, * * » h cos ^ n Q.^ ».' Pi, Pm Ws (13)
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d. h. sie weichen nur für den Zwischenzustand voneinander ab
und bestätigen Gleichung (1). Nun formen wir (12) um:

4

S {am'(pm),(As,â)(En + hcos + H(Pl|))«''(p,)}{ * }
{En + hcos)2-(E(pli))2 ^'"

{* ü1'{Pi), (As*)un'{pn)}
wo

H {p) — epa. — ß me2.

Auf Grund der Energie- und Impulssätze und der allgemeinen
Beziehung

2 {fi*1 (Pi), 0 ¦ wÄ> {p2)}{&•¦ {p2),P ¦ uhip3)}={a^ {px), 0-Puh> {p3}
hs l
schreiben wir dafür:

Km' I0"1' (?•). (P + Q) Un' (Pn)} (14)
wobei

P -= \z l(ÄS' a) (m c2 (1 -/J) + fc cos (1 - ns a)) (2. a)]
2mcihcos

Q=-- L [{As a) (mc»(l-/8)-fc «v (1-n, «)) (.2,â)]. (15)

Wir ersehen aus Gleichung (8), dass wir von (14) das
Modulquadrat bilden müssen, dass aber die Summe über n und m' nur
die Zustände positiver Energie umfasst. Wollen wir doch über
alle 16 K summieren, so benötigen wir die „Vernichtungsoperatoren"

[mc2 (1—ß) +h cos{l — nsa.)—h cosr {l-ris-'S.)]- (16)
2F...

Sie haben, ihrem Namen entsprechend, für Zustände positiver
Energie den Eigenwert 1, für solche negativer Energie den Wert 0.

Da die un' unitär sind, fallen sie dann aus der Rechnung
und es verbleibt:

S \Knn'nT'\2 Spur[(P + Q)V{pn){P + Q)V{pm)]. (17)
nx m' l
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Dabei bedeutet P die transponierte Matrix von P, d. h.

Pn~ Pm- Wenn sich aber die Matrix, wie in unserem Falle, als
Produkt Hermite'scher Elementarfaktoren schreiben lässt, so
ist die transponierte einfach gleich der Ausgangsmatrix mit
umgekehrter Reihenfolge der Faktoren.

Die Berechnung des Ausdruckes (17) ist äusserst einfach,
wenn man sich nur eine Anzahl Rechenregeln für die a und ß
vergegenwärtigt. Wir wollen hier zusammenstellen, was wir brauchen :

a) Aus

v-i ocA + aÄ Kj 2 ôih
folgt

CA a) (B a) + (Ba)(2a)=2ÎS
wobei hier wie im folgenden die Vektoren mit grossen lateinischen
Buchstaben sowohl unter sich, als mit den a und ß kommutieren
sollen.

b) Aus a) folgt insbesondere

(la) (la) A2

und wenn A Einheitsvektor ist

c) • (l-2a)2 2(l-Ia).
d) Wir können a) auch in der Form schreiben

(1 + 2o) (Ba) —(BÖ) (l-2a) 2 AB.

e) Dann folgt daraus, wenn A Einheitsvektor ist

(1— Ak) (Ba) (1 - 2 a) —2 {AB) (1 — 2a).
f Aus

folgt

und weiter

a ß + /Sa 0

(1 + ß)x — a (1 — ß) 0

g) (1 - ß) a (1 - ß) 0

ja überhaupt

(l-ß)(A1l){A2l) •••• (2„ o) (1 -/?) 0

wenn die Zahl n der a-Faktoren ungerade ist.
Neben diesen Rechenregeln benötigen wir nur noch wenige

Spurformeln, nämlich
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h) Die Spur eines Produktes ist gegenüber zyklischer
Vertauschung der Faktoren invariant.

i) Die Spur der Einheit ist 4.

k) iS[(2a) (Ba)] AB.
Die Formel folgt leicht aus a), h) und i).

Endlich gilt die allgemeine Regel:

1) Ein Produkt, das eine ungerade Anzahl von Faktoren
a oder ß enthält, neben Ausdrücken, die von a, resp. ß nicht
abhängen, besitzt die Spur 0.

Sie lässt sich so beweisen :

Wir schreiben unseren Ausdruck als Summe von Produkten
der a.{ und ß und bezeichnen eines davon mit F. Wenigstens
einer der 4 Faktoren tritt eine ungerade Anzahl von Malen auf.
Unter den anderen hat es zwei, die entweder beide eine gerade,
oder beide eine ungerade Anzahl von Malen auftreten. Der
übrigbleibende Faktor sei z. B. «,. Für ihn gilt dann

a.x r + Ta.x 0.

Wir schliessen daraus

S[F] S[F- oc«- <xj -S[aaTaJ
Dies gibt aber wegen h)

-s[r-aeaj -s[r].= o.

Nun zerlegen wir (17) in seine 4 Teile und berechnen diese
einzeln :

S[PV (pn) PV (pm)]

ih2Jm2cnrm ¦ t s ^K)C»^-ft+* ». a -%*«))

(1, a) (1 - /S) (I"; a") (jî^eMi—T?) + ft a>s (1 - Ws a)) (2,/ a)

(mc2 (1 — /S) + hcos (l—nsa) — hwa>(1 — ns>a))].

Die Streichungen in der zweiten und sechsten Klammer
erfolgten auf Grund von Regel g), sodass man jetzt mit h2 cos2 kürzen
kann. Daraufhin zerlegen wie die letzte Klammer in ihre drei
Summanden und vereinfachen dann das erste Glied auf Grund der
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Regeln h) und g) ; bei den beiden andern ist der Faktor 1 — ß
wegen 1) belanglos, worauf man zuerst b), dann c) anwenden kann:

1 1-S[mc2(A$,a) (2sa) (1-/8) (Asa) (2S, o) (1-/8)
4 m2 ci Em

+ 2h cos {As, a) (1 — ns a) (^4S' a) (1 — ws a)

— 2 h cos- {As, a) (1 — ns a) (^4S- a) (1 — «s/ a)] •

Nun benützen wir für das erste Glied f) und entfernen ß, für
das zweite e), für das dritte d), vereinfacht durch {As, ns>) 0.
Nach einigen Reduktionen auf Grund von b) verbleibt:

1—^ITdT- ¦ ,-S[2mc2 + ihcos (Asr ns) (As, a) (1 —ns â)
4 m2 c4 Em 4

— 2 h ci)sr (1 — ns a) (1 + nsr a)].

Dann ergibt endlich i), k) und 1) :

S[PV{pn)PV(pm)]

- [m c2 + 2 h cos {As, ns)2 — h co,- (1 — ns ns,)]. (18a)
2 m2 c4 F,._

Man erhält analog

S[QV{Pn)QV{pm)]

-o^tArr-l™ c2-2h cos, {As ns,)2 + h cos (1 - ns n,)]. (18b)
2 m2 ci Em

Weiter wird

S[PV(pn)QV(Vm)]

- irn-c^h2^, • T S [(1' «> ^H1 -Ä + fl "'(1 -* «})

(I, a) (1 - ß) (Ät. a) (m^rl—T?)-fe«V (1 - w5,a)) (2S a)

(m c2 (1 — /S) + ft co, (1 — ms a) — ft ctv (1 — ns> a))].

Wir trennen wieder die letzte Klammer in ihre Glieder,
reduzieren dann das erste nach g), die beiden andern nach e) :

1 1
S[mc2 (As, l) (2S «) (1 - /3) (2S, *) {Äs a) (1 -ß)4 m2 c4 Fm 4

— 2hcos {As, ns) (1 —ns a) (^, a) (Js, a) (1 — ns, a) {As a)

+ 2 ft cos, {As nsr) (As, a) (1 — ns a) (^4S a) {As, a) (1 — ns, a)]
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Nach der Ausreduktion von ß erfolgt die weitere Vereinfachung
im ersten Glied nach a), in den beiden andern nach d) mit Hilfe
der Beziehungen Asns As, ns> 0; dann wie oben Reduktion
wegen b). Für die Spurbildung kommt man dann wiederum mit
i), k) und 1) aus. Es ergibt sich

S[PV{pn)QV{pm)]= (18c)

2m2ciE lm c2 (2 (A X')2 - 1) -h cos (As,ns)2 + ft cos, (2S ns,)2}.

Genau derselbe Ausdruck ergibt sich auch für

S[QV{pn)PV{Pm)]. (18d)

Vereinigen wir die Formeln (18) zu (17), so folgt

2 \K'™'(s,s')\2
n' m' 1

[4 m c2 (2S As)2 + (ft cos — ft av) (1 — n, «,.)]. (19)
2 m2 ci F,.

Nun folgt aus (2)

(ft cos — ft co,.) (1 — nsn,') nie2 —— -\ 2
\ ws, cos I

Weiter ergibt sich bei der Mittelung über die Polarisation
der beiden Lichtstrahlen

{AsAs,)2 i{2-s\n2d')
wenn

nsnS' cos #.

Setzen wir endlich (19) in (8) ein, so erhalten wir die
Streuformel von Klein und Nishina:

s W -^TT -i- — + — - ^2 ») ¦ (20)
2 mi e4 coi V ß)s' ft>s /

Auch die Formel mit festgehaltener Sekundärpolarisation folgt
ohne weiteres aus unseren Gleichungen.

Es möge bei dieser Gelegenheit noch erwähnt werden, dass
die Ableitung der K. N. f. auf Grund der relativistisch invarianten
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Störungstheorie von E. Stückelberg1) ebenfalls zum Ausdruck (17)
führt. Man muss dazu nur den „Erwartungswert" von yi Q+ Q
(vgl. § 4, loc. cit.) in eine Spur verwandeln mit Hilfe des

Vernichtungsoperators V (pn) ; es gilt nämlich

A=—r cp+ Acp dz i {cp, ß A cp} dt

*Ì {an'(Pn), ß-Au*'{pn)}
n'^- 1

iS[ß-A-V{pn)].
Wegen der Relation

V (pm) ¦ V {pm) V {pm)

erhält man daraus

Yi ß+ Q 2 El S [(P + Q)V (Vm) (P + Q)V (p.)]

wie oben, Gleichung (17).

Die Anregung zu dieser Arbeit, sowie verschiedene praktische
Winke verdanke ich Herrn Dr. V. Weisskopp, dem ich an dieser
Stelle meinen Dank aussprechen möchte.

Physikal. Institut der Universität Genf.

x) E. C. G. Stückelberg, Ann. d. Phys. 21, 1934, 367.
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