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Einfluss der Polarisation des inneren Elektrons im Felde
des dusseren auf die Terme des Spektrums eines Zwei-
Elektronensystems (insbesondere He)
von Guido Ludwig.

(9. 1. 34.)

Die Aufspaltung von Ortho- und Paraterm und der Mittel-
wert der beiden sind von IIeiseNBERGY) berechnet worden, doch
ergab sich fir die Aufspaltung nur eine griossenordnungsméssige
Ubereinstimmung mit der Erfahrung. Um bessere Werte zu
erhalten, miisste man die zweite Niherung nach der Schrédinger’-
schen Storungstheorie berechnen, doch 1st deren genaue Auswertung
kaum durchfiihrbar. Betrne2) berechnet daher den Starkeffekt
des 1mneren Elektrons 1m Felde des ruhend gedachten &dusseren
und erhillt so eine gestorte Eigenfunktion erster Ordnung, die
einem Beitrag zweiter Ndherung zu den Termen des Atoms ent-
spricht.

Diese Rechnungen haben wir weiter gefiihrt. Zuerst wieder-
holen wir kurz die Rechnungen von Bethe, da diese zum Ver-
stindnis des I"olgenden unbedingt erforderlich sind. Daran werden
wir dann unsere weiteren Ausfiihrungen anschliessen.

A. Bewegung des inneren Elektrons im Felde des @dusseren.

Wir gehen aus von der Schrodinger-Gleichung eines Zwei-

Elektronensystems:

1 1 A/ 1)\ .,

(?;INL gt e —— '_12) U@1.2)=0 (1
Iier haben wir atomare Einheiten bentitzt. (2 Rh 1st hier die
Einheit der Energie und der Radius der Grundbahn des Wasser-
stoffes «a, die Einheit der Liange).

Das dussere Elektron lduft relativ zum inneren sehr langsam
um (sofern wir die tiefsten Terme ausnehmen). Wir kénnen also
die kinetische Energie (d. h. den Operator 4,) des dusseren Elek-
trons vernachlidssigen.

1) W. HEISENBERG, ZS. f. Ph. 39, 498, 1926.
) Artikel von H. Betae, HB. d. Ph. Bd. XXIV 8. 339 ff. 1933.
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Dann 1st:

1 , Z Z 1
(7 A4+ E(rs) + + = — ——) u, (1) =0 (2)
2 Fy fu Ty

Eigenwert und Eigentunktion dieser Gleichung enthalten noch
den Abstand r, des dusseren Elektrons vom Kern als Parameter.
Wir beriicksichtigen den grissten Teill der Wechselwirkung der
beiden Elektronen schon in nullter Niherung, imdem wir, wie
schon lleisenberg, das #ussere Elektron um eine Einheit abge-
schirmt annehmen. (}ll :

) 1st somit das Storungspotential
und wird als von erster Ordnung klein angenommen. Entwickeln

. 1 , \ . . .
wir noch \ nach Kugelfunktionen, so erhalten wir statt Glei-
12
chung (2):

( L +emy+Z 4 A_l) w, (1)
2 Py Iy :

r . n: .
'; Ccos tyy P,(cos )+ Tirr, <7,

e Sy B (2a)

1 1 rs a rg'! P 5
—_—— - + 5008y = = Py(cos tyy) - L fiirr > o
T I's ry® e

Hier bedeutet &, den Winkel zwischen den Radiusvektoren der
beiden Elektronen.

Die rechte Seite von (2a) enthdlt das Storungspotential als
I"aktor, ist daher von erster Ordnung klein. Fir Eigenfunktion
und Eigenwert machen wir den Ansatz:

w,, (D =ueg(1)+@, (1)4cos &y, v, (1)4 Py (cos &y,) ., (1)+. .. (3a)
E(ry) = EO%ry) + &, (ry) + £,(ry) (3h)

Iier sind u, und ££° von nullter Ordnung; &, 15t von zwelter und
die iibrigen Glieder sind von erster Ordnung. Setzen wir (3a)
und (3b) i (2a) ein und beriicksichtigen nur Glieder nullter Ord-
nung, so erhalten wir:

Z—1 Z
(5 Ay 4+ E(ry) + s = ) w1l =0 , (4)
-1 . g - & s 5
-~ 1st hier als Konstante anzusehen. wy(1) ist somit Wasser-

2
stoffeigenfunktion des Grundzustandes.

3 i, 1 _
g(1) = Yoo (P12, 1) 222 7215 Yoo = —— Bc)

]/—1.“5
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: /-1 . .
10(ry) + . L ist der Eigenwert, also
10(, l P Z— 1 -
4 (’2) = ‘"7 2 4 — ’.2 ('( )
‘ v, 41 )
]u (;'2) : "o . ; - Fl(r?.) + &y ('.2). ('}(‘)
- 2

Nach der Schridimgerschen Storungstheorie ergeben sich ¢, und
"‘I.) y‘ll:

2

g, = [V iddr und g, = / V(g — ug) tgde

wo 7 das Storungspotential und e, die Eigenfunktion erster
Ordnung bedeutet.  Damit ist:

S T
By = / / j ("1 . ) we (1) ridry sin &, d &y, d g,
0 0 n )
, 1 | "
— ¢ '-'""( — Z) " (5)
(Y F

Fiir &, erhalten wir «-viele Glieder, da (1, — uy) >-viele Glieder

enthilt: ] . .
g‘z()'z) e {-20(’2) = FZ] ("2) e 622("2) + “ e (())

Der zweite Index gibt an von welchem Glied von (u, — u,) dieser
Beitrag zu e, bedingt wird.

Mit Beriicksichtigung der Orthogonalitit der Kugelfunktionen
erhalten wir:

2.5 s s
; ] 1 i .

€s9(1s) = | d¢; /sm Py d Byp ( — ) wo(1) @, (1) »3 dry. (6a)
o . ; r r .

x Iy 2,
0 0 i

€29 21bt sicher einen sehr kleinen Beitrag zur Energie des
Atoms, da schon ¢, einen sehr klemnen Wert ergibt!), und hier
noch wy(1) durch die kleme Funktion ¢, (1) ersetzt ist. Wir
diirfen daher &,, vernachlissigen und brauchen dann ¢, (1) nicht
zu berechnen.

by 4 - Fa

F : Fi 5
Zay () = / dg, /.(-usz Do sin By, d Dy f ‘1 ridry g (1) pe, (1)

1) i -1)

¥ d oy g (1) p, (1). (6b)

1

i
- -~
U )

Y H. BETHE, Anm. S. 1.
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2a B | ?‘2 N
€92 (") :f d‘l’lf (Py (cos d5))® sin Jy, d 34y _/-,’1 rdry g (1) g, (1)
0 0 0 2

7,
[
"

T2

w e

ridryug (1) 7, (1) - (6¢)

—

Bevor wir &, und &,, berechnen konnen, miissen wir zuerst noch
p,, (1) und z, (1) bestimmen. Die Differentialgleichungen, denen
diese Funktionen geniigen, finden wir, indem wir (3a) und (3b)
In (2a) einsetzen und nur die Glieder erster Ordnung beriick-
sichtigen. Diese Gleichungen lassen sich noch einfacher schreiben,
wenn wir zwel neue Variabeln einfiihren:

o=2Z2r, und R=12r,

FE 9 d 0 9 [;{f fiir o< It
—— SER T | : — ¢ce~? | Ta
( de* o dpo 2 T 0 ) vz (o) ‘ '—“" fiir o> R (Ta)
22 d 6 2 | o resn .
(doo gD 0 dQ h*Q_g_] + Q)I{R (Q) = ce -]-’)‘hﬂfii['fj}]l’ (‘b)

¢ = Yu-4+/Z.

Fir wp (0) und x5 (o) erhalten wir innerhalh und ausserhalb
der Kugel vom Radius R verschiedene Losungen: w; (p), % (o)
und v, (), x4 (). Die Losungen des ,,Innenraums‘ miissen fiir g = 0
endlich bleiben, ebenso miissen die Lisungen des ,,Aussenraumes:
1im Unendlichen verschwinden. Die Differentialgleichungen, denen
yr(e) und g () geniigen, sind lineare inhomogene Gleichungen,
deren allgemeine Lisung die Superposition einer Partikularlésung
mit der allgemeinen Losung der homogenen Gleichung ist.

C . |
pile)=— , p 20+ 09 e B

1st eimne Partikularlosung von (7a) fir o < R, die fir o0—0
endlich bleibt.

o

ei‘ ] \
y”2(9) = , — € ( i - L. 2) (H)
0o* . o= 0

ist die allgemeine Liosung von (7a) die fir o — 0 endlich bleibt.
Dann 1st die Losung fiir o < R:

v, =y + 2 (R) v, (10)
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Die Konstante « hiingt noch vom Parameter R ab. Analog finden
wir fir o > R:
C

ya(e) = — , Re. (11)

Dieses 1st die Partikularlosung fir ¢ > R die im Unendlichen
verschwindet und:

\

(1 2 '
(e =+, +2)e (12)

die Losung der homogenen Gleichung finr o > R die fiir o — o0
verschwindet.
Somit ist:

Yo = Y3+ p (R) ¥4 (13)

die Losung fir o > R.

z und A sind eindeutig bestimmt, denn wir miissen fordern,
dass die Losung des ,,Aussenraumes* sich glatt an die des ,,Innen-
raumes‘ anschliesst. Wir miissen’ daher « und £ so bestimmen,
dass fiir o == R ailt:

vi (R) = va(R) (14a)
d i \. d a ‘
(Lo (9)) _ (__Aj‘i(@’)) . (14b)
- do  J,_» doe J, &
Damit findet man fir « und f:
3¢ o AR =
ol = 8 Rz (1 —i— R ) e - (103;)

3¢

(A
— S 2 __ 2,-2R :"
B=, B4 g po I—RB2—(1+ R)?e2"). (15b)

Ganz analog finden wir fiir x; und y,:

¢ , _
ti=ntr(B)p=—gpeB t 20

/(6 9 6 6 3
_:— 7V (I{) l( 3 2 2 s O +2) e‘”—( 93 —_) e+g} (]63)

0 o e

-

[ 3]

¢ R2
Z“:Z3+5(R)Z4=+12@3(39—1—2)3—0

6 9 6
+ 3 (R) (§ ot 2) e, (16h)

0

-
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Und fiir die Konstanten ¢ und o:

, a e 1+ R ) oo g —
vy (R) = o1~ po (R*+ 3 R+ 3) el (17a)
: 5 (f 1 = ]{ 2 ¢ { 6 IR 53 I b s [rd
o (R) = o1 I3 [(R2+3 R+3)e=lf—(R2—3 R+ 3)|. (17e)

Mit diesen beiden Funktionen erster Niherung y und 7 hestimmen
WIr nUn &y, bzw. &,y aus (6h) bzw. (6¢):

9 1 ‘ 1
= — L —2 7 rs e 2 'J ' I ’J ‘. 2
20 4 2 ’
3 (Zry)® + 3 (7‘"2)4)' B (14 2oy (18a)
o =y gays |19 € (A ) £ 2 (Ut 2 G

+ 30 (Z7y)8 + 60 (Zry)® + 48 (Zry)* + 90 (Z1y)3 + 360 (Zr,)?
1+ 540 Zry + 270) 4 4% (9 (Zr,)8 + 120 (Z1,)® + 420 (Zry)*
+ 810 (Zry)® + 900 (Zry)? + 540 Zry + 135)]

4
— o BT (—2 7). (181)
B, (+ 2) —f ©de

1st der Integrallogarithmus (s. Jaunke und Empr). (18a) ist
schon von BetHE angegeben.

B. Eigenfunktion und Energie des Atoms.

In nullter Niaherung 1st die Eigenfunktion des Atoms das
Produkt der Eigenfunktionen nullter Niherung der heiden Elek-
tronen. Alld](lﬂ setzen wir als Elgt,nhmktlon erster Naherung
des Atoms das Produkt aus Eigenfunktion erster Néherung u, (1)
des mmneren Elektrons und der Eigenfunktion nullter Ndherung
des #usseren Elektrons v (2). Da aber noch die Eigenfunktion
des Atoms symmetrisch oder antisymmetrisch in den Elektronen
sein muss, machen wir den Ansatz:

U(1,2) =u, (1) v (2) £u, (2)e (). (19)
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Die Energie berechnen wir nicht nach der Schrodinger’schen
Storungstheorie, sondern aus der genaueren Formel, die unmittelbar
aus dem Variationsprinzip folgt:

- i 7/ A 1 .
/((_1 Ay—5 dg————+ )(,;dr
pod S\ 2T e T ) T g
[ U2dx
Setzen wir 1 (20) U7 (1, 2) aus (19) ein und berticksichtigen (2),
so finden wir:

[[ (1) r2(2)dt + / u,, (1) u, (2) v (1) v (2) d.r}

= [{E ()2 (1) 02 (@) — Fu, (1) v (2) 1, (u, (1) v (2)) dr
Z 7 1
+ fu,., (2) v (1) (—- 1A — 1A, — — =+ )fuj," (v (2)dr.
\ "1 4 12 ]

Als Eigenfunktion » des angeregten Elektrons wihlen wir eine
Wasserstoffeigenfunktion der Kernladung (Z — 1) (vgl. dazu die
Ausfiihrungen S. 2). » geniigt daher der Differentialgleichung:

Z—-1)* Z-—1
-.1,.1.,77( ',,) + v(2) =0.
= 2 n? Ty

Beriicksichtigen wir nun diese und Gleichung (2) und formen den
Ausdruck fiir £ mattels des Green’schen Satzes um, so erhalten
wir: (d7z = dr, - dt,)

. Z—1)* _
K=—3172— ( = /((’:‘1 (ro)+&5 (ra) -+ (ry)) v2(2)d7y + A. (21)
[Tier haben wir noch die Abkiirzungen eingesetzt:

S %—/grad;’ w, (1) dz,

=} [ dr, wad (p,, (1) cos By + 1, (1) Py (cos dya) + ..} (22)
und
Z 7z 1
A= [dru, @ m( A A, —FAg— = )u,,.,__(ljm(z)
‘ 1 2 12

(23)

g (rg) und &, (r,) sind die bereits aus Teill 4 bekannten Aus-
dricke. Aus (21) sieht man, dass bei Ver nachlissigung der Storungs-
energie die Energie gleich der Summe der Energien der beiden
Elektronen ist, wobeir beide Summanden vom Rydbergtypus sind.
Die Storungsenergie werden wir nun durch eine Korrektur die
sog. Rydbergkorrektur an der Quantenzahl des Elektrons im
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angeregten Zustand beriicksichtigen. Auf diese Weise erhalten
wir fir die Energie:

E=-—-172— e 24

: 2(n + 0, + 0,)* 24)

0, 1st die Korrektur, die die Energie / (£, (ra) + &5 (rs) +

1 (ry)) 2 (2) d7y bedingt und 6, diejenige, die von der Austausch-
energie 4 herrthrt. Da immer (0, + 0,) 1 ist, konnen wir In

1
) Grszor

sichtigen. Es ist dann:

entwickeln und nur das erste Ghed beriick-

E=—-172%—

w—n*( 2
2 n? = n (0. = O")) '

Durch Vergleich dieser Formel mit (21) erhalten wir

n3

0, = (Z 1) / (61 (r) + &2 (ry) + o)) % (2) d7,  (24a)
o= 4L 241
04 = ‘(Z—‘__ ])g =1 ¥ ( ‘))

Jedes Glied der Storungsenergie ergibt einen additiven Beitrag
zur Rydbergkorrektur. Wir konnen also mit Ricksicht auf (6)
ausfihrlich schreiben:

o=, 4+ 8, + O+ ... N (24¢)

Die Indices geben den Teil der Storungsenergie an, der die Kor-
rektur erzeugt.

0, bzw. o, sind schon von HeissenBera!) bzw. Berns?!)
berechnet. 652 ergibt sich als klein 1im Vergleich zu 4, (vgl.
Tabelle). o, ist llllLll unserer Bezeichnung derjenige lul der
Rydbergkorrektur, den das Glied P, (cos #,,) z,. (1) v (2) bedingt.
Wir vernachldssigen daher im folgenden dieses mit P, (cos &)
proportionale Glied sowle alle iibrigen, die Kugelfunktionen
hoherer Ordnung enthalten. Wir setzen also von nun an fiir
u, (1) und U (1, 2) immer

Uy, (1) = o9 (1) + cos Fy, 9, (1) (25a)
U1, 2) = (00 (1) + cos S129,, (1) vurn (2)
»_j: (7'{’100 (2) + Cos 1912 yjr, (f")) nilm (]) (25]’)

Uy 15t die Wasserstoffeigenfunktion des Grundzustands (n = 1,

1) Vgl. Anm. S. 1.
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| = 0, m = 0) und der Kernladung Z. v,,, die Wasserstoffeigen-
funktion der Kernladung (Z —1) des Quantenzustandes (n, I, m).
Mit Ansatz (25a) erhalten wir:

o = %/ dr, grad} w, (1) =} fdrl grad? (cos #, y, (1)).

Nach ziemlich langen Rechnungen, auf die wir hier nicht niaher
eingehen konnen, erhialt man dann:

1 (ry) = 24 (} )9
+ 540 (Zry)* + 924 (Zry)® + 762 (Z1y)%2 + 90 Zr, — 171)
— e 42 (144 (Zry)7 + 468 (Zr,)® + 1032 (Zry)3 + 1830 (Zry)*
L+ 2592 (Zry)3 + 2712 (Zry)?2 + 1800 Zr, + 558)
+ 36 e % (2 (Zry)® + B (Zry)® + 17 (Zry)* + 24 (Zr,)3
+ 22 (Ziry)? + 12 (Zry) + 3) -
(K, (2Zry) + E,(—22Zry)) —2C —21g 2 R)
— 12K, (—22r,) [(2 (Zry)8—4 (Zry)>+3 (Zrp)*—6 (Zry)2 +9)
+ e 277 (4(Zry)+4(Zry)5+6 (Zry)*—24 (Z1p)2—36Zr,—18)
+ e % (2 (Zry)8 + B (Z1y)® + 17 (Z1y))? + 24 (Zr,)®
+ 22 (Zry)* + 12 (Zry) + 3)]} (26)
Es ist K, (x) wie ber (18b) der Integrallogarithmus und C die
Euler’sche Konstante.

Nun koénnen wir nach (24a) 6, = —(/713—1)2‘[17 (ry) v3(2) d 7,
berechnen. Die Rechnungen sind wieder recht umstindlich.
Zudem ergibt sich nur fiir D-Terme und Terme mit I > 2 ein
analytischer Ausdruck fiir 0, ; denn fiir I = 1 erhalten wir Integrale,
die nicht mehr auf schon bekannte Funktionen fithren und daher
niherungsweise gelést werden miissen. Wir wollen hier nicht
weiter darauf cingehen, sondern nur spiter die numerischen
Resultate angeben und diskutieren.

Wir haben noch die Austauschenergie 4 (s. (23)) auszuwerten.

Mit unserem Ansatz (25b) erhalten wir fiir 4, wenn wir den Operator
in (23) noch abkiirzend mit H bezeichnen:

- / dT v, tm ( ) (‘11’100 (2) + COS I9.12 V)r, (2)) H (“100 (1)
+ cos &, Y., (1)) vy (2) =A%+ 4, + A," + A,. (27)

387 — €247 (16 (Z1y)® + 184 (Zry)

A4, 1st das Glied von 4, das nur die Glieder nullter Ordnung der
Eigenfunktion, 4, dasjenige das nur die Glieder erster Ordnung
enthédlt. 4,” und A4,” sind die beiden anderen Glieder. Da der
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Operator H selbst adjungiert 1st, gilt 4," = 4," = 4,. ir 4,
finden wir ber Beriicksichtigung der Orthogonalitit der Eigen-
funktionen 5, und 1

" ’
nilm:*

1
Ay = f‘h 100 (2) T (1) - tygo (1) Tuin (2) (27a)
y
(ausgenommen fir S-Terme: [ = 0, die wir aber hier von vorn-
herein ausgenonnem haben).
(27a) 1st einfach das von IHreskexBera berechnete Austausch-
mtegral erster Niherung.
Wenn wir die Differentialgleichungen beachten, denen i, und
o geniigen, so liasst sich 4, auf die Form bringen,

_41 — [[(irl d Ty rn!m (}) COs ]912 Tp'l‘l (2)

I 1 ] & Z_'])2 1 ¢ -
(g7 ) B e () rn @) 1)

1

\ 12 o
Statt A, konnen wir nach (24b) sogleich 6, berechnen. Da die
Formel fiir ¢, sehr lang und sehr untibersichtlich ist, geben
wir sie hier nicht an. Was die Werte von 0, betrifft. so verweisen
wir auf die Iiskussion der numerischen Resultate am Ende der
Arbeit,

. I . . 1 1
Ber A4, vernachlissigen wir das Stérungspotential (3;—— ;. )
12 2

und die Storungsenergie, da diese von erster Ordnung klein sind
und daher nur Beitrige dritter Niaherung zur Energie liefern
wiirden. Dann hat 4, wegen der Orthogonalitit der Ifunktionen
nur fir I = 2 (also fiir D-Terme) emen von Null verschiedenen
Wert., Nach Umformung mittels des Green’schen Satzes er-
halten wir:

.~

Ay = / / drydryp, (2) cos G, (1) 0,0, (2)

j 22 1 1, (Z—1) .
(\____ ---‘.1 S— " —'1- - 9 g~ 9 n® )y’,_:(l)(-nh 19‘12

/
~

[ v dzyp, (2) v, (1) cos® 9,0, (D) 10, (2)
I Z—=12 1°
(s

9 2 .
2n "

o~ / ]
- [/ dr, (’TZ(] oy ) ¥, (2) €082 B vy, (1) V0 (2)
v { 1,

2

|58
g (1)1
| l )

"t

filir rp< ra .

Tir >,
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Der Beitrag von A, zum 3 D-Term wird sehr klein und ergibt
maximal eme Einheit in der letzten von uns beriicksichtigten
Stelle der Rydbergkorrektur.

Wir geben nunmehr nur die numerischen Resultate an und
werden diese dann diskutieren. Auch dabel mussten wir uns
wegen langer numerischer Rechnungen auf zwer Terme, den
2 P und 3 D-Term beschriinken. In der untenstehenden Tabelle 1
geben wir die Werte an, die wir fiir die einzelnen Glieder der
Rydbergkorrektur berechnet haben. (Die mit * bezeichneten sind
dem Artikel von BeTue entnommen: s. Anm.).

Tabelle 1.
! i ‘ |
| OF+6., | Ay, O,y 0%, 240, T 04,
e ,_7} | I
I t | |
2.P | —0,0232 } +~ 0.1 ‘[ -+0,00042 _‘ —+0.0305 -+0,0034 0
3-D | —0,0020: } +0,00044 | —0,00012 l +0,00034 ' —0,00005 - 0,00001
| |

Durch Summation dieser Werte erhalten wir die berechneten
Werte der Tabelle 2. (Die beobachteten Werte sind ebenfalls von
BETHE entnommen.)

Tabelle 2.
berechnet ;L beobachtet
O 0=h (0 0p) | D4k (9= 0p)
~ 0.1 0,0339 | . 00255  0,0368
- 0,00171 0.00029 i - 0.00197 ! 0,00020

9, = Rydbergkorrektur des Orthoterms: o, — R. des Parameters.

Wie wir sehen, ist die Ubereinstimmung der berechneten
gegen die beobachteten Werte recht befriedigend ausser bel dem
Gliede o, fiir den 2 P-Term. Hier wird o, (s. Tab. 1) viel zu gross
(grosser als die gesamte Rydbergkorrektur). KEs ist dies insofern
tiberraschend, als die Austauschkorrektur gerade fiir den 2 P-
Term sehr befriedigend ist. Der Ausdruck 4, ist der einzige,
1 dem das Storungsglied der Eigenfunktion des inneren Elektrons
quadratisch vorkommt. Man muss daher annehmen, dass dieses
Glied fir den 2 P-Term nur eine grobe Naherung ist, was recht
plausibel 1st; denn fiir den 2 P-Term ist die Annahme, dass das
dussere Elektron ruht, nicht mehr geniigend berechtigt.

1) 5. Tabelle S. 347.
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Auch beim 3 D-Perm bedingt das Glied 9, eine grossere Ab-
weichung der berechneten Rydbergkorrektur von der beobachteten.
Doch liegt nun der berechnete Term hoher als der beobachtete,
was befriedigender ist, da wir ja in Gl. (20) die Energie direkt
aus dem Variationsprinzip mit einer Niherungsfunktion berechnet
haben. Es 1st nun eine allmidhliche Konvergenz zu erwarten,
da wir den beobachteten Wert als den genanen Wert des Minimums
betrachten konnen.

Die berechnete Differenz zwischen Ortho- und Paraterm
wird beim 3 D-Term durch unsere Rechnung etwas verbessert.
(Vgl. 6% = 0,00020 in Tabelle 2 gegen 0% = 0,00034 in Tabelle 1
und 9, in Tabelle 2).

Man muss also wohl sagen, dass die konsequente Verfolgung
des Polarisationsansatzes von HeisenBere und BETHE zwar fir
die Terme mit hoher Azimutalquantenzahl rasch zum Ziel zu
fiihren scheint, fiir die P-Terme dagegen noch ziemlich unzuver-
lissig ist. Dort kénnen zuverlissige Eigenfunktionen offenbar
nur nach der Variationsmethode gefunden werden.

Meinem hochverehrten Lehrer, Ilerrn Geheimrat Prof. Dr.
A. Sommerfeld und Herrn Dr. H. Bethe, auf deren Anregung
die Arbeit ausgefiihrt wurde und die sie stets durch ihr reges
Interesse und ihre Hilfe gefordert haben, spreche ich hier meinen
wirmsten Dank aus.
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