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Über den Zusammenhang- zwischen Semivektoren und Spinoren
und die Reduktion der Diracgleichungen für Semivektoren

von V. Bargmann in Zürich.

(4. XL 33.)

Zusammenfassung. Im ersten Teil dieser Arbeit wird der Zussmmenhang
zwischen den Semivektoren und den zweikomponentigen Spinoren allgemein
untersucht. Die gewonnenen Beziehungen werden dann im zweiten Teil dazu
verwandt, die Dirncgleichungen für Semivektoren in Spinorform umzuschreiben und
auf eine Normalform zu transformieren.

Die Grundlagen der von A. Einstein und W. Mayer entwickelten Theorie
der Semivektoren setzen wir als bekannt voraus1).

I. Mathematischer Teil.

§ 1. Die gegenüber speziellen Drehungen 1. und 2. Art invarianten
Teilräume des Rt.

Es ist bequem, statt der Lorentztransformationen (d. h. der
Koordinatentransformationen bei Änderungen des Bezugssystems)
die zugehörigen Drehungen im ß4 zu untersuchen, also die linearen
Vektorabbildungen, bei denen die Vektorbeträge umgeändert
bleiben2). Dies hat noch den Vorteil, dass man nicht drei A^er-

schiedene Räume zu betrachten hat: den Raum der gewöhnlichen
Vektoren, die Räume der Semivektoren 1. und 2. Art, sondern
mit einem einzigen Raum auskommt, in welchem dann den
Transformationen der Semivektoren 1. und 2. Art die „speziellen
Drehungen" 1. bzw. 2. Art entsprechen.

Der metrische Fundamentaltensor sei gegeben durch

9n 922 933 - 1. .944 + 1 ; 9ik 0 (i$k). (1)

Um lästige Minuszeichen in den Formeln der Spinoranalyse
zu vermeiden, wählen wir die Vorzeichen der gik anders als üblich.

x) A. Einstein und W. Mayer: I. Sitz.-Ber. d. Preuss. Akad. 1932, p. 522

IL Proc. Kon. Ak. v. Wet. Amsterdam 36 (1933), p. 497. III. ibid. p. 615. Im
folgenden zitiert als I, II, III.

2) Vgl. I, p. 523.
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Die Tatsache, dass es spezielle Semivektoren mit nur zwei
unabhängigen Komponenten gibt1), bedeutet, dass gewisse
zweidimensionale Teilräume des Ri bei speziellen Drehungen in sich
übergehen. Daher soll zunächst die Zerlegung des i?4 in solche
invarianten Teilräume untersucht werden.

Bevor wir daran gehen, erinnern Avir an folgendes : Im n-dimen-
sionalen Vektorraum Rn seien ZAvei Unterräume M und M ATon

i 2

k' bzw. k" Dimensionen gegeben, derart dass sich jeder Vektor
aus Rn in eindeutiger Weise in einen Vektor aus M und in einen
aus M zerlegen lässt. Aus der Eindeutigkeitsforderung folgt
k' 4- k" n M sei Aron den Vektoren el, el, el und M Aron

1 11' 12' 'li' 2

den Vektoren el, elt aufgespannt. Jeder Vektor zl kann in
der Form

k' k"
2'=VfW + Vc2'e' 2l + *'

,7=Tl u> *Tl 2- 1 2
(2)

geschrieben werden. Die Teilvektoren, in die zl zerlegt wird,
sind also

1

/.= 1 1"

?' •-?'»«"= if2'«"
(3)

Für die durch (3) definierten linearen Operatoren gilt
Sl Sr S' (4)

und

fm=*m-fm. (5)

Aus (4) und (5) folgt weiter

Sl Sr =S> (6)Ì r 2 m 2 m \ I

ül Sr =£' ò'r =0. (7)l r 2 m S f T m \ I

Demnach kann M (X 1,2) charakterisiert werden als die

Linearmannigfaltigkeit aller Vektoren yl Sl mzm (zm beliebig)
oder — was wegen (4) und (6) auf dasselbe hinausläuft — aller
Vektoren yl, für die yl Slm ym.

Umgekehrt gibt es zu jedem Operator Slm, der (4) erfüllt,
zwei Linearmannigfaltigkeiten M und M von k' bzw. k" Dimensionen,

dadurch charakterisiert, dass M alle Vektoren yl enthält,

Vgl. I, § 9.
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für die yl Slm ym, oder alle Vektoren von der Form yl Slmzm

(zm beliebig). Hierbei ist Slm durch die Gleichung (5) zu definieren,
so dass auch (6) und (7) erfüllt sind. Jedes zl aus Rn kann in
einen Bestandteil aus M und einen aus M zerlegt Averden

1 2 ö
[zl Slm zm + Slm zm), und zwar in eindeutiger Weise; denn

wegen (5) gibt es keinen Aron Null verschiedenen Vektor zl, der
sowohl in M als in M liegt. Folglich ist

k' + k" n. (8)

Sind nun M und ili gegenüber speziellen Drehungen 1. Art
invariante Teilräume des Z?4, so geht jeder Vektor yl aus M bei
einer solchen Drehung in einen Vektor y'1 blm ym über, der
ebenfalls in M liegt und daher der Gleichung y'1 Slm y'm genügt.
Ist etwa yl Slm zm, so wird

Sl «"'< Sl br, S* zm=- y'l= b1,^ zn

Es ist also

und

S< br, 8l b\ S'
\ t " t \ m t i m

S1 br, S1 b1, S1
i r"t i m t 2 m

Wegen (5) folgt hieraus

b'S1 =S'6« (9)

Slm ist mit allen blm vertauschbar, also ein numerisch in-
A^arianter Semi-Tensor 1. Art1), und hat daher die Form

§ki=x-9ki + vki> (10)

wobei vkt noch den Bedingungen

0*i + »i* 0; vkl -\ igr\kXmn vmn

genügt2). Allgemein gilt3)

vkm vmt ßgkl (ß { vmn vnm).
Daher wird

SlkmTi=^ + ß)9ki + ^^kr
Da nun nach (4) SkmSmi Skl, ergibt sich durch Vergleich

i) Vgl. I, §5.
2) Es ist \//j + (' gesetzt. rjklmn ist in allen Indices antisymmetrisch,

und es ist ?j12i4 1.

3) I, Gleichung (24); II, p. 498, Gleichung (3).



60 V. Bargmann.

mit (10), wenn man den trivialen Fall vkl 0 beiseite lässt,
a | und ß L Wir finden also

§kl \ 9k i + rkl; vklvlk l. (11)

Nach (5) folgt für Skl aus (11) die Beziehung

§ki=§u-- (12)

Die Gleichung (8) besagt im Fall des fi4: k' + k" 4. Da
die Dimensionszahl k gleich dem Rang der zugehörigen Matrix
Smn ist und nach (12) Smn und Smn den gleichen Rang haben,
folgt k' k" 2.

Aus (7) und (12) ergibt sich

s g» — o • S Sm — 0 n Q\Ym*Y l~ ' 2«A-2 ;~ u- U<>)

Folglich verschwindet das innere Produkt zweier Vektoren aus
M (bzw. M), insbesondere der Betrag eines jeden Vektors aus
M oder M. Sei nämlich y^ Skl xpl und y* Skm <pm, so wird

V*?*=-?**£*» VV=0- (14)

Die Zerlegung eines Vektors durch SÄI und Sfc, entspricht
genau der Zerlegung eines SemiArektors in einen oc- und einen
/J-Semivektor bei Einstein und Mayer (vgl. I, § 9); und zwar
ist in der dortigen Bezeichnungsweise Skl ipl \ (y>k— i y>*) und

§kifl I (fk + if*)-
In analoger Weise zerlegt man Rt in die gegenüber speziellen

Drehungen 2. Art inA^arianten Teilräume N (X 1,2) durch TkU
numerisch invariante Tensoren 2. Art, die ebenfalls den
Gleichungen (4) bis (7) genügen. Es wird

Tu=*\ 9ki +uki, (15)

wobei ukl + \ y/~g i]klmn umn und ukl ulk 1, ferner ist

Tkl=Tlk. (16)

Daraus folgt wie oben, dass das innere Produkt zweier Vektoren
aus AT verschwindet.

x

Da die invarianten Tensoren 1. und 2. Art stets mit einander
vertauschbar sind, gilt für alle X und fi

Y km fil—fikmxl- UO
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Wäre einer von diesen vier Ausdrücken gleich Null, so liesse sich
durch geeignete Numerierung der S und T erreichen, dass z. B.

?*mH=°- (18)

Nach (12), (16), (17) und (5) würde hieraus folgen

Q—S Tm la —S )¦ (òm —Tm\u 2km i l \9km xkml \u l f II '

also wegen (18)

Tki= 9ki—§ki= §ki-

Da aber Tkl und Skl Tensoren A-erschiedener Art und auch nicht
Vielfache Aron gkl sind, ist stets Tkl+:Skl, so dass der Fall (18)
nie vorkommt.

Wegen der Gültigkeit der Beziehungen (7) und (17) ist

gk fr s-» r> [ $k'Tri> wenn l=X' und /" /"'>
>. r„ m>/ t„'l | q gonst_

Demnach definieren die Ausdrücke (17) A'ier Teilräume des E4
charakterisiert durch

yl §lr Tr™zm ^m beliebig) bzw- yl §lr Trm ym.

Jeder Vektor zl ist eindeutig in A'ier Bestandteile aus diesen
Teilräumen zerlegbar:

z> V Sl Tr zm ¦^j X r ii m '

denn es ist Slm + Slm Tlm+ Tlm glm. Da keiner der
Tensoren Slr Trm verschwindet, ist jeder der definierten Teilräume
eindimensional, reduziert sich also auf die Vielfachen eines Vektors.

§ 2. Beziehungen zur Spinoranaly.se. Aufstellung der

Grundgleichungen für al;/l

Wir setzen nun im folgenden voraus, dass die Tensoren Tlm
und Sim durch die Beziehungen

t lm~ xlm (19)

verknüpft sind. Diese Festsetzung lässt sich für jede Wald Aron

Slm treffen, die mit (11) und (12) A-erträglich ist; denn die
konjugiert komplexen Grössen erfüllen dann (15) und (16).
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Wegen (17) und (19) sind die Ausdrücke Slr Trm und 8\ Trm

zu einander konjugiert komplex. Infolgedessen kann man die
Vektoren el, die durch die ATier erwähnten Teilräume bestimmt
werden und den Gleichungen

gl Tr em={ xi' wenn X X' und '" '"' (20);-r" m^> 0 sonst

!" ¦ e< (21)

genügen, so wählen, dass

Durch (20) und (21) ist jeder Vektor el nur bis auf einen reellen

Faktor bestimmt, Avelche Faktoren wir noch in geeigneter Weise
wählen werden.

Da el sowohl in M als auch in N liegt, folgt aus unseren
;./; >¦ ii

früheren Überlegungen (Gleichung (14)), dass alle Vektoren el den
Xu

Betrag Null haben und dass es keine anderen von Null verschiedenen
inneren Produkte geben kann als e1 e, a und el e, ß (a und
ß reell).

Jeder Vektor zl kann, analog (2), als Linearaggregat der
el dargestellt werden, etwa

zl=L,x"eK (22)

(Über gleiche Indices ist zu summieren!)
Nun wird

z'zt= C*":Brel el! (23)

folglich
zl zt 2 (a C11 C22 + ß C12 C21), (24)

denn alle übrigen inneren Produkte verschwinden, a und ß sind
beide von Null verschieden, weil auf beiden Seiten von (24) eine
nichtsinguläre quadratische Form stehen muss. Durch
Multiplikation der Vektoren el mit geeigneten reellen Faktoren lässt

Ali
sich erreichen, dass a + ß 0 und a2 ß2 1 wird. Für reelle
zl Avird nach (21) und (22) auch Ç>'*= £*" ¦ Setzt man

Cl2 u1 + iu2, C21 u1~iu2, C11 m4 + w3, £22 w4 — u3 (25)

so sind die reellen Grössen uk mit den zl durch eine reelle
Transformation A^erbunden. Aus (24) und (25) folgt
— (e1)2 — (z2)2 — (z3)2 + (24)2 2 a - (tt1)2 — (u2)2 — (m3)2 + (w4)2);

daher ist a > 0, also a + 1, und wir erhalten

zlzl 2(C11C22 — C12C21). (26)
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Es zeigt sich nun, dass man zur Spinoranalyse gelangt,
indem man

&=°\» (27>

setzt, wenn unter o-^ die Fundamentalgrössen der Spinoranalyse
verstanden werden. (Der Punkt über dem ersten Index deutet
auf die Verschiedenheit der Transformationseigenschaften Aron
X und ju hin. Vgl. (51), (53), (55)).

BeATor wir dies nacliAveisen, schicken Avir einiges über das

Herauf- und Herunterziehen der griechischen Indices voraus.
Wir verwenden dazu, wie üblich, die folgenden Grössen :

£;.„ f;i,; £;t" £À'i; eu=e22 0, fi2 ~£2i l. (28)

und zwar ist
vx e'-" //„; »7„= ^A£;.„, (29a)

so dass stets

Für jeden Tensor a; findet man nach (28) und (29)

mit a Det (ol„t) Det (aeT).

Insbesondere ist also

a ä/ (30)

Det («,T) J a,„a;" - f «/«*„. (30a)

(Die Gleichungen (29a) bis (30a) gelten in gleicher Weise für
„punktierte" Indices.)

Nach (26) ist
?l — r r'XH — p p 1-X f H r

Der Vergleich mit (23) ergibt daher wegen (27)

ff Xf al C> * ~ £qX £t/<

oder

°WT=W- (31)
Aus (31) folgt

°lx«°J"=àlm- (32)

Neben einer Gleichung Alr B,s òrs gilt nämlich stets auch
Alr Bmr ôlm Nur ist in (31) und (32) r durch das Indexpaar
(Xu) zu ersetzen.
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Setzt man, mit beliebigen wk, n-Xll wt a1^, so ist nach (32)

rix * nx " w, a\ ß
wm aj " w, wl

oder in Matrizenform

Det (wlal) lwlwl. (33)

Diese Gleichung bildet meist die Grundlage der Spinoranalyse1).
Da nach (21) und (27)

^;=^> (34)

folgt aus (33) und (1), dass cr4^, eine definite Hermitesche Form
bestimmt. Wir können deshalb noch festsetzen, dass diese Form
positiv définit ist, Avas auf die äqiÜA7alenten Bedingungen

(T4n>0 bzw. <7422>0 (35)

führt. ((35) kann nötigenfalls durch Multiplikation aller a\fl
mit (—1) erreicht werden, wodurch keine der bisher abgeleiteten
Beziehungen geändert wird.)

Mit Hilfe von (32) ergeben sich noch die Gleichungen2)

oJ.xamé" + crm. alé"=glmò¦." \

(36)
XQ XQ J /. I

§ 3. Die Drehungen im Ri und die zugeordneten Transformationen
der £>¦".

Aus der Beziehung

z rxiiW\n (37)

(vgl. (22)) folgt durch Anwendung von (32)

CA"=--*'<r/". (37a)

Wird der Vektor ^' einer Drehung 1. Art unterworfen, die
ihn in z'1 — blm zm überführt, so transformieren sich die durch
(37) und (37a) zugeordneten Grössen Ç^ gemäss der Beziehung

s
'''¦I' rsl. HT rt'1a\,= ^a'ler, (38)

Avenn blm amk/, a'lifl gesetzt Avird. Da nun bei jeder solchen
Drehung der Bildvektor eines Vektors aus M wieder in Al liegt,b x x & '

1) Eine ausführliche Darstellung findet sich bei L. Ixfeld und B. L. van
der Waerden, Sitz.-Ber. d. Preuss. Akad. 1933, p. 380.

2) Infeld-v. d. Waerden, loc. cit. p. 386.
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ist a'l} f,
ein Linearaggregat von alx, und alx.,, das wir etwa schreiben

können

or''. =0-'. ß°)r (Über / nicht summieren!)

Daraus folgt
C'^=ß^"yCXv. (38a)

Eine genauere Überlegung zeigt, dass darüber hinaus /?(l)'',,
y?(2)^ ß'iti so dass

^»",^ij; (39)

und

C'i"=^,fi'. (39a)

Dies ergibt sich folgendermassen : Die Definition der speziellen
Abbildungen 1. und 2. Art durch die Gleichungen

bki b- gkl + ukl; uk, - -! \ ]/g gk, ,„„ u"• " I

(40)
<,*i c-gffci + Bifc,; »*i= -iyg Vkimnvmn I

bleibt bei beliebigen linearen Transformationen bestehen, wobei
nur der Tensor gik sich gemäss der Transformation ändert. (Eine
solche Abbildung führt den Betrag eines Vektors, zlzx über in
0 zl zt, mit 0 \ bkt bkl bzw. I ckl ckl, sie ist also nur dann
eine Drehung, wenn 0 l1). Doch bleiben, wie man sich leicht
überlegt, alle bisherigen Überlegungen auch für diese umfassendere

Gruppe von Abbildungen richtig.) Setzt man (C11, C12, C2\ C22)

(C1, C2, C3. C4), so ist nach (26) die metrische Fundamentalform
gegeben durch 2 (C1 f4—C2 C3).2) Führt man die entsprechenden

») Vgl. II, p. 498, Gleichung (3).
2) Betrachtet man die £lals projektive Koordination im dreidimensionalen Raum

(wie z.B. H. VVeyl, in der 1. Auflage seines Buchs „Gruppen théorie und
Quantenmechanik'' p. 111), so ist f1 £4 — C2 C3 0 die Gleichung eines Hyperboloids
mit zwei Scharen von geradlinigen Erzeugenden. Einer Drehung entspricht dann
eine projektive Abbildung, bei der das Hyperboloid in sich übergeht. Insbesondere
entspricht einer Drehung 1. (bzw. 2.) Art eine solche Abbildung, bei der nur die
Geraden der ersten (bzw. zweiten) Schar unter sich transformiert werden, während
die der anderen Schar fest bleiben. Die allgemeinste Abbildung, die das Hyperboloid
in sich überführt und aus der Identität stetig erzeugt werden kann, lässt sich stets
als Produkt zweier spezieller darstellen. In dieser geometrischen Interpretation
wird die Vertauschbarkeit der Drehungen 1. und 2. Art deutlich. Vgl. hierzu auch
die Arbeit von J. A. Schodten (Zs. f. Phys. 84, p. 92, 1933), mit der unsere
Darstellung manche Berührungspunkte hat.

5
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gik in (40) ein, so bestätigt man (39) und für Abbildungen 2. Art
ganz analog1)

'•>'";.,,= <^/; (41)

C1"»^^. (41a)

Die Gleichungen (39) und (41) können auch ATon rechts nach links
gelesen werden, d.h. zu jedem /?''„ gehört ein bki, zu jedem y!'t.
ein cki. Für die zusammengesetzte Abbildung akt bkr er,
ergibt sich

o'«^=y*l^T^ (42)

C'k"=ykiCir ß"r. (42a)

In (42) kommt die Vertauschbarkeit der Abbildungen 1. und
2. Art klar zum Ausdruck.

Mit Hilfe von (31) und (32) ergeben sich aus (39) und (41)
die folgenden Beziehungen zwischen bk, und ß^v bzw. ckx und y'% :

I

ßi'^^b1 0,1*0™, ; bl j8" ff', <r
<•''' (43a)

Aus (43) ergibt sich wegen (29)

i &*< 6W= Det (0*,) ; } c*1 c,, Det (/,). (44)

Den Drehungen entsprechen also Transformationen der £*" A'on
der Determinante l2), was auch aus (26) unmittelbar hervorgeht.

Weiter erkennt man, dass wegen (34) die Relationen

c\=~bki und K,.,= ,n (45)

einander äquivalent sind.

Slm hat die Symmetrie eines c'm-Tensoi\s (nach 11)). Da

y»f,i„ ff,i„ und £»„ a»,„ ° (vgl. (20) und (5)), ist das
einzige nicht verschwindende Element des nach (11) und (48b)
zugeordneten y gegeben durch yl[ 1. Folglich findet man für
Slm und entsprechend für Slm:

¥m=*i.*Jxi $J»="WT- (46)

x) Der genaue Sachverhalt ist der: Wegen der Zweideutigkeit der in (40)
auftretenden Wurzel kann aus der Rechnung nur geschlossen werden, dass die
Transformationen der einen Art auf (39), die der anderen Art auf (41) führen.
Die genaue Zuordnung vermittelt (38a).

2) Vgl. Anmerkung 1, p. 65.
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Da der in (43) angegebene Ausdruck bei jeder Wahl von ßf'v
auf einen &VTensor führt, kann man daraus schliessen, dass
das Gebilde

»»„*»" (4")

in den Indices l und m die Symmetrie eines ò^-Tensors,

°lAe°m*e (48)

diejenige eines cA.rTensors hat (A7gl. (40)).
Wie hier ohne Beweis angegeben sei, kann allein aus den

Beziehungen (31) bis (34) geschlossen werden, dass der Ausdruck
(47) inbezug auf die Indices / und m ein b- oder ein c-Tensor ist.
Es lässt sich zeigen, dass stets

l '/,„„„^,^"^^"^=-±0^ (49)

oder. Avas wegen (28) und (29) dasselbe besagt,

Det (ef, e, e™, £) ±t. (49a)

Steht in (49) das Pluszeichen, so haben (47) und (48) die verlangten
Symmetrieeigenschaften. Andernfalls tauschen bu und ckt ihre
Bollen. .#

§ 4. Koordinaten- und Spinortransformationen. Übergang

¦zu neuen ak<^L

Während bisher nur A'on Vektorabbildungen die Rede war,
sollen jetzt die Koordinatentransformationen besprochen werden.
Diese sind den Vektorabbildungen eindeutig zugeordnet (vgl. § 1),
und wir können daher die in den A'orangehenden Paragraphen
abgeleiteten Beziehungen hier verwenden, nur mit dem
Unterschied, dass Invarianz gegenüber Vektorabbildungen jetzt Invarianz
gegenüber den entsprechenden Koordhiateiitran.sforinatioiieii zu
bedeuten hat und dass Semivektoren 1. und 2. Art Aron einander
und A^on den Weltvektoren getrennt zu behandeln sind.

ul sei ein Semi\Tektor 1. Art, vl ein Semivektor 2. Art1).
Nach den Ausfübrungen in § 1 sind dann Gleichungen der Gestalt

u --S'um bzAV.
X m

1) Wir deuten Semivektoren 1. bzw. 2. Art nach Einstein-.Mayer durch
ein- bzw. zweimaliges Überstreichen ihrer Indices an, lassen aber die Striche fort,
falls dies nicht zu Missverständnissen führt.
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gegenüber Koordinatentransformationen iiiArariant, sobald man
Slm und Tlm als numerisch inA'ariante Semi-Tensoren 1. bzw.
2. Art auffasst. Die Eigenschaft, zu M bzw. N zu gehören oder,
in der Ausdrucksweise von Einstein und Mayer, ein <x- oder
/9-SemÌA'ektor zu sein, ist also vom gewählten Bezugssystem
unabhängig.

Darüber hinaus setzen wir fest, dass auch die olif, sich bei
Koordinatentransformationen nicht ändern, obwohl sie durch
Slm nicht eindeutig bestimmt werden. (Nur das Umgekehrte
ist nach (46) der Fall.) Dies besagt, dass in jedem Bezugssystem
die el in der gleichen Weise mit den jeAveiligen Grundvektoren

X/i
(1, 0, 0, 0) (0, 1, 0, 0) usw. zusammenhängen.

Ordnet man dem Semivektor ul gemäss (37a) die Grösse

Çi"=ul o/» (50)

zu, so gellt bei einer Lorentztransform u'k bktul, da o'x/l un-
geändert bleiben, ^f nach (39) und (43) über in

rXli^ß"Jkv. (51)

Da nur der zweite Index variiert, kann man auch sagen, dass
durch (50) dem SenÜA'ektor zwei zweikomponentige Spinoren
zugeordnet werden, die beide dem gleichen Transformationsgesetz

;.

genügen. Wir schreiben daher f*'' f oder später in Matrizen-
x

form f, um zum Ausdruck zu bringen, dass X nicht variiert.
(Die Aussage, dass ul in M liegt, lässt sich jetzt so aussprechen,

dass | 0.)
Ebenso erleidet die Grösse

r^"=vla}", (52)

die dem SenÜA'ektor 2. Art v7 zugeordnet ist, eine Transformation

rç''"=yW, (53)

wenn vl in v'1 c\„ vm übergeht. Hierbei bleibt der zweite Index

ungeändert. Wir setzen, anders als für f*", rif rjx1). Aus
(53) folgt noch

*?? -y/V- (53a)

ii »,
1) Der Index /. ist heruntergezogen, damit der Ausdruck rjx f gebildet

werden kann.
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Endlich bleibt noch zu untersuchen, wie verschiedene Systeme
olX/l miteinander zusammenhängen. Neben olxll genüge also auch

ff';/, den Beziehungen (31) bis (35) und erfülle (49) mit dem
Pluszeichen. Da die vier o'Xl, (1=1, 4) unabhängig sind, kann
er';,, in der Form

ff'.- al om; (54)

geschrieben werden. Da nun, nach (31), alle inneren Produkte
der ff mit den entsprechenden inneren Produkten der o
übereinstimmen, sind aki die Koeffizienten einer Lorentztrans'formation,
die überdies wegen (34) reell ist. Weiter ist nach (49) ihre
Determinante gleich + ]. und die Zeitrichtung bleibt Avegen (35) durch
sie ungeändert. Infolgedessen ist akl das Produkt zweier
Transformationen 1. und 2. Art, akt bkm b"'i, so dass nach (42) bis (45)

(55)2i,= "'i°W,
mit m''„ | blmo^"o%v; Det {co",) 1

Ebenso ist

ff/"=w/ff/r<.
Da nach (30)

W"„ co/ ò»x. (56)

kann man direkt die Relationen (31) bis (34) für olXll verifizieren.
Desbalb gehört zu jedem o von der Form (55) nach (46) ein Sl„,

Nach (46) und (54) ist Skt akm a,n Smn oder, da Slm mit jeder
b-Transformation vcrtauschbar ist,

Sk. //; /)," S'"

Nach (37) und (55) ist

und für die den b- und c-Transformationen zugeordneten Spinor-
transformationen ergibt sich nach (43) und (56)

ß>.= ">x" ß\ < (co- ')';. ß\ <
y*,= ¦ - Wj' y\ id1 ¦ - (ör %. y\ ü%

Alle Systeme olXfl, die (31) bis (35) und (49) erfüllen, können
nach (55) durch eine geeignete Transformation co'',, aus einem
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speziellen System abgeleitet werden, als welches wir z. B. das
folgende Avählen können:

1 /0 1\ 1 /0 — i
<J1XH

ißv 0/ 1^\« 0

1 /1 0\ 1 /1 0\ ,__

das bis auf den Faktor -y/2 mit den PAULischen Spin-Matrizen
übereinstimmt. Dieser Wahl entspricht die Definition der a- und
/?-Semivektoren bei Einstein-Maykr1).

§ 5. Entwicklung der Theorie der Semivektoren auf Grund
der Spinoranalyse.

In diesem Paragraphen soll der umgekehrte Weg eingeschlagen
werden. Wir wollen kurz zeigen, wie die Theorie der Semivektoren
auf Grund der Spinoranalyse entAvickelt werden kann.

Gegeben sind Arier Hermitesche Matrizen ok die (33), also
auch (32) erfüllen. Daraus schliesst man, dass sie auch den
Gleichungen (31) und (36) genügen. Der Zusammenhang mit den
reellen Lorentztransformationen ergibt sich folgendermassen : Aus
den vier unabhängigen Matrizen ok lässt sich jede zweireihige
Matrix in eindeutiger Weise linear aufbauen. Bildet man nun,
mit einer beliebigen Matrix ß von der Determinante 1,

a'k /9t er* ß,2) (58)

so ist o'k aki ff', wobei aki reell, weil a'k und ok Ilermitesche
Matrizen sind. Wir führen die vier Variablen wk ein und setzen
w'i — aki Wk • Daher ist Det (wk a'k) Det (w'k ok) \ w'k w'k
Andrerseits ist nach (58), Avegen Det /5 1, Det (wk o'k) Det
(wk ff*) \ ivk wk Infolgedessen sind akl die Koeffizienten einer
Lorentztransformatimi.

IL Casimir machte nun die Bemerkung3), dass man genau
so die Multiplikation Aron ok mit ß oder /9t allein behandeln kann

*) I, p. Ô45. Die Definition in III, p. 616 entsteht hieraus durch die zyklische
Vertauschung 1—>- 2, 2—>-3, 3—>-1.

2) ßf ist die zu ß Hermitesch adjungierte. d. h. transponierte und konju-
giert-komplex genommene Matrix.

3) Dieser Bemerkung, die mir von Herrn Prof. Pauli mitgeteilt wurde,
verdanke ich weit mehr Anregungen, als aus der jetzigen Darstellung hervorgeht.
Aus Gründen der Systematik sind nämlich die Überlegungen in einer anderen
Reihenfolge wiedergegeben, als ich sie ursprünglich angestellt hatte.
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und dabei in einfacher Weise zu den speziellen Loren tztransforina -

tionen 1. und 2. Art gelangt. Setzt man nämlich

ff'* ff* ß, (Det/3=1) (59a)
so ist

o'k bklol, (59b)

und wieder folgt, für w,' bkt wk wk w'k wkwk Daher ist
bki eine Lorentztransformation. Ebenso schliesst man für

o"i =yok-ck,o>. (60)

Ist insbesondere y /S1", so wird c*( bS, weil Avegen der
Hermitizität der er* (er* ß)f /9+ ff* 6*j ff'

Bekanntlich kann man jeder reellen Lorentztransformation.
die sich stetig aus der identischen Transformation gewinnen lässt,
gemäss (58), bis aufs Vorzeichen eindeutig, eine Matrix ß zuordnen.
Aus (59) und (60) folgt, Avegen (y ¦ er*) • ß — y ¦ (ff* • ß) dass
alle ^-Transformationen mit allen c-Transformationen vertauschbar
sind.

Um einzusehen, dass es sich um die Lorentztransforinationen
1. und 2. Art handelt, bedenke man, dass sich die Gleichungen
ff* ß bkt ff' in der Form (43) nach den bkt auflösen lassen, die
daher die richtige Symmetrie haben, wenn noch Amrausgesetzt
wird, dass in (49) das Pluszeichen steht. Das gleiche gilt für ck,1).

Da Avir neben der Gültigkeit von (33) nur noch die Hermitizität
der ff* A'orausgesetzt haben, sieht man leicht, dass mit ff* auch

ff* ft)t er* c» (Det co 1)

zum Aufbau der Spinoranalyse dienen können (vgl. (55)). Alles
andere ergibt sich wie in den vorhergehenden Paragraphen und
1 »raucht daher nicht weiter verfolgt zu werden.

§ 6. Aufbau des Tensors Erst aus den Grössen olXll.

Der Tensor Er-H ist eindeutig bestimmt durch die folgenden
Forderungen :2)

1. Er hängt linear von Arier Konstanten ab.
2. Er ist numerisch invariant.
1) Man kann sich auch auf den folgenden Satz stützen, den man durch

Betrachtung der infinitesimalen Lorentztransformationen gewinnt: Es gibt nur
eine Zerlegung jeder reellen Lorentztransformation D in ein Produkt zweier
komplexer Lorentztransformationen li C — nämlich in die speziellen Lorentztransformationen

1. und 2. Art — unter der Voraussetzung, dass li und C zu D isomorph
sind und in der Umgebung der identischen Transformation eindeutig und stetig
von D abhängen.

2) I, § 6-
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Es gilt also

a'kbtlc?&lm=Wtt (61)
mit

bkmcmr (61a)a l~- v m v /

br,KElml=E/st

(61) ist äquivalent mit den Forderungen

bzw.

b\E\t E*ltb\ (62a)
und

c\ElH Wslàt. (62b)

Denn aus (61) folgt (62), wenn man akl bkt oder akt — ckl setzt.
Ebenso folgt Avegen (61a) aus (62a) und (62b) wieder die Beziehung

Da in der Spinoranalyse die alX)i die einzigen gemischten
invarianten Grössen dritter Stufe sind, liegt der Versuch nahe,
Erst aus den ff* aufzubauen. Die gesuchte Beziehung muss
invariant sein gegenüber Transformationen der Art (55). Daher
wird man nach den punktierten und nach den nicht punktierten
griechischen Indices verjüngen und infolgedessen eine gerade
Zahl von ff-Matrizen heranziehen. Für die drei Indices von E
brauchen wir deshalb mindestens A'ier ff-Matrizen. Dadurch ist
zugleich Platz für 4 Konstanten ex, um in der Form e, al>"
den einen überschüssigen Index zu „binden".

Unter den verschiedenen Kombinationsmöglichkeiten muss
nun mit Hilfe von (62) eine Auswahl getroffen werden. Nach
(39) und (41) greifen die den bkl zugeordneten Transformationen
ß nur den zweiten, dagegen die den ckx zugeordneten Transformationen

y nur den ersten Index von a an. Man wird deshalb
vermuten, dass man ein Gebilde von den geforderten InATarianzeigen-
schaften erhält, wenn nach den zweiten Indices von ff'' und er.

und nach den ersten von or und ot A-erjüngt wird. Wir setzen
also an :

E^-e,o'^'a^osxrotóii. (63)

Die Forderungen (62) besagen nun :

b\ol^osir o^ontb\ (64a)

i" "ti,i^a aiQ»ct (64b)

Da der zu bkt komplex-konjugierte Tensor ein c*,-Tensor ist, folgt,
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wegen (34), (64b) aus (64a) durch Übergang zum Konjugiert-
Komplexen. Es bleibt also nur noch (64a) nachzuweisen.

Aus (39) findet man, mit Hilfe von (29),

b'm 0-'"'"== -olXv ß„», (65)
ferner

(b-Wo.^'nAß-1)'?-
Da nun (fr1),»» - 6», und nach (30), weil Det /5=1, O?"1)",.- - ß/,
ist also

b'".a ; ff;i ß '. (66)

Aus (65) und (66) folgt aber (64a).
Der Zusammenhang der ek mit den A-on Einstein und Mayer

eingeführten Konstanten ak ergibt sich daraus, dass einerseits
Eìxì gxl «,. und man andrerseits nach (63), unter Benutzung
von (32) und (36), ft,,., \gues findet. Es ist daher

E'H 2alo^o<**o,ktotilt. (67)

Wegen (34) folgt hieraus

Er,t(ä,)'-E'ts (C). (68)

Weiter findet man nach (64)

<\lb,"'E'lm{a,)-Y',tWk) (69)1)
mit

a'k ckm bml a;.
Endlich ergibt sich durch Anwendung von (36) die Beziehung2)

/.;*•,- EhpB L. //;/,r Ekl">=2gkhg"> at al.

II. Ainvendiui)) auf dir Dirncgleir-hiinyt'ii für Semivektoren.

§ 7. Die Dir a cgleichungen in Spinorform.

A. Einstein und W. Mayer haben die Dtrargleichungen für
Semivektoren durch Variation einer Lagrange-Funktion
abgeleitet3), die sich auf Grund sehr allgemeiner Forderungen, bis
auf den Faktor i. in der Gestalt ergibt:

L E'„ (V Vr ^-r V'Ir) + E*^ (*' X'lr ~ X*/r %')

+ 2Cslyxt-2Cstrxt-i) (™)
') Vgl. II. p. .)03.
2) Vgl. I, p. Ò39.

:!) II, p. 501, Gleichung (2). L wird dort H3 genannt.
J) Die Faktoren 2 fehlen irrtümlicherweise in II.
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Hierbei sind Y und yf zwei Semivektoren 1. und 2. Art, Csl ein
numerisch invarianter Semi-Tensor 1. Art. Erst steht für Erst (ak),
E*rst für Erst (a*k) ; ak und a*k sind reell. Weiter bedeuten

(71)

d wa _ d ws _v''r "di' ~le<Pr r' r'r TF +1ÊVtV'

n-^-ieVrX*; M-^r + ie»?
wobei <pr das elektromagnetische Vektorpotential darstellt.

Die Diracgleichungen lauten dann

Eratylr Ct,X< I

/7o,
E\tX% -CuV>*l' K

Der Stromvektor, dessen Divergenz auf Grund von (72)
verschwindet, ist gegeben durch

Jr-E^y^ + E^rx'X*- (73)

Um die Gleichungen (70) bis (73) in Spinorform
umzuschreiben, ordnen wir mittels der Beziehungen

y>l-olxlJ" (74a)

Xl -olêrhe (74b)

entsprechend (50) und (52) dem Vektor yil die beiden zweikom-

ponentigen Spinoren £ und £, dem Vektor %l die Spinoren n
9

und »7 zu. Wir setzen ferner nach (43)

y';,= ic*'ff/-ff(1., (75)

und verabreden noch folgende Matrixschreibweise : Neben

1=1; führen wir ft (I1 |2) ein, so däss z. B.
U2/

S ff'l^l"ffV,.l"
wird. Ebenso führen wir neben »/ noch j/1 ein und die zu
ff';'' transponierte Matrix

xi}.n ai„x i) (76)

*) Für die spezielle Wahl (57) dieser Matrizen wird t>" — ff"» (?w 1,2,3):
T< + (I4.



Semivektoren, Spinoren, Diracgleichung. 75

Infolgedessen ist z.B. rfì t1 tj rjo1"1' ï]v. (Da der
Transformationscharakter der vorkommenden Grössen aus deren Definition
hei'A-orgeht, lassen wir im folgenden die Punkte über den Indices
fort.)

Setzt man (74) bis (76) in L ein, so erhält man, wegen (67),
nach mehrmaliger Anwendung von (29), (31), (32) und (34) den
Ausdruck

L Alß(h °r l r - h r ar I) + At, Ut x' y/r - jt/r t< ;;)

-2i(lhjyc + Df,xhy) (77)

Hierbei ist
Ax„ 2 a,ff',,;. |

A*xl,~-2a*lolxi, (78)

D?,, iy„A(nach (75)). I

Wegen der Reellität von «, und a* sind A und .4* Hermitesche
Matrizen, es ist also

(79)

(80)

A,x Axi, \

4* 4*. I

Die Diraegleichungen lauten nun

'' /' I

Axf.O'i/r i D„x ?/ I

A*x„T'--!Jlr=iDx„ï I

und der Stromvektor wird

J'=Axl,bo'S + A*xl,rln'n. (81)

£ #. Reduktion der Diracgleichungen.

Die Reduktion der Diracgleichungen, die wir nun vornehmen
wollen, stimmt im wesentlichen überein mit der A'on Einstein
und Mayer angegebenen1). Der einzige Unterschied ist der,
dass Avir bereits vor der Reduktion zur Spinorform übergegangen
sind, während Einstein und Mayer dies erst nach A*ollzogener
Reduktion tun2). Dadurch haben wir den Vorteil, die einfachen
Gesetzmässigkeiten der zweireihigen Matrizen ausnützen zu
können.

II, § 2 bis 6.
2) III, p. 617.
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Alles Aveitere gründet sich nun auf die Tatsache, dass
offensichtlich die Funktion L (77) und der Stronwektor Jr (81) un-
geändert bleiben und die Diracgleichungen (80) sich kovariant
transformieren bei Ersetzung von f, >/, A, A*, D durch die folgen-
dermassen definierten Grössen f, >j, A, A* und D:

|=U\J; r)-- Y'J). (82a)

Ax„ U'-'x A,JT V\ ; A*,,, F»a A*IJT V\ (821))

ihn V'XD„TJ\. (82c)

Diese Transformationen entsprechen genau den von Einstein
und Mayer benutzten1):

a* c'fcm c'ml oi ; a\ cfc» cm' g,*
(83)

wenn gesetzt wird :

c'*, ff*,-.„ ff,'1 '-' U'V ; c*, o-*, „ ff^ » F'',;, (84)

wie sich aus (74) und (78) mit Benutzung von (39), (41), (43)
und (45) ergibt. Es ist natürlich ATorausgesetzt, dass sowohl die
Transformationen U und V als auch die Transformationen c und
c' von Null verschiedene Determinanten haben, was nach (84)
und (44) auf dasselbe hinauskommt.

Es handelt sich nun darum, geeignete V und V zu finden,
die den Diracgleichungen eine einfache Form geben. Da die
Transformationen U und F voneinander unabhängig sind, können A
und A* zugleich auf Diagonalform gebracht werden, derart, dass
überdies die Diagonalelemente kx — Ax> und k*? A*X) (nicht
summieren!) die Werte +1 oder 0 haben. Jeder Wahl von A
und A* entsprechen nach (78) bestimmte Worte von ak und <v*,

Besonders einfach wird diese Zuordnung, wenn das System o': „
in der Form (57) gewählt ist.

Nach den bekannten Sätzen über die Hauptachsentransformationen

Hermitescher Formen ergeben sich wegen (78) und
(33) die folgenden Fälle :

1. Det (AX/I) > 0 (al zeitartig) führt auf kx A'2 +1, nach

(57) also: (d1, d2, d3. d4) ^= (0, 0, 0, ±1).

M II, p. 502—503.
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2. Det (AX/i) < 0 (al raumartig) führt auf kx — k2 1,

nach (57): -7= (0, 0, 1, 0)

±1, A-s 0, nach3. Det (Ax„) 0 (o, o« 0) führt auf fr,

(:,7): ±iÌ-2 (°> °' ]' ])-

Wir lassen den Fall 3. beiseite, da er nicht zu physikalisch
brauchbaren Lösungen zu führen scheint, und setzen im folgenden
stets

>>•;.= ±L k*x= ±1 (A= 1,2) (85)
voraus.

Ruhende Teilchen werden im Fall eines verschwindenden
elektromagnetischen Feldes beschrieben durch die Funktionen

• a ; )/
x *

e-i-x'.ßt

wobei die Spinoren a und ß A*on den xl nicht abhängen. Setzt

man noch v — -v/2 co und \/2 • t4/9 y so folgt aus (80),
unter Berücksichtigung A*on ff4 t4 \ (nach (76) und (36)),

c» Ax,, a+ D,,xy 0

w^*;.„y + D;.„ a 0 |

Durch Nullsetzen der Determinante des Systems (86)

(86)

ojkx 0 Du D21
0 cjA'sj Du D22

Du Du cok\ 0

D., D92 0 cok*2

ergibt sich wegen (85) für den Eigenwert w die Gleichung

co* — pco2 + q 0

mit den reellen Koeffizienten

p 'v*1^i|Dii|2 + A*1A:2|D12|2+ k*2kx |D21|2 + A*2 A2 |Z)22|2 (87a)

q k*x kx k*2 k2 \DXX D22 — DX2 D2X\

also ist
V
2

1

w2= ^-±^-yp2—4g.

(87b)

(88)

Je nach den Werten A*on A: und k* findet man:
I. a{ und a** raumartig, also A"1 A-*1=+1, k2 k*2=—1.

Da in diesem Fall q 2; 0, ist co nur dann reell, wenn p2 — 4 q ^0
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und p 2: 0. Die beiden Teilchenmassen sind voneinander
Abschieden, wenn p2 — 4 q + 0.

IL a* und a*' zeitartig, also kx — k2; k*x A;*2. Es ist q 2: 0,
aber nach der Hadamardschen Determinantenabschätzung stets
p2 — 4 g 2? 0. Für die Reellität von co ist also notwendig und
hinreichend, dass p > 0, d. h. kx k*x.

III. al raumartig, a*' zeitartig: kx -k2=l; k*x k*2. Es
ist g ;S also stets p2 — 4 q 2; 0, und zwar haben die zwei Lösungen
cox2 und w22 verschiedenes Vorzeichen, so dass nur die eine der
beiden auf reelle cu führt.

In allen diesen Fällen kann man noch eine Aveitere Reduktion
vornehmen, wobei nur Transformationen U und V zugelassen
Averden, die A und A* ungeändert lassen. Dabei bleibt die
Gleichung für co bestehen, also sind auch p und q invariant.

Besonders einfach ist IL Hier handelt es sich um unitärc
Transformationen, und es ist bekannt, dass jede Matrix D durch
geeignet gewählte U und F auf Diagonalform gebracht Averden
kann, derart, dass Dxx mx und D22 m2 reell und positiA- sind.
Man erkennt, dass dann die Gleichungen (80) in zwei getrennte
vierkomponentige Systeme vom Diracschen Typus zerfallen, die
sich von einander nur durch die Werte der Massen unterscheiden.

1 2

Ebenso zerfällt Jr in zwei Teilströme Jr und JT, Aron denen jeder
für sich einer Kontinuitätsgleichung genügt. In dem Falle p > 0.

dem einzigen, der auf reelle Werte von co führt, haben J4 und J4,
l s

also auch die zugehörigen elektrischen Ladungsdichten eJ4 und e-74

gleiches Vorzeichen.
I. soll nur für den Fall reeller, von einander und von Null

verschiedener Werte der Massen behandelt werden, also für
q > 0, p > 0, p2—4 q > 0. W7ie im nächsten Paragraphen gezeigt
wird, gibt es dann „pseudo-unitäre", d. h. A und A* festlassende,
Transformationen U und F, die D auf Diagonalform bringen,
wobei überdies D„ mx und D22 — m2 (mit reellen und
positiven mx) gemacht Averden kann1). Die Gleichungen (80) zerfallen
dabei in die beiden Systeme vom Diracschen Typus:

ffr |/r i m2 >i |

und
9 i

rr r)/r i m2 | j

<*' % mx i]

f V/r % mx |
') Ist q > 0, p > 0, aber p2—4 </ 0, also nur ein einziger Wert für die

Masse vorhanden, so lassen sich die Diracgleichungen nur dann zerfallen, wenn,
in der Bezeichnungsweise von § 9, D ü ein Multiplum der Einheitsmatrix. Andernfalls

hat das achtkomponentige Gleichungssystem (86) auch nur vier unabhängige
Eigenlösungen.
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Der Stromvektor ist nach (81) Jr Jr + -7' mit

jr |t ff' f + ;yt Tr ,'y ; Jr - _ (|t ar | _L *f T -^),
l 2

Avobei noch •/'. - •/', 0
1 2

Daraus folgt insbesondere (nach (35)) -74 > 0, J4 < 0,
so dass auch die zugehörigen Ladungsdichten verschiedenes
Vorzeichen haben.

Die übrigen Fälle, von denen keiner auf zwei verschiedene
reelle Massen führt, sollen unerörtert bleiben.

§ 9. Mathematische Hilfsbetrachtungen1).

Bei den folgenden Betrachtungen, die den entsprechenden
Überlegungen über Ilermitesche Formen und imitare
Transformationen genau nachgebildet sind, bedienen Avir uns des Matrizenkalküls.

Unter dem Vektor x A-erstehen wir das System (xx, x2). Wir
gehen aus atoh dem Ausdruck

(x, y) xx yx — x2 y2. (88)
Es ist stets

(x, y) (y, x) (88a)
und

(a x, y) ä (.r, y) ; (x, ß y) ß (.r, y) (88bi

für beliebige komplexe Zahlen a und ß

Ist A ein linearer Operator, so gibt es stets einen und nur
einen Operator B, der der Relation

(A x. y) (x, B y) (89a)

oder, was wogen (88a) damit üqiÜA-alent ist,

(x, A y) (B x, y) (89b)

für alle Vektoren x und y genügt. Wir nennen B den zu A ad-
jungierten Operator und bezeichnen ihn mit

B Â (90)

x) Die Entwicklungen dieses Paragraphen sind etwas ausführlicher, als
für den unmittelbaren Zweck — die Reduktion der Diracgleichungen — notwendig

wäre.
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Nach (89) ist der adjungierte Operator des adjungierten
wieder der ursprüngliche, so dass aus (90) folgt:

B A. (90a)

Wir benötigen für das folgende noch die sich aus der Definition
ergebenden Beziehungen

AB B Â (91)

(jA) (i)"1. (92)

Ist A =1 *n ai2 V
so wird À [ "" - !21 \

¦ (93)
\ «21 «22 / \ - «12 «22 /

Wenn A Ä ist, sprechen wir von einem selbstadjungierten
Operator. Insbesondere ist nach (90a) und (91) jeder Operator
von der Gestalt A A oder Â A selbstadjungiert.

Einen Operator 77, für den stets (TJx, Ux) (U U x, x)
(x, x), also auch

Û U U Û 1 (94)

gilt, nennen wir „pseudo-unitär". Er ist von der Gestalt

x sei ein von Null verschiedener Vektor. Ist (x, y) 0, so

folgt yx cox2, y2=coxx, also l^l2— \y2\2= \m\2 i\x2\2 — \xx\2).
Für (x, x) 0 hat (x, y) 0 nur die Lösung y o • x.

Für (x, x) $ 0 ist y durch (x, y) 0 bis auf einen Faktor eindeutig
bestimmt, sein Betrag (y, y) ist von Null verschieden und hat
das umgekehrte Vorzeichen wie (x, x).

Wir fragen nun nach den Eigenwerten und Eigenvektoren
eines selbstadjungierten Operators A A. Es sei

Ax X • x.

Da nach (88a) und (89) (A x, x) (x, A x) reell, muss also X (x, x)
reell sein.

1. Fall: (x, x) $ 0. Folglich ist X reell. Es gibt, bis auf einen
Faktor, nur einen Vektor y, für den (x, y) 0. Für diesen ist
(A y, x) (y, A x) X (y, x) 0. Folglich ist A y p, ¦ y. Da

{y, y) t 0, ist fi ebenfalls reell. Bei geeigneter Normierung (und
etwaiger Vertauschung der Reihenfolge) ist (x, x) + 1 ; (y, y) -1 >
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(x, y) 0. Daher kann man durch einen geeigneten pseudo-
unitären Operator U auf dieses System x, y transformieren, in
dem A die Diagonalform hat. Es ist also

LTA UAU: A
)p

2. Fall: [x, x) 0.

a) Ist noch ein zweiter Eigenwert p : /. vorhanden, so gehört
zu ihm ein EigeiiA'ektor y, der A*on x linear unabhängig ist —
daraus folgt (.r, y) + 0 — und für den gleichfalls (y. y) 0, weil
sonst auch (x, x) r- 0 wäre. Nun ist (.4 x, y) — 7. (x, y) (x, Ay)
fi (x, y). Da (x, y) ¦- 0, wird also // /..

b) Es sei nur der eine Eigenwert X vorbanden, der notwendig
reell ist, da er einer reellen quadratischen Gleichung genügt. Gibt
es zu diesem Eigenwert zwei unabhängige Eigenvektorcn. so
ist A - /. 1.

c) Ist A :/.-!, so gilt für den einzigen vorhandenen Eigen-
vektor (j\ x) 0: denn sonst müsste es, auf Grund der obigen
Konstruktion, noch einen zweiten geben.

Aus A [ (a,, und a.,., reell)all «12 \

«12 «22 /
folgt die Eigenwertgleichung X2 - aX + b 0 mit den reellen
Koeffizienten a -- an + a22 /; Det A. Folglich ist

X=l±\ia2-\b.
Im 1. Fall ist daher a2—Ab > 0. im Kall 2a: a1 -Ab < 0,

im Fall 2b: a2—Ab 0, a12 0. im Fall 2c: a'-Ab 0, a12 i 0.
Eine Hauptachsentransformation durch pseudo-imitare Operatoren
ist nur in den Fällen 1 und 21) möglich.

Wird eine (nicht notwendig selbstad jungierte) Matrix /) durch
zwei pseudo-unitäre Transformationen fJ und V auf die Diagonal-
form L gebracht D F L V —. so ist nach (91) und (94)

DD VIjL V.

Da mit L auch L L diagonal ist (vgl. (93)), muss die selbstad

jungierte Matrix /) /) zum Fall 1 oder 2b gehören. Wir wollen
2b ausschliessen und dementsprechend annehmen, dass

p2 — 4 q > 0, (96)
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wobei p gleich der Spur von D D und q gleich Det (D D). Nach
(93) wird also p |Dn]2 — |D12|2 — jD21|2 + |D22|2 und q =\DXX
D22 — D12 D21|2, in genauer Übereinstimmung mit (87), Avenn dort
kx kx* + 1, A'2= A;*2 —1 gesetzt wird. Weiter müssen nach

(93) die beiden Eigenwerte von L L positiv sein. Da ihr Produkt
gleich q, also positiv, haben beide gleiches Vorzeichen, und es

genügt zu A^erlangen, dass

p > 0. (97)

Wenn umgekehrt (96) und (97) erfüllt sind und die
Determinante A7on D nicht verschwindet, gibt es eine Matrix 1* derart,
dass D D V K V wobei K l 2

1. Daher kann K — L L
gesetzt werden, mit L l'e Al/) (die Phasen <p und y> beliebig).

Es ist also DD= V L L V oder, nach (91) und (92), (L ' V~l D)
(D F-1 L-1) - 1. Folglich ist U L-1 F-1 D pseudo-unitär ((94)).
und es wird

/; V L U (98)

Es sei erwähnt, dass auch im Fall Det 73 0 die Darstellung (98)
gültig bleibt.

Auf diejenigen Normalformen, auf die eine Matrix durch
geeignete U und F transformiert werden kann, wenn (96) und
(97) nicht erfüllt sind, gehen wir nicht mehr ein.

Für die Anregung zu dieser Arbeit und für A'iele wertA-ollc
Himveise spreche ich Herrn Prof. Pauli meinen besten Dank aus.

Zürich, Physikalisches Institut der E. T. IL
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