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Bemerkung zur Intensitit der Streustrahlung bewegter
freier Elektronen
von E. C. G. Stueckelberg, Ziirich.
(19. XII. 34.)

Zusammenfassung: In der Formel fir die Streustrahlung bewegter freier
Elektronen treten, bei lcrentzinvarianter Schreibweise, die Viererpotentiale der
primdren und sekundéren Lichtwellen als Feldgrossen auf. Die Potentiale sind
aber nur bis auf eine Eichtransformation bestimmt. Da die Streuintensitit eine
eichinvariante Grosse ist, so muss sich das Resultat unter Verwendung von eich-
invarianten Feldgrossen schreiben lassen. Die folgenden Uberlegungen zeigen,
dass die vierdimensionalen Lorentzkrafte, mit welchen die urspriingliche und die
gestreute Lichtwelle am bewegten Elektron angreifen, als Feldgrissen in die
Streuformel eingehen.

1. Einleitung.

Die durch ein Stoérungsverfahren aus der Dirac’schen Wellen-
gleichung erhaltene Streuformel gibt uns den Energiestrom
J™(6™) d w,, von Licht der Frequenz »,, und einer bestimmien Polari-
sation o™, welcher durch ein Elektron aus dem primiren Energie-
strom der Dichte S* (¢%), der Frequenz v, und einer ebenfalls be-
stimmiten Polarisation ¢* in den' Raumwinkel dw,, gestreut wird.

Bei der tiblichen Herleitung dieser Formel (Klein-Nishina-
Formel [K-N-F.] fiir polarisiertes Licht) aus der Wellengleichung,
erscheinen die Polarisationsrichtungen als Einheitsvektoren des
Vektorpotentials 6* und ™ von Primir- und Sekundirwellen, wenn
beide Lichtwellen durch ein reines Vektorpotential beschrieben
werden. Fiir ruhende Elektronen wurde diese Formel z. B. von
WarLer?) abgeleitet. |

Will man den idiber alle Polarisationsrichtungen swmmaierten
Energiestrom J™d w,, berechnen, welcher durch einen unpolar:-
serten Primdrstrom S* erzeugt wird, so muss man die oben dis-
kutierte K-N-F. fiir polarisiertes Licht tiber zwel zueinander und
zur Richtung des Primarstrahles n* senkrechte Vektoren o * mitteln,
und tiber zwei zueinander und zur Richtung der Sekundirwelle u™
senkrechte Vektoren o™ addieren.

1) 1. WaLLER, Ztschr. f. Phys. 61, 837, 1930.
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Aus der K-N-F. fiir unpolarisiertes Licht und fiir ein ruhendes
Elektron hat Pauri!) die entsprechende Formel fiir ein bewegtes
Elektron durch eine Lorentztransformation abgeleitet.

In einer kiirzlich erschienenen Arbeit?) habe ich dann die
K-N-F. tir polarisiertes Licht und fiir bewegte Elektronen direkt
aus der Dirac’schen Gleichung erhalten. Die Mittelung iiber die
Polarisation fiithrt dann auf die Pavrrsche Formel. Herr PauLz
machte mich darauf aufmerksam, dass ich in meiner Rechnung
die Mittelung eigentlich im Ruhsystem durchfithre und erst dann
die gemittelten Glieder lorentztransformiere. Dass diese Mitte-
lung eine lorentzinvariante Operation ist, und daher vor der
Lorentztransformation vorgenommen werden darf, rithrt von der
Tatsache her, dass unpolarisiertes Licht ein lorentzinvarianter
Begriff ist.

Im folgenden soll diskutiert werden, wie diese Mittelung in
lorentzinvarianter Weise moglich ist. Eine invariante Form der
K-N-F. kann beim Problem der Lichtstreuung am gebundenen
Elektron von Wichtigkeit sein3). Dazu wird es notig sein, an Stelle
der Potentiale die Feldstarkentensoren einzufiihren. Wegen der
Eichinvarianz der Potentiale kann nédmlich zu einer bestimmten
ersten (jetzt vierdimensionalen) Polarisation des Potentials eine
zwelte dazu konjugierte Polarisation nicht in relativistisch in-
varianter Weise definiert werden, welche die Eigenschaft hat, dass
sie in jedem Lorentzsystem (bei einer Eichung als ein reines Vektor-
potential) auf n* und der (ebenfalls so geeichten) ersten Polari-
sation senkrecht steht.

Zu dem Feldstdrkentensor (Sechservektor) lidsst sich stets
der mit ¢+ multiplizierte duale Tensor als konjugierter Feldstirken-
tensor zuordnen. Dieser hat fir Licht die Eigenschaft, dass in
jedem Lorentzsystem seine magnetische Feldstiarke gleich der
elektrischen Feldstidrke des urspriinglichen Feldtensors und seine
elektrische Feldstarke gleich der magnetischen Feldstarke des
urspriinglichen Tensors mit umgekehrten Vorzeichen ist. Die Zu-
ordnung der konjugierten Feldstirke ist also (im Gegensatz
zur Zuordnung der konjugierten Polarisation des Potentials)
invariant,.

In die K-N-F. gehen dann als Polarisationsrichtungen nicht
die Feldstarkentensoren selbst, sondern die aus ithnen und aus
der Elektronengeschwindigkeit abgeleiteten Einheits-(vierer)-Vek-
toren der, von den (priméren und sekundiren) Wellen auf das

1) W. PauLr, Helv. Phys. Acta 6, 279, 1933.
2) E. C. G. STUuECKELBERG, Ann. d. Phys. [5] 21, 367, 1934.
3) 1. WALLER, Zeitschr. f. Phys. loc. cit.
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Elektron vor der Streuung ausgeiibten, Lorentzkrifte. Sie haben
die Eigenschaft, auf der Vierergeschwindigkeit des Elektrons vor
der Streuung und auf dem Vierervektor ihrer Wellennormalen im
pseudoeuklidischen Sinne senkrecht zu stehen. Ferner stehen
auch die zu zwei konjugierten Polarisationen gehérenden Lorentz-
krafte in diesem Sinne senkrecht aufeinander. Wihlt man also
eine bestimmte erste vierdimensionale, auf dem Wellenvektor und
der Elektronengeschwindigkeit senkrechte, Richtung der Lorentz-
kraft, so ist die zu ihr konjugierte Richtung bis auf das Vorzeichen
durch die Forderung, auf den drei anderen Richtungen senkrecht
zu stehen, eindeutig und invariant bestimmt. Daher 1st auch eine
invariante Mittelung moglich.

§ 2. Die Beschreibung der Polarisation in der K~-N-F. durch das Potential.

Die K-N-F. fir polarisiertes Licht und bewegte Elektronen?)
enthélt einen relativistisch invarianten Faktor. Da dieser in-
variante Faktor nur skalare Produkte von Vierervektoren ent-
halten darf, so muss er auch in bezug auf das Viererpotential eich-
mvariant sein. Bilden wir aus »n* und »; den Vierervektor (mit
imaginidrem Zeitanteil) der Wellennormalen der Primirwelle

k=(fﬁk£; il”i) 1)

c ¢
und aus ¢* den Vieretvektor der Polarisation
ok = (B'k’ 0) ’y - (2)

so stehen Wellenvektor und Polarisationsvektor auch im vier-
dimensionalen Sinne senkrecht aufeinander:

(6% k) =0, (3)

(a, b) bedeutet das skalare Produkt zweier Vierervektoren.
Aus der Wellengleichung fiir Licht folgt:

[l 1) = 1, (4)
Eine Eichtransformation des Potentials
| ok = 0%% 4 const X k (5)
lasst wegen (4) die Bedingung (3) unverdndert, so dass wir vdn

1) E. C. G. STUECKELBERG, loc. cit.
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der speziellen Definition (2) absehen kénnen. Wir kénnen aber
o® invariant normieren, so dass

(0%, %) =1 | (6)

1st. (6) ist wegen (3) und (4) gegeniiber der Transformation (5)
invariant.

Genau die gleichen Beziehungen gelten fiir die Sekundéarwelle,
deren Vierervektor mit m bezeichnet werde.

Die mit 2 7w u/h multiplizierte Vierergeschwindigkeit des Elek-
trons werde vor der Streuung durch I° und nach dem Streuvorgang
durch [ bezeichnet (4 = Elektronenmasse, h = Praxck’sche Kon-
stante). Dann gilt

[=14+k—m (7)
und

(4, ) = (%1% = (27 p c/h)® (8)
Bedeutet e noch die Elektronenladung, so lautet die K-N-F. fir
polarisiertes Licht:
4 22 1 L3
T4 oy = S d o — (’”") m ok om). (9
@ On g i) b, g W@ ()

Hier ist E°® die Energie des Elektrons vor der Streuung (in erg).
Ist » sein dreidimensionaler Geschwindigkeitsvektor, so bedeutet

k, 19 . D

D z(_;:q—( ) 10

k Ty lf; M . (10)

(a, 3) 1st das skalare Produkt zweier Vektoren im gewdhnlichen

Raum. a, 1st die imaginidre vierte Komponente des Vierer-

vektors a. W ist der relativistisch invariante Faktor:

1j(m 19 | (k1)

TV e

(o%, om)(k, 1% (m, 1%)—(a%, 1°) (o™, k) (m,1°)—(co®, m) (o™, I°)(k, 1°)+ (o™, (%) (a%, I°) (m, k) 2
(k, 19) (m, 1°) }

Die Formeln (9) und (11) folgen aus den Formeln (3, 4) und (4, 6)
meiner relativistisch invarianten Ableitung?!), wenn unsere Be-
ziehungen (3) und (4), fiir ¢* und k, und fiir 6™ und m gelten
und ! durch unsere Gleichung (7) eliminiert wird. Der zweite
Term ist natirlich eichinvariant. Fiir ruhende Elektronen (/°=rein
zeitlich) und reine Vektorpotentiale (o* und o™ = réumliche Ein-
heitsvektoren) wird er

2 (o™, o*)2 = 2 (5™, 5%)2, (12)

) E. C. G. STUEOKELBERG, loc. cit. In Formel (5,1) dieser Arbeit steht
ein Druckfehler. Das Vorzeichen des dritten Termes muss heissen — (statt ).

w (O'k;ﬂ’m):

+2

(11)
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Der gemittelte Ausdruck fiir W wird dann

W="mr4"%_sin29, (18)

wenn ¥ den Winkel zwischen 7, und %, bedeutet.

§ 3. Die Beschreibung der Polarisation in der K-N-F. durch die -
Lorentzkriiite.

Fihrt man die zum Viererpotential
g* = g* ¢i ) (14)

gehorenden, durch ¢ dividierten, Feldstdrkenamplituden der
Primédrwelle
K =k, of—otk, 7 (15)

ein (und entsprechend K™ fiir die Sekundirwelle), so muss sich
der eichinvariante zweite Teil von w (11) durch K* und K™ aus-
driicken lassen. :

Definieren wir die Amplitude der auf das Elektron aus-
getibten Lorentzkraft durch

pr= D K;. 1, (16)
so 1st ' |
p* =k (a%, 19 — o* (K, 19). (17)
Das Quadrat des Betrages der Lorentzkraftl) ist, wegen (3), (4)
und (6)
| p*[2 = | (% %) | = (K, 1%)* (18)

(und analog fiir p™). Bilden wir jetzt noch den Einheitsvektor der
Lorentzkraft p* durch

at— P (g a =1, (19)
(k, 19
so wird der 2te Teil von W anstatt (12)
2 [k, a2, (20)
Der relativistisch invariante Ausdruck fiir W heisst jetzt
W= {\PL e B2 g o, 1)
[p*| el

I\ pk ist eigentlich nicht ,,eine Kraft* im gewohnlichen Sinne, sondern, als
Vierervektor, eine ,,Kraftdichte. :
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In 1ihm erscheinen nur die Verhiltnisse der Betrage der relativis-
tisch invarianten vierdimensionalen Lorentzkrifte der primiren
und sekundéren Wellen auf das Elektron (vor dem Streuvorgang)
und das vierdimensionale skalare Produkt ihrer Richtungen.

§ 4. Die invariante Mittelung iiber die Polarisationsrichtungen.

Zu einer gewahlten, durch den’ Feldtensor K* festgelegten
Polarisation ist nach dem in der Einleitung gesagten') der Tensor

K¥ — i Kt* (22)

die konjugferte Polarisation. K* bedeutet den zu K dualen Tensor.
Es gilt allgemein fiir schiefsymmetrische Tensoren
(K,K¥=>K, K; =3>K, K, . (23)
wy

wy
v

Da im Lichtfeld der elektrische und magnetische Vektor in jedem
Lorentzsystem aufeinander senkrecht stehen, gilt

(R B ), (24)
Aus demselben Grunde ist
DKL KL =— > K}, KT (25)
Aus (22) bis (24) fovlgt, dass ”
(", p*) = X K L K 13 = 0. (26)
uvi
Ferner folgt aus (3) und (4) und (17), dass
(p%, k) = 0. (27)

was selbstverstindlich auch fir p* erfullt 1st. (27) folgt auch
direkt aus den Maxwerr’schen Gleichungen. Aus (17) folgt auch
noch, dass

(%1 =0. (28)

Damit ist die in der Einleitung angefiihrte Behauptung, dass kon-
jugierte Richtungen der Lorentzkraft aufeinander und auf & und [°
senkrecht stehen, bewiesen.

1) Zur Definition der dualen Feldtensoren und fiir das folgende vgl. z. B.
M. v. Lavg, Relativitatstheorie I, 4. Auflage, Vieweg 1921, 5, 107ff. s ist
K%, = K, ;, wo die Indizes p v o § alle voneinander verschieden sind und durch
eine gerade Zahl von Vertauschungen aus der Reihenfolge 1 2 3 4 hervorgehen.
Ist E,, E,, E; das elektrische und H,, H,, H, das magnetische Feld in einem be-
stimmten Lorentzsystem, z. B. ist K,, = H; und K'j, =1 K¥, =1 K3, = E,.
D.h. Hy = E,.
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Ist w* gewihlt, so lassen sich aus den drei linearen Gleichungen
(@, ) = (¥, k) = (¥, 19) = O (29)

die drei Unbekannten (u = 1,2,8) 2% durch =% ausdriicken. Aus
der Gleichung o

(¥, 7¥) = 1 (30)

folgt #*" und damit 7% bis auf das Vorzeichen. Somit ist die kon-
jugierte Polarisation festgelegt, da sie in (21) vorzeichenunabhéngig
auftritt. _

Die Mittelung vollziehen wir am einfachsten auf folgende
Weise: Wir schreiben einen Vierervektor @ in einem bestimmten
Lorentzsystem als (a,, @,, a5, a,). Dann wihlen wir ein solches
Axensystem, dass [° rein zeitlich erscheint, dass die 1-Axe in
der Raumrichtung der Primirwelle zeigt und dass die Raum-
- richtung der Sekundirwelle in der 1,2-Ebene liegt.t)

Die Vektoren 1%, k und m schreiben sich dann mit ,,invarianten
Komponenten* : '

°=(0, 0, 0, i/ —(,19)
_ (_!_ic_ﬂ_ 0. 0 _zi_@glf’w_._)

V=) Y =0, 1)

_(m.Byy=qo, 19 (m %) . (m19) )
m“( @) =m0

my 15t eine ,,invariante’‘ Grosse, welche sich bis auf das Vorzeichen
aus (m, m) = 0 ergibt. Als erste Polarisationen wihlen wir z. B.

at= (0, 1, 0, 0),
am= (0, 0, 1, 0).

Die konjugierten Polarisationen sind dann durch (29) und (30)
bestimmt zu

a*" =0, 0, + 1, 0),

e [ my V= (%19 (m, k) (1°, 19
7 ‘($ (m, 19 ’i”(k,w)(m,w)’o’o)’

1) Dieses gewahlte Raum-Zeitsystem ist natiirlich wieder das Ruhsystem
des Elektrons. Die Mittelung lisst sich natiirlich in jedem andern System auch
durchfiihren. Die beschriebene Mittelung ist aber jetzt invariant, was durch die
sinvarianten Komponenten* angedeutet ist.
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so dass die Mittelung des letzten Gliedes von W in (21) (Sum-
mation iiber alle Kombinationen mal %) die invariante Grosse

I _ (m, k) (1% 19 \?
1 D12 (w*, ) _1+(1 (k,lo)(m,lo)) (81)

ergibt. Das erste und zweite Glied verdoppelt sich durch die
Mittelung. Bezeichnet man

2—1% > 2 (7%, a™)? = gin? & (32)

(wo & dem Winkel zwischen % und # im Ruhsystem des Elektrons
gleich ist1)), so wird nach Einfithren von D, und D,, aus Gl. (10)

Diom | Devs oo g (33)

W=
Dyvi = Dy vm
mit
: (uc®? 1 1 1 (ue®?2/ 1 1
29 — ooy — _
sin & = (vam kak){z h O (vam v,ch)}° (84)

Die Formeln (9), (33) und (84) stimmen mit den Formeln (10),
(19) und (22) von Pauri?) (bis auf den durch eine andere Definition
der Primérintensitdt dort auftretenden Faktor D, im Nenner)
und meiner Formel (5, 1) in der erwédhnten Arbeit3) iiberein.

Herrn Prof. Pauwnr unc_1. Herrn Dr. Wesskopr mochte ich
fir die Anregung zu diesen Uberlegungen danken.

Zirich, Physikalisches Institut der Universitét.

1) (31) wird im Ruhsystem 1 + (576, nm )2 und daher (32) 1 — (lec, ;[m)2
= s8in? &.
2} W. PavLr, loc. cit.

%) E. C. G. STUECKELBERG, loc. cit. Der Faktor 2 vor sin? & in (5, 1) ist
ein Druckfehler.
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