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Uber den Zusammenhang zwischen Semivektoren und Spinoren
und die Reduktion der Diracgleichungen fiir Semivektoren
von V, Bargmann in Zirich.

(4. XI. 33.)

Zusammenfassung. Im ersten Teil dieser Arbeit wird der Zussmmenhang
zwischen den Semivektoren und den zweikomponentigen Spinoren allgemein
untersucht. Die gewonnenen Beziehungen werden dann im zweiten Teil dazu ver-
wandt, die Diracgleichungen fiir Semivektoren in Spinorform umzuschreiben und
auf eine Normalform zu transformieren.

Die Grundlagen der von A. EINsTEIN und W. MavER entwickelten Theorie
der Semivektoren setzen wir als bekannt voraus?).

I. Mathematischer Teil.

§ 1. Die gegeniiber speziellen Drehungen 1. und 2. Art invarianten
Teilriume des R,.

Es 1st bequem, statt der Lorentztransformationen (d. h. der
Koordinatentransformationen bei Anderungen des Bezugssystems)
die zugehorigen Drehungen 1im R, zu untersuchen, also die linearen
Vektorabbildungen, bei denen die Vektorbetrige ungeidndert
bleiben?). Dies hat noch den Vorteil, dass man nicht drei ver-
schiedene Réume zu betrachten hat: den Raum der gewohnlichen
Vektoren, die Raume der Semivektoren 1. und 2. Art, sondern
mit elnem einzigen Raum auskommt, in welchem dann den Trans-
formationen der Semivektoren 1. und 2. Art die ,,speziellen Dre-
hungen' 1. bzw. 2. Art entsprechen.

Der metrische Fundamentaltensor sei gegeben durch

Ju=G9e=9s=—1, guu="+1; gu=0 (+k). 1

Um lastige Minuszeichen in den Formeln der Spinoranalyse
zu vermelden, wihlen wir die Vorzeichen der g;; anders als iblich.

1) A. EINsTEIN und W. MaYER: 1. Sitz.-Ber. d. Preuss. Akad. 1932, p. 522
II. Proc. Kon. Ak. v. Wet. Amsterdam 36 (1933), p. 497. IIIL ibid. p. 615. Im
folgenden zitiert als I, II, III.

) Vgl. I, p. 523.
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Die Tatsache, dass es spezielle Semivektoren mit nur zwei
unabhéngigen Komponenten gibt!), bedeutet, dass gewisse zwei-
dimensionale Teilrdume des R, bei speziellen Drehungen in sich
tibergehen. Daher soll zunichst die Zerlegung des R, in solche
invarianten Teilriume untersucht werden.

Bevor wir daran gehen, erinnern wir an folgendes: Im n-dimen-
sionalen Vektorraum R, selen zwei Unterridume Z}J und M von
k" bzw. k" Dimensionen gegeben derart dass sich jeder Vektor
aus R, in eindeutiger Weise In emnen Vektor aus M und in einen
aus M zerlegen ldsst. Aus der Em(leutlgkeltsfm(lelung folgt
K+ k' =mn. M sel von den Vektoren el e‘ g ek‘ und U von

den Vektoren el .ens ﬂek’” aufgespannt. Jedel Vektor 2 kann in

der Form
kll

ZC“‘P + %%

l
n=1 Iu v=1 v

=z! 4+ 2! (2)
1

8+

geschrieben werden. Die Teilvektoren, in die 2! zerlegt wird,
sind also

K ;
’f :k?m H%ICIIIE”‘ 3
kl’ ( )
Al LX AP
Fiir die durch (3) definierten linearen Operatoren gilt
¥ = Na (4)
und
y
) §lm = alm — ‘?tm . (5)
Aus (4) und (5) folgt weiter
G ¥m=Fn (6)
e Bm= 5" §u=0. (7)

Demnach kann M (2 = 1,2) charakterisiert werden als die
Lmealmanmgfaltlgkelt aller Vektoren y'= S',z™ (z™ beliebig)
oder — was wegen (4) und (6) auf dasselbe lunaublauft — aller
Vektoren y?, fiir die y! = St Y™

Umgekehrt gibt es zu Jedem Operator 87%,, der (4) erfiillt,
zwel Linearmannigfaltigkeiten M und M von K’ bzw. k" Dimen-
sionen, dadurch charakterisiert, dass ’}/I alle Vektoren y! enthilt,

1) Vel. I, § 9.
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fir die y'= Sty y™, oder alle Vektoren von der Form y* = S, 2™
(2™ beliebig). {Tierbei ist St durch die Gleichung (5) zu defunelen

so dass auch (6) und (7 ) erfillt sind. Jedes 2' aus R, kann 1n
einen Bestandteil aus M und emen aus M zellegt werden

(28 = Sl 2™ + Sty 2™), und zwar in mndultlgel Weise; denn

wegen (5) gibt es keinen von Null verschiedenen Vektor 2!, der
sowohl in M als in M liegt. Folglich ist
E+E'=n. (8)

Sind nun M und M gegeniiber speziellen D1ehungen 1. Art
invariante Teilriiume des Ry, so geht jeder Vektor y* aus M be
einer solchen Drehung in emmen Vektor y't = b, y™ ube der
ebenfalls in M liegt und daher der Gleichung y" = St,, y'™ genligt.
Ist etwa y' = S%, 2™, so wird

ﬁglnzyflrl S*l br q M — Jfl_ bi St m
Es 1st also

und
§lf brt §tm — blt, §t
Wegen (5) folgt hieraus
blt ‘?tm = §It bfn y (9)

S, 1st mit allen ', vertauschbar, also ein numerisch in-
varianter Semi-Tensor 1. Art?), und hat daher die Form

Sp= % g+, (10)
wobel v;; noch den Bedingungen
Ui+ 0 =0; Yu=—3%Vg Tima?
gentiigt?). Allgemein gilt?)
Vim V™ =B g (B =% Vma0"™)-

Daher wird
Sim §"’a= (@ +B) gry+22 vy,

Da nun nach (4) Sy, S™ = Sy, ergibt sich durch Vergleich

H Vel I, §5
) Es ist 4/g = + 1 gesetzt. 7;;,,, ist in allen Indices antisymmetrisch,
und es ist 2,,,, = 1.

8) I, Gleichung (24); IT, p. 498, Gleichung (3).



60 V. Bargmann.

mit (10), wenn man den trivialen Fall v,, = 0 beiseite lisst,
a=4% und g =% Wir finden also

Su=tgt v v v=1. (11)
Nach (5) folgt fir §,, aus (11) die Beziehung

Sa=Snu (12)

Die Gleichung (8) besaﬂt mm Fall des R : k" + £ = 4. Da

die Dimensionszahl k glelch dem Rang der Lugehougen Matrix

S,n 18t und nach (12) Smn und §,,, den gleichen Rang haben,
folgt k' = k' = 2. '

Aus (7) und (12) ergibt sich

Smr®"=0; Buef™=0. (13)

smk

Folglich verschwindet das innere Produkt zweiler Vektoren aus
M (bzw. M), insbesondere der Betrag eines jeden Vektors aus
M oder M. Sei nimlich y, = Sy, 9* und ¢* = §¥, ¢m, so wird

%‘Pk—‘?u&m g™ =0, (14)

Die Zerlegung eines Vektors durch 119“ und §M entspricht
genau der Zerlegung eines Semivektors in einen «- und einen
B-Semivektor bei EinsTrIN und Maver (vgl. I, § 9); und zwar
ist in der dortigen Bezeichnungsweise Sy, 9! = } (yx— 1 yy) und
Syt =1 (v + 1 98).

In analoger Weise zerlegt man R, in die gegeniiber speziellen
Drehungen 2. Art invarianten Telhaume N (2 =1,2) durch T\,

numerisch invariante Tensoren 2. Art, dle ebenfalls den Gle1-
chungen (4) bis (7) geniigen. Es wird

Tii=% gri+ wee, (15)

wobel %, = + %—\/g et mn W™ und u;, u'* = 1, ferner ist

T,,= T (16)

Daraus folgt wie oben, dass das innere Produkt zweler Vektoren
aus i}T verschwindet.

- Da die invarianten Tensoren 1. und 2. Art stets mit einander
vertauschbar sind, gilt fir alle 4 und p

Spm T =T, S am

whkmy l°
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Wire einer von diesen vier Ausdriicken gleich Null, so liesse sich
durch geeignete Numerierung der § und T erreichen, dass z. B.

Bttt =0, (18)

1hkm 1

Nach (12), (16), (17) und (5) wiirde hieraus folgen
0= 9 Tm[: (gkm—S~ )' (6m1_ ;le)’

skm 39 ikm

also wegen (18)
T S, =3

T Sa— Ba™ Y

Da aber _'11'“ und §;; Tensoren verschiedener Art und auch nicht
Vielfache von g, sind, ist stets T+ §k,, so dass der Fall (18)
nie vorkommt.

Wegen der Giltigkeit der Beziehungen (7) und (17) 1st

7
Sk S T SETT, wenn A=2" und p=p/,
TP 0 sonst

Demnach definieren die Ausdriicke (17) vier Teilrdume des Ry,
charakterisiert durch
yl - ‘)sflr Z"'rqn zm (zm beliebig) bZW. yl iy ‘Sl‘r g‘!T"n y‘"l.

Jeder Vektor z! 1st eindeutig in vier Bestandteile aus diesen Teil-
riumen zerlegbar:

\‘ Sl Tr m.

AT m 2

} "

denn es 1st Sim + Slm ?,m -+ sz = ¢, m- Da keiner der Ten-

soren S T, Vemhwmdet ist jeder der definierten Teilriume ein-
dzmenswnal, 1e(1u/,191't sich also auf die Vielfachen eines Vektors.

§ 2. Beziechungen zur Spinoranalyse. Aufstellung der
Grundgleichungen fiir o', .

Wir setzen nun im folgenden voraus, dass die Tensoren ;T“"
und ‘}S’lm durch die Beziehungen

'r[lm - 5!::1 (19)
verkniipft sind. Diese Festsetzung lidsst sich fiir jede Wahl von
Szm treffen, die mit (11) und (12) vertriighch 1st; denn die kon-
Jumert komplexen Grossen erfiillen dann (15) und (16).
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Wegen (17) und (19) sind die Ausdriicke 8¢ 7", und §% 77,
zu einander konjugiert komplex. Infolgedessen kann man die
Vektoren e!, die durch die vier erwahnten Teilrdume bestimmt

/,u

werden und den Gleichungen

! Al o
ST o £, wenn A=1 und pu=pu 20)
TR 0 sonst
geniigen, so wihlen, dass
)e,um,ue}. : (21)

Durch (20) und (21) 1st jeder Vektor e‘ nur bis auf einen reellen
Faktor bestimmt, welche Faktoren w1r noch 1 geeigneter Weise
wihlen werden.

Da el sowohl m M als auch 1n N liegt, folgt aus unseren

fritheren Ubellegungen (Glelchung (14)) dass alle Vektoren eI den

Betrag Null haben und dass es keine anderen von Null verschledenen
inneren Produkte geben kann als ¢' ¢; = o und ¢’ ¢, =f (« und
B reell).

Jeder Vektor 2! kann, analog (2), als Linearaggregat der
e' dargestellt werden, etwa

n
d=Crr e (22)
(Uber gleiche Indices ist zu summieren!)
Nun wird
gy P ] "‘”e: fi’ (23)
folglich
2z =2 (a L1122 4 B L1202 (24)

denn alle iibrigen inneren Produkte verschwinden. o und g sind
beide von Null verschieden, weil auf beiden Seiten von (24) eine
nichtsinguldre quadratische Form stehen muss. Durch Multi-
plikation der Vektoren e’ mit geeigneten reellen Faktoren ldsst

sich erreichen, dass o - ﬂ = 0 und a? = 2 =1 wird. Fir reelle
2! wird nach (21) und (22) auch (#*= {*#. Setzt man

(12=ultrud (=gl —gu? (M=yt4u (2=ut—ud (85)

so sind die reellen Grossen #* mit den 2! durch eine reelle Trans-
formation verbunden. Aus (24) und (25) folgt

— ()2 (B2 — ()2 + (42 = 2 (— (W)? — ()2 — (u3)? + (ud)?);
daher 1st o« > 0, also « = 4 1, und wir erhalten
2lz, =9 (L1 ¢22— (12 2y, (26)
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Es zeigt sich nun, dass man zur Spinoranalyse gelangt,
indem man

T A | ~
i.e,u—o-i# (21)

setzt, wenn unter o%; , die I'undamentalgrissen der Spinoranalyse
verstanden werden. (Der Punkt iiber dem ersten Index deutet
auf die Verschiedenheit der Transformationseigenschaften von
A und p hin. Vgl (51), (53), (55)).

Bevor wir dies nachweisen, schicken wir einiges tber das
Herauf- und Ilerunterziehen der griechischen Indices voraus.
Wir verwenden dazu, wie iblich, die folgenden Grissen:

6;.”:.8}.’-1 - SAH:EA“;; 6'113622‘:0, 812:_ﬁ821=1, (28)

und zwar ist

n=en,; nu=nte,, (29a)
so dass stets
ntiy=—n, (29D)

Fir jeden Tensor «;, findet man nach (28) und (29)
oy, 0" =—a, %l =ad (30)

mit « = Det («,,) = Det (7).
Insbesondere 1st also

ip

Det (aer):%_—cx,_ya :—%—oc,f‘a}‘ . (30a)

(Die Gleichungen (29a) bis (30a) gelten in gleicher Weise fiir
,,punktierte’” Indices.)
Nach (26) ist
_C C},u__ggl rﬂ;-;p;-or

Der Vergleich mit (23) ergibt daher wegen (27)

0liu 0= €5i€rp
oder
l 0T ___ 1] T
5% = 6»5. 6# ¢ (31)

Aus (31) folgt
l; B Gm; [ Z— 6l (32)
Neben emner Gleichung 4! B, = 4,* gilt namlich stets auch

Al B,r= ¢, . Nuristin (31) und (32) r durch das Indexpaar
(An) zu ersetzen.
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Setzt man, mit beliebigen w;, #;, = w; ¢};,, so 1st nach (32)
Ny, M= wy ol w ™ gt = w,w
oder in Matrizenform
Det (w; 0%) = § w, w'. (33)

Diese Gleichung bildet meist die Grundlage der Spinoranalyse?).
Da nach (21) und (27)

Gl;z i Gl;,p ) (34)
folgt aus (33) und (1), dass o%;, eine definite Hermitesche Form
bestimmt. Wir kénnen deshalb noch festsetzen, dass diese Form

positiv defimit 1st, was auf die dquivalenten Bedingungen
064,20 bzw. ¢%,>0 (35)

fihrt. ((35) kann notigenfalls durch Multiplikation aller o,
mit (—1) erreicht werden, wodurch keine der bisher abgeleiteten
Beziehungen gedndert wird.)
Mit Hilfe von (32) ergeben sich noch die Gleichungen?)
O'i‘ O.méy_]_o.m l@ glma T
o | (36)

l mpQ m lipo__ dm _;2’
030" 0+ 0", 0 =g ",

§ 3. Die Drehungen im R, und die zugeordneten Transformationen
der (iw.

Aus der Beziehung
I_ ,
2l= (i G; n (37)

(vgl. (22)) folgt durch Anwendung von (32)

Fhu . 4l o4 ‘

Pt gl gim, (37a)

Wird der Vektor z' einer Drehung 1. Art unterworfen, die

thn in 2't = b, zm tberfihrt, so transformieren sich die durch

(87) und (37a) zugeordneten Grossen ;, gemiss der Beziehung
=1

4 i "o — CQT nr’ (38)

wenn b', o™ =o'l ge%etzt wird. Da nun bel jodm solchen

Drehung der Bildvektor eines Vektors aus M wieder in M liegt,

1) hlne ausfiihrliche Darstellung findet sich bei L. INFELD und B. L. vax
DER WAERDEN, Sitz.-Ber. d. Preuss. Akad. 1933, p. 380.
%) INFELD-V. D. WAERDEN, loc. cit. p. 386.
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. "
15t ¢ i

ein Linearaggregat von ¢!y, und o';,, das wir etwa schreiben
kénnen '

o', =gl p?* (Uber A nicht summieren!)
Al iy It

Daraus folgt

:"/".F'$ ﬂ(;‘-) ‘”r ,_‘} e (383)

Eine genauere Uberlegung zeigt, dass dariiber hinaus gMV*, =
g, = B, so dass

bl o_m: i 0.1 ’3:"‘ (39)

m L )- ¥

und
:’)-.I' —- ﬂl‘ _‘/ v (d()a)
»r L2

Dies ergibt sich folgendermassen: Die Definition der speziellen
Abbildungen 1. und 2. Art durch die Gleichungen

b;_-l - b N ,(}1;1 - W Uy = - ':E)' ]/g Nitmn q{mn l

(40)

. — . ! . . b — 1 N
Cro1=C Gy T Uy, V1= — 3 ]/g Nict mn 0" [

bleibt bei beliebigen linearen Transformationen bestehen, wobel
nur der Tensor g, sich gemiss der Transformation #ndert. (Eine
solche Abbildung fithrt den Betrag eines Vektors, z'z,, tber In
D . zlzy, mt @ = 1b,, b* bzw. } e ¥, sie 1st also nur dann
eine Drehung, wenn @ = 11'). Doch bleiben, wie man sich leicht
iiberlegt, alle bisherigen Uberlegungen auch fiir diese umfassendere
Gruppe von Abbildungen richtig.) Setzt man (£11, £12, (21, (22) =
(&Y, C2 23, (%), so i1st nach (26) die metrische Fundamentalform
gegeben durch 2 (¢! {4— 2 £3).2) Fihrt man die entsprechenden

1) Vgl. 11, p. 498, Gleichung (3).

2) Betrachtet man die tals projektive Koordinationim dreidimensionalen Raum
(wie z. B. H. WEYL in der 1. Auflage seines Buchs ,,Gruppentheorie und Quanten-
mechanik™ p. 111), so ist (! {4 — 23 = 0 die Gleichung eines Hyperboloids
mit zwei Scharen von geradlinigen Erzeugenden. Einer Drehung entspricht dann
eine projektive Abbildung, bei der das Hyperboloid in sich iibergeht. Insbesondere
entspricht einer Drehung 1. (bzw. 2.) Art eine solche Abbildung, bei der nur die
Geraden der ersten (bzw. zweiten) Schar unter sich transformiert werden, wiahrend
die der anderen Schar fest bleiben. Die allgemeinste Abbildung, die das Hyperboloid
in sich iiberfiihrt und aus der Identitat stetig erzeugt werden kann, lisst sich stets
als Produkt zweier spezieller darstellen. In dieser geometrischen Interpretation
wird die Vertauschbarkeit der Drehungen 1. und 2. Art deutlich. Vgl. hierzu auch
die Arbeit von J. A. ScHOUTEN (Zs. f. Phys. 84, p. 92, 1933), mit der unsere Dar-
stellung manche Berithrungspunkte hat.

5
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g In (40) ein, so bestatigt man (39) und fir Abbildungen 2. Art
ganz analog?!)

("lm Gm;'_ 7 - Ulf,u Iyi;’_ (-l])

AT (41a)

Die Gleichungen (39) und (41) konnen auch von rechts nach links

gelesen werden, d.h. zu jedem B#, gehort ein b*;, zu jedem y~,

ein ¢*,. Fir die zusammengesetzte Abbildung a*, = b*, ¢, er-

gibt sich
al Gm) no = yej Glgr ﬁ"'” (42)

L y‘é cer gr . (42a)

In (42) kommt die Vertauschbarkeit der Abbildungen 1. und
2. Art klar zum Ausdruck.

Mit Hilfe von (31) und (32) ergeben sich aus (39) und (41)
die folgenden Beziehungen zwischen b%; und g#, bzw. ¢*, und p#,:

3 .
ﬁ 9 bl O-Q'u ov ; blm = ﬁ'ul’ Gt(; K Gmg ’ (431! .\’
y#l = ‘1) :l)n Glﬁ i om:'-‘r ; clm = y’ifv UI;}I.’ Gntﬁr' (43])}
Aus (43) ergibt sich wegen (29)
1 Dby, = Det (84) ; ¢ o= Det (7). (44)

Den Drehungen entsprechen also Transformationen der [## von
der Determinante 12), was auch aus (26) unmittelbar hervorgeht.
Weiter erkennt man, dass wegen (34) die Relationen

g ==, wnd 9= g% (45)
einander #quivalent sind.

Sty hat die Symmetrie eines ¢',-Tensors (nach 11)). Da
Sty o™y, = o, und S'm 0™y, =0 (vgl. (20) und (5)), ist das
einzige nicht verschwindende Element des nach (41) und (43b)

zugeordneten y gegeben durch y'; = 1. Folglich findet man fiir
S'» und entsprechend fir §,

S’ == i g 1Y §l =o'y 6,27, (46)

1) Der genaue Sachverhalt ist der: Wegen der Zweideutigkeit der in (40)
auftretenden Wurzel kann aus der Rechnung nur geschlossen werden, dass die
Transformationen der einen Art auf (39), die der anderen Art auf (41) fiihren.
Die genaue Zuordnung vermittelt (38a).

%) Vgl. Anmerkung 1, p.65.



Semivektoren, Spinoren, Diracgleichung. 67

Da der in (43) angegebene Ausdruck be1 jeder Wahl von g#,
auf emen b*,-Tensor fithrt, kann man daraus schliessen, dass
das Gebilde
ok (47)

O‘1 op a n

m den Indices I und m die Symmetrie eines b;,-Tensors,

9 o Oy, & (48)

2

diejenige eimes ¢;,-Tensors hat (vgl. (40)).

Wie hier ohne Bewels angegeben sel, kann allein aus den
Beziehungen (31) bis (34) geschlossen werden, dass der Ausdruck
(47) mbezug aut die Indices [ und m ein b- oder ein ¢-Tensor ist.
Es lisst sich zeigen, dass stets

: 1
| k Lip m nro _ |
41' Nitmn @ io o o T o — = 2L (49)
oder, was wegen (28) und (29) dasselbe besagt,
: k ol m ny | Oq'
Det (¢, &, &% &)=L (49a)

Steht in (49) das Pluszeichen, so haben (47) und (48) die verlangten
Symmetrieeigenschaften. Andernfalls tauschen b;;, und ¢, ihre
Rollen. *

§ 4. Koordinaten- und Spinortransformationen. [ bergang
' k,
‘21 neuen o*y, .

Wihrend bisher nur von Vektorabbildungen die Rede war,
sollen jetzt die Koordinatentransformationen besprochen werden.
Diese sind den Vektorabbildungen eindeutig zugeordnet (vgl. § 1),
und wir kénnen daher die in den vorangehenden Paragraphen
abgeleiteten Beziehungen hier verwenden, nur mit dem Unter-
schied, dass Invarianz gegentiber Vektorabbildungen jetzt Invarianz
gegeniiber den entsprechenden Koordinatentransformationen zu
bedeuten hat und dass Semivektoren 1. und 2. Art von einander
und von den Weltvektoren getrennt zu behandeln sind.

u? sel ein Semivektor 1. Art, »* ein Semivektor 2. Art?).
Nach den Ausfithrungen in § 1 sind dann Gleichungen der Gestalt

i Ql m , I A ) ‘._m>
w'= St wm bzw. of= T v

1) Wir deuten Semivektoren 1. bzw. 2. Art nach EiNsTEIN-MAYER durch
ein- bzw. zweimaliges Uberstreichen ihrer Indices an, lassen aber die Striche fort,
falls dies nicht zu Missverstandnissen fiihrt.
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gegeniiber Koordinatentransformationen invariant, sobald man
Sty und T', als numerisch invariante Semi-Tensoren 1. bazw.
2 Art auffasst. Die Eigenschaft, zu M bzw. I\f zu gehoren oder,

i der Ausdrucksweise von EIl\STEIN und MAYER, ein - oder
B-Semivektor zu sein, ist also vom gewihlten Bezugssystem
unabhéngig.

Dariiber hinaus setzen wir fest, dass auch die o';, sich bei
Koordinatentransformationen nicht #dndern, obwohl sie durch
§‘m nicht eindeutig bestimmt werden. (Nur das Umgekehrte
1st nach (46) der Fall.) Dies besagt, dass in jedem Bezugssystem
die e’ in der gleichen Weise mit den jeweiligen Grundvektoren

(1 0 O 0), (0,1, 0, 0) usw. zusammenhéngen.
Ordnet’ man dem Semivektor w! gemiss (37a) die Grosse
gl =gl gp# (50)
zu, so geht bel einer Lorentztransform w'* = b%* %!, da ¢';, un-
geiindert bleiben, &# nach (39) und (43) iber in
g — = p* giv (51)

Da nur der zweite Index varnert, kann man auch sagen, dass
durch (50) dem Semivektor zwei zweikomponentige Spinoren zuge-
ordnet werden, die beide dem gleichen Transformationsgesetz

A
gentigen. Wir schreiben daher &+ = & oder spiter in Matrizen-

A . .e
form &, um zum Ausdruck zu bringen, dass A nicht variiert.
(Die Aussage, dass u'in M liegt, lisst sich jetzt so aussprechen,

2
dass & = 0.)
Ebenso erleidet die Grosse
nit =l gfb (52)
die dem Semivektor 2. Art o zugeordnet ist, eine Transformation
I’/’j' " — yj’f' )If’ ,u’ (53)
wenn v! in vt = ¢!, v™ tibergeht. Hierbei bleibt der zweite Index

ungeiindert. Wir setzen, anders als fiir &+, n* = 521). Aus
(53) folgt noch

w't=—yy (53a)

o ; pot ,
1) Der Index Z ist heruntergezogen, damit der Ausdruck 7, & gebildet
werden kann.
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Endlich bleibt noch zu untersuchen, wie verschiedene Systeme
o', , miteinander zusammenhéngen. Neben ¢';, geniige also auch

o'; , den Beziehungen (31) bis (35) und erfiille (49) mit dem Plus-
zeichen. Da die vier ¢%;, (I =1, ..., 4) unabhingig sind, kann
o’; ., In der Form

9.1;: o = (llm Um;'_ . (5 4)
geschrieben werden. Da nun, nach (31), alle ineren Produkte
der ¢ mit den entsprechenden inneren Produkten der ¢ iiberein-
stimmen, sind a*, die Koeffizienten einer Lorentztransformation,
die iiberdies wegen (34) reell 1st. Weiter 1st nach (49) ithre Deter-
minante gleich + 1, und die Zeitrichtung bleibt wegen (35) durch
sie ungedndert. Infolgedessen 1st a*, das Produkt zweler Trans-
formationen 1. und 2. Art, a*, = b¥, b™,, so dass nach (42) bis (45)

! g 7 (A
g, = o ' o’lw o', (55)
l]'lit (,),'.-” e é blm ULG " o—mé o] Det (UJ“!') =1.

Ebenso 1st

Aibhices po R oot "
g =wi ot ol.

Da nach (30)

0 _ ¢ fo A4
¥, w,*= 0", (H6)
kann man direkt die Relationen (31) bis (34) fiir ¢',, verifizieren.
Deshalb gehort zu jedem o von der Form (55) nach (46) emn S*, .
o J = 4 [ m
Nach (46) und (54) 1st 8%, = a*,, a,* 8™, oder, da S',

b-Transformation vertauschbar ist,

mit Jeder

(2

Y gk o Qm
‘;18 [ b " hl' ‘151 n*
Nach (37) und (55) 1st

i A no=or
(M= wt o,

~ <

und fiir die den b- und e-Transformationen zugeordneten Spinor-
transformationen ergibt sich nach (43) und (56)

@HI' = (!)le ‘62‘.' “)TI‘ — (a)_ l)'“j. ﬁ}-'r “)Tp
Tf"}.- = - ‘_”;'_’1 "/':}' W', = ((’)_')ﬁ;_ yh o',
Alle Systeme of;,, die (31) bis (35) und (49) erfiillen, kénnen
nach (55) durch eme geeignete Transformation o*, aus einem
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speziellen System abgeleitet werden, als welches wir z. B. das
folgende wiithlen konnen:

Lo Loy 10—
1ip ]/g ] 0 s 2,1 ]/724 (l' U ’

Loty 1 (1 0’ o
oyelo—1) T yalo 1)’

\

das bis auf den Faktor 4/2 mit den Pavrischen Spin-Matrizen
ibereinstimmt. Dieser Wahl entspricht die Definition der «- und
B-Semivektoren bei EINSTEIN-MAYERY).

§ 5. Entwicklung der Theorie der Semavektoren auf Grund
der Spinoranalyse.

In diesem Paragraphen soll der umgekehrte Weg eingeschlagen
werden. Wir wollen kurz zeigen, wie die Theorie der Semivektoren
auf Grund der Spinoranalyse entwickelt werden kann.

Gegeben sind vier Hermitesche Matrizen o*, die (33), also
auch (32) erfiillen. Daraus schliesst man, dass sie auch den Glei-
chungen (31) und (36) geniigen. Der Zusammenhang mit den
reellen Lorentztransformationen ergibt sich folgendermassen: Aus
den vier unabhéngigen Matrizen o* ldsst sich jede zwelreihige
Matrix in eindeutiger Weise linear aufbauen. Bildet man nun,
mit einer beliebigen Matrix f von der Determinante 1,

o'k =ftak B,?) (58)

so 18t o'* = a*, ¢!, wobel a*; reell, weil ¢’* und o* Hermitesche
Matrizen sind. Wir fithren die vier Variablen w, ein und setzen
w'y = a*, w, . Daher ist Det (w, ¢'%) = Det (w'y %) = § w';, w'* .
Andrerseits i1st nach (58), wegen Det g = 1, Det (w; ¢'%) = Det
(w, o%) = }w, w*. Infolgedessen sind a*; die Koeffizienten einer
Lorentztransformation.

H. Casmar machte nun die Bemerkung3), dass man genau
so die Multiplikation von ¢* mit g oder 7 allein behandeln kann

1) 1, p. 545. Die Dafinition in III, p. 616 entstzht hieraus durch die zyklische
Vertauschung 1 —-2, 2 >3, 3 — 1.

2) Bt ist die zu f Hermitesch adjungierte, d. h. transponierte und konju-
giert-komplex genommene Matrix.

3) Dieser Bemerkung, die mir von Herrn Prof. PauLt mitgeteilt wurde,
verdanke ich weit mehr Anregungen, als aus der jetzigen Darstellung hervorgeht.
Aus Griinden der Systematik sind namlich die Uberlegungen in einer anderen
Reihenfolge wiedergegeben, als ich sie urspriinglich angestellt hatte.
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und dabel in einfacher Weise zu den speziellen Lorentztransforma-
tionen 1. und 2. Art gelangt. Setzt man nédmlich

g'*=0Ff, (Detf=1) (59a)
S0 1st

'k = h*, gt (59b)

und wieder folgt, fir w,” = b¥, w;, w,” w'* = w, w*. Daher 1st
b*, eine Lorentztransformation. Ebenso schliesst man fiir

g’ '* =ypa*=ck o, (60)

Ist insbesondere y = g%, so wird ¢*, = h*,, weill wegen der
Hermitizitit der of (o* B)¥ = B7 o* = b*, o'

Bekanntlich kann man jeder reellen Lorentztransformation,
die sich stetig aus der identischen Transformation gewinnen lésst,
gemiss (58), bis aufs Vorzeichen eindeutig, eine Matrix # zuordnen.
Aus (59) und (60) folgt, wegen (y-a*):-f = y- (c*-f), dass
alle b-Transformationen mit allen ¢-Transtormationen vertauschbar
sind.

Um eimnzusehen, dass es sich um die Lorentztransformationen
1. und 2. Art handelt, bedenke man, dass sich die Gleichungen
ok f=0b* ¢' in der Form (438) nach den b*, auflosen lassen, die
daher die richtige Symmetrie haben, wenn noch vorausgesetzt
wird, dass in (49) das Pluszeichen steht. Das gleiche gilt fiir ¢%;!).

Da wir neben der Giiltigkeit von (33) nur noch die Hermitizitat
der ¢* vorausgesetzt haben, sieht man leicht, dass mit ¢* auch

g*=w'o*w (Detw=1)

zum Aufbau der Spinoranalyse dienen kénnen (vgl. (55)). Alles
andere ergibt sich wie in den vorhergehenden Paragraphen und
braucht daher nicht weiter verfolgt zu werden.

§ 6. Aufbaw des Tensors L'y, aus den Grissen d';,.

Der Tensor K7, i1st eindeutig bestimmt durch die folgenden
Forderungen :2)

1. Er hidngt linear von vier Konstanten ab.

2. Er 1st numerisch invariant.

1) Man kann sich auch auf den folgenden Satz stiitzen, den man durch
Betrachtung der infinitesimalen Lorentztransformationen gewinnt: Es gibt nur
eine Zerlegung jeder reellen Lorentztransformation D in ein Produkt zweier kom-
plexer Lorentztransformationen B C namlich in die speziellen Lorentztrans-
formationen 1. und 2. Art — unter der Voraussetzung, dass Sund (' zu Disomorph
sind und in der Umgebung der identischen Transformation eindeutig und stetig
von D abhingen.

)L § 6.
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Es gilt also
a’rﬁ: bsl Ctm Ekl m Efst ((ﬂ )
mit
a‘kl = bkm le ® (61 H)

(61) ist dquivalent mit den Forderungen

r m Jol . r
blbs J"lt*—— J.&'t
bzw.
r 3l I Rl P
b, B, = E, bl (62a)
und
N — ,[ »
gy Elst = H" ;6% (62h)

Denn aus (61) folgt (62), wenn man a*;, = b*, oder a*, = ¢*, setuzt.
Ebenso folgt wegen (61a) aus (62a) und (62b) wieder die Beziehung
(61).

Da in der Spinoranalyse die o!;, die einzigen gemischten
invarianten Grossen dritter Stufe sind, liegt der Versuch nahe,
Eri; aus den o* aufzubauen. Die gesuchte Beziehung muss in-
variant sein gegeniiber Transformationen der Art (55). Daher
wird man nach den punktierten und nach den nicht punktierten
griechischen Indices verjiingen und infolgedessen eine gerade
Zahl von o-Matrizen heranziehen. Fiir die drei Indices von E
brauchen wir deshalb mindestens vier ¢-Matrizen. Dadurch ist
zugleich Platz fiir 4 Konstanten e¢;, um in der Form e, ¢'/" ...
den einen tiberschiissigen Index zu ,,binden‘.

- Unter den verschiedenen Kombinationsmoglichkeiten muss
nun mit Hilfe von (62) eine Auswahl getroffen werden. Nach
(39) und (41) greifen die den b*, zugeordneten Transformationen
B nur den zweiten, dagegen die den ¢*, zugeordneten Transforma-
tionen y nur den ersten Index von ¢ an. Man wird deshalb ver-
muten, dass man ein Gebilde von den geforderten Invarianzeigen-
schaften erhilt, wenn nach den zweiten Indices von ¢" und o,
und nach den ersten von ¢” und o, verjingt wird. Wir setzen
also an:

oo lip ror 3
ST N g L . A (63)

Die Forderungen (62) besagen nun:

r lot . TOT { 3 4 .
by = 0" oy D (64a)

8T

T léT o TL]T ‘l * A1
¢y o, =0 g, 0. (64Dh)

tou

Da der zu b*, komplex-konjugierte Tensor ein ¢*,-Tensor ist, folgt,
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wegen (34), (64b) aus (64a) durch Ubergang zum Konjugiert-
Komplexen. Es bleibt also nur noch (64a) nachzuweisen.
Aus (39) findet man, mit Hilfe von (29),

blm g™ A == U”‘L ' ﬁy.ﬂ ’ (6"-)
ferner
(b_ I)tm Gm)'_,u - Glﬁ_ it (ﬁ_])”u £

Da nun (b=1);” = b7, und nach (30), weil Det g = 1, (=1)*,=—B.",
15t also

by o= 0;.B8,. (66)

Aus (65) und (66) folgt aber (64a).

Der Zusammenhang der e, mit den von EixsteIiN und MavYER
eingefithrten Konstanten «, ergibt sich daraus, dass einerseits
I, ., = ¢g1; @&, und man andrerseits nach (63), unter Benutzung
von (32) und (36), IY,,, = 4 ¢;; ¢, findet. Es 1st daher

g ¢ lip _ror "
Ky=2a,0"" 06" 0, 0., (67)

Wegen (34) folgt hieraus

Ery o (@) = Erys (a)). (68)
Weiter findet man nach (64)
"sl b'm 1*)"““ (“l.‘) = If“rst (” ’!.') (69)1)

mit
a,=ecmb,ta,.

Endlich ergibt sich durch Anwendung von (36) die Beziehung?)

JkT Jghps L fghe [gkps— @ gkhgry g gt

Il. Anwendung aul die Diraegleichungen fiir Semivektoren.
§ 7. Die Diracgleichungen i Spinorform.

A. EixsteiNn und W. Maver haben die Diracgleichungen fiir
Semivektoren durch Variation einer Lagrange-Funktion ab-
veleitet?), die sich auf Grund sehr allgemeiner Forderungen, bis
auf den Faktor 1, in der Gestalt ergibt:

L= By ol p'—w 9+ B G ' =20 1)
20,y —2 Oyt (T)
') Vgl 11, p. 503.
2) Vgl 1, p. 539.
3 I1, p. 501, Gleichung (2). L wird dort H,; genannt.
1) Die Faktoren 2 fehlen irrtiimlicherweise in II.
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Hierbel sind %* und p* zwer Semivektoren 1. und 2. Art, C, ein
numerisch invarianter Semi-Tensor 1. Art. K7 steht fir E”, (a,).
E*r, tir B, (a*;) ; a; und a*; sind reell. Weiter bedeuten

oyps . 01
#’S/a-z"(ﬁ; —ie@, pt; py = Oi' TleQ, Y ‘
i (71)
. o . , 0 7" ] '
o . S ) = kL
fr=gr "VEP s Xlr=—5trew
wobel ¢, das elektromagnetische Vektorpotential darstellt.
Die Diracgleiclmngen lauten dann
st w‘/r_.ctsz" I (72)

J st?/ _Cts'lptl.

Der Stromvektor, dessen Divergenz auf Grund von (72) ver-
schwindet, 1st gegeben durch

JT = Erst TPS wt + }g’rst 25‘ Zr. (73)

Um die Gleichungen (70) bis (73) in Spinorform umzu-
schreiben, ordnen wir mittels der Beziehungen

! = gty , En (T4a)

oyl = —ol, 3, (74b)

entsprechend (50) und (52) dem Vektor »' die beiden zwelkom-

ponentlgen Spinoren ’g‘ und E dem Vektor z' die Spinoren ”
und % zu. Wir setzen ferner nach (43)

o1 st oo rd
Pi=5C"0/" 0y, (75)

und verabreden noch folgende Matrixschreibweise: Neben

2

y) g1 . o2 Y] )

&= | 3 fithren wir &F =(51, 52) ein, so dass z. B.
E2

é" l 3 I l é‘:
510’ g:gl‘G;::'S,
. . . ) i .
wird. Ebenso fiihren wir neben # noch %' emn und die zu
g'*# transponierte Matrix

Tl 7 " — 0-1 ‘H/.. 1)‘ (76)

1) Fir die spezielle Wahl (57) dieser Matrizen wird tm — —gm (i 1,2, 3):
F— 4
=+ 0o
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Infolgedessen ist z. B. #ttly = /fyua”" 7,- (Da der Transforma-
tionscharakter der vorkommenden Grissen aus deren Definition
hervorgeht, lassen wir im folgenden die Punkte iiber den Indices
fort.)

Setzt man (74) bis (76) in L ein, so erhdlt man, wegen (67),
nach mehrmaliger Anwendung von (29), (31), (32) und (34) den
Ausdruck

7 F " 7 I F) ‘ i, !
L= A/'».u(ET b Elyp—E 07 5) + ‘43&;1 (7]T T’ ;//r' — T?T/r T 7,/)
e AL M — f % s
—2i(p, e+ D, E14). (77)
Hierbe1 1st
:’1,—_H=2(I-l Gl,u/‘. l

A*; =2 a* 0%,
D;, =1y, (nach (75)). [

Wegen der Reellitit von a, und «;* sind 4 und 4* Hermitesche
Matrizen, es ist also

(78)

Apr=Aan )

' (79)
fl*,u/‘. 44*/'.,(1 l

Die Diracgleichungen lauten nun

. & i "
A;,07&/,=1D,; 7 I

n . n (80)
A* v nf,=1D;,& J

und der Stromvektor wird

M

2 5 ,
Jr=A;, " &+ A¥;, nTt”'?Iy. (81)

§ 8. Reduktion der Diracgleichungen.

Die Reduktion der Dwracgleichungen, die wir nun vornehmen
wollen, stimmt 1m wesentlichen tiberein mit der von EINsTEIN
und Maver angegebenen'). Der einzige Unterschied ist der,
dass wir bereits vor der Reduktion zur Spinorform iibergegangen
sind, wihrend EiNnsTeIN und Maver dies erst nach vollzogener
Reduktion tun?). Dadurch haben wir den Vorteil, die einfachen
Gesetzmassigkeiten der zweireithigen Matrizen ausniitzen zu
konnen.

1) II, § 2 bis 6.
2) 111, p. 617.
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Alles weitere griindet sich nun auf die Tatsache, dass offen-
sichtlich die Funktion L (77) und der Stromvektor J” (81) un-
geindert bleiben und die Diracgleichungen (80) sich kovariant
transformieren bei Ersetzung von &, 1, 4, 4*, D durch die folgen-
dermassen definierten Grossen &, 7, 4, A* und D:

A Iy A ..on )
=11, &; n=Viy. (82a)
-i/’.p = -(—]9/'. 44 ot ["r,u s 5_1 *2 W= Iﬂ/y“)i ‘4*91' -I"YT,u . (82]))
D;, = V4D, Ur,. (82¢)

Diese Transformationen entsprechen genau den von Eixstrix
und MAYER benutzten!):

kE_ sk 1L, &k __ pk AL, Tst — nf o Tkl
pr=c* 9t gF=chi g Ot =c"% ¢t CF )
r

= = [ (8-;)

o m 1 . X __,mn Lg%
Ay = ( I\:m Cm” Q1 A= (km Cm Qg
wenn gesetzt wird:

("kl = O’k,',(, O'l"iy L""',g 3 (fkl = O'k,',g O'I,'d") I’”,}, (84)
wie sich aus (74) und (78) mit Benutzung von (39), (41), (43)
und (45) ergibt. KEs ist natiirlich vorausgesetzt, dass sowohl die
Transformationen U und V als auch die Transformationen ¢ und
¢’ von Null verschiedene Determinanten haben, was nach (84)
und (44) aut dasselbe hinauskommt.

Es handelt sich nun darum, geeignete U und V zu finden,
die den Diracgleichungen eine einfache Form geben. Da die Trans-
formationen U und V voneinander unabhingig sind, kénnen A
und A* zugleich auf Diagonalform gebracht werden, derart, dass
tiberdies die Diagonalelemente k, = 4,, und k*, = 4*,, (nicht
summieren!) die Werte -1 oder 0 haben. Jeder Wahl von A4
und A* entsprechen nach (78) bestimmte Werte von @, und a*; .
Besonders einfach wird diese Zuordnung, wenn das System o,
m der Form (57) gewéhlt ist.

Nach den bekannten Sitzen iiber die Hauptachsentrans-
formationen Hermitescher Formen ergeben sich wegen (78) und
(33) die folgenden Fiille:

1. Det (4;,) > 0 (a® zeitartig) fithrt auf k; = ky, = £1, nach
1
—= (0, 0, 0, +1).

(57) also: (', 4% a® d*%) =

=5

1) 11, p. 502—503.
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2. Det (4,,) <0 (a' raumartig) fihrt aut k) = —k, = 1,
5 1
nach (07): \/7*2 (U, O, 1, U) .

3. Det (4,,) = 0 (a; a' = 0) tihrt auf k) = 41, k, = 0, nach

- 1
(;)l): - E—\_/E (0, 0, 1, 1).

Wir lassen den Fall 3. beiseite, da er nicht zu physikalisch
brauchbaren Losungen zu fiithren scheint, und setzen im folgenden
stets

]\';_ == k], l"*/‘. = 41 (}. - 1,2) (85)
voraus.

Ruhende Teilchen werden 1m Fall eines verschwindenden
elektromagnetischen Feldes beschrieben durch die Funktionen

A 2 3 2
5 — e—il'z‘.m’. N = e—i:‘r‘.ﬁ’

;o 3 / " ;o .
wobel die Spinoren o« und g von den x! nicht abhéngen. Setzt

man noch » =4/2 o und Vﬁ*r“ﬁ — y, so folgt aus (80),
unter Beriicksichtigung von ¢% ¢ = % (nach (76) und (36)),

wA;, o+ T)ﬂi- 71; =0 l (86)

H

wA*, v+ D,, o =0 l
Durch Nullsetzen der Determinante des Systems (86)

| ok, 0 Dy Dy,
0 why D12 Dy,
Dy, Dy, wk* 0
D,, Doy 0 wlk*,

ergibt sich wegen (85) fiir den Eigenwert o die Gleichung
wt—pw?+qg=10
mit den reellen Koeffizienten
p = k* ko | Dy |+ k*) Ky [Dya|? + k*3 ky [Dyg|* + K*3 kg [D|* (87a)
q = K* ky k*y ky |Dyy Doy — Dyp Dy, (87b)
also 1st

w?z—g—i%l/pa—flq- (85)

Je nach den Werten von k und k* findet man:
I. a* und a*! raumartig, also k; =k*, = +1, ky=Fk*,= —1.
Da in diesem Fall ¢ = 0, ist @ nur dann reell, wenn p2—4q =0
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und p = 0. Die beiden Teilchenmassen sind voneinander ver-
schieden, wenn p%—4q % 0.

II. a®und a*? zeitartig, also k; = ky; k*, = k*,. Esist ¢ = 0,
aber nach der Hadamardschen Determinantenabschitzung stets
p2-—4q = 0. Fir die Reellitit von o ist also notwendig und
hinreichend, dass p > 0, d. h. I, = k*,.

ITI. af raumartig, a*? zeitartig: ky =—ky,=1; k¥ =k*,. Es
1st ¢ < 0, also stets p2—4 ¢ = 0, und zwar haben die zwei Losungen
®;®> und w,? verschiedenes Vorzeichen, so dass nur die eine der
beiden auf reelle o fiihrt.

In allen diesen Ifiillen kann man noch eine weitere Reduktion
vornehmen, wobeir nur Transformationen U und V' zugelassen
werden, die 4 und 4* ungedndert lassen. Dabel bleibt die Glei-
chung fiir o bestehen, also sind auch p und ¢ invariant.

Besonders einfach 1st II. IHier handelt es sich um unitire
Transformationen, und es ist bekannt, dass jede Matrix D durch
geeignet gewdhlte U und V' auf Diagonalform gebracht werden
kann, derart, dass D,; = m,; und Dy, = m, reell und positiv sind.
Man erkennt, dass dann die Gleichungen (80) in zwel getrennte
vierkomponentige Systeme vom Diracschen Typus zerfallen, die
sich von einander nur durch die Werte der Massen unterscheiden.

Ebenso zerfillt J” in zwel Teilstrome jf und j”, von denen jeder
fir sich einer Kontinuititsgleichung gentigt. In dem Falle p > 0,

dem einzigen, der auf reelle Werte von o fiihrt, haben J4und J 3

also auch die zugehorigen elektrischen Ladungsdichten e und g
gleiches Vorzeichen.

I. soll nur fiir den Fall reeller, von emander und von Null
verschiedener Werte der Massen behandelt werden, also fiir
q>0,p >0, p>—4q > 0. Wie im nachsten Paragraphen gezeigt
wird, gibt es dann ,,pseudo-unitiare”, d. h. 4 und A4* festlassende,
Transformationen U und V, die D auf Diagonalform bringen,
wobei iiberdies D,;; = m; und Dy, = — m, (mit reellen und posi-
tiven m,) gemacht werden kann'). Die Gleichungen (80) zertallen
dabe1 in die beiden Systeme vom Diracschen Typus:

o Ef, = 1 my i ]
1 _ , ¢ und \ . 5
Ty,=1m§ TN, =1imgé [

1 .
0" &, = imy

1) Ist ¢ > 0, p > 0, aber p2—4 ¢ = 0, also nur ein einziger Wert fiir die
Masse vorhanden, so lassen sich die Diracgleichungen nur dann zerfillen, wenn,
in der Bezeichnungsweise von §9, D D ein Multiplum der Einheitsmatrix. Andern-
falls hat das achtkomponentige Gleichungssystem (86) auch nur vier unabhéngige
Eigenlésungen.
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1 2
Der Stromvektor ist nach (81) J = J~ -+ .J” mit

T g’

e

v

o . 14 .1 2 2 ,
Jr= e &ty Jr—= — + #tzry),

o

wobel noch }‘ o=t =i,

Daraus folgt insbesondere (nach (35)) Ji > 0, J1<0,
so dass auch die zugehorigen Ladungsdichten verschiedenes 1 or-
zetchen haben.

Die iibrigen Fialle, von denen keiner aut zwei verschiedene
reelle Massen fiihrt, sollen unerortert bleiben.

§ 9. Mathematische Hilfsbetrachtungen?).

Ber den folgenden Betrachtungen, die den entsprechenden
Uberlegungen iiber Ilermitesche Formen und unitire Trans-
formationen genau nachgebildet sind, bedienen wir uns des Matrizen-
kalkiils.

Unter dem Vektor x verstehen wir das System (r;, x,). Wir
gehen aus von dem Ausdruck

(T, y) = a1 Yp— T3 Y,. (88)
Es ist stets
(x, y) = (y, ) (88a)
und
(wx, y)=al(r, y): (2 By) = B(z,y) (88b)

fiir beliebige komplexe Zahlen « und g.
Ist 4 eimn linearer Operator, so gibt es stets emmen und nur
emnen Operator B, der der Relation

(d 2, y) = (z, By (89a)
oder, was wegen (88a) damit dquivalent ist,
(z, 4 y) = (Bux, y) (89b)

fiir alle Vektoren x und y gentigt. Wir nennen B den zu A4 ad-
jungierten Operator und bezeichnen ithn mit

B=A (90)

1) Die Entwicklungen dieses Paragraphen sind etwas ausfiihrlicher, als
fiir den unmittelbaren Zweck — die Reduktion der Diracgleichungen — notwen-
dig wire.
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Nach (89) ist der adjungierte Operator des adjungierten
wieder der urspriingliche, so dass aus (90) folgt: ‘
B=A. (90a)

Wir benétigen fiir das folgende noch die sich aus der Definition
ergebenden Beziehungen

/\ A A
AB=BA (91)
P A
i o O 92)
Ist A= (au am), so wird 4 = ('05114— fm) g Ly
%ay Loy T Ky Log

Wenn 4 = 4 ist, sprechen wir von einem selbstadjungierten
Operator. Insbesondere ist nach (90a) und (91) jeder Operator
von der Gestalt 4 4 oder 4 A selbstadjungiert.

Einen Operator U, fiir den stets (Uz, Ux) = (U Uz z)=
(x, x), also auch

UV =0 (94)

gilt, nennen wir ,,pseudo-unitiar’’. Er ist von der Gestalt

U= e":"’(gé) ;

z sel ein von Null verschiedener Vektor. Ist (z, y) = 0, so
folgt 4= 0 Ty, Yy = 0 T, also |yy|*—[ys|> = |®|? (|25|*—|z,[?).

Piir {x, x) = 0 hat {2; g)=10 puridie  Lbsung 9y — g+ .
Fir (x, «) + 0 ist y durch (z, y) = 0 bis auf emen Faktor eindeutig
bestimmt, sein Betrag (y, y) ist von Null verschieden und hat
das umgekehrte Vorzeichen wie (z, ).

Wir fragen nun nach den Eigenwerten und Eigenvektoren

eines selbstadjungierten Operators 4 = A. Es sei

e =l

ot — Bl =1

Da nach (88a) und (89) (4 z, ) = (z, 4 z) reell, muss also 4 (x, )
reell sein.

1. Fall: (z, 2) £ 0. Folglich ist 1 reell. Es gibt, bis auf einen
Faktor, nur einen Vektor y, fir den (z, y) = 0. Fiir diesen ist
(Ay =)= 1(y, Azl =24y, z)=1. Polgheh 18t 4 4y — u-y. 1
(y, y) + 0, ist u ebenfalls reell. Bei geeigneter Normierung (und et-
waiger Vertauschung der Reihenfolge) ist (z, ) = 4 1; (y, y) =—1;
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(z, y) = 0. Daher kann man durch einen geeigneten pseudo-
unitiren Operator U auf dieses System =z, y transformieren, in
dem A die Diagonalform hat. Es ist also

A=TUAU. A:—CU) 95)
0w

2. Fall: (x, z) = 0.

a) Ist noch ein zweiter Eigenwert g+ 2 vorhanden, so gehort
zu 1hm emn Eigenvektor y, der von x linear unabhingig 1st —
daraus folgt (x, y) + 0 —und fiir den gleichfalls (y. y) = 0, weil
sonst auch (x, x) + 0 wiire. Nun ist (4 x, y) = 4 (x, y) = (x, Ay) =
w (x, y). Da (x, y) + 0, wird also yu = 2.

h) Es sel nur der eine Eigenwert 2 vorhanden, der notwendig
reell ist, da er emer reellen quadratischen Gleichung geniigt. Gibt
es zu diesem Kigenwert zwei unabhiingige KEigenvektoren, so
st A =4.1,

¢) Ist 4 +4-1, so ailt fiir den einzigen vorhandenen Eigen-
vektor (x, x) = 0; denn sonst miisste es, auf Grund der obigen
Konstruktion, noch emmen zweiten geben.

gy
11 %12
Aus A _,_( ) (e;; und @y reell)

S

folgt die Eigenwertgleichung 22— a2 + b -~ 0 mut den reellen
Koeffizienten a = o; + o9 . b = Det 4. Folghch 1st

. « 1 .

/.agm_t21/a 45,

Im 1. Fall st daher a*—4b > 0, im Fall 2a: «* -4b < 0,
im Fall 2b: a®—-4b = 0, o, = 0, 1m Fall 2¢: a®>—4b = 0, oy, + (L
Eine Hauptachsentransformation durch pseudo-unitire Operatoren
1st nur i den Fillen 1 und 2b moglich.

Wird eine (nicht notwendig sclbstadjungierte) Matrix D durch
zwel pseudo-unitire Transformationen U und 17 auf die Diagonal-
form L gebracht — D = 1" L U —, so ist nach (91) und (94)
DD=VLLT.

Da mit L auch L L diagonal ist (vel. (93)), muss die selbst-
adjungierte Matrix D D zum Fall 1 oder 2b gehdren. Wir wollen
2b ausschliessen und dementsprechend annehmen, dass

p:—4q >0, (96)

6
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wobe1l p gleich der Spur von D D und q gleich Det (D D). Nach
(98) wird also p = |Dyy|? — |Dyg|? — |Dg;|? + |Dyy|? und ¢ =|Dy,
Dy, — Dy, Dy, |2, in genauer Ubereinstimmung mit (87), wenn dort
ky="F*= + 1, ky = k*, = —1 gesetzt wird. Weiter miissen nach
(98) die beiden Eigenwerte von L L positiv sein. Da ihr Produkt
gleich ¢, also positiv, haben beide gleiches Vorzeichen, und es
geniigt zu verlangen, dass

p > 0. (97)

Wenn umgekehrt (96) und (97) ertiillt sind und die Deter-
minante von D nicht verschwindet, gibt es eine Matrix 17 derart,
dass DD =V KV, wobei K = ( : 2). Daher kann K = L I

\ 7
Let? 0
: ~\o ,uci*/’)
Es ist also DD = V L L V oder, nach (91) und (92), (I.-' V-1 D)
(DV-1L-1Y) = 1. Folglich ist U = L-' V-1 D pseudo-unitiir ((94)),

und es wird

gesetzt werden, mit L = ( (die Phasen ¢ und w behebig).

D=VLU. (98)

Es sei erwidhnt, dass auch im Fall Det D = 0 die Darstellung (98)
giiltig bleibt. |

Autf diejenigen Normalformen, auf die eine Matrix durch
geeignete U und V' transformiert werden kann, wenn (96) und
(97) nicht erfillt sind, gehen wir nicht mehr ein.

Fir die Anregung zu dieser Arbeit und fiir viele wertvolle
Hinweise spreche ich Herrn Prof. PAuLt meinen besten Dank aus.

Zirich, Physikalisches Institut der E.'T. H.
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