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Bemerkung zur Intensität der Streustrahlung bewegter
freier Elektronen

von E. C. G. Stueckelber-g, Zürich.

(19. XII. 34.)

In der Formel für die Streustrahlung bewegter freier
Elektronen treten, bei lcrentzinvarianter Schreibweise, die Viererpotentiale der
primären und sekundären Lichtwellen als Feldgrössen auf. Die Potentiale sind
aber nur bis auf eine Eichtransformation bestimmt. Da die Streuintensität eine
eichinvariante Grösse ist, so muss sich das Resultat unter Verwendung von
eichinvarianten Feldgrössen schreiben lassen. Die folgenden Überlegungen zeigen,
dass die vierdimensionalen Lorentzkräfte, mit welchen die ursprüngliche und die
gestreute Lichtwelle am bewegten Elektron angreifen, als Feldgrössen in die
Streuformel eingehen.

1. Einleitung.

Die durch ein Störungsverfahren aus der Dirac 'sehen
Wellengleichung erhaltene Streuformel gibt uns den Energiestrom
Jm(am) d a>m von Licht der Frequenz vm und einer bestimmten Polarisation

am, welcher durch ein Elektron aus dem primären Energiestrom

der Dichte Sk (er*), der Frequenz vk und einer ebenfalls
bestimmten Polarisation a* in den Raumwinkel dmm gestreut wird.

Bei der üblichen Herleitung dieser Formel (Klein-Nishina-
Formel [K-N-F.] für polarisiertes Licht) aus der Wellengleichung,
erscheinen die Polarisationsrichtungen als Einheitsvektoren des

Vektorpotentials ak und am von Primär- und Sekundärwellen, wenn
beide Lichtwellen durch ein reines Vektorpotential beschrieben
werden. Für ruhende Elektronen wurde diese Formel z. B. von
Waller1) abgeleitet.

Will man den über alle Polarisationsrichtungen summierten
Energiestrom Jm d com berechnen, welcher durch einen unpolari-
sierten Primärstrom Sk erzeugt wird, so muss man die oben
diskutierte K-N-F. für polarisiertes Licht über zwei zueinander und
zur Richtung des Primärstrahles nk senkrechte Vektoren ak mittein,
und über zwei zueinander und zur Richtung der Sekundärwelle nm
senkrechte Vektoren am addieren.

I. Waller, Ztschr. f. Phys. 61, 837, 1930.
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Aus der K-N-F. für unpolarisiertes Licht und für ein ruhendes
Elektron hat Pauli1) die entsprechende Formel für ein bewegtes
Elektron durch eine Lorentztransformation abgeleitet.

In einer kürzlich erschienenen Arbeit2) habe ich dann die
K-N-F. für polarisiertes Licht und für bewegte Elektronen direkt
aus der DiRAc'schen Gleichung erhalten. Die Mittelung über die
Polarisation führt dann auf die PAULi'sche Formel. Herr Pauli
machte mich darauf aufmerksam, dass ich in meiner Rechnung
die Mittelung eigentlich im Ruhsystem durchführe und erst dann
die gemittelten Glieder lorentztransformiere. Dass diese Mittelung

eine lorentzinvariante Operation ist, und daher vor der
Lorentztransformation vorgenommen werden darf, rührt von der
Tatsache her, dass unpolarisiertes Licht ein lorentzinvarianter
Begriff ist.

Im folgenden soll diskutiert werden, wie diese Mittelung in
lorentzinvarianter Weise möglich ist. Eine invariante Form der
K-N-F. kann beim Problem der Lichtstreuung am gebundenen
Elektron von Wichtigkeit sein3). Dazu wird es nötig sein, an Stelle
der Potentiale die Feldstärkentensoren einzuführen. Wegen der
Eichinvarianz der Potentiale kann nämlich zu einer bestimmten
ersten (jetzt vierdimensionalen) Polarisation des Potentials eine
zweite dazu konjugierte Polarisation nicht in relativistisch
invarianter Weise definiert werden, welche die Eigenschaft hat, dass
sie in jedem Lorentzsystem (bei einer Eichung als ein reines
Vektorpotential) auf nk und der (ebenfalls so geeichten) ersten Polarisation

senkrecht steht.
Zu dem Feldstärkentensor (Sechservektor) lässt sich stets

der mit i multiplizierte duale Tensor als konjugierter Feldstärkentensor

zuordnen. Dieser hat für Licht die Eigenschaft, dass in
jedem Lorentzsystem seine magnetische Feldstärke gleich der
elektrischen Feldstärke des ursprünglichen Feldtensors und seine
elektrische Feldstärke gleich der magnetischen Feldstärke des

ursprünglichen Tensors mit umgekehrten Vorzeichen ist. Die
Zuordnung der konjugierten Feldstärke ist also (im Gegensatz
zur Zuordnung der konjugierten Polarisation des Potentials)
invariant.

In die K-N-F. gehen dann als Polarisationsrichtungen nicht
die Feldstärkentensoren selbst, sondern die aus ihnen und aus
der Elektronengeschwindigkeit abgeleiteten Einheits-(vierer)-Vek-
toren der, von den (primären und sekundären) Wellen auf das

') W. Pauli, Helv. Phys. Acta 6, 279, 1933.
2) E. C. G. Stueckelberg, Ann. d. Phys. [5] 21, 367, 1934.
3) I. Waller, Zeitschr. f. Phys. loc. cit.
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Elektron vor der Streuung ausgeübten, Lorentzkräfte. Sie haben
die Eigenschaft, auf der Vierergeschwindigkeit des Elektrons vor
der Streuung und auf dem Vierervektor ihrer Wellennormalen im
pseudoeuklidischen Sinne senkrecht zu stehen. Ferner stehen
auch die zu zwei konjugierten Polarisationen gehörenden Lorentzkräfte

in diesem Sinne senkrecht aufeinander. Wählt man also
eine bestimmte erste vierdimensionale, auf dem Wellenvektor und
der Elektronengeschwindigkeit senkrechte, Richtung der Lorentz-
kraft, so ist die zu ihr konjugierte Richtung bis auf das Vorzeichen
durch die Forderung, auf den drei anderen Richtungen senkrecht
zu stehen, eindeutig und invariant bestimmt. Daher ist auch eine
invariante Mittelung möglich.

§ 2. Die Beschreibung der Polarisation in der K-N-F. durch das Potential.

Die K-N-F. für polarisiertes Licht und bewegte Elektronen1)
enthält einen relativistisch invarianten Faktor. Da dieser
invariante Faktor nur skalare Produkte von Vierervektoren
enthalten darf, so muss er auch in bezug auf das Viererpotential
eichinvariant sein. Bilden wir aus nk und vk den Vierervektor (mit
imaginärem Zeitanteil) der Wellennormalen der Primärwelle

und aus ak den Vierervektor der Polarisation

or* (ak; 0) (2)

so stehen Wellenvektor und Polarisationsvektor auch im vier-
dimensionalen Sinne senkrecht aufeinander:

K k) 0 (3)

(a, b) bedeutet das skalare Produkt zweier Vierervektoren.
Aus der Wellengleichung für Licht folgt:

(k, k) 0 (4)

Eine Eichtransformation des Potentials

ak ak0 4- const X k (5)

lässt wegen (4) die Bedingung (3) unverändert, so dass wir von

*) E. C. G. Stueckelberg, loc. oit.
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der speziellen Definition (2) absehen können. Wir können aber
ak invariant normieren, so dass

(ak, ak) 1 (6)

ist. (6) ist wegen (3) und (4) gegenüber der Transformation (5)
invariant.

Genau die gleichen Beziehungen gelten für die Sekundärwelle,
deren Vierervektor mit m bezeichnet werde.

Die mit 2 n fi/h multiplizierte Vierergeschwindigkeit des Elektrons

werde vor der Streuung durch 1° und nach dem Streuvorgang
durch l bezeichnet (fj, Elektronenmasse, h PLANCK'sche
Konstante). Dann gilt

l l*+h — m (7)
und

(1,1) {l°,l°) {Zn/tc/h)*. (8)

Bedeutet e noch die Elektronenladung, so lautet die K-N-F. für
polarisiertes Licht:

«». - »"«ife&ì'-è-Aw <•"' ->• <9>

Hier ist E° die Energie des Elektrons vor der Streuung (in erg).
Ist a sein dreidimensionaler Geschwindigkeitsvektor, so bedeutet

(a, b) ist das skalare Produkt zweier Vektoren im gewöhnlichen
Raum. a4 ist die imaginäre vierte Komponente des
Vierervektors a. W ist der relativistisch invariante Faktor:

l ' ' 2 1 (k,l°) + (m,V>) /

\(ak, tf")(k, l°)(m, l°)-(ak, 1°) (ff™, k) (m,l«)-(ok, m)(a™, l°)(k, ^°)4(gm, l")(ak, l")(m,k)\2
| (k, 1°) (in, l") J

Die Formeln (9) und (11) folgen aus den Formeln (3, 4) und (4, 6)
meiner relativistisch invarianten Ableitung1), wenn unsere
Beziehungen (3) und (4), für ak und k, und für am und m gelten
und l durch unsere Gleichung (7) eliminiert wird. Der zweite
Term ist natürlich eichinvariant. Für ruhende Elektronen (£°=rein
zeitlich) und reine Vektorpotentiale (ak und am räumliche
Einheitsvektoren) wird er

2{am,akY 2{am,aky. (12)

r) E. C. G. Stueckelberg, loc. cit. In Formel (5,1) dieser Arbeit steht
ein Druckfehler. Das Vorzeichen des dritten Termes muss heissen — (statt +).

(H)
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Der gemittelte Ausdruck für W wird dann

W V^- + —- sin2 &, (13)

wenn & den Winkel zwischen jjt und nm bedeutet.

§ 3. Die Beschreibung der Polarisation in der K-N-F. durch die

Lorentzkräfte.

Führt man die zum Viererpotential

(pk ak ei (le, x) (14)

gehörenden, durch i dividierten, Feldstärkenamplituden der
Primärwelle

Kr K^-<K (is)
ein (und entsprechend Km für die Sekundärwelle), so muss sich
der eichinvariante zweite Teil von w (11) durch Kk und Km
ausdrücken lassen.

Definieren wir die Amplitude der auf das Elektron
ausgeübten Lorentzkraft durch

Pk, ^KX, (16)
V

so ist
pk k {ak, 1°) - ak (ft, 1°). (17)

Das Quadrat des Betrages der Lorentzkraft1) ist, wegen (3), (4)
und (6)

|p*|2= | (p*,p*) | (k,l0)* (18)

(und analog für pm). Bilden wir jetzt noch den Einheitsvektor der
Lorentzkraft pk durch

nh lfv>)'' ("*'"*)= 1» (19)

so wird der 2 te Teil von W anstatt (12)

2{7ik,nm)2. (20)

Der relativistisch invariante Ausdruck für W heisst jetzt
11 nm I I vk I Ì

W=i T^rf + T--r - + 2 (**. *")' • (21)
11 v I I vm I 1

x) pk ist eigentlich nicht „eine Kraft" im gewöhnlichen Sinne, sondern, als
Vierervektor, eine „Kraftdichte".
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In ihm erscheinen nur die Verhältnisse der Beträge der relativistisch

invarianten vierdimensionalen Lorentzkräfte der primären
und sekundären Wellen auf das Elektron (vor dem Streuvorgang)
und das vierdimensionale skalare Produkt ihrer Richtungen.

§ 4. Die invariante Mittelung über die Polarisationsrichtungen.

Zu einer gewählten, durch den' Feldtensor Kk festgelegten
Polarisation ist nach dem in der Einleitung gesagten1) der Tensor

K* iKk* (22)

die konjugierte Polarisation. K* bedeutet den zu K dualen Tensor.
Es gilt allgemein für schiefsymmetrische Tensoren

(Jf,K*) 2^fK>82^rZ;,. (23)
(iv v

Da im Lichtfeld der elektrische und magnetische Vektor in jedem
Lorentzsystem aufeinander senkrecht stehen, gilt

(Kk, Kk*) 0. (24)

Aus demselben Grunde ist

v^^=-2kuî:. (25)
V V

Aus (22) bis (24) folgt, dass

(P*,P*') 2^Wa^ 0. (26)

Ferner folgt aus (3) und (4) und (17), dass

(P\ fc) 0 (27)

was selbstverständlich auch für pk' erfüllt ist. (27) folgt auch
direkt aus den Maxwell'sehen Gleichungen. Aus (17) folgt auch
noch, dass

(p* J«) 0 (28)

Damit ist die in der Einleitung angeführte Behauptung, dass
konjugierte Richtungen der Lorentzkraft aufeinander und auf k und 1°

senkrecht stehen, bewiesen.

*) Zur Definition der dualen Feldtensoren und für das folgende vgl. z. B.
M. v. Laue, Relativitätstheorie I, 4. Auflage, Vieweg 1921, 5, 107ff. Es ist
K* K a, wo die Indizes uv aß alle voneinander verschieden sind und durch

tiv ccp " "
eine gerade Zahl von Vertauschungen aus der Reihenfolge 12 3 4 hervorgehen.
Ist Ev Ev Es das elektrische und Ht, H2, H„ das magnetische Feld in einem
bestimmten Lorentzsystem, z. B. ist KX2 H3 und K'12 i K*2 i KSi Es.
D. h. H3' Er
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Ist 7ik gewählt, so lassen sich aus den drei linearen Gleichungen

{nv, nk) (nk', k) {7iw, 1°) 0 (29)

die drei Unbekannten (fi 1,2,3) nk' durch 7ik' ausdrücken. Aus
der Gleichung

{nk', 7ik') l (30)

folgt jr*' und damit nv bis auf das Vorzeichen. Somit ist die
konjugierte Polarisation festgelegt, da sie in (21) vorzeichenunabhängig
auftritt.

Die Mittelung vollziehen wir am einfachsten auf folgende
Weise: Wir schreiben einen Vierervektor a in einem bestimmten
Lorentzsystem als (o1} a2, a3, aA. Dann wählen wir ein solches
Axensystem, dass 1° rein zeitlich erscheint, dass die 1-Axe in
der Raumrichtung der Primärwelle zeigt und dass die
Raumrichtung der Sekundärwelle in der 1,2-Ebene liegt.1)

Die Vektoren 1°, k und m schreiben sich dann mit „invarianten
Komponenten" :

i°=(o, o, o, iy-(i°,i°))

y - (i°, n y - (i°, n

w /m£M+-&ÜZL, m2, 0,Ä\ (k,n +]/-(i°,i°) y-(i°,H.

m2 ist eine „invariante" Grösse, welche sich bis auf das Vorzeichen
aus (m, m) 0 ergibt. Als erste Polarisationen wählen wir z. B.

nk (0, 1, 0, 0)

»» (0, 0, 1, 0)

Die konjugierten Polarisationen sind dann durch (29) und (30)
bestimmt zu

w*'-(0, 0, ±1, 0),

mzj^W^) (m, ft) (l\ n+ (m, 1°) ' ± + (ft, Z°) (m, Z°) ' u ' u

*) Dieses gewählte Raum-Zeitsystem ist natürlich wieder das Ruhsystem
des Elektrons. Die Mittelung lässt sich natürlich in jedem andern System auch
durchführen. Die beschriebene Mittelung ist aber jetzt invariant, was durch die
„invarianten Komponenten" angedeutet ist.
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so dass die Mittelung des letzten Gliedes von W in (21)
(Summation über alle Kombinationen mal J) die invariante Grösse

*s^>«=1+(i-t^r <«>

ergibt. Das erste und zweite Glied verdoppelt sich durch die
Mittelung. Bezeichnet man

2 - | 2 2 ("*. nm)2 sin21? (32)

(wo & dem Winkel zwischen k und m im Ruhsystem des Elektrons
gleich ist1)), so wird nach Einführen von Dk und Dm aus Gl. (10)

w D vm
+ Ihn—gin2^ ^33)

Dk vk Dm vm

mit

liE« \vmDm vkDk)\* hE» [vmDm vkDk)\- {°*>

Die Formeln (9), (33) und (34) stimmen mit den Formeln (10),
(19) und (22) von Pauli2) (bis auf den durch eine andere Definition
der Primärintensität dort auftretenden Faktor Dk im Nenner)
und meiner Formel (5,1) in der erwähnten Arbeit3) überein.

Herrn Prof. Pauli und Herrn Dr. Weisskopf möchte ich
für die Anregung zu diesen Überlegungen danken.

Zürich, Physikalisches Institut der Universität.

1) (31) wird im Ruhsystem 1 + (nk, nm- )2 und daher (32) 1 — (nk, nm)3
sin2 &

2) W. Pauli, loc. cit.
3) E. C. G. Stueckelberg, loc. cit. Der Faktor 2 vor sin2 ê in (5, 1) ist

ein Druckfehler.
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