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Die Obérﬂﬁchenwellen in der Elektronentheorie der Metalle
von A. W. Maue (Miinchen).

In der Elektronentheorie der Metalle betrachtet man 1m all-
gemeinen das allseitig unbegrenzte Metall und kann daher nicht
die besonderen Verhéltnisse berticksichtigen, die an der Metall-
oberfldche vorliegen. Die Untersuchung der Scuropinaer- Gleichung
emmes FElektrons in einem periodischen Potential liefert Eigen-

funktionen mit einer Ladungsdichte, die — abgesehen von perio-
dischen Schwankungen — 1m ganzen unendlich ausgedehnten

Kristall konstant 1st. Das wird anders, wenn wir auf die endliche
Ausdehnung des Kristalls Riicksicht nehmen. Dann kann namlich
eine neue Art von Eigenfunktionen auftreten mit emer Dichte,
die nur in der Niahe der Kristalloberflache wesentlich ist und nach
dem Knristallinnern (sowie nach aussen hin) abtillt. In Ebenen
parallel zur Oberfliche haben diese FEigenfunktionen Wellen-
charakter. Wir bezeichnen sie daher als ,,Obertlichenwellen** (im
Text oft kurz als ,,0.-W.** bezeichnet), die gewohnlichen Metall-
eigenfunktionen nennen wir ,,Raumwellen®.

Als erster hat Tamm?) auf die mogliche Existenz von Ober-
flichenwellen hingewiesen. Auch Risanow?) erhilt in einer Unter-
suchung iiber die Eigenfunktionen diinner Kristallschichten Ober-
flichenwellen.

Wir geben zuniichst einige Ilinweise auf die Iform der neuen
Eigenfunktionen und ihr Eigenwertspektrum. Dabei wollen wir
der Einfachheit halber den Kristall als nur einseitig begrenzt an-
sehen. Wir betrachten zuerst den eindimensionalen Kristall,
haben also die ScuropiNeir-Gleichung zu untersuchen fiir ein
Potential 1", das auf emner Seite des Kristallrandes (2 = 0) das perio-
dische Knstallpotential (17 == V. fir £ < 0), auf der andern
das Potential des Vakuums (V"= 0 fir = > 0) ist. Die Rand-
bedingungen fiir die gesuchte Oberfliachen-Eigenfunktion y () sind:

p(x) >0 fiir t—>cound £— — 0.

Fir z > 0 1st v eine Losung der Wellengleichung des [reien
Elektrons und zwar, da wir ein ans Metall gebundenes Elektron

1) Ja. Tamm, Phys. Zeitschr. d. Sowjet-U. I, 732, 1932.
%) S. Rwavow, Zeitschr. f. Phys. 89, 806, 1934.
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haben wollen (Energie E < 0), eine Exponentialfunktion. Die
Randbedingung fir z — oo verlangt, dass wir die exponentiell
fallende IFunktion nehmen:

. 2m
y = e fir x >0, n? = ——
D

B, %«>0. (1)

Fir z < 0 1st » emne Losung der Wellengleichung mit dem
Metallpotential. Wir kennen die Form der Losungen fir den Fall,
dass I einem ,,erlaubten Energieband® angehort:

e’kr .y (x), k reell, w (x) pertodisch nut ()
L
der Periode des Gitters. s

Sie kommen jedoch fiir uns nicht in Frage, da sie die Randbedin-
gung fiir  — — o nicht erfillen. F gehore also einem ,,ver-
botenen Bande' an. Die Losungen der Wellengleichung, die sich
dann ergeben, unterscheiden sich von (2) nur dadurch, dass k
komplex ist. Sie haben also die Form geddmpfter Wellen. Fir
x — — oo fillt eine der beiden Fundamentallosungen exponentiell
ab, die andere steigt an. Wegen unserer Randbedingung kommt
nur die erste Losung zum Aufbau der Eigenfunktion in Frage:

p = e'** -y (x), k komplex, J (k) <O0. (3)
E gehort einem verbotenen Bande an. ‘

Wir miissen nun noch fiir die Stetigkeit von 3 und seiner
Ableitung %" in x = 0 sorgen oder einfacher fiir die Stetigkeit

’

) . . . . .
von %}— (das 1st dasselbe, da in % noch ein konstanter Faktor frei

verflighar 1st). Das miissen wir durch geeignete Wahl von I zu
erreichen suchen. Die Forderung der Stetigkeit in x = 0 liefert
uns also den Eigenwert I£ unseres Oberflichenzustandes. Ob es
nun nnerhalb eines gegebenen verbotenen Bandes wirklich einen
Oberflachenzustand gibt, hingt von der besonderen Gestalt des
Metallpotentials ab und ldsst sich nicht allgemein entscheiden.

Nach dem eben Gesagten sieht das Energiespektrum des
eindimensionalen Kristalls folgendermassen aus: Es wechseln
»erlaubte’ und ,,verbotene’ kontinuierliche Binder ab. Inner-
halb mancher verbotenen Binder gibt es noch einen diskreten
Term, der einem Oberflichenzustand entspricht.

Im dreidimensionalen Falle liegen die Verhiltnisse ahnlich.
Die z, y-Ebene sei Metalloberfliche, die z-Richtung Oberflichen-
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normale. Wir legen ein kubisches Gitter zugrunde. Eine Ober-
flachen-Eigenfunktion hat dann im Metallinnern die Form

p(r) =e®" u@,

wobel u (r) die Periodizitit des Gitters hat und die ,,Wellenzahl**

k zwei reelle Komponenten k, und k, und eine komplexe k.
besitzt. Das Vorzeichen des Imaginirteils von k. muss so sein,
dass v nach dem Metallinnern abfillt. Einen Uberblick iiber das
Energiespektrum gewinnen wir am einfachsten, wenn wir einmal
nur solche Zustinde betrachten, die zu festem k., k, gehoren.
Ein solches Teilspektrum hat dieselbe Form wie das (weiter vorn
beschriebene) Energiespektrum des eindimensionalen Kristalls.
Bei festem k,, k, kann inshesondere zu einem K nur entweder
eine Raumwelle oder eine Oberflichenwelle gehtren. Raumwellen
und Oberflichenwellen, die zu gleichem FE gehoren, haben ver-
schiedenes k., k,.

Wir fragen nach dem Beitrag der Oberflichenwellen zur
Leitfihigkeit. Die Verhiltnisse liegen hier ganz dhnlich wie bel
den Raumwellen (Brocu’sche Theorie). Der Strom, den die ein-
zelne O.-W. mit sich fithrt, fliesst parallel der Oberfliche. Der
Widerstand wird durch Stosse der Elektronen mit dem Gitter
verursacht. Beim Stoss geht ein Oberflichenelektron in einen
anderen Zustand iiber und zwar entweder in einen anderen Ober-
flachenzustand oder in einen Raumzustand. Bei tiefen Tempera-
turen (1« @ = DeByYE-Temperatur) spielt, wie wir jetzt zeigen
wollen, nur die erste Art von Ubergiingen eine Rolle.

Beim Stoss eines Oberflichenelektrons mit dem Gitter gilt
1. der Energiesatz und
2. der Erhaltungssatz fiir die tangentiale Komponente der Wellen-

zahl :
1. E=LE +hy

9] kx =k x, + Gac
“lk,=k,/+ G,.

Die ungestrichenen Grossen (E, k) beziehen sich auf den An-
fangs-, die gestrichenen (E’, k') auf den Endzustand des Elektrons.
Es 1st speziell ein Emissionsprozess ins Auge gefasst, bei dem ein
Gitterquant hvy mit der Wellenzahl ¢ = (q., q,, q.) emittiert
wird. Bel tiefer Temperatur (T« @) werden nun k,’, k,” wegen
der Kleinheit von ¢ nicht wesentlich von k., k, abweichen, und

das oben erwihnte zu festem k., k, gehorige Teilspektrum der
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I E-Werte wird fiir Anfangs- und Endzustand ungefihr dasselbe
ssein. Um das Oberflachenelektron durch Stoss in einen Raum-
s zustand zu bringen, muss mindestens die Energie aufgewendet
( (bzw. frei) werden, die dem Abstand des Ausgangsoberflachen-
» zustandes vom benachbarten erlaubten Band (im betrachteten
" Teilspektrum) entspricht. Gitterquanten mit einer solchen Energie
rsind aber bei T« @ nicht mehr verfigbar, Uberg'&nge zwischen
¢ Oberflichen- und Raumzustéinden finden also nicht statt.

In dem eben betrachteten Falle stellt sich das Gleichgewicht
der Oberflichenwellen unabhingig von dem der Raumwellen ein
(emme Kopplung besteht nur auf dem Umwege iiber das Gitter-
gleichgewicht). Die Berechnung der Oberflichenleitfahigkeit ge-
staltet sich daher besonders einfach. Sie lésst sich in engem An-
schluss an Brocu durchfiihren. Die Oberflachenleitfihigkeit er-
gibt sich daber als grossenordnungsmissig gleich der Raumleit-
fihigkeit einer einatomaren Metallschicht.

Zum Schluss wollen wir noch auf einen Punkt eingehen, der
auf den ersten Blick gegen die Existenz von Oberflachenwellen
zu sprechen scheint. Die Gesamtheit der Zustande eines Metalls
entspricht bekanntlich genau der Gesamtheit der Zusténde der
einzelnen Metallatome, wenn wir uns diese 1soliert denken. Nun
lassen sich aber schon die Raumzustinde allein den Atomzusténden
zuordnen, und zwar entspricht jedes Energieband einem Atom-
niveau. Demnach scheint fiir Oberflichenwellen kein Platz mehr
zu sein. Bei genauerem Hinsehen zeigt sich jedoch, dass die
Oberflachenwellen keine neu hinzukommenden Eigenfunktionen
sind, sondern dass iberall dort, wo eine O.-W. auftritt, die Zahl
der Raumwellen in einem benachbarten Energieband um eins
kleiner ist als nach der Theorie des unbegrenzten Metalls. Die
erwahnte Schwierigkeit 1st also behoben. Am Energiespektrum
der Raumwellen #ndert sich dabei nichts wesentliches, da die
0.-W. eine geringere Mannigfaltigkeit bilden als die Raumwellen.
Lassen wir ein Metall von endlicher Ausdehnung durch allméh-
liches Zusammenriicken der Atome entstehen, so wird jeder Ober-
flichenzustand des fertigen Metalls bei einer gewissen Annéherung
der Atome aus einem erlaubten Bande ,heraustreten* und als
diskreter Term in Erscheinung treten.
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