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Die Oberflächenwellen in der Elektronentheorie der Metalle
von A. W. Maue (München).

In der Elektronentheorie der Metalle betrachtet man im
allgemeinen das allseitig unbegrenzte Metall und kann daher nicht
die besonderen Verhältnisse berücksichtigen, die an der
Metalloberfläche vorliegen. Die Untersuchung (1er Schrodinger-Gleichung
eines Elektrons in einem periodischen Potential liefert Eigen-
funktionen mit einer Ladungsdichte, die — abgesehen von
periodischen Schwankungen — im ganzen unendlich ausgedehnten
Kristall konstant ist. Das wird anders, wenn wir auf die endliche
Ausdehnung des Kristalls Rücksicht nehmen. Dann kann nämlich
eine neue Art von Eigenfunktionen auftreten mit einer Dichte,
die nur in der Nähe der Kristalloberfläche wesentlich ist und nach
dem Kristallinnern (sowie nach aussen hin) abfällt. In Ebenen
parallel zur Oberfläche haben diese Eigenfunktionen
Wellencharakter. Wir bezeichnen sie daher als „Oberflächenwellen" (im
Text oft kurz als „O.-W." bezeichnet), die gewöhnlichen
Metalleigenfunktionen nennen wir „Raumwellen".

Als erster hat Tamm1) auf die mögliche Existenz von Ober-
flächcnwellen hingewiesen. Auch Rijanow2) erhält in einer
Untersuchung über die Eigenfunktionen dünner Kristallschichten
Oberflächenwellen.

Wir geben zunächst einige Hinweise auf die Form der neuen
Eigenfunktionen und ihr Eigenwertspektrum. Dabei wollen wir
der Einfachheit halber den Kristall als nur einseitig begrenzt
ansehen. Wir betrachten zuerst don eindimensionalen Kristall,
haben also die Schrodinger- Gleichung zu mit ersuchen für ein
Potential F, das auf einer Seite des Kristallrandes (x 0) das
periodische Kristallpotential (V FMetnll für x < 0), auf der andern
das Potential des Vakuums (F 0 für x > 0) ist. Die
Randbedingungen für die gesuchte Oberflächen-Eigenfunktion x/> (x) sind :

xp (x) —v 0 für x —>- oo und x —» oo

Für x > 0 ist xp eine Lösung der Wellengleichung des freien
Elektrons und zwar, da wir ein ans Metall gebundenes Elektron

1) Ja. Tamm. Phys. Zeitschr. d. Sowjet-U. I, 732, 1932.
2) S. Rijanow, Zeitschr. f. Phys. 89, 806, 1934.
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haben wollen (Energie E < 0), eine Exponentialfunktion. Die
Randbedingung für x —>- oo verlangt, dass wir die exponentiell
fallende Funktion nehmen :

xp c-** für x > 0, n2 -~ I E \. x > 0. (1)
.'i

Für x < 0 ist y eine Lösung der Wellengleichung mit dem
Metallpotential. Wir kennen die Form der Lösungen für den Fall,
dass E einem „erlaubten Energieband" angehört:

ikx ¦ u (x), k reell, u (x) periodisch mit
der Periode des Gitters.

Sie kommen jedoch für uns nicht in Frage, da sie die Randbedingung

für x —> —- oo nicht erfüllen. E gehöre also einem
„verbotenen Bande" an. Die Lösungen der Wellengleichung, die sich
dann ergeben, unterscheiden sich von (2) nur dadurch, class k

komplex ist. Sie haben also die Form gedämpfter Wellen. Für
x —> oo fällt eine der beiden Fundamentallösungen exponentiell
ab, die andere steigt an. Wegen unserer Randbedingung kommt
nur die erste Lösung zum Aufbau der Eigenfunktion in Frage :

ip ¦= pjkx u tx^ t k komplex, J (k) < 0

E gehört einem verbotenen Bande an. '

Wir müssen nun noch für die Stetigkeit von xp und seiner
Ableitung xp' in x 0 sorgen oder einfacher für die Stetigkeit

von — (das ist dasselbe, da in xp noch ein konstanter Faktor frei
verfügbar ist). Das müssen wir durch geeignete Wahl von E zu
erreichen suchen. Die Forderung der Stetigkeit in x — 0 liefert
uns also den Eigenwert E unseres Oberflächenzustandes. Ob es

nun innerhalb eines gegebenen verbotenen Bandes wirklich einen
Oberflächenzustand gibt, hängt von der besonderen Gestalt des

Metallpotentials ab und lässt sich nicht allgemein entscheiden.
Nach dem eben Gesagten sieht das Energiespektrum des

eindimensionalen Kristalls folgendermassen aus: Es wechseln
„erlaubte" und „verbotene" kontinuierliche Bänder ab. Innerhalb

mancher verbotenen Bänder gibt es noch einen diskreten
Term, der einem Oberflächenzustand entspricht.

Im dreidimensionalen Falle liegen die Verhältnisse ähnlich.
Die x, «/-Ebene sei Metalloberflache, die ^-Richtung Oberflächen-
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normale. Wir legen ein kubisches Gitter zugrunde. Eine
Oberflächen-Eigenfunktion hat dann im Metallinnern die Form

y, (r) eiil7) ¦ u (r)

wobei u (r) die Periodizität des Gitters hat und die „Wellenzahl"
k zwei reelle Komponenten kx und ky und eine komplexe k._

besitzt. Das Vorzeichen des Imaginärteils von kz muss so sein,
dass xp nach dem Metallinnern abfällt. Einen Überblick über das

Energiespektrum gewinnen wir am einfachsten, wenn wir einmal
nur solche Zustände betrachten, die zu festem kx, ky gehören.
Ein solches Teilspektrum hat dieselbe Form wie das (weiter vorn
beschriebene) Energiespektrum des eindimensionalen Kristalls.
Bei festem kx, kv kann insbesondere zu einem E nur entweder
eine Raumwelle oder eine Oberflächenwelle gehören. Raumwellen
und Oberflächenwellen, die zu gleichem E gehören, haben
verschiedenes kx, k,,.

Wir fragen nach dem Beitrag der Oberflächenwellen zur
Leitfähigkeit. Die Verhältnisse liegen hier ganz ähnlich wie bei
den Raumwellen (BLOCii'sche Theorie). Der Strom, den die
einzelne O.-W. mit sich führt, fliesst parallel der Oberfläche. Der
Widerstand wird durch Stösse der Elektronen mit dem Gitter
verursacht. Beim Stoss geht ein Oberflächenelektron in einen
anderen Zustand über und zwar entweder in einen anderen
Oberflächenzustand oder in einen Raumzustand. Bei tiefen Temperaturen

(T« 0 DEBYE-Temperatur) spielt, wie wir jetzt zeigen
wollen, nur die erste Art von Übergängen eine Rolle.

Beim Stoss eines Oberflächenelektrons mit dem Gitter gilt
1. der Energiesatz und
2. der Erhaltungssatz für die tangentiale Komponente der Wellenzahl

:

1. E E' Ar h v

kx — kx +¦ Gx

n'y — ftj "T" try •

Die ungestrichenen Grössen (E, k) beziehen sich auf den
Anfangs-, die gestrichenen (E', k') auf den Endzustand des Elektrons.
Es ist speziell ein Emissionsprozess ins Auge gefasst, bei dem ein
Gitterquant hv mit der Wellenzahl q (qx, qy, qz) emittiert
wird. Bei tiefer Temperatur (T«0) werden nun kx, ky' wegen
der Kleinheit von q nicht wesentlich von kx, ky abweichen, und
das oben erwähnte zu festem kx, ky gehörige Teilspektrum der
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1 E-Werte wird für Anfangs- und Endzustand ungefähr dasselbe
:¦ sein. Um das Oberflächenelektron durch Stoss in einen Raum-
/ zustand zu bringen, muss mindestens die Energie aufgewendet

(bzw. frei) werden, die dem Abstand des Ausgangsoberflächen-
; zustandes vom benachbarten erlaubten Band (im betrachteten
' Teilspektrum) entspricht. Gitterquanten mit einer solchen Energie
: sind aber bei T « 0 nicht mehr verfügbar, Übergänge zwischen
' Oberflächen- und Raumzuständen finden also nicht statt.

In dem eben betrachteten Falle stellt sich das Gleichgewicht
der Oberflächenwellen unabhängig von dem der Raumwellen ein
(eine Kopplung besteht nur auf dem Umwege über das Gitter-
gleichgewicht). Die Berechnung der Oberflächenleitfähigkeit
gestaltet sich daher besonders einfach. Sie lässt sich in engem
Anschluss an Bloch durchführen. Die Oberflächenleitfähigkeit
ergibt sich dabei als grössenordnungsmässig gleich der Raumleit-
fäbigkeit einer einatomaren Metallschicht.

Zum Schluss wollen wir noch auf einen Punkt eingehen, der
auf den ersten Blick gegen die Existenz von Oberflächenwellen
zu sprechen scheint. Die Gesamtheit der Zustände eines Metalls
entspricht bekanntlich genau der Gesamtheit der Zustände der
einzelnen Metallatome, wenn wir uns diese isoliert denken. Nun
lassen sich aber schon die Raumzustände allein den Atomzuständen
zuordnen, und zwar entspricht jedes Energieband einem Atom-
niveau. Demnach scheint für Oberflächenwellen kein Platz mehr
zu sein. Bei genauerem Hinsehen zeigt sich jedoch, dass die
Oberflächenwellen keine neu hinzukommenden Eigenfunktionen
sind, sondern dass überall dort, wo eine O.-W. auftritt, die Zahl
der Raumwellen in einem benachbarten Energieband um eins
kleiner ist als nach der Theorie des unbegrenzten Metalls. Die
erwähnte Schwierigkeit ist also behoben. Am Energiespektrum
der Raumwellen ändert sich dabei nichts wesentliches, da die
O.-W. eine geringere Mannigfaltigkeit bilden als die Raumwcllen.
Lassen wir ein Metall von endlicher Ausdehnung durch allmähliches

Zusammenrücken der Atome entstehen, so wird jeder
Oberflächenzustand des fertigen Metalls bei einer gewissen Annäherung
der Atome aus einem erlaubten Bande „heraustreten" und als
diskreter Term in Erscheinung treten.
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