Zeitschrift:	Helvetica Physica Acta
Band:	7 (1934)
Heft:	II
Artikel:	Dilatation thermique du nitrate de sodium mesurée aux Rayons X
Autor:	Saini, H. / Mercier, A.
DOI:	https://doi.org/10.5169/seals-110365

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 09.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Dilatation thermique du nitrate de sodium mesurée aux Rayons X par H. Saïni et A. Mercier.

(13. I. 34.)

Résumé. Les auteurs ont déterminé aux rayons X, entre 18° et 200° C les coefficients de dilatation du nitrate de sodium. La poudre cristalline placée dans une chambre du type Seeman-Bôhlin a été éclairée avec les rayons $K\alpha$ du Cuivre. La température a été déterminée au moyen d'un thermo- couple. Les dilatations obtenues sont les suivantes:

parallèlement à l'axe de symétrie A³

$$a_3 = a_0 (1 + 7.53 \cdot 10^{-5} t + 2.56 \cdot 10^{-7} t^2)$$

et pour la direction perpendiculaire

 $a_1 = a_0' (1 + 8.8 \cdot 10^{-6} t + 2.7 \cdot 10^{-8} t^2)$

A 20° C, $a_1 = 5,060 \cdot 10^{-8}$ cm; $a_3 = 16,784 \cdot 10^{-8}$ cm.

La dilatation selon a_3 coincide avec la dilatation macroscopique, tandis que celle selon a_1 s'en écarte notablement.

Dans le travail précédent¹), il a été établi que les coefficients de dilatation de la calcite, mesurés aux rayons X, ne sont pas les mêmes que ceux obtenus par Benoit, à l'aide de mesures macroscopiques. La divergence observée provient probablement de l'échantillon examiné: des minéraux de provenances différentes pouvant présenter des petites variations dans les valeurs numériques de leurs constantes. Dans ces conditions, il était intéressant de rechercher si ces différences subsistaient avec une substance cristalline chimiquement pure et dont les dilatations mesurées macroscopiquement fussent déjà connues. Le nitrate de sodium, qu'il est facile d'obtenir très pur, cristallisant dans le même système que la calcite et sur lequel des mesures macroscopiques de dilatation venaient d'être faites²), nous a paru être la substance indiquée pour ces recherches.

Nous avons donc étudié la dilatation de ce sel avec le même appareil que pour la calcite.

Le NaNO₃ qui nous a servi pour ces mesures de dilatation (livré par Kahlbaum) a été broyé dans un mortier et passé dans un tamis dont les trous étaient de $2,5 \cdot 10^{-3}$ mm². Cette poudre, placée dans la chambre à Rayons X précédemment décrite par

¹) J. WEIGLE et H. SAÏNI, Helv. Phys. Acta 7, 257, 1934.

²) AUSTIN et PIERCE, J. Am. Chemical Society 55, 661, 1933.

l'un de nous¹) fut éclairée par les rayons $K\alpha_1$ du cuivre sur une surface de 5 cm² environ.

La détermination de la température du sel a été faite avec un couple cuivre-constantan dont l'une des soudures était introduite dans la poudre cristalline elle-même. Lors d'une pause, dont la durée était de trois heures, la température restait constante à plus ou moins un degré près. Nous avons fait des photographies

Dilatation thermique des axes a₃ et a₁ du NaNO₃.

aux températures successives suivantes: 19°, 93°, 197°, 230°, 241°, 245°.

Le NaNO₃ a donné sur le film trois raies correspondant aux trois plans ($\overline{1}$ 5 $\overline{4}$ 12), (1 3 $\overline{4}$ 16) et (5 0 $\overline{5}$ 8). Nous avons alors porté sur un graphique, comme dans les travaux précédents sur l'argent et la calcite, les longueurs L séparant deux raies symétriques mesurées sur le film. C'est sur ce graphique que nous avons pris les longueurs correspondant aux températures de 20°, 90°, 160° et 220°.

¹) H. SAÏNI, Helv. Phys. Acta 6, 597, 1933.

Nous donnons dans la table 1, les angles de Bragg observés, les longueurs des vecteurs a_1 et a_3 définissant la maille hexagonale

t °C	Plans	Θ^{0}	d	<i>a</i> ₁	a ₃ -
20°	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	76°50′39′′ 75°27′36′′ 71°54′18′′	0,78940 10 ⁻⁸ cm 0,79415 ,, 0,80866 ,,	$5,060010^{-8}~{ m cm}$	16,784 10 ⁻⁸ cm
90°	id.	76° 8'46" 74°28'57" 71°36'35"	0,79173 ,, 0,79789 ,, 0,81008 ,,	5,0643 10 ⁻⁸ cm	16,908 10 ⁻⁸ cm
160°	id.	75°18'28'' 73°18'50'' 71°16'10''	0,79470 ,, 0,80232 ,, 0,81169 ,,	$5,069710^{-8}~{ m cm}$	17,071 10 ⁻⁸ cm
220°	id.	74°28'10'' 72° 9'30'' 70°55'36''	0,79784 ,, 0,80755 ,, 0,81336 ,,	$5,0754\ 10^{-8}\ { m cm}$	17,246 10 ⁻⁸ cm

Table 1.Résultats expérimentaux.

Dilatation thermique de l'axe a₁ du NaNO₃.

et les distances d des trois plans réticulaires pour les températures mentionnées.

Les constantes a_1 et a_3 ont été calculées (à un pour 20.000 près) par la méthode d'extrapolation précédemment décrite¹).

La variation, en fonction de la température, des longueurs a_1 et a_3 données dans la table 1, sont représentées par les équations suivantes:

$$a_3 = a_0 \left(1 + 7,53 \cdot 10^{-5} t + 2,56 \cdot 10^{-7} t^2 \right) \tag{1}$$

$$a_1 = a_0' \left(1 + 8.8 \cdot 10^{-6} t + 2.7 \cdot 10^{-8} t^2 \right)$$
 (2)

avec $a_0 = 16,758 \text{ cm}^{-8}$ $a_0' = 5,0591 \text{ cm}^{-8}$.

Variation du coefficient de dilatation en fonction de la direction.

Les coefficients de dilatation linéaire dans ces deux directions sont alors

$$\alpha_3 = 7,53 \cdot 10^{-5} + 5,1 \cdot 10^{-7} t \tag{3}$$

$$\alpha_1 = 8.8 \cdot 10^{-6} + 5.4 \cdot 10^{-8} t \tag{4}$$

Les figures 1 et 2 donnent les variations de a_1 et a_3 en fonction de la température. Nous avons porté, d'autre part, sur ces figures, les points qu'on obtient en partant des dilatations données par Austin et Pierce²), dilatations mesurées par la méthode interférentielle de Fizeau.

On se rend compte par l'examen de ces figures que, selon la direction a_3 , la dilatation mesurée aux rayons X coïncide avec la dilatation macroscopique, tandis que selon a_1 elle s'en écarte notablement.

On sait que pour les cristaux des types rhomboédriques et hexagonal, le coefficient de dilatation thermique est une fonction

¹) J. WEIGLE, Helv. Phys. Acta 7, 46, 1934.

²) AUSTIN et PIERCE, loc. cit.

linéaire de $\cos^2 \varphi$, où φ est l'angle entre la direction dans laquelle on mesure la dilatation et l'axe du cristal. Pour un cristal hexagonal $\cos^2 \varphi$ est donné par

$$\cos^2 \varphi = \frac{3 h_3^2}{3 h_3^2 + 4 \left(\frac{a_3}{a_1}\right)^2 (h_1^2 + h_2^2 + h_1 h_2)}$$

où h_1 h_2 h_3 sont les indices du plan envisagé.

D'autre part, on peu calculer pour les trois plans observés les coefficients de dilatation moyens, entre 20° et 90° par exemple,

Dilatation cubique du NaNO₃.

à partir des distances d données dans la table 1. En portant ces coefficients en fonction de $\cos^2 \varphi$, on obtient la figure 3; les points extrêmes de cette figure, c'est-à-dire les coefficients de dilatation dans la direction de l'axe et dans une direction perpendiculaire à celui-ci, ont été obtenus à partir des équations (3) et (4), c'est-àdire à partir de valeurs corrigées par l'extrapolation. On voit que tous ces points se trouvent en ligne droite, montrant par là la bonne concordance relative de ces coefficients.

Nous donnons en outre dans la Fig. 4, la variation du volume spécifique du NaNO₃ d'après des mesures de Kracek¹). Nous avons mis sur cette figure les volumes calculés à partir de nos

¹) KRACEK, J. of Am. Chemical Soc. 53, 2609, 1931.

mesures, ainsi que ceux calculés à partir des données de Austin et Pierce. On voit par l'examen de cette figure que les volumes calculés sont en assez bonne concordance avec les valeurs observées. La faible divergence entre nos valeurs et celles de Austin et Pierce provient de l'écart déjà signalé entre les coefficients de dilatation linéaire selon a_1 .

Ce travail a été fait sur la proposition et sous la direction de Monsieur le Professeur J. Weigle, auquel nous exprimons ici nos vifs remerciements.

> Laboratoire Reiger, Institut de Physique Université de Genève.