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Untersuchung über Strukturänderung" der Kristalle im
elektrischen Feld

Kompensationsapparatur und Quantenschwankungen
von Anton Német.

(30. X. 34.)

V. Beschreibung und Berechnung der Apparatur.
1. Böntgenröhre.

Es wurde eine technische Röntgenröhre mit Kupferantikathode

verwendet, wie sie Siemens für Materialuntersuchungen
herstellt. Die Hochspannung wird einem üblichen Röntgentrans-
formator entnommen, wobei nur eine Halbwelle durch eine Ventilröhre

gleichgerichtet wird. Die Heizung der Ventilröhre geschieht
durch einen Heiztransformator 110/12 Volt, und zwar erdseitig,
so dass dieser nicht speziell isoliert zu sein braucht. Der
Hochspannungstransformator besitzt vier Stufen, durch welche man
die Grobregulierung vornehmen kann. Die Feinregulierung
geschieht durch einen Vorschaltwiderstand im Primärkreis.
Dadurch wird erreicht, dass bei einer Belastung von 10—25 mAmp.
eine hinreichend stetige Spannungsregulierung von 5 bis 50 KV
erzielt werden kann. Die Heizung der Röntgenröhre geschieht
durch eine Akkumulatorbatterie von einer Kapazität von 64 Ah
mit Grossoberflächenplatten. Es hat sich gezeigt, dass diese Batterie

eine sehr konstante Spannung gewährleistete. Der Transformator
wurde bei verschiedenen Belastungen geeicht, so dass man im

Betrieb aus der Primärspannung auf die Hochspannung schliessen
konnte. Da die Antikathode geerdet und die Ventilröhre
erdseitig geheizt wird, würde sich die Kathode der Röntgenröhre
in der Sperrperiode auf eine unbekannte Spannung gegenüber
Erde aufladen. Dadurch ginge einerseits die Schutzwirkung der
Ventilröhre verloren, andererseits wäre es wegen Unkenntnis der
Spannungskurve nicht möglich, die Arbeitsspannung zu berechnen.
Ist aber der Kriechwiderstand der Röntgenröhre wesentlich kleiner
als der der Ventilröhre, so ist die Sperrspannung an der Röntgenröhre

praktisch zu vernachlässigen. Nötigenfalls kann man einen

grossen Flüssigkeitswiderstand der Röhre parallelschalten.
Messungen haben gezeigt, dass dies im vorliegenden Fall überflüssig
war. Die Röntgenröhre wurde meistens mit 40 KV
Scheitelspannung bei 17 mAmp. Belastung betrieben. Sie war den
Spannungsschwankungen des Netzes ausgesetzt.
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2. Die Messapparatur.

Zur Untersuchung wurde ein Ionisationsspektrometer gebaut,
bei dessen Konstruktion es hauptsächlich folgende Anforderungen
zu verwirklichen galt:

1. Grosse Empfindlichkeit.
2. Grösstmögliche Stabilität des Nullpunktes.
3. Bequeme Ablesung und Registrierung.
Aus letzterem Grunde wurde eine Anordnung mit einem

Galvanometer und Röhrenverstärker einem Elektrometer
vorgezogen.

a) Beschreibung der Ionisationskammer,

a. Lichtausbeute.

Es ist wichtig, dass möglichst die ganze, in die Kammer
einfallende Strahlungsenergie zur Messung gelangt, und zwar
nicht nur wegen der Empfindlichkeit der Apparatur, sondern wie
wir weiter unten sehen werden, wegen der Konstanz des
Nullpunktes. Als Füllgas wurde Argon gewählt wegen seiner
chemischen Trägheit und relativ hohen Ordnungszahl (Z 18).
Die benützte Ka-Linie von Kupfer hat die Wellenlänge 1,54 Â
(die Absorptionsgrenze der K-Serie von Argon ist 3,86 Â, so dass
die Absorption im K-Zweig zu berechnen ist). Der
Massenabsorptionskoeffizient ist :

/u x a
I j

Q Q Q

wobei — für Elemente von Z 15 — 20 bei der in Frage stehenden
g &

Wellenlänge gleich 0,2 gesetzt werden kann (Streuung). Aus
der allgemeinen Absorptionskurve (nach Jönsson1)) entnehmen

wir den Ausdruck log {—'-%-] hi Funktion von log {ZXj,
wobei A Atomgewicht von Argon 39,88; o die Dichte
1,656 • 10~3 g/cm3 bei 760 mm Hg und 20° 0 und r der Koeffizient
der wahren Absorption ist. Daraus berechnet sich das pAR
1,88 • 10_1 cm-1. Aus dem Absorptionsgesetz berechnet sich das
Verhältnis | der in der Kammer pro cm2 zur Messung gelangenden

Energie zur einfallenden:

"ft — fJ t. /-.
T>

_JL £= (l_e-"«)_,J0 /j,

x) Jönsson, Diss. Upsala 1928.
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wobei x die Schichtdicke des absorbierenden Mediums, J0 die
einfallende Flächenintensität und J die austretende Flächenintensität

bedeuten. Bei den getroffenen konstruktiven Annahmen
(Kammerlänge x 13,6 cm, Druck 5,5 Atm.) wird 99,8% der
einfallenden Strahlung, also praktisch alles absorbiert.

Als Fenster wurde ein von der Gelatine befreiter photographischer

Film verwendet, die Dicke war 0,07 mm, die Absorption
(bei X 1,54 Â) 16%. Er entspricht einer Aluminiumfolie von
0,015 mm und die Festigkeitseigenschaften sind wesentlich besser.

ß. Schaltung.

Wegen der Stabilität des Nullpunktes ist es erwünscht, dass

nur die eintretende Strahlungsenergie gemessen wird. In ver-,
schiedenen Arbeiten1) wurde bereits die Ionisationskammer mit
isoliertem Käfig beschrieben. Sie hat den Vorteil, dass die —
durch die radioaktive Wandstrahlung verursachte — und störend
wirkende Ionisation nicht mit zur Messung gelangt.

Um die Reichweite der im Gas primär emittierten Elektronen
zu berechnen, können wir das WHiDDiNGTON'sche Gesetz:

UKY h ~\/Bem benützen. (V Anfangsenergie der Elektronen
in e KV., h eine Konstante, die nur vom Gas abhängt, für Argon
ist k 24,8; B die Reichweite in cm.)

Das Quantengesetz gibt den Zusammenhang: hv —~—\- A,
wobei A die jeweilige Ablösungsarbeit der Photoelektronen
bedeutet. Nehmen wir an, dass die schnellsten Photoelektronen die
Energie hvm 8050 eV besitzen, so ergibt sich aus obiger Formel :

B 0,106 cm bei Atmosphärendruck und B 0,19 mm bei
5,5 Atm. Der Käfigdurchmesser musste demnach nicht viel grösser
sein als die Länge des Eintrittsspaltes. Dabei wird die Divergenz
des Bündels ausschlaggebend sein.

Dimensionen der Kammer.

Die Länge der Kammer wird durch die Bedingung festgelegt,
dass möglichst die gesamte eintretende Energie absorbiert werden
soll. Das ist, wie oben erwähnt, gut verwirklicht. Die
Querdimensionen werden durch verschiedene Anforderungen bedingt.
Erstens müssen die Primärelektronen ihre volle Ionisation
entfalten, müssen also bis zum Käfig absorbiert sein. Das ist ebenfalls

x) Hoffmann, Ann. d. Phvs. 80, 779, 1926; Herzog, Helv. Phys. Acta VI,
513, 1933.
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erfüllt. Zweitens muss der Abstand der Wand vom Käfig
festgesetzt werden.

Wir nehmen an, dass die Kammerwand mit verschiedenen
radioaktiven Substanzen verunreinigt ist. Wenn wir die störende
Strahlung hauptsächlich «-Teilchen zuschreiben, stellen wir fest,
dass ihre Reichweiten im Argon von Atmosphärendruck sämtlich
unterhalb 6,5 cm sind. Bei 5,5 Atm. entspricht das einem Abstand
von 1,2 cm der Wand vom Käfig. Der Druck wird hauptsächlich
durch die Bedingung gegeben, dass keine a-Teilchen von der
Wand zum Käfig gelangen dürfen. Die Käfigdrähte und die
Nadel verursachen durch ihre Radioaktivität natürlich auch
Störungen, aber ihre Oberfläche ist nur etwa 4% derjenigen der
Wand. Immerhin zeigte die Erfahrung, dass die Nadel sauber
gehalten werden muss.

Die Richtung des Ionisationsstromes würde so gewählt, dass
bei Ionisation das Gitter positiver wurde. Das hat den Vorteil,
dass die Röhren ohne Strahlung mit minimalem Anodenstrom
arbeiten. Der Käfig erhält eine Spannung von + 150 Volt gegenüber

der Nadel, das entspricht 95% der Sättigungsspannung.
Diese Potentialdifferenz ändert sich im Betrieb nur unwesentlich
durch den Spannungsabfall am Widerstand. Das Hilfsfeld zwischen
Käfig und Wand hat den Zweck die durch die a-Teilchen
gebildeten Ionenpaare in einen Hilfskreis herauszuziehen und nicht
zur Messung gelangen zu lassen. Es ist dem Hauptfeld entgegengesetzt

gerichtet, um Störeinflüsse der in der Nähe des Käfigs
gebildeten Ionenpaare zu vermeiden. Aus praktischen Gründen
ist das Hilfsfeld v gleich dem Messfeld, indem die Wand und ein
Pol des Widerstandes geerdet sind und der Käfig durch eine
Trockenbatterie +150 Volt erhält.

Gitterableitwiderstand.

Als solche wurden KitüGER'sche Hochohmwiderstände gewählt.
Der Widerstand in der Messanordnung Bx hatte den Wert 7,31 • 1011

Ohm, der in der Kompensationshälfte B2 war 4,77 • IO11 Ohm.
Die Widerstände sind metallbestäubte Bernsteinröhrchen ; sie sind
bequem zum Einbauen und wurden gut konstant befunden.

y. Konstruktion.

Die Ionisationskammer besteht aus einem Messingzylinder
mit einseitig angelötetem Deckel und auf der anderen Seite
aufgezogenem Flansch. Der Deckel hat einen rechteckigen Ausschnitt
für den Strahleintritt. Er trägt eine runde Eindrehung. In diese
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passt eine runde Scheibe, die einen gleichen Ausschnitt hat. Zwischen
Scheibe und Deckel wird nun das Fenster, eine Zelluloidfolie, mit
einer ringförmigen Gummidichtung eingelegt. Die Scheibe steht
nun um einen halben Millimeter über den Flansch des Deckels
hinaus. Auf diesen Flansch wird endlich ein verstellbarer
Bleispalt aufgeschraubt, der die Scheibe gegen den Deckel presst.
Da der Gummiring wegen der Scheibe nicht ausweichen kann,
gibt diese Anordnung eine vorzügliche Dichtung. An der Rückseite

der Kammer ist ein zweiter Deckel aufgeschraubt. Dieser
besitzt einen konischen Schliff, in welchen ein passendes Isolationsstück

aus Naturbernstein eingelegt ist. Dieses wiederum enthält
einen Metallschliff, auf den die Stahlnadel angelötet ist. Die Kammer

besitzt dicht am Flansch noch eine zweite konische
Ausführung (Hartgummi), welche die Käfigzuführung enthält. Letztere
ist mit Pizein abgedichtet. Der Käfig besteht aus 12 Stahldrähten
von 0,1 mm Durchmesser; diese sind zwischen zwei Mikanitringen
gespannt. Käfig und Nadel stellen die zwei Elektroden dar und
sind beide von der Kammerwand isoliert. Die eine, mit dem
Gitter verbundene Elektrode (Nadel) muss hochisoliert sein
(Bernsteindurchführung), während der Isolationswiderstand der
anderen bloss eine zusätzliche Belastung der Trockenbatterie
bedeutet. Messungen ergaben, dass der Bernsteinschliff eine
Isolation von ~ IO14 Ohm gewährleistet, während die
Hartgummidurchführung mit IO9 Ohm hinreichend isoliert ist. Die Wandung
ist geerdet und mit dem Spektrographen und mit der Antikathode
der Röntgenröhre verbunden. Die Gitterleitung ist ausserordentlich
empfindlich gegen Kapazitätsänderungen im Innern der Kammer.
Aus diesem Grunde und auch deshalb, weil die dünnen Kupferdrähte

rasch erschlaffen würden, hat es sich als vorteilhaft
erwiesen, Stahldrähte zu verwenden; die Schwankungen infolge
Erschütterungen wurden dadurch erheblich reduziert. Der hintere
Deckel trägt einen Messingzylinder mit dem Hochohmwiderstand
und der Verstärkerröhre. Letztere steht auf einer Hartgummiplatte,

die Anoden- und Heizleitungen sind mit Pizein gedichtet
ausgeführt. Der Zylinder ist auf einen Unterdruck von 2 mm Hg
ausgepumpt, dadurch wird eine Ionisation in der Nähe der Röhre
vermieden und ein Feuchtigkeitsniederschlag auf die Verstärkerröhre

verhindert, somit eine dauernd gute Isolation erreicht. Die
Ionisationskammer und das Röhrengefäss besitzen kleine
Zeigermanometer, sodass man den Gasdruck bzw. das Vakuum dauernd
kontrollieren kann. Das ganze System wird durch einen Pressbügel,

der auf der Ionisationskammer angebracht ist, am Spektrographen

befestigt. Das Gehäuse der Verstärkerröhre trägt einen
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Rohrstutzen, der mit einem Flansch und einer Überwurfsmutter
am Deckel der Kammer befestigt wird. Hier wurde Bleidichtung
verwendet; alle aufgeschraubten Deckel sind mit Gummidichtungen

versehen.
Die Anordnung verwirklicht auf konstruktiv einfache Weise

die Anforderung, eine kleine Gitterkapazität zu bekommen, diese
während den Messungen konstant zu halten und die Gitterisolation
dauernd hoch zu halten. Bei einer Trennung der Verstärkerröhre
von der Ionisationskammer würde die Erfüllung dieser Forderungen
bei der notwendigen Beweglichkeit grosse Schwierigkeiten bereiten.
Dabei erlaubt die Anordnung — wie aus der Konstruktion des

Spektrographen (unten) ersichtlich — eine sehr gute Abschirmung
aller empfindlichen Leitungen.

FüllhahnMan

163
Ionisationskammer

M: 1:4

Fig. 3.

Ionisationskammer.

b) Konstruktion des Spektrographen.
Der Spektrograph trägt zwei der oben beschriebenen Systeme,

bestehend aus Ionisationskammer und angebauter Verstärkerröhre;

ein räumlich festes und ein um die Achse schwenkbares.
Ersteres dient zur Kompensation, das zweite zur Messung.

Es führen je sechs isolierte Leitungen von den Verstärkerröhren
in den — sich unter dem Spektrograph befindenden —
Metallbehälter, der die Widerstände und die Batterien des Verstärkers
enthält. Bei der Konstruktion wurde darauf geachtet, diese
Leitungen abgeschirmt zu führen. Da das eine System beweglich
ist, wurden sie in der als Rohr ausgebildeten Achse geführt.

Der Teilkreis für die Messkammer hat einen Durchmesser
von 300 mm und besitzt eine Teilung von 20 zu 20 Minuten. Mit
einer Feinstellung durch eine Mikrometerschraube ist diese noch
in 100 Teile teilbar, so dass 12 Sekunden noch einstellbar sind.
Der Teilkreis für den Kristallhalter hat eine Teilung von Minute
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zu Minute. Der Messkristall ist auf einem Goniometerkopf in
der Mitte des Spektrographen drehbar angebracht; der Mono-
chromatorkristall (Kalkspat) ist auf einem Tellerchen, das ein
für allemal eingestellt wird, vor dem Spaltsystem befestigt in
der Weise, dass die untere Hälfte des ausgeblendeten Strahles
durch ihn in die feste Kammer reflektiert wird, während die
Oberhälfte des Strahles ungehindert bis zur Mitte des Spektrographen

zum Messkristall gelangen kann. Auf dem Messteller
ist die feste Kammer befestigt, und zwar so, dass die Kammer
im richtigen Reflexionswinkel zum einfallenden Strahl steht.

i*

K»-

Fig. 5.

Spektrograph mit Ionisationskammern und Behälter
der Verstärkerröhren.

(Kalkspat 1 0 0:14° 35'.) Die bewegliche Kammer ist mit einem
Dreharm auf der Achse befestigt. Die Galvanometerzuführung ist
ein zweiadriges Bleikabel.

Die Röntgenröhre ist horizontal aufgestellt; dadurch wird
erreicht, dass ihr Fenster dicht an den Spalt herankommt und
der Hochspannungsteil doch genügend weit vom Spektrographen
entfernt ist. Der Strahl gelangt durch zwei verstellbare Bleispalte
zum Kristall, der Reflexionsstrahl durch den Kammerspalt in die
Ionisationskammer.
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3. Verstärker und Galvanometer.

a) Wahl der Verstärkeranordnung.
Als Verstärkerröhren wurden die sog. Elektrometerröhren

der General Electric Co. „Pliotron FP 54" verwendet. Beschreibung
der Röhren und Betriebsdaten sind bei Metcalf1) zu finden.
Die Röhren besitzen einen extrem grossen (~ IO15 Ohm)
Kriechwiderstand zwischen dem Steuergitter und den übrigen
Elektroden und eine Steilheit von ungefähr 30 ^.Amp/Volt bei
einer normalen Gittervorspannung von —4,5 Volt; der Gitterstrom

hat dabei die Grössenordnung von 10~15 Amp. Die Röhre
gäbe also bei einem Gitterableitwiderstand von ~ IO18 Ohm
(1% vom Kriechwiderstand als Grenze angesetzt) ihren maximalen
Stromverstärkungsfaktor, nämlich ~ 108. Es hat aber zur Folge,
dass bei so hohen Gitterableitwiderständen die Registrierung
sehr langsam wird und eine direkte Ablesung praktisch nicht in
Frage kommt. Der Vorteil gegenüber einer Messanordnung mit
einem Elektrometer ginge also verloren. Es wurde daher mit
Gitterableitwiderständen von ~ IO11 Ohm gearbeitet. Dem-
gemäss wird der Stromverstärkungsfaktor von der Grössenordnung

von 106. Die Röhren müssen allerdings in evakuiertem
Messingzylinder vor Licht, Feuchtigkeit und Fremdionen
geschützt aufgestellt werden, um lichtelektrische Störungen zu
vermeiden bzw. den Kriechwiderstand hoch zu erhalten. Die
ganze elektrische Anordnung, besonders die Steuergitterleitung und
die Käfigzuführung, muss gegen induktive Störungen
(hauptsächlich von der eigenen Röntgenröhre herrührend) gut
abgeschirmt werden.

Da der Empfindlichkeit der Messung, wie oben bemerkt,
durch die Einstelldauer eine Grenze gesetzt ist, musste
hauptsächlich dafür gesorgt werden, dass diese bei der Verwirklichung
einer raschen Registrierung (möglichst trägheitsfreie Verstärkung)
am besten angenähert wird. Wie wir nämlich sehen werden, wird
die Empfindlichkeit auch durch die Instabilität des Nullpunktes
begrenzt. Wir wollen nun die möglichen Schwankungsursachen
aufzählen und werden bestrebt sein, diese nach Möglichkeit zu
beseitigen.

Folgende Schwankungsursachen können auftreten:
1. Intensitätsschwankungen des einfallenden Röntgenstrahles:

a) verursacht durch die Spannungsschwankungen im Netz,
b) durch Inkonstanz der Heizbatterie der Röntgenröhre.

Metcalf, Phys. Rev. 36, 1489, 1930.
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2. Schwankungen, die in der Ionisationskammer entstehen:

a) durch Fremdionisation (radioaktive Strahlung),
b) durch die Quantennatur der Strahlung,
c) durch quantenhafte Absorption,
d) durch Kapazitätsänderungen infolge Erschütterungen.

3. Schwankungen im Verstärker:
a) Batterieschwankungen,
b) Isolationsfehler,
c) schlechte Kontakte.

Punkte 2a und 2d haben wir bereits behandelt. Zu 2c ist
zu bemerken, dass sie bei einem Absorptionsgrad von 99,8%
keine Rolle spielt. Auf 3b und 3c brauchen wir nicht näher
einzugehen. Wir wollen zunächst Punkt 1 und 3a, später 2b
ausführlich behandeln.

Die Intensitätsschwankungen des einfallenden Strahles wurden
durch eine zweite Ionisations- und Verstärkeranordnung
kompensiert, die mit der Messanordnung eine WHEATSTONE'sche

Brückenschaltung bildet.

u
i££

<f+AS*s&

-L^\/
dbd

E3^
=- u"0tri =fc

iE

Fig. 6.

Zweiröhren-Verstärker.

Diese Schaltung erlaubt gleichzeitig eine Kompensation
der Batterieschwankungen bis auf diejenigen der Heizbatterie.
Da die Belastung dieser 64 Amph-Batterie nur 0,2 Amp betrug,
wurden keine merklichen Schwankungen dieser Batterie registriert.
Etwaige Schwankungen der Käfigspannung E} hatten auf die
Messung keinen Einfluss, da bei Sättigung gearbeitet wurde. Wie
wir sehen werden, lassen sich die Ungleichheiten der beiden
Verstärkerröhren ebenfalls kompensieren.



Strukturänderung der Kristalle im elektrischen Feld. 127

b) Berechnung der Kompensation und der

Apparaturempfindlichkeit.

Es wurde monochromatische Kompensation verwendet, d. h.
ein Teil des einfallenden Strahles wurde durch einen Kalkspatkristall

in die Kompensationskammer reflektiert, welche somit
nur eine Wellenlänge erhielt, deren Intensität in gleicher Weise
von der Spannung der Röntgenröhre abhängt wie die des in die
Messkammer gelangenden Strahles.

Wir nennen die Intensität der aus dem Spaltsystem
austretenden Röntgenstrahlung J; die in die Kammer 1

(Messkammer) einfallende Strahlungsintensität Jx, die in die Kammer 2
einfallende J2. Die Intensitäten mögen in willkürlichen Einheiten
gemessen werden. Index 1 bezieht sich stets auf die zur Messung
dienende Hälfte des Verstärkersystems (Kammer, Verstärkerröhre,

Widerstände) ; Index 2 auf die zur Kompensation dienende
Hälfte; ij soll den Ionisationsstrom bedeuten.

Dann gilt bei Sättigung:

i4i a.-. ¦ J-. und
1)

*;2 a2 ' "2>

wobei ax und <x2 die von den Einheiten, dem Eintrittsspalt, der
Kammerkonstruktion usw. abhängende Proportionalitätsfaktoren
bedeuten. Nennen wir das Verhältnis von reflektierter und
primärer Intensität y, so können wir weiter schreiben:

in ai ' yx • J und
0,

li2= oc2 -y2 ¦ J

Den Raumladungsteil der Charakteristik der Verstärkerröhren

können wir nach Langmuir-Schottky darstellen:

ia s ¦ IJ3'*,

wenn ia den Anodenstrom, s die Steilheit und LT die
Steuerspannung U Ug + D • Ua zusammengesetzt aus der
Gitterspannung und aus der mit dem Durchgriff multiplizierten
Anodenspannung bedeuten. Für die folgenden Berechnungen werden
wir jedoch eine Proportionalität zwischen Anodenstrom und
Steuerspannung annehmen, indem wir voraussetzen, dass wir
uns im geradlinigen Teil der Charakteristik befinden, was wir
als erste Annäherung betrachten können. Wir schreiben also:

ia s • (77, + D ¦ ü.).
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Dabei bezieht sich g stets auf das Steuergitter, die Wirkung
des Raumladungsgitters soll im Durchgriff D berücksichtigt sein.
Die hochohmigen Gitterableitwiderstände bezeichnen wir mit
Bx und B2. Dann gilt für die Gitterspannung

UgX U01 + Bx- a.x-yx- J und
rf)

Ug2 U02 + B2- v-2-y2- J.

Als Abkürzung werden wir B ¦ oc ¦ y c setzen. Mit Z70

bezeichnen wir die konstante Gittervorspannung und wählen sie bei
beiden Röhren gleich, c • J bedeutet die Änderung des

Gitterpotentials bei eingeschalteter Röntgenstrahlung. (Die Vorzeichen
der Spannungen werden vorläufig nicht berücksichtigt.) Die
Faktoren c betrachten wir zunächst als konstant. Somit ergeben
sich die Anodenströme zu

Ki h • U0 + sx • c, • J + sx-Dx- Ual und
4)

%a1 S2 • U0 + S2 ¦ C2 • J + S2 • ü2 • Ua2

Wie aus der Schaltung ersichtlich ist, liegt am Galvanometer
die Differenz der beiden Anodenspannungen UaX — Ua2. Die
Kompensationsbedingungen, d. h. die Bedingungen für die
Unabhängigkeit des Galvanometerstromes von der einfallenden
Strahlungsintensität bzw. den Batteriespannungen, lassen sich
dann folgendermassen formulieren:

0; 4^-=0; -?j-=0. 5)dJ dEa dU0

Wenn wir bei der obigen Schaltung für die Stromverzweigungen
die Kirchhoff'sehen Gesetze anwenden, und die unter 4.
angeführten Röhrengleichungen hinzunehmen, erhalten wir folgende
Zusammenhänge :

a) \i \x + % b) \-2 + iG= ia + —^
o

_\ „¦ _ Ual <Ja2 n j-T _ Kl sl U0 SXCXJ
W »S — a) °al

'ff sxDx

e) U,
Inf Sn Un Sn Cn J"a 2

a-2
s2D2

f)
Ea Ual

in g)
Ea Ua*

=ir2. 6)
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In diesen Gleichungen bedeutet ia den Galvanometerstrom,
rx und r2 sind Widerstände im Anodenkreis und q ein
Parallelwiderstand zur Röhre 2. Wir sehen: der Kreis ist vollständig
definiert (7 Unbekannte: UaX, Ua2, iaX, ia2, irl, ir2, ig). Drücken-
wir ig als Funktion der als bekannt vorausgesetzten Grössen

aus, so erhalten wir:

E.Ai-ì)-M^-^)+J lCi'x

n +rG+ N

wobei n an Stelle von 1 + rx ¦ sx ¦ Dx und N für 1 + r2 s2 D2 + —
gesetzt ist. Wenn wir die Bedingungen 5) zunächst für die
Kompensation der Anodenbatterie Ea und der Batterie für die
Gittervorspannung U0 auf diesen Ausdruck anwenden, so verlangen diese,
dass die Koeffizienten von Ea und 770 verschwinden, d.h.:

sx-rx-Dx= s2-r2-D2+-^= sxrX0Dx und sx-rx s2-r2 =sx-rxo. 8)
Q

Wir sehen jetzt, dass der Widerstand q zum Ausgleich der
verschiedenen Durchgriffe dient, während rx und r2 die Ungleichheit

der Steilheiten kompensieren. Die Kompensationsbedingungen
bestimmen also das Verhältnis der beiden Anodenwiderstände
rxfr2 und das Verhältnis r2JQ. Bei der gleichen Röhrentype wird
das erste Verhältnis nahezu gleich 1 und das zweite ung. ± 0,1.
Im kompensierten Zustand lautet also die Empfindlichkeits-
formel 7) :

_ (a2 • B2 y2 — a.x Bx yx) ¦ sx- J

^+^+l) + sx-Dx
'10 rio

9)

Die Indizes 0 weisen auf den kompensierten Zustand hin.

Diskussion der Empfindlichkeitsformel.
Obiger Ausdruck i0 in Funktion von r aufgetragen stellt eine

monoton gegen einen Grenzwert strebende Kurve dar. Es ist
klar, dass sie für sehr grosse r nicht der Wirklichkeit entspricht,
würde das doch bedeuten, dass für r oo (keine Anodenspannung)
die maximale Empfindlichkeit vorhanden wäre. Die Grenze der
Gültigkeit unserer Formel ist offenbar dadurch gegeben, dass
bei kleinen Steuerspannungen (Vsf Ug + D ¦ Ua) die Steilheit
rapid abfällt und bei Vsi 0 verschwindet.

Um die maximal erreichbare Empfindlichkeit der Apparatur
zu bekommen, untersuchen wir die Gültigkeitsgrenze des oben
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gefundenen Ausdruckes für beide Verstärkerhälften. Da die
Gitterspannung TJg nicht vom Anodenwiderstand abhängt, drücken
wir zunächst die Anodenspannung Ual in Funktion des äusseren
Anodenwiderstandes r aus. Für die folgenden Rechnungen setzen
wir den kompensierten Zustand voraus und setzen, da bei dieser
Betrachtung kleine Ungleichheiten keine Rolle spielen, die
Steilheiten, Durchgriffe und Anodenwiderstände gleich:

sx s2=s; DX D2 D; rx r2 r; q oo.

Nach Formel 4) berechnen sich die Anodenströme

Ki s(U0 + Uxl + D UaX)

K-2 =s{U0+ Ux2 + D Ua2)

wobei TJxX und Ux2 für die von der Röntgenstrahlung hervorgerufenen

Spannungsabfälle cxJ und c2J gesetzt ist.
Die Formeln 6) liefern etwas umgeformt:

UaX Ea-r{iaX + iG) u jj #und c) —— — ia.
Ua2 Ea — r {ia2 — ig)

Nach Auflösung erhält man
E,

und

u, —
-f-ig-SU0-SUxl

u«l
~ + sD
r

7 » — -f + iG-sU0-sUx2
Ja2

- + sD
r

Setzen wir in diese Ausdrücke die vereinfachte Formel 9) :

_ s(Ux2-Uxl) 9a)

Y + srjre + 2

so erhalten wir schliesslich nach passender Ordnung:

Tj __ r(-rGs*DU0-2.sU0-rGs*DUxl-Uxls-Ux2s)
|

r(rGs2D2+2sD)+y(re) + (2rGsD+ 2)

y(EarG) + {EarGsD + 2Ea-rGsU0-rGsUxl)
-I un(j

r()+-r() +
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rj r(-rGs2DU0-2sU0-r0s2DUx2-sUxl-sUx2)
|

r{rgs2D2 + 2sD) + ~{rg) + (2rgsD +2)

~{Earg) + {EargsD + 2Ea-rGsU0~rGsUxZ)
+ i • 10)

r()+T O + O
Wie ersichtlich, unterscheiden sich die beiden Ausdrücke lediglich

dadurch voneinander, dass die UxX mit den U^ vertauscht sind.
Die Kurve hat folgenden Charakter :

TT _ r ¦ A + 1/r • B + C r2A +rC + B
U a r- M + 1/r • N + 0 r2M. + rO + N

Uns interessiert der Kurvenzweig für positive r. Setzen wir
D 1 ; s 3 • IO"5 A/V; E„ 6 V; (7„ - 4,5 V; rG IO4 V/A;
(7^ 0,4 V; (7^.9 0,2 V, so erhalten wir für die Konstanten: A
29,34 Amp.; B~= 6 • IO4 V2/A; C 15 V; M 7 • 10~5 A/V;
N 104 V/A; 0 2,6.

Die Steuerspannung setzt sich aus der so berechneten
Anodenspannung und der Gitterspannung zusammen Uax= <70 + UxX +
Dx UaX. Wir stellen nun die Bedingung, dass die Steuerspannung
den Wert 0,5 Volt nicht unterschreiten darf, in der Annahme,
dass bei niedrigen Spannungen die Steilheit nicht mehr konstant
bleibt. Mathematisch :

Ust ^ 0,5 Volt
Grenzfall: U0 + Uxl + D ¦ UaX 0,5 Volt; bei D 1:

Uai -U0- Uxl + 0,5 4,5 -0,4 + 0,5 4,6 V.

Dieser Wert wird nun in die oben gefundene Gleichung 10)
eingesetzt und der Grenzwiderstand rmax errechnet. Es ergibt sich,

rmax 1,23 • IO5 Ohm.

Wir haben gesehen, dass sich die Formeln 10) für die beiden
Verstärkerteile nur in den 77^ sich unterscheiden; wir nehmen
den ungünstigsten Fall und setzen Ux2 0 und UxX 0,4, setzen
wie vorhin Usi 0,5 Volt, Ua2 wird dann — U0 + 0,5 5 Volt.

Die Konstanten werden

A' 30,3 Amp; C 15,12 Volt; N, B, M, O bleiben unverändert.

Es berechnet sich

»•max 9>05 • IO4 Ohm rG IO4 Ohm.
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Dieser letztere Wert von r ist massgebend für das Abbrechen
der Empfindlichkeitskurve. Wir wollen noch einen zweiten Fall
untersuchen, nämlich den, wo das Galvanometer allein ohne Vor-
schaltwiderstand benützt wird:

rg 50 Ohm.

Dann werden die Konstanten im Falle UxX 0,4; Ux2 — 0;

A" 25,8 ¦ 10-5Amp. B" 300 V2/A, C" 12,02 Volt,

M" 6 • 10-5, A/V, N" 50 V/A, 0" 2,0.

Wir finden:

TW 4,925 • IO4 Ohm rG 50 Ohm.

Der Übersicht halber wird jetzt der wirkliche Verlauf der
Verstärkerempfindlichkeit in Funktion des Anodenwiderstandes
aufgetragen.

max

0.9
0.8

0.7

0,6

0,5
0.4-

03
0,2
0.1 \

I. rg 50 Ohm

II. rG 10* „

"5678Fig. 7.

Verstärkerempfindlichkeit in Funktion des Anodenwiderstandes

lg i

ra

für r„ IO4 Ohm und r„ 50 Ohm.,g — ^ V^llL Uii^ ,g

Wir sehen, dass die maximale Empfindlichkeit, nämlich

_ s(Ux2-UxX)
VG max s'(Ux2-Uxl)

im Falle rG 50 Ohm praktisch vollständig herausgeholt werden
kann und mit einem Vorschaltwiderstand von 10 000 Ohm auch
bis 84% erreichbar ist. Der Nenner 2 rührt von der
Brückenschaltung von zwei gleichen Elementen her, und ist unvermeidlich.

Wie oben bemerkt bestimmen die Kompensationsbedingungen
das Verhältnis der in der Apparatur verwendeten Widerstände.
Ihre Grösse bestimmt man je nach der erforderlichen Empfind-
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lichkeit bis zur angegebenen Grenze. Dabei ist folgendes zu
beachten: Es ist angenehm, wenn mit Variation der Widerstände
der jeweilige Empfindlichkeitsgrad den Messbedingungen
(Registrierapparatur, Grösse des zu messenden Effektes, usw.)
angepasst werden kann. Ausserdem erweist sich als zweckmässig,
wegen der unvermeidlichen Quantenschwankungen die Empfindlichkeit

einzuschränken.

Aus diesen Gründen wird nicht im horizontalen Teil, sondern
im ansteigenden Teil der Empfindlichkeitskurve gearbeitet. So

wurden für die Anodenwiderstände 5000 Ohm Radio-Drehwiderstände

verwendet und der Galvanometervorschaltwiderstand
zu 10 000 Ohm bestimmt, q ergab sich zu 1 Megohm. Dadurch
wird die Apparaturempfindlichkeit

• _ s{Ux2— Uxl)
%~ 4,3 "" •

Kompensation der Röntgenstrahlschwankungen.

Wir sehen aus der Formel für den Galvanometerstrom Nr. 9),
dass der Ausschlag des Instrumentes proportional dem Ausdruck
(a2 • y2- B2 — olx ¦ yx ¦ Bx) J ist. Hier sind olx und a2 durch
Verstellung der Kammerspalte regulierbar. Für eine bestimmte,
zu untersuchende Reflexion yx kann man nun (y2 ist durch die
Reflexion am Monochromatorkristall konstant) die Kammerspalte
so einstellen, dass der Klammerausdruck zu 0 wird : a10 • yx ¦ f^
«20 ' y2 ' ^2 >

die Indices 0 weisen wiederum auf den kompensierten
Zustand hin. Dadurch ist für diese Reflexion die Kompensation
des einfallenden Röntgenstrahles erreicht, das Galvanometer ist
dauernd stromlos. Tritt am Messkristall nun eine Änderung des

Reflektionsvermögens um A yx — yx — yx ; (yx das neue
Reflexionsvermögen) auf, so zeigt sich diese als Ausschlag proportional

zu:
ig~-Ayx- a10 ¦ Bx- J.

>

Wir sehen, dass es nicht gelungen ist die Schwankungen des
einfallenden Röntgenstrahles A J auch in diesem, veränderten
Reflexionszustande auszuschalten, vielmehr treten sie proportional
dem Ausschlag zum Vorschein. Nun ist aber in Wirklichkeit
dieser Ausschlag im Vergleich zum Gesamtausschlag klein (einige %),
so dass die Apparatur die von der Spannungsschwankung
herrührenden Strahlschwankungen in diesem Verhältnis herabsetzt,
wie aus den Registrierungen deutlich ersichtlich ist. Es ist noch
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zu bemerken, dass die Kompensation der Schwankungen noch
die Gleichheit der beiden Zeitkonstanten Bx ¦ cox B2 ¦ c02

erfordert. c0 ist die Kapazität der Gitterleitung gegen die Kathode.
c02 wurde durch ein verstellbares Scheibchen im Röhrengefäss
variiert.

Die Tatsache, dass wir mit der oben beschriebenen
Subtraktionsmethode jeweils nur für einen Reflektionspunkt
kompensieren können, bedeutet also für die vorliegenden Messungen
keinen Mangel. Es ist aber denkbar, dass Probleme auftreten,
bei welchen es erwünscht ist, dass wir für die gesamte Reflektions-
skala die Strahlschwankungen ausschalten. Deshalb, obwohl
hier nicht verwendet, wollen wir die Kompensation mit der
Quotientenmethode kurz veranschaulichen.

o 1 2 3 f s a t 2

Fig. 8.

Registrierung a) Verstärker allein, ohne Röntgenstrahlung. Die kleinen Stösse
sind durch radioaktive Wandstrahlung verursacht,

b) mit Röntgenstrahlung (Reflexionsintensität 100 cm) unkompensiert
Schwankungen bis 3,5%.

(Eine Registrierung im kompensierten Zustand ist aus dem Diagramm der
Intensitätsänderung an Eis Nr. V. ersichtlich. Dort ist die Reflexionsintensität 150 cm,

es sind nur Q.uantenschwankungen vorhanden.)

Vollständige Kompensation.

Erreichen wir, dass die beiden Ionisationsströme proportional
verstärkt werden, so gibt ihr Quotient einen Ausdruck, der für
alle Reflexionsintensitäten unabhängig vom einfallenden Röntgenstrahl

J ist. Als Quotientenmesser lassen sich Kreuzspulinstrumente

verwenden. Nachstehende Schaltung verwirklicht so eine

proportionale Verstärkung.
Bei dieser Schaltung sehen wir von einer Kompensation

der Batterien ab. Sie ergibt sich nicht ohne weiteres aus der
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Schaltung für die Kompensation der Röntgenstrahlen, wie es
bei der vorhergehenden Schaltung der Fall war. Würde sich
eine solche in praxi als nötig erweisen, liesse sich die vorliegende
Schaltung leicht erweitern1).

Für das Ersatzschema können wir wieder die KmcHHOFF'schen
Gesetze anwenden, dabei fassen wir die Verstärkerröhre als Widerstand

auf und definieren ihn 1/sD. Der Strom i5 bedeutet den
von der Anodenspannung unabhängigen Anteil des Anodenstromes,

-J-A u

Ä 1 E± E ri:=:£

Fig. 9.

Einröhrenverstärker.

i
0 - H £-«.+£¦

Fig. 10.
Ersatzschema.

lq h'> la — H' lr ¦

er ist gleich i5 s. U0 + s ¦ c • J. Es ergeben sich folgende sechs

Gleichungen : *

1) Ea + E'-Ex rx-ix 2) Ea-Ex r2- i2

3) Ex r3- i3 4) Ex r6- i6

5) it i5 + i3 + »6 6) iA ix + i2

Unbekannt sind %, i2, i3, iv ie, Ex

Bekannt sind rx, r2, r3, r6, Ea, E', ih.

1) Siehe : Batteriekompensation bei FP Pliotron-Röhren von Turner und
Siegelin, Rev. Sci. Instr. 4, 429, 1933.
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Uns interessiert der Galvanometerstrom i2. Lösen wir die
Gleichungen nach diesem auf, und setzen die im Schaltungsschema

geltenden Beziehungen wieder ein, so folgt:

Ea(sD+j)-E'y + s-U0 + s-c-J
ro „. n.» re

s • D ¦ r,Gr Q

Die Bedingung für proportionale Verstärkung (ig ~ J) lautet

E'r~
s(Ea-D + ^+U0

Im Gegensatz zur vorhergehenden Schaltung ist hier der
Widerstand q zur Kompensation nicht notwendig, er gestattet
nur, dass der Abgleichwiderstand r je nach der Gittervorspannung

und dem Durchgriff innerhalb praktischer Grenzen bleibt.
So wird z. B. bei einer Anodenspannung Ea 6 V, D 1, U0
— 4,5 V, s 3 • 10~5 Amp/V, q 104 V, der Regulierwiderstand
r 3100 Ohm. Sorgen wir dafür, dass r und q gross sind gegen
rg (Widerstand der Spule des Kreuzspulinstrumentes), dann wird
der Nenner annähernd gleich 1 und es ergibt sich schliesslich
für den Instrumentenstrom:

ig=s-c-J=s-oi-y-B-J
also ist er dem einfallenden Strahl proportional. Der Ausschlag
des Kreuzspulinstrumentes ist dem Quotienten der Spulenströme
proportional.

„ V-, s-, • oci • y-, • B, ,-,... ty — -~- ——=————=- unabhängig von J.
%2 ^2 ' a2 ' y2 B2

a.x und <x2, Bx und B2 lassen sich so einstellen, dass im
stationären Falle Q 1 ist. Erfährt yx eine Änderung um — —

X Prozent, so zeigt das Instrument Q 1 + -j?^- ¦ Die Ströme

sind von der Grössenordnung 10~4 Amp.
Sollte es sich praktischer erweisen, eine grössere Quotientenänderung

(Empfindlichkeit) zu bekommen, so lässt sich eine solche

erreichen, jedoch auf Kosten der Ströme, die dann rund 100-mal
kleiner werden. Die Kombination der beiden behandelten
Schaltungen in der folgenden Dreiröhren-Schaltung verwirklicht diese

Forderung.
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rc,
rc,

ttSQtOOB MJ

s
E 3a
:=:{/.

-J1P—i

*E„

Fig. 11.

Dreiröhren- Schaltung.

Der Quotient wird im kompensierten Zustand Q
Ri (Yi'-Yu)

es ist nun möglich diesen Ausschlag durch die Wahl des Faktors
BxjB3 zu vergrössern, indem man z. B. den Gitterableitwiderstand
der dritten Röhre B3 100-mal kleiner als Bx macht. Bei all diesen
Rechnungen ist natürlich wieder von Fall zu Fall zu
berücksichtigen, wie weit es — wegen der Quantenschwankungen —
zweckmässig ist die Empfindlichkeit zu steigern. Auch muss
abgewogen werden, ob das Kreuzspulinstrument mit relativ
grossen Strömen und hoher Quotientenempfindlichkeit leichter
herzustellen ist, oder ein solches mit kleinerer Quotientenempfindlichkeit,

dafür aber mit geringeren Strömen.

Eichung des Galvanometers.

Sie ergab für die Stromempfindlichkeit des benützten Galvanometers

im offenen Zustand

A0 484,3 mm/fj, Amp
Â-ap 467 mm/;« Amp

mit aperiodischem Shunt (1090 Ohm)
bei einem Skalenabstand s 166 cm.

VI. Berechnung der Quantensehwankungen.

Ausser den oben behandelten Schwankungen, die sich praktisch

fast vollständig beseitigen lassen, treten solche auf, die
von der quantenhaften Absorption der Röntgenstrahlung
herrühren. Diese wurden von Wasastjerna1) zum ersten Mal
eingehend untersucht, sie ermöglichten ihm die Errechnung des
PLANCK'schen Wirkungsquantums. Sie lassen sich ihrem Wesen

*) Natur d. Röntgenstrahlung, Helsingfors 1928.
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nach nicht kompensieren, denn es handelt sich in beiden
Ionisationskammern um unabhängige statistische Vorgänge. Ähnliche
Probleme stellen sich vor allem im Zusammenhang mit der
Brown'sehen Bewegung und dem Schroteffekt. Von verschiedenen

Autoren wurde die mittlere quadratische Schwankung
errechnet bei verschiedenen Voraussetzungen bezüglich der Dämpfung.

Ornstein1), De Haas-Lorenz2) haben die BnowN'sche
Bewegung, Schottky3), Ornstein-Burger4) haben den Schroteffekt

untersucht; Zernike5) hat die Galvanometerschwankungen
als natürliche Beobachtungsgrenze der Stromstärke ermittelt.
Staub6) hat die Quantenschwankungen von Röntgenstrahlen im
Falle der Galvanometerdämpfung allein errechnet.

Wir wollen nun diese für unsere obige Schaltung errechnen.

IT X
R

i
Fig. 12.

Ersatzschema.

Zur Bildung eines Ionenpaares wird im Argon nach Gaertner7)
29,6 Voltelektronen Energie verbraucht ; dem entspricht 47 • 10~12 erg.
Ein Ionenpaar führt die Ladung : 2 • 1,59 • lO^19 3,18 • 10"19 Coulb.

Ein Lichtquant der Kupfer Ka- Strahlung
Â 1,54 A, v 1,95 • IO18 sek-1

hat die Energie
h- v 1,28-IO"8 erg,

bei vollständiger Photoabsorption macht also ein Photon

1,28 • IO"8 070-—— ATI lonenpaare oder

1 h rcu*a .-. 8,55 • IO-17 Coulomb.

r) Ornstein, Proc. Amsterdam 21, 96, 1919.
2) De Haas-Lorenz, Diss., Die Brown'sche Bewegung 1913.
3) Schottky, Ann. de Phys. 57, 541, 1918.
4) Ornstein-Burger, Ann. de Phys. 70, 622, 1923.
5) Zernike, Zeitschr. f. Phys. 60, 628, 1927.
6) Staub, Helv. Phys. Acta 7, 1, 1934.
') Gaertner, Ann. d. Phys. 2, 94, 1929.
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Wir wollen das mittlere Schwankungsquadrat zunächst für den
oben dargestellten aperiodischen Kreis ermitteln, wir setzen also das
Galvanometer vorläufig trägheitslos voraus. Da wir die Steilheit
der Röhre konstant angenommen haben, können wir einfach die
Schwankungen am Gitter berechnen. Obwohl es offenbar keinen
Sinn hat von einer definierten Schwankung des Primärstromes
(Ionisationsstromes) zu reden, ist es bei einem gedämpften Kreis
nun möglich das mittlere Schwankungsquadrat anzugeben. Die
Stromschwankungen entstehen dadurch, dass in gleichen
Zeitabschnitten verschiedene Anzahl Ionenpaare zur Messung gelangen.
Ein gedämpfter Kreis siebt nun, wie wir sehen werden, nach seiner
Zeitkonstante eine bestimmte mittlere Anzahl dieser Quanten aus
dem Strom, und nach der Statistik ist das mittlere Schwankungsquadrat

dieser Anzahl jetzt festgelegt.
Der Kreis ist definiert durch die Gleichung

1
c0- e + — e i,

wobei B den Gitterableitwiderstand, c0 die Ersatzkapazität der
Gitterleitung, Nadel und des Gitters gegen die Kathode; i den
Ionisationsstrom und e die Spannung am Widerstand bedeuten.
Wir multiplizieren diese Gleichung mit e und schreiben dabei

cn ¦ (e2) + —- e2 i ¦ e.0 2 dt v ; B

Wenn wir das zeitliche Mittel dieser Gleichung bilden und
beachten, dass dieser Mittelwert bei einem zeitlichen Differentialquotienten

einer endlichen und stetigen Funktion der Zeit
verschwindet, erhalten wir:

1 ~2 -~— eà % • e.
B

Der Strom i kommt dadurch zustande, dass im Mittel n
Lichtquanten in der Zeiteinheit in der Kammer absorbiert werden.
Es gilt also:

l n • q und ë=B-ï=B-n-q,
wenn q die durch ein Lichtquant ausgelöste Elektrizitätsmenge
bedeutet. Um den Wert % • e auszurechnen, machen wir die
Voraussetzung, dass keine Koinzidenzen stattfinden. Wir integrieren
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dann die Gleichung zwischen der Zeit 0 (Anfang eines Stosses)
und t (zwischen 0 und A), wenn A die Dauer eines Stosses ist.

t

co ' e /* ' dt -\- c0- e0.
o

Da wir Koinzidenzen ausgeschlossen haben, dürfen wir die
zeitliche Mittelung so ausführen, dass wir zunächst über einen Stoss

integrieren und dann alle w-Stösse addieren. Die Gleichung wiederum

mit i multipliziert und über die Stossdauer integriert ergibt:
A At A

c0ji • e ¦ dt =ji • dt li ¦ dt + c0 e0Ji • dt q2 + c0 • e0 ¦ q.
o oo o

Der zeitliche Mittelwert wird schliesslich

AI A

c0 -rjT^fi ¦ e ¦ dt i ¦ e • c0 q2 ¦ n + c0 ¦ n2 • q2 • B
¦*¦ « o

oder mit den obigen Bezeichnungen

i ¦ e -1Ü- + i2 • B
c0

und

e£ =- q ¦ i + eà.
Co

Nach der gefundenen Formel lässt sich der Momentanwert
der Spannung in zwei Teile zerlegen:

e ë + ô e,

wobei be den Momentanwert der Schwankung bedeutet, [òe 0),
dann ist

e2 (ê + ôe)2 ê2 + 2 • ë ¦ be + òe2 ë2 + be2.

Der quadratische Mittelwert der Spannungsschwankungen ist also

be2 q ¦ — • ï.

Wir definieren als relative Schwankung den Wert '_ Dieser
wird

i/o« f l • B • c0
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Zu diesem Resultat sind wir gelangt ohne den Ausdruck:
„Stromschwankungen" definiert zu haben. Nun lässt sich diesem
nach der Statistik ein Sinn zuteilen.

Es gilt ganz allgemein:

b m2 m

wenn m die mittlere Stosszahl in einem bestimmten Zeitintervall
bedeutet. Wir haben gesehen, dass die mittlere Stosszahl pro
Sekunde n — ist. Führen wir die Mittelung statt für eine, für
B • c0 Sekunden aus, so ist m=B-c0-n B-c0-~, daher

Yb m* 4-i/tIm y l •m j/ro y ï • B ¦ c0

unser obiges Resultat. Der Kreis führt quasi eine Mittelung
alle B • c0 Sekunden aus, womit die oben angeführte Behauptung
bestätigt ist.

Wir führen die numerische Rechnung zunächst für den Kreis 1

durch. Die Integration der Grundgleichung ergibt für den
Einschal tvorgang :

t

B\l s R- Co

Durch Messung zusammengehörender Werte e und t, lässt
sich die Zeitkonstante B ¦ c0 19,6 Sek. bestimmen. Dadurch
ist, da Bx bekannt, cox bestimmt

Bx 7,31 • 1011 Ohm 8,05 • 10"1 s/cm

c01=2,7-10-11 F 24,3 cm.

Die Schwankungen werden für 100 cm Galvanometeraus-
schlag berechnet. Dieser entspricht gemäss Eichung:

iG 2,145 • 10-9 • 103 2,145 • 10-« Amp.

Aus der Empfindlichkeitsformel Nr. 9) folgt für rG IO4 Ohm
rx ~ r2, 5 • 103 Ohm, sx ~ s2 27 • 10~6 Amp/V, Dx ~ D2 1 ;
die Gitterspannung UxX:

UxX \ ^ A^ll^L 0,337 Volt- h sx

der Ionisationsstrom

%x A- 4,6 • IO"13 Amp. 1,38 • IO-3 cm3/2 g1!2 s~2.
Bx
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iG
Der Stromverstärkungsfaktor ist also ——¦ 4,66 • 106. Das mitt-

*i
1ère Schwankungsquadrat wird somit, wenn die Stossladung

q 8,55 ¦ 10-17 Coulb 2,57 • 10~7 cm •- g'°- S"1

Je£ q ¦ A- • ïx 1,065- IO'6 Volt2.
coi

Zu diesem müssen wir das mittlere Schwankungsquadrat
der zweiten Verstärkerhälfte addieren.

c0 2 ergibt sich aus der Bedingung, dass die beiden Zeitkonstanten

im kompensierten Zustand gleich sind, Bx ¦ cxo — B2 • c20;

'B2 4,77 • 10]1 Ohm 5,25 • 10~x s/cm

c02= 4,13 • 10-11 F 37,25 cm.

Wenn das Galvanometer stromlos ist und sx ~ s2, so ist

e2 ex und i2 -J- 7,06 • 10"13 Amp
B2

2,12 • 10-3 cm'-' g
!> s~2

und das mittlere Schwankungsquadrat

Je2 6,96 • IQ-7 Volt2

das totale Schwankungsquadrat:

oetäot be2 + be2= 1,76 • IQ-6 Volt2.

Die relative Schwankung wird somit

^^==3,950/00.
ei

Das ist die prozentuale Schwankung an den Steuergittern
der Röhren. Bei linearer Verstärkung ist sie zugleich die Schwankung

am Galvanometer.

Der ganze Kreis.

Wir haben nun statt dem oben berechneten aperiodischen
Kreis mit einer im folgenden Ersatzschema dargestellten Schaltung
zu tun. Da die Differentialgleichungen gleich sind, können wir
das Galvanometer durch einen gedämpften elektrischen
Schwingungskreis darstellen.
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Gleichung des Schwingungskreises:

1 1
— e + — e
B L B co2

Gleichung des Galvanometers:

9 x + p ¦ x + f ¦

L ¦ C Frequenz des

Schwingungskreises.

m-%G;

hier ist x der Ausschlagwinkel im Bogenmass gemessen, iG der
Strom, 0 das achsiale Trägheitsmoment, p die Dämpfungskon-

Ea

(01 1

UI ~Rx\^ =x(t)u
Fig. 13.

Schaltungshälfte mit Galvanometer.

stante, / die Direktionskraft und m die dynamische
Galvanometerkonstante, d. h. das Drehmoment für die Stromeinheit.
Beide Kreise lassen sich also durch eine lineare Differentialgleichung

zweiter Ordnung wiedergeben.
Bei der nachfolgenden Rechnung machen wir zwei

Voraussetzungen. 1. Die Steilheit der Röhren nehmen wir als konstant
an. 2. WTir nehmen an, dass von der Anodenseite keinerlei
Rückwirkung auf die Gitterspannung stattfindet. Da der Gitterstrom
etwa 100-mal kleiner ist als der Ionisationsstrom, sind wir zu
dieser Annahme berechtigt.

Für den Gesamtkreis gelten folgende Zusammenhänge:

1. Galvanometergleichung, wie oben.
1

2. c0

3.
R

e • s

e i Aperiodischer Kreis

Röhrengleichung

Wir können schreiben:

B B- s' ms

%-Co

B
(0 p • x + f ¦ x)

-~ (0 ¦ x + p ¦ x + f ¦ x),
m ¦ s
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somit wird

._ _^

Anton Német.

0 ¦ C0-X +[p-Co+0 ¦ —)x
m ¦ s

Die Gleichung hat die Form:

I. i a • x + b • x + c ¦ x + d • x.

f-c0 + p-^\x+ f—x

Wir wenden die oben verfolgte Methode zur Ermittlung
des mittleren Schwankungsquadrates nun auf diese lineare
Differentialgleichung dritten Grades an.

Wir beachten vorher folgende Beziehungen:

1. x ¦ "x — -TT lx ¦ x) — x ¦ x 2. x ¦ xdt

3. x • x -r,- (x ¦ x) — x2 4. x • x

1_ d^
2 dt

2 dt

(x2)

(x2)

5. x ¦ x -TT (x ¦ x) — x2 6. x ¦ x | -L (x2)

7- -% [/(,)] =0.

Die Gleichung I. wird nacheinander mit x, mit x und mit
x multipliziert, die obigen Beziehungen werden passend eingesetzt

und dann wird der zeitliche Mittelwert des Ausdruckes
gebildet.

Mit x multipliziert ergibt I.

a-x-x + b-'x-x + c-x-x + d-x2 i-x,
anders geschrieben:

d
(x ¦ x)

1

dt 2 dt

gemittelt :

lx ¦ x) c— (x2) + d ¦ x2 i • x
dt v '

a) — b ¦ x2 + d ¦ x2 i ¦ x.

Mit x multipliziert:

d
—- (x • x) — a
dt v ; YTt{k2) + c-i2 + H{x2)==i'i

gemittelt :

b) — a • x2 + c ¦ x2 i • x.
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Mit x multipliziert:

±.±Çx2)+b.-x2+^.^{x2)+d^{x.i)_d.x2=i.-x
gemittelt :

c) b • x2 — d • x2 i ¦ x.

Wir integrieren die Ausgangsgleichung (I) analog wie bei
dem aperiodischen Kreis über eine Zeit 0 bis t, wo 0 den Anfang
eines Stosses und t eine Zeit zwischen 0 und A (Stossdauer) ist.
Wir erhalten, wenn t klein ist:

t

a • x + b ¦ x + c ¦ x a ¦ x0 + b ¦ x0 + c ¦ x0 + f i ¦ dt,
o

wo xQ, x0 und x0 den Galvanometerausschlag und seine Ableitungen
nach der Zeit am Anfang eines Stosses bedeuten.

Wir multiplizieren mit i und integrieren über einen Stoss

a j x ¦ i ¦ dt + ò j x ¦ i ¦ dt + c f x ¦ i ¦ dtoooA A A A t

a'x0 J i ¦ dt + b ¦ x0 J i • dt + c ¦ x0 J i • dt + J i • dt f i • dt
o o oooa • x0 ¦ q +b ¦ x0- q + c- x0- q +q2

A

wenn t gegen A geht und f i ¦ dt q wiederum die durch einen
o

Stoss beförderte Ladung bedeutet.
Wir bilden jetzt den zeitlichen Mittelwert, indem wir über

alle n-Stösse der Zeiteinheit summieren. Wenn wir bedenken,

dass x0 x0 0 und gemäss Gleichung (I) x0 -j —-j-, so

erhalten wir:

a-x-i-rb-x-i + c-x-i c- —\- q2 • n
d

oder wenn wir die unter a, b, c gefundenen Beziehungen einsetzen:

c • d ¦ x2 — a • d ¦ x2 c • d • x2 + q • i.

Wir können diesen Ausdruck noch etwas umformen mit
Hilfe der Beziehungen:

x2 =-- b x2 + x2 und '»

x2 — bx2, da x — bx.
10
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Es wird dann:

c ¦ d (x2 — x2) — a ¦ d ¦ x2 — q ¦ i oder

IL c • d ¦ b x2 — a ¦ d • b x2 q ¦ l.

Folgende Überlegung hilft uns weiter: Wenn wir die
Grundgleichung (I) betrachten, die den Zusammenhang zwischen dem
totalen Ausschlag und dem totalen Ionisationsstrom angibt,
bemerken wir, dass für die Schwankungen des Galvanometerausschlages

und des Stromes völlig die gleiche Beziehung gilt,
d. h. wenn wir x bx + x und i bi + i schreiben. Es gilt also:

T) a • bx-\- b • bx + c • bx + d • bx bi,

bi ist dabei eine statistisch schwankende Grösse, ihr zeitliches
Mittel ist Null.

Mme De Haas-Lorentz hat bei der Behandlung der Brown'-
schen Bewegung1) ganz allgemein gezeigt, dass für eine Differentialgleichung

zweiter Ordnung obiger Art die kinetische Energie im
Mittel gleich der potentiellen ist, wenn bi eine statistisch schwankende

Kraft (Zusammenstösse der Moleküle) und bx die
Verschiebung bedeuten. Allgemein gilt also:

d) b • bx2 d ¦ bx2.

Hier spielt das Dämpfungsglied erster Ordnung keine Rolle.
Wir können nun leicht einsehen, dass diese Beziehung auch für
unsere Differentialgleichung dritter Ordnung gilt.

Denken wir uns das Glied mit der dritten Ableitung weg,
multiplizieren wir die Gleichung I') mit bx und nehmen das
zeitliche Mittel, so erhalten wir:

— b • bx2 + d -bx2 bx • òi 0

nach De Haas-Lorentz. Machen wir dasselbe mit der ganzen
Gleichung I'), so erhalten wir (analog Gleichung a) Seite 144)
denselben Ausdruck, da das erste Glied bei der Mittelung wegfällt.

Nun setzen wir diese Beziehung d) in die Gleichung II) ein,
und erhalten schliesslich für das mittlere Schwankungsquadrat:

bx-2- «'*
1 Oj

c ¦ d— a ¦ —
o

x) Deutsche Ausgabe S. 83.
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und für die relativen Schwankungen im Mittel:

]/fi)x<

X (c _ £
U "

b

Die Konstanten berechnen sich aus den Daten des aperiodischen

Kreises und des Galvanometers, wie folgt:

0 ¦ cn P • c0 + 6> •

-p
a -±- [cm'i' g1'* s1] ; b —- [cm3'2 g1!* s0]

m • s ' m ¦ s

c [cm3'2 g1'2 s-1] ; d [cm3'2 g1'2 s~2].
m • s' " m • s

Diskussion des Ergebnisses.

Wir können, wie beim aperiodischen Kreis, auch hier die
Schwankungen als, in Zeitabschnitten Z gemittelte, statistische
Schwankungen interpretieren. Die Zeitkonstante Z des

zusammengesetzten Kreises wird:
c a V V

d z0+®
' /'

p

wo Z0 B • c0 die Zeitkonstante des aperiodischen Kreises ist.
Um die Schwankungen niedrig zu halten, muss man danach
trachten, möglichst grosse Strahlungsintensität in die Kammern
zu bekommen und mit einer weichen Strahlung zu arbeiten (i gross,
q klein). Wir bemerken ferner, dass die dynamische Galvanometerkonstante

m keinen Einfluss auf die relativen Schwankungen
hat; dass der Ausdruck für ein trägheits- und dämpfungsloses
Galvanometer (0 0, p 0) in den, für den aperiodischen
Kreis gefundenen übergeht. Für c0 0 (Galvanometerdämpfung
allein) erhalten wir den von Staub (1. c.) angegebenen Ausdruck.

Numerische Rechnung.

a) Berechnung der Galvanometerkonstanten.
Es gelten folgende Zusammenhänge (Jäger: Elektr.

Messtechnik usw.).

1. « l/l _|/_.A_ 2.m= «'' *«p ' g ' r»
0
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C • m 4. 0 T02-f
4.JZ2

4 • 0 • A0
6. p

m2
— n 1

T0
P° T?

¦"ap

3. /

o. p0

Eap ist der Totalwiderstand des Kreises im aperiodischen
Grenzfall, er ist die Summe des aperiodischen Shuntwiderstandes
und des Eigenwiderstandes vom Galvanometer; A0 ist das
logarithmische Dekrement und T0 die ganze Schwingungsdauer des
offenen Galvanometers; a ist bloss eine Rechnungsgrösse, p0 ist
die Dämpfung des offenen Galvanometers. C ist der sogenannte
Reduktionsfaktor, gleich der reziproken Galvanometerempfindlichkeit,

also

74p 1090 + 50 1140 Ohm 1,25 • IQ-9 s/cm

C 1/1 2,145 • 10~9 Amp/mm; in Bogenmass
umgerechnet: (Skalenabstand 166 cm)

C A- Ie56-
3,45 • 10-6 Amp/Bogeneinheit

1 0,1 1-/6
1,07 • IQ4cm'1*gl*s~2

T0 und A0 wurden durch Messungen bestimmt zu:

T0 9,13 Sek
A0 0,117 „

Aus den Gleichungen 1—6 lassen sich die Konstanten berechnen:

0 0,789 cm2 g1

p 1,083 cm2 g1 s"1

/ 0,373 cm2 g1 s~2

m 3,63 • IO"5cm>* g1'*

Damit werden für den Messkreis 1 (B1; s', c01 wie oben) Seite 141.

ax 9,32 • IO"2 cm3'2 gl* s1

bx 1,32 • 10-1 cm'.* gl*
cx 5,1 • 10-2 cm'l* g1!* s_1

dx 2,25 • IO"3 cm'i* g1'* s~2

und das mittlere Schwankungsquadrat :

bx\ 3,19 • 10-6

für den Kompensationskreis 2 (B2, c02 berechnet auf Seite 142)
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a2 0,142 cm i* g* s1

h 0,203 cm '• g%

c2 7,74 • io-2 cm ¦•¦¦¦ gh S~-1

d2 3,45 • io-3 cm '¦¦ gy> s~-2

das mittlere Schwankungsquadrat :

bx\ 2,10 •10 -6

Die relative Schwankung ergibt sich endlich, wenn

^ \.J1 0,615
c1

Ì~bx\ + bx:2 — R 74°/— o, <y= /oo-

Wir sehen, dass im vorliegenden Fall die Dämpfung des

aperiodischen Kreises ausschlaggebend ist und die Galvanometerdämpfung

keine wesentliche Rolle spielt.

Experimentelle Prüfung.
Wir haben auf Seite 141 gesehen, dass das mittlere Schwankungsquadrat

von m in der Zeiteinheit durchschnittlich eintreffenden
Teilchen am2 m. Dieser Wert oder dessen Quadratwurzel ist
dem Experiment nicht direkt zugänglich, vielmehr lässt sich
aus einer Registrierung des Verlaufes m m(t) das Mittel der
Absolutwerte \b m\ leicht entnehmen. Man kann zeigen, dass
zwischen den beiden Ausdrücken im Falle der statistischen Schwankungen

ein vom gewählten Zeitintervall unabhängiges, konstantes
Verhältnis besteht, das wir im folgenden berechnen:

Haben wir im Mittel m eintreffende Teilchen pro Zeiteinheit,
so ist die Wahrscheinlichkeit dafür, dass in der Zeiteinheit k
Teilchen eintreffen:

k!
Der Mittelwert der Absolutwerte ist die Summe der

Wahrscheinlichkeiten aller k-Werte, wobei k die ganzen Zahlen von
0 bis oo durchläuft.

m k

\m — m\ 2j\k — m\ yy~e m•
k=o' kl

Zu diesem Ausdruck können wir das algebraische Mittel
der Schwankungen addieren, da dieses bekanntlich Null ist. Wir
bekommen :
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œ Ttl^ —
œ 7Ük —

\m — m\ 2 lfe-m|-—e-"H- ^ (ft — m)-—e"™.
*=o ">• fc-o t'

Wir bemerken, dass solange k sS [m] (ganzer Teil von m) ist, die
beiden Summanden sich aufheben, nachher addieren. Es wird also:

2
00

[m] + l
_. m*

— m) e; ft!
—m\m — m\

oder nach Multiplikation :

CO TT:

2 2
k [m] + 1 (ft — 1)

- e-™ -

CO

2 2 -
fc -= [m] + 1

mk+1

kl
e

Der Ausdruck unter dem ersten Summenzeichen wird gleich
dem entsprechenden Ausdruck des zweiten Gliedes, wenn wir ft um 1

vermehren. Dementsprechend haben wir die Summation von
ft imi bis ft oo auszuführen. Bei der Differenzbildung bleibt
dann nur das Glied mit ft — [m] übrig, d. h. ivir erhalten das
Resultat :

Im — m\ r
[m]!

Diesen Ausdruck können wir mit Hilfe der STiRLiNG'schen
Formel noch etwas umformen. Die Bedingung dafür ist allein,
dass m gross ist, d. h. die Wahrscheinlichkeit e~m dafür das in
einem Zeitintervall zufällig kein Teilchen eintrifft, verschwindet.
Wir haben gesehen, dass die Verstärkung eine Zeitkonstante von
ungefähr 19 Sekunden besitzt, somit wird m ~ 105. Diese
Bedingung ist also gut erfüllt. Die STiRLiNo'sche Formel sagt aus:

gl- \j2n ¦ gg+% • e-«,

die obige Gleichung wird:
2 • m[™1 + 1 • e~™

TO — TO -==———= —
V2 ti [m] W + V* e-[m]

oder anders geschrieben:

BS] + V, 1t2 /=¦— y m
TT '

m — [ml
1 + L J

[m] n—[m)

Da hier das zweite Glied des Klammerausdruckes klein ist,
wird die Potenz annähernd gleich e™~[mI und es bleibt:

;l çq y^f-w» Sä i/ — y m
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Wenn y\m—m)2 -j/ra, wird endlich ihr Quotient:

]/(m-TO)2 _ V^ y 2\m — m

Derselbe Zusammenhang gilt auch für die Schwankungen des

Galvanometerausschlages, da m im Faktor nicht vorkommt.
Die Herleitung gilt allgemein, für statistische Schwankungen,
solange m gross ist. Sie ermöglicht ihre Bestimmung durch einfache
Planimetrierung der aufgezeichneten Zeitfunktion.

Im vorliegenden Falle ergaben die Messungen im Mittel
4,3°/oo> mit einem auf ± 0,50/0o geschätzten Fehler für die relative
Schwankung. Im Verlauf der Messungen wurde so öfters eine
Kontrolle der Spannungskompensation vorgenommen. Da es

nicht möglich scheint die radioaktiven Störungen vollständig
zu beseitigen, ist der gefundene, etwas höhere Wert erklärbar.

Vorliegende Arbeit ist im Physikalischen Institut der
Eidgenössischen Technischen Hochschule ausgeführt worden. Ich
möchte meinem verehrten Professor, Herrn Dr. P. Scherrer, für
die Anregung zu dieser Arbeit, sowie für sein ständiges Interesse
und die wertvollen Winke und Ratschläge bei ihrer Ausführung
herzlichst danken.


	Untersuchung über Strukturänderung der Kristalle im elektrischen Feld : Kompensationsapparatur und Quantenschwankungen

