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Fluctuations de courant dans un conducteur
par Léon Brillouin (Paris).

Sommaire. Pour étudier les fluctuations dans un conducteur parcouru
par un courant permanent, l'auteur s'appuie sur le fait que la répartition des

électrons, dans un tel conducteur, est en fait la répartition la plus probable dans
les conditions imposées. On peut donc développer le calcul des fluctuations comme
pour un système en équilibre. Une difficulté sérieuse consiste dans la nécessité
d'introduire les interactions magnétiques entre électrons, afin de retrouver le
rôle exact dc la self-induction. Le calcul indique que les fluctuations de courant
sont augmentées par le passage d'un courant permanent, ce qui explique de belles
expériences de Bernamont.

I. Répartition la plus probable des électrons, si lo courant est donné.

Un corps isolé, abandonné à lui-même prend
automatiquement la configuration la plus probable, celle qui correspond au
nombre de complexions (répartitions microscopiques des particules
constituantes) le plus élevé; tout ce qu'on peut observer, ce sont
des fluctuations légères autour de cette configuration la plus
probable. Cette remarque essentielle, qui est à la base de la
mécanique statistique, n'a guère été appliquée jusqu'à présent
qu'à des systèmes conservatifs. En fait, la même méthode peut
servir à trouver très rapidement la répartition correspondant à

un état instable, supposé maintenu artificiellement par l'action
constante d'une perturbation extérieure. Je prendrai comme
exemple la répartition des électrons dans un métal conducteur,
et chercherai la répartition la plus probable qui correspond à un
courant total donné. Je retrouverai ainsi une répartition bien
connue, que l'on n'obtient ordinairement qu'après d'assez longs
calculs, et par une analyse minutieuse des divers mécanismes de

dissipation d'énergie (et de quantité de mouvement). Ayant ainsi
constaté que la répartition réalisée est la plus probable, il sera
possible de claculer les fluctuations, sans avoir besoin de faire
intervenir le détail des mécanismes. La même méthode
s'appliquerait au calcul de la répartition correspondant à un flux
calorifique sans courant électrique; on la transposerait aussi bien
aux gaz matériels, pour des problèmes analogues.

Le principe général est le suivant1) : on calcule le nombre
P de complexions élémentaires correspondant à une certaine
répartition arbitraire; ensuite on cherche la répartition la plus
probable, lorsque le nombre total N des électrons est donné ainsi

') Voir, p. ex., L. Brillouin, Statistiques quantiques (Presses Univ. Paris,
930), p. 121, éq. 32, 33; p. 135, éq. 16; p. 138, éq. 22.
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que l'énergie total U et le courant total J résultant. Pour cela

on pose la condition
ô log P — a à N - ß d U - y o J -- - 0 (1)

Dans les problèmes classiques, le ternie en y ôJ n'existait
pas; la seule innovation que je fasse ici consiste à l'introduire.
Les coefficients arbitraires a, ß. y seront précisés ensuite. Je

poursuivrai plus loin ce calcul, et je montrerai qu'il donne une
répartition des électrons, avec courant total J, exactement
semblable à celle qu'on obtient par la résolution de l'équation
intégrale de F. Bloch.

La condition (1) nous précise les valeurs des dérivées partielles
ò log I\ a

dlogP0 1 dlogPo
dN ' dlï P kT' dJ ~y [ '

P0 est le nombre de complexions correspondant à la répartition

la plus probable (1); la température absolue T s'introduit
en vertu des définitions

S k log P et d S - — (3)

Si l'on pose y 0, la condition (1) se réduit au calcul classique,
et fournit la répartition la plus probable, sans courant résultant;
lorsque y n'est pas nul, on obtient une répartition possédant
un courant J qui sera proportionnel à y

J= By (A)

Nous fixerons plus loin la valeur de ce coefficient B.

2. Electrons indépendants, sans couplage magnétique.

La théorie ordinaire des électrons dans les métaux traite
ces électrons comme des particules indépendantes, el applique
des méthodes calquées sur la théorie cinétique des gaz. On néglige
donc les répulsions électrostatiques entre électrons; et la théorie
du champ self-consistent justifie complètement ce point de vue,
tant que l'on n'étudie que la répartition moyenne; dans l'étude
des fluctuations, il me semble que les effets électrostatiques
réapparaîtraient. On omet aussi les interactions magnétiques
entre les électrons, c'est-à-dire tout le mécanisme de la self-induction;

là, encore, l'erreur n'est pas grande, tant que l'on ne compare
que des répartitions à courant total donné, mais dans l'étude
d'états transitoires, et de fluctuations, il sera indispensable de

rétablir la théorie sur une base plus solide.
Dans ce paragraphe, je reprendrai rapidement la théorie

usuelle, pour montrer comment la méthode esquissée au para-
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graphe 1 conduit rapidement à retrouver des résultats connus.
Considérons N électrons, que nous répartissons entre divers groupes
de cellules d'extension1) en phase; soit g{ le nombre de cellules
d'un des groupes; u, sera l'énergie partielle d'électrons placés
dans ces cellules, et y,- le courant partiel. J'aurai par hypothèse

N y\ n,; nombre total d'électrons

U 2 nt w i + C-, énergie totale
i

J ?lnt jj, courant total

(•>)

Une certaine répartition n, correspond, dans la statistique
de Fermi, à un nombre de complexions2):

IJ 2^ \.9i log 9i — ni log n, — (g, — n,) log (g{ — n,)]. (6)
i

Une variation ônt des nombres n, donne

_, g, — nt
ò log P 2j ànt log

i ni
de sorte que la condition (1) du § 1 s'écrit

'Eton;
9i — ni 0. (7)

Ceci devant être obtenu pour des <5n, arbitraires, les parenthèses

doivent être nulles, ce qui nous donne la répartition
7Ì I

1

/« —r, V « + ß u, + y), (8)
g, exp »7 + 1

Appliquons ces formules à des électrons libres; le groupe
de cellules gt sera défini par une valeur ph p{ + dpt de la quantité
de mouvement et un angle solide dû,

gt=--^-dQptdPi (9)

er, l'on admettra les valeurs

Uj p2, énergie cinétique d'un électron
2 m (U))

e i

];,= Pix, courant d'un électron
ml i

1) Le langage des cellules est commode; en mécanique ondulatoire (méthode
ai chain p-sclf-consistent) g, représente le nombre des ondes stationnaires
correspondant à certaines valeurs de la quantité de mouvement; le calcul reste exac-
t-ment le même.

2) Voir L. Brillouin, Statistiques quantiques, Chap. V, p. 135—138.
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Précisons le sens de cette dernière formule: Je suppose un
conducteur de section S, longueur /, parcouru longitudinalement
par le courant. J'ai donc

V Sl, volume
e e

Ix -rr V, nì vix — T- V n» Pi x, densité de courant
V

Six

mV •

ml ^7
- ^ Hj p, x, courant total

(H)

ce qui justifie l'expression (10) du courant partiel. Le coefficient y
est nul pour la répartition sans courant, qui présente, dans
l'extension en moments, la symétrie sphérique autour de l'origine
(Fig. 1). Pour tous les courants usuels, y est petit; la répartition

répartition tant,
courant

répartition
avec courant

9L£

A

fir

<"-$= + >»«

Fig. 1.

est sphérique autour d'un point O'de l'axe des x, de coordonnée

-yejßl,
ß I Ve

'/ * + o p'+ Ti2ml ßl
ß_ lye}*

2m [ßl (12)

Tant que y est petit, on peut développer

y e
V % + —rPix,ml r,n= a + ß

Pi¬

tt
1

2 m,

exp r/n y e

exp rjn ¦+¦ 1 (exp r/n +- l)2 m l Pi.

(13)
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Cette formule coïncide avec celles que l'on obtient dans la
théorie des métaux, à la suite d'un analyse assez pénible1).

Le nombre total d'électrons N se calcule plus rapidement
si l'on part de l'expression (12) :

y=S*=S/«g«--gr£/'c,*c- r. 1b a—• (i4)xi n J exp
J'ai posé

y e

2 m
C2 + 1

Q Pi +
ßl '

c'est donc, dans l'extension en moments, une distance comptée

à partir du centre 0' I—rj) de la répartition, et l'on a

<J,
2V~C2dCdü, fdQ An

L'intégrale (14) garde la même valeur, qu'il y ait un courant
ou non, et on a étudié sa forme pour les répartitions sans courant

N= 2hV-(2nmkT)3l2F(cc').

F est la fonction introduite par Sommerfeld2).
Le courant total Jr s'obtient de la manière suivante

(15)

Jx
ml

2eV

S ni Pi* —y 2 U 9iUix y e

ßl

IdQJ c2 n y e d:
(16)ml h3 J J \ ßl J exp n + 1

L'intégration en C* pour toutes les directions dû donne
zéro; il reste alors une intégrale identique à celle de N, éq. (15):

y e*

ml2ß
N y e* S^-

mlß V

Rappelons que le coefficient ß vaut ljkT; l'expression

représente la vitesse moyenne des électrons

(17)

y e

miß

Jx e Snv

N
n -— densité d'électrons

V

y e

miß
vitesse moyenne

(18)

») Statistiques quantiques, Chap. VIII, p. 279, éq. 79; p. 286, éq. 93; p. 290.
2) Cf. Statistiques quantiques, Chap. V, p. 143, éq. 29, IL
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Cette formule est tout à fait comparable à celles du § 1, (4):
J By.

N e2
L'expression —~ joue le rôle de IL; c'est ce que nous

vérifions en évaluant l'énergie cinétique supplémentaire de la

répartition avec courant Jx, car la relation

J N m r2 --- l L J2

nous donne bien

T
N in m I'2

"= e^S^n2 Xe2 ' (li"

Les électrons indépendants, sans couplage magnétique, ne
peuvent donner la vraie valeur de la self-induction.

'¦i. Les fluctuations, pour les électrons indépendants.

Toutes les formules usuelles, relatives aux fluet initions, ne
sont démontrées que pour de petits écarts, à partir d'un état
d'équilibre. Je veux calculer des fluctuations à partir d'une
répartition présentant un courant permanent, donc pas en équilibre :

c'est pourquoi j'ai jugé plus prudent de reprendre le raisonnement
depuis le début.

La formule (7) nous montre la relation

dlogPn ¦ qt — n,0-5 ° a. +¦ ßu, - yj, log 20)
dn., ni0

Appelons nin le nombre d'électrons, dans le> g, cellules, pour
cette répartition, que nous supposerons réalisée en moyenne:
P0 sera le nombre de complexions de la répartition n{0; étudions
maintenant une répartition un peu différente

n, n,o - mi> ('"< Petlt )•

et cherchons à évaluer le nombre de complexions P qui y
correspond ; nous pouvons développer

¦ t, i t, -o à log P.. X1 ()2 log 7J0
log P log P0 +2 »<t

A
¦A\>»r " °

; dn, t du,-

+S m, mk *!?§£ (21)
(Ti du, du,.

ou, d'après (20) et (5)

log P log P0 + a à X ¦ ß Ó F + yò J

+ I^»^^^'M^. (22,
i dn,2 if* àniànk
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Mais d'après (20)

d2 log Pp
_dn? ni0 (g, — ni0)

d2JogjP0
dnt à nk

0.

La formule (22) peut être appliquée à l'étude des fluctuations
dans un métal, en supposant que le nombre N, l'énergie U et
le courant J soient constants; nous aurons alors à barrer les
termes en ô N, ô U, et ô J ; mais les fluctuations m,- dans les divers

groupes de cellules ne pourront pas être indépendantes, de sorte
qu'un tel problème paraît assez artificiel.

Ce qui est plus intéressant, c'est d'étudier des fluctuations
en supposant notre conducteur C en contact avec un second

corps G' (N', V', J') consistitali! un thermostat, ou très gros réservoir
de chaleur (V » U), un gros réservoir d'électrons (N' » N) et
un volant important de courant (J' » •/). Le contact entre les

/.
-—|l|l|l|l—W33W

j
j' -Qr-Wm/WN^

Fig. 2.

corps C et C" sera supposé réalisé de façon que des échanges d'électrons

et de courant soient possibles, les totaux restant constants

N N' ClJL U + U' C*2 J + J'
ON -- -SN' à U - Ó IV ÔJ

C*
-ÔJ' (24)

les deux premières conditions seront réalisées par simple contact,
et même, dans ce cas, le réseau cristallin du métal constituera
automatiquement le réservoir d'énergie et d'électrons. La condition
de courant total constant correspondrait à un montage en parallèle
des conducteurs C et C", avec une grosse self-induction en série
(Fig. 2) ; cela revient à appliquer au conducteur étudié une force
électromotrice rigoureusement constante.

Le nombre de complexions du système CC' est P ¦ P' ; pour
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des répartitions un peu différentes de la moyenne, nous aurons
des formules du type (22)

log P' log P0' -r a'ôN' + ßd U' + y'ÔJ' +-

log Po' - a ô N - ß ô U + y ô J -r (25)

Le corps C étant un gros réservoir, les variations sont pour
lui très petites, de sorte qu'on peut arrêter le développement (25)
aux termes du premier ordre; l'équilibre moyen exige d'autre part

a a' ß — ß', et y y'

Dans notre montage complet, la répartition m, se trouve
donc douée, au total, d'un nombre de complexions

k,(P.Jl-kl(P..W-Vi_^_j ,26)

d'après (22), (24) et (25) ; les termes du premier degré sont compensés

P-P'=P0- P0' exp
m ,2

2ni0(g, — nic

En intégrant pour toutes les valeurs de m, suivant une
méthode classique, on obtient

m}= nln(gi — ni0). (27)

Cette formule était bien connue, pour les fluctuations à
partir de l'état d'équilibre; nous voyons qu'elle s'applique aussi
aux fluctuations autour d'une répartition avec courant, moyennant
les définitions que nous avons précisées. L'important, c'est que
le mécanisme de la résistance électrique n'a pas besoin d'être
explicité.

4. Fluctuations du nombre d'électrons et du courant.

Supposons-nous placés dans les conditions définies plus
haut, et recherchons les fluctuations du nombre total d'électrons:
dans chaque groupe de cellules, les fluctuations se font indépendem-
ment; nous aurons donc pour tout l'ensemble

N N0 + M M Xm,

S1-?5?-?*«*-^-?*!«^--?*^ - (28)

en se rapportant à la formule (8).
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Pour effectuer la sommation, nous prendrons dans l'extension
en moments des coordonnées centrées sur le point 0' (Fig. 1)

comme en (14) :

Pi=U — -jr, g,= }lrdQk'dL'-

La répartition est symétrique autour de 0', de sorte que nous
pouvons immédiatement intégrer en dû

M2
InV f df

h*
dÇ. (29)

Une intégration par parties s'impose, car C/ est nul aux deux
limites (C 0 et oo),

' ß fi -A- m An a + -o— C2, t,di,= - -dn,
2 m ß dn ß J

8nVm /\7S. 2
M2= -h3ß Jfd^ nV I2m\'--f

h*~\T) J (>l — a') ^'-fdrj ¦

Cette intégrale se ramène à un type général étudié par
Sommerfeld.

V„

CO

1 /"_ J^l 1 [(ri-ayfdi/. (30)
r(g + l)J exn(x'+z) + l r (g+-1) J X ' '' ' K '

Nous obtenons donc

_ „ 2V f2jtm\'h
M2 U.,, lß

1

(31)
h3 \ ß I V kT

car P(^) est égal à \/n Les intégrales Ue ont les valeurs suivantes :

statistique classique, a' » 0, Ug ~ exp (— a')
(_a')e+l 2

cas dégénéré, a'« 0, U,~ rrr T"^ > U-' -~ —,~ (— a)
I (g + 2) • -y/n

(32)

D'autre part l'intégrale F du § précédent est identique à U,.
de sorte qu'on a

Nh3
cas classique U, exp (—a') (2 n mkT)' -¦

cas dégénéré — a'

2 T

h2 l ZN Y

2mfcT\8îrF

• (33)
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Nous aboutissons ainsi aux résultats suivants :

cas classique, très hautes températures, M2 — N

cas dégénéré, très basses temp., M- V ,nmkT / 3 A'

8n V

(34)

Le résultat classique est bien connu; à haute température
la statistique de Fermi se confond avec celle de Boltzmann.
Les fluctuations du gaz dégénéré auraient pu s'obtenir directement

sur la formule (29), en remarquant (Fig. 3) que - ' est presque

partout nul, mais présente une valeur élevée pour // 0. de sorte

(pie — -rr; joue le rôle d'une fond ion ò de Dirac
d g

Sir--;h-' i- m f- dfn m

ß

m 2 m x'
ß

mkTh ''ON
Snl

,SL
i>»

f /£*•'?

±
7=
Ç=o=o Sttoc'

ß
Fig. 3.

Nous pouvons maintenant calculer les fluctuations de quantité
de mouvement. Un excès de m, électrons, dans une cellule de
quantité de mouvement p, donne un excès de quantité de mouvement

totale

m,p,r :

les fluctuations dans les diverses cellules sont indépendantes, je
puis donc écrire

df,
APl y\m2p2 _ V 9i Pi dn

(35)
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Prenons des coordonnées £ centrées sur 0', comme en (29)
et nous obtenons

"î- ^IiQI 2ye
ßl dn

dÇ

La fonction / ne dépend pas de l'angle solide d Q ; par symétrie
le ternie en Çix s'annule en moyenne, et Ç*x prend en moyenne la
valeur

8nV f
h3 J ¦•Mf)-J Px2

8 n V m f
h3 ß J M0]

df
d ?/

:2 d c

fd

en intégrant par parties, comme pour (29). Nous voyons apparaître

une intégrale en /C2d; identique à celle qui donne N dans
l'équation (15), et une autre en /dC identique à celle qui définit
M2 dans (31); le résultat final s'explicite ainsi

IP,.2 X m kT r M2[^r
ßl

NmkT + M2
N2

(36)

car d'après (17) le courant total et la quantité de mouvement
totale sont reliés par

J — P =-N r-2-
ml mßl*

Nous trouvons donc pour les fluctuations de courant

A J2
Ne2

m l2r
k T -r M2

Jx2

N2
(37)

Ces résultats sont rigoureux pour un état de dégénérescence
quelconque, tant qu'on néglige les couplages magnétiques et

traite les électrons comme indépendants. L'expression 2 joue
alors le rôle de la self-induction (éq. 19). Les fluctuations de
courant se composent donc

k T
1° d'un terme -y— indépendant du courant moyen,

— M2
2° d'un terme proportionnel au carré du courant moyen Jx2 -™

Le premier résultat est bien connu, mais le second est nouveau.
Il disparaîtrait si les fluctuations n'étaient pas indépendantes,
et si le nombre total des électrons restait rigoureusement constant
(M 0). L'aspect de ce résultat appelle quelques remarques:
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1° — Les fluctuations M2 du nombre total des électrons
sont calculées sans tenir compte de leurs répulsions électrostatiques ;

lorsque nous avons M électrons libres en trop, nous admettons
qu'ils sont uniformément répartis dans la masse du métal, et
ne constituent pas une charge électrostatique superficielle. Cette
hypothèse paraît justifiée, puisque le réservoir naturel d'électrons
est constitué par la masse du métal; dire qu'un excès M d'électrons
libres apparaît, c'est supposer que M ions du réseau ont passé
à un état supérieur d'ionisation. Le métal dans son ensemble
(réseau ionique + électrons libres) reste neutre.

2° — Les électrons indépendants sont une fiction. Il va
falloir maintenant tenir compte de leurs couplages magnétiques,
afin de retrouver correctement le rôle de la self-induction.

5. L'interaction magnétique entre les électrons.

Deux électrons, de vitesses v,- et rA. situés à une distance r,k
l'un de l'autre, exercent l'un sur l'autre des forces dérivant d'une

e2

énergie —5 (vt vk); ces termes supplémentaires d'énergie dé-
C rlk

pendent des A'itesses et doivent être comptés dans l'énergie cinétique.
Pour un système de A7 électrons nous aurons donc une énergie
cinétique

r imS^+ e*-2 {Vi'rk)
: (38)

i c i>k rik
la seconde sommation est faite en comptant une fois chaque paire
i, k. Par définition, la quantité de mouvement de l'éctron i sera

dT e2 _ v,.
Pi T- mvi + T Zj 1 —

0Vi c2 lij-i \ri—rk\
(rik=\r{-rk\). (38bis)

Ces formules ont été fort bien discutées par Bethe et Fiiöii-
lich1); les termes magnétiques que nous venons d'ajouter contiennent,

entre autres, les effets de self-induction. Considérons un
conducteur rectiligne de section S, longueur /, contenant n électrons

par cc. :

V=SI N nV.
Supposons une répartition d'électrons qui comporte une

vitesse moyenne vx suivant Ox, et des vitesses w d'agitation dirigées
en tous sens

vk rx - wk, y,wk 0 (39)

l) Z. f. P. 85, 389, 1933.
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Cela nous donne un courant total (éq. 11, et fig. 4)

Jx Snevx y^r,..1 k

La sommation (37) peut s'écrire un peu autrement:

y K% ¦ Vk) y y (Vj ¦ Vk)

i>k I'« ' k\ i h+.i l'i ' k\

Lorsqu'on fait les sommations séparément sur i et k, on
compte en effet deux fois chaque terme, pour les ordres i, k et
k, i. Les électrons sont, en moyenne, répartis uniformément
dans tout le volume V. Prenons un volume dxt ; nous y trouverons
N
T-dXi électrons, de vitesse moyenne vx, suivant Ox ; dans un

A'—1
autre volume dxk nous aurons —y— électrons, car il en reste

N — là distribuer, l'électron i étant exclu; la vitesse moyenne
est encore vx ; au total

vk) N(N-l)vx2 r fdxidx,.i v v (rt ¦ Vk) NJN- 1) v/ r r dj
"VèK-rJ^ 2 F2 J J \rt

ricette intégrale double n'est autre que celle qui définit la
self-induction L du circuit:

_ J_ r r dXj drk
Z~c2S2JJ[ri-rk\ (40)

car la self-induction se calcule pour un courant total 1, donc une
densité de courant 1 jS. Notre formule (37) prend donc, en moyenne,
la valeur

r-T^ + W"*. <«>

d'après (39) et (40). Dans tous les conducteurs usuels, N est
N— 1

très grand, de sorte que —^—est égal à l'unité, et la formule (41)

représente un résultat classique. Ceci peut se transformer encore

rr mv 2 (N-Ue2 me
vkx'2

\ I;

(42)

avec

(N-l)e2T (N-l)e2 f fdxidxk
my. —rrra— LNi2 Nc2V2 7/i
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Si nous adoptons pour l'énergie cinétique l'expression moyenne
(42) nous obtenons pour les moments

à T [Pix m d + x) «ix + X m y. vkx,
Pi= a.. **' (43)

dv, yp.y mVjij, ,,iz. mv.z.

Ces formules simplifiées nie permettront de tenir compte
des effets magnétiques et de la self-induction, au moins en première
approximation. Précisons les ordres de grandeur:

L Ç « m « X L C (44)

doni
: « 1 « N x

Considérons un fil de 1 cm de long et 0,2 mm de diamètre,
sa self-induction est de l'ordre de 10~8 henry, soit 10-8 l 10-11
U. E. S. C. G. S.:

L s HP20
e 4,77. IO-19
m 0,9. IO-27

X~ IO19
I ~ 1 cm.

Les trois termes des inégalités (44) valent

io-39 « io-27 « 10-20.

L'expression de la quantité de mouvement p, en (38) ou
(43), ressemble à celle que l'on obtient pour un électron dans un
champ défini par un potentiel vecteur A donné

p, mv, - - - A (45)
c

La différence entre les deux formules est pourtant considérable,
car le terme additif de (43) n'est pas fixe, donné à l'avance, comme
A ; c'est au contraire un terme qui dépend des vitesses de tous
les électrons et ne peut être isolé artificiellement du mv,

Dans notre calcul, la direction Ox suivant laquelle se dirige
le courant joue un rôle favorisé, et crée une dissymétrie dans les

formules; on peut éliminer cette anomalie. Prenons un conducteur
parallèlepipédique (Fig. 4) de côtés lx, /„. /. : le courant J total
aura une direction oblique quelconque, la vitesse moyenne étant
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(vx, Vy, v.); nous aurons à définir trois valeurs de self, dont l'une,
Lx, est celle que nous avons déjà trouvée en (40):

I j
D

(cÇQ2
avec

1
D

XJU' (Clxh)*

dx,dxk

I)
(Clxlyf

(46)

D=[["J J \r, — rk\

et l'énergie cinétique totale s'écrira

T
m

2
V (?¦")"+ "(?¦")"+ "(v (47)

car l'expression (42) de x nous montre que Lx, Ly, et Lz donnent
la même valeur pour x. Pour la quantité de mouvement, nous
trouvons

pix m (1 + x) v{x + 2 m x vkx
k±i

p, y m (1 + x) viy +- 2 m « v,..ky
I: ; i

V. m (1 + x) v,-z l^raz vki

(48)

La symétrie est complètement rétablie.

/,

5
L

J

Fig. 4.

(i. Comment trouver de nouvelles variables séparées.

Il est impossible de conserver connue variables les
coordonnées x, y, z des divers électrons, car l'énergie cinétique ne
se présente pas comme une somme de carrés; les variables ne
sont pas séparées, et leur interdépendance est fort gênante.

Je vais chercher à former des combinaisons linéaires qui
ramènent l'énergie cinétique à une somme de carrés. Revenons
au cas d'un courant longitudinal, suivant Ox, et supposons le
courant moyen nul partout, dans les directions y et z. L'énergie
cinétique a la forme (42); les coordonnées y et z sont séparées,
seules les coordonnées x ne le sont pas. Posons

A,
.V-1 N

b) x, — b y^ xk ax, + ò V xk
k+i k

(49)
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et cherchons à ramener l'énergie cinétique à la forme

2T
m

:V(A7 + y,2 + z2)
(50)

$ X? a2 2 i/ + (2«& + W b2) (C x,\2.

Identifions (50) et (42), nous trouvons

a 1, AÒ2 + 2 Ò * b - i (- 1 + VlTAx). (51)

Il faut prendre le signe + devant le radical, afin que b s'annule
lorsque x tend vers zéro. Les X(, y,, z, forment des variables
séparées; le moment Pix correspondant à X, est

Pix mXi
et l'on a

Px 2 P, x m(a -r Nb)^?xk= m \/l + N x 2 4 • (52)
i k k

La relation entre le courant total Jx et la quantité de mouvement

totale Px s'écrit donc

•WS^VÏTFV (68)

Mais reportons-nous aux ordres de grandeur (44), nous notons

NTjc2
1+NxïzNx= - -^3 • 103 ;

ml2

la relation (53) s'explicite donc ainsi

j „ p*
\/mN L

Quel est le domaine do variation de la coordonnée X '? La
coordonnée x d'un électron peut varier de 0 à / ; donc X peut
aller de zéro à (a + Nb) l d'après (49), ce qui fait l \/l + N x.
C'est ce que nous retrouvons en calculant le déterminant fonctionnel
(Voir appendice)

à=D(X)
D(x)

a + b b b

b a + b b

b b a + b
a*-i(a + Nb) Vl--~N~x.

(54)
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Partout où figure le volume F, dans les formules de la théorie
des électrons, nous devrons écrire VA ; moyennant cette correction,

tous les calculs des §§ 2, 3, et 4 sont directement utilisables,
puisque nous avons ramené l'énergie cinétique (50) à la forme
usuelle.

Récrivons rapidement les formules essentielles, en tenant
compte des deux corrections (53) et (54) :

g,:= —dû p,2 dp,, nombre de cellules (9bis)
h3

p
j,— —— Pix, courant partiel. (lObis)

m l y 1 + N x

La répartition avec courant moyen s'obtient comme au
§ 2, mais

r, a + ß u., + y j, a + J- p? + - --- J1-— P, x2m ml-y/1 + Nx

«'+-/ (p{+ oi je y. (i2bis)2m V ßWl + Nx) X '

Le nombre total d'électrons est relié à la quantité a'

N 2F3Zl (2 nmkT)'l>F (a') (15bis)

h2 f SN
cas degenere,2mkT \ 8nVA

et

7 e2 NJ*~ ml Vr+Â^? Ui P'x~
mßl2(l+Nx) ~ Lß

' (1?bÌS)

Si l'on considère une répartition avec courant, et qu'on
calcule l'énergie correspondante, on trouve, par un calcul analogue
à celui de (14) et (16)

U==Jm^niP'=2mP'^ C2_ 2yeÇ _J ly&2
ßlV'l+Nx 1+Nx[ßl.

Le premier terme donne l'énergie <J0 sans courant, le second
est nul en moyenne, et le total s'écrit

ü cr'+2WWSy)°ÄÜ° + 4WI (55)

après les réductions indiquées en (53).
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Passons maintenant aux fluctuations du § 4:

M2 P7
A

8nmk T
8 ^ -Y/a. cas dégénéré, (32 bis)

h2 \8 nVA j

A~PT2 -- N m k T + M2 -Bf, (36 bis)
N2

Ne2kT rr:, -h2AJ2 -- 1P,2= — - + M2 ' (37 bis)
m2l2(l+Nx) ml2(l + Nx) N2

v '

kT rr:, -F2
,J"'Ä L +M* N2' (5ti)

Nous obtenons très correctement cette fois les fluctuations
de courant dans un circuit sans courant moyen; le terme r avec

la self-induction L est classique. Que signifie le second terme?

M2 A i Sn \7» rnk'T (8 n I \ V.
8:r m kl (- 1=3 - (57)

avec n NjV, densité d'électrons.

Si le rôle de la self-induction, par rapport à la masse propre
des électrons, reste le même, notre coefficient f est inchangé;
les fluctuations proportionnelles au carré du courant moyen
seront donc d'autant plus importantes que le nombre total N
d'électrons sera plus faible, c'est-à-dire que le volume du
conducteur sera plus petit. Nous verrons plus loins que les résultats
expérimentaux confirment ce point de vue.

Soulignons tout de suite une difficulté sérieuse; l'effet do
la self-induction est de réduire énormément la dégénérescence. La
dégénérescence peut se mesurer au moyen du facteur (15bis),

F(«')= -^ (2nmkT)-V\ (58)

Si F est bien plus grand ({lie 1, on a une dégénérescence
complète, et si P' est très petit, on retrouve le gaz classique;

y h3 _3/or pour les métaux usuels à 300° K, -~y (2nmkT, '2 est de

l'ordre de 3000, ce qui, avec A 1 (électrons sans couplage magnétique)

assure une dégénérescence complète; mais dans mon exemple
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numérique, je trouve A de l'ordre de 3000, ce qui me donne pour
P1 une valeur voisine de l'unité, c'est-à-dire une dégénérescence

moyenne. Les évaluations numériques du § 5 sont peut-être un
peu fortes; à forme constante, la self-induction L varie comme
les dimensions linéaires, donc LP2 varie comme P1; si donc on
multiplie par 10 les dimensions d'un circuit, le facteur A est
divisé par 10, et l'on retrouve une dégénérescence nette.

Ce résultat ne doit peut-être pas trop surprendre. Pour
des particules indépendantes, la dégénérescence est d'autant
plus élevée que la masse est plus faible; le couplage magnétique
fait apparaître la self-induction, qui est équivalente à une énorme
augmentation de l'inertie des électrons. On devrait s'attendre,
en conséquence, à une grosse diminution de la dégénérescence.

7. Résultats expérimentaux.

C'est pour interpréter dc curieuses expériences de Berna-
mont1) que j'ai été conduit à examiner ce problème des fluctuations.
Bernamont a réellement observé l'augmentation des fluctuations
de courant en fonction du courant moyen. Cet effet ne s'obtient
que sur des conducteurs de très faible volume, constitués par
de minces dépôts métalliques obtenus par voie cathodique, ou
par des fils à la Wollaston. Les résultats qualitatifs semblent
d'accord avec le type de formule que j'ai obtenue; le terme de
fluctuations en J2, dans l'équation (56) fait intervenir un facteur

M.2 • —
en -—- qui, d'après (57), doit varier comme l'inverse du nombre

total N d'électrons, c'est-à-dire comme l'inverse du volume du
conducteur. On comprend donc que cet effet ne puisse s'observer
que sur des conducteurs extrêmement fins. Bernamont était
arrivé, indépendamment, à poser une formule du type (56). U
supposait que l'effet était dû à des fluctuations de résistance, la
résistance instantanée étant proportionnelle au nombre N0+ M
d'électrons libres à l'instant considéré; pour lui, les variations
du nombre d'électrons libres proviennent de la dissociation des
atomes du métal en ions et électrons; ce point de vue est équivalent
à celui que j'ai développé. Je tiens à remercier tout spécialement
Bernamont de ses critiques et suggestions; les discussions que
nous avons eues m'ont grandement aidé à préciser le sens des
conditions théoriques générales et à dégager les hypothèses de base.

*) CR. 198, 1755, 1934 et 198, 2144, 1934.
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8. Appendice.

Nous avons à calculer un déterminant à N lignes et N colonnes
du type suivant

Ds

1 c c

c 1 c

c c 1

(N)

1 c c c c

c-1 1-c 0 0 0

0 c-1 1-c 0 0

0 0 c-1 1-c 0
(Al)

(-V)

en retranchant de chaque ligne la ligne de dessus. Développons
par rapport à la première ligne, nous obtenons un premier terme
isolé et ensuite N — 1 termes identiques

D.v

1-c 0 0 0

c-1 1-c 0 0

0 c-11-c 0

c-1 0 0 0

0 1-c 0 0

(N-l)c! 0 c-1 1-c 0

0 0 c-1 1-c
[N-U (.V-l)

Le premier déterminant se réduit à son terme diagonal

(1-c)N-l et le second vaut (1—c) donc

D* (1 - cf l
[1 + (N - 1) c] (1 - cf + Ne (1 - cf \ (A 2)

On peut, par un procédé analogue, évaluer les mineurs. Un
mineur Mti à deux indices égaux est égal à DN_} ; le mineur d'un
élément hors de la diagonale, Mik avec k+-i est

M.

c c c c

c 1 c c

c c 1 c

A'- 1

c c c c c.
0 1-c O 0 O.

0 c-1 1-c 0 0...
0 0 c-1 1-c 0.

-c(l-c)1

(A3)

On en déduit les coefficients de la transformation inverse

1 + (N - 2) cq _ Mit _ DN_X

Cik
Mu
Dv

DN (1 - c) [1 + (N - 1) c]

— c

(1-C)[1 + (N-1)

(A4)



Fluctuations de courant dans un conducteur. 67

Le déterminant A de l'équation (54) est bien du type ci-
dessous

a + b b b

b a + b b

b b a + b
(a + b)1

1
b b

a+ba+b
b b

a + b
1

a + b

i i.v»/i b V*"1
{a-b) V-oTb. 1 + (N-1)

a + b
aN \a+ Nb). (A 5)

Les formules (A4) se contrôlent de la façon suivante: Le
tableau des coefficients de (Al) définit une transformation linéaire

Mais

Xi Xi + c 2 %k (1 — c) x, + c y^xk.
k$i k

VA, (1 - c) V Xi + Nc^xk [1 + (A- 1) c]]^
i i k k

D'où l'on tire
ZjXkX,

Xi ~~
1 - c

° (l-c)[l + (A-l)c]
x 1 + (N - 2) c

y\xk,(l-c)[l + (N-l)c] (l_c)[l + (A7_i)c] ^;
ce qui redonne les coefficients (A4) de la transformation inverse.
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