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Les bases de la théorie électronique des métaux et la

méthode des champs self-consistents

par Léon Brillouin (Paris).

1. Introduction.

Pour raisonner sur les électrons dans les métaux, on a employé
diverses hypothèses simplificatrices; on peut maintenant classer
nettement les différentes méthodes et évaluer leur degré d'exactitude.

C'est ce que je veux résumer en ces quelques pages. Un
tableau d'ensemble schématise les résultats; on le consultera à la
fin de l'article.

On doit distinguer tout d'abord les théories qui reposent sur
des hypothèses pressenties, mais non démontrées; ce sont la
théorie des électrons libres, puis la méthode ondulatoire avec
potentiel périodique; ces recherches ont fourni des renseignements
très intéressants, mais leur base n'est pas sûre et une étude plus
approfondie oblige à y apporter des corrections sérieuses.

Les méthodes sûres sont celles que l'on peut rattacher directement

à la mécanique ondulatoire, et qui se présentent comme
une première approximation logique. H y a deux méthodes
essentiellement distinctes : celle qui fait jouer un rôle essentiel aux
fonctions d'onde des atomes isolés, et qui généralise, pour le métal,
les célèbres calculs de Heitler et London. Cette première méthode
est susceptible de grande précision ; elle a servi de base aux études
sur le magnétisme (Heisenberg, F. Bloch, Bethe, etc.). Cette
méthode a l'inconvénient de ne pas fournir des oncles indépendantes
pour chaque électron.

Si l'on cherche une solution avec ondes partielles indépendantes,

on est conduit aux méthodes de champ self-consistent,
qui représentent la meilleure approximation réalisable avec cette
hypothèse; ce sont ces méthodes qui sont les plus commodes pour
l'étude des conductibilités et de toutes les propriétés électriques
des métaux.
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2. Les méthodes provisoires.

La méthode des électrons libres date des recherches classiques
de Drude etLoRENTz; son application moderne repose sur l'emploi
de la statistique de Fermi (Pauli) et a été développée très habilement

par Sommerfeld, qui en a tiré d'importantes conséquences.
On traite les électrons comme des particules indépendantes, en
mouvement dans un champ dc force nul; les formules essentielles
sont résumées sur la première ligne du tableau. L'hypothèse d'un
potentiel constant dans le métal est évidemment assez grossière.
Les phénomènes d'échanges sont complètement omis.

Un progrès très sérieux a été fait par l'étude du mouvement
des électrons dans un potentiel périodique, reproduisant la périodicité

de structure du réseau (2èmc ligne du tableau). On trouve
des ondes analogues à celles des électrons libres, mais dont l'amplitude

B est périodique; l'énergie présente des dicontinuités, et se

partage en une série de nappes distinctes. La définition du courant
est aussi à noter, car on y voit apparaître le fait que le courant
est proportionnel à la dérivée de la courbe d'énergie (Peierls),
remarque de grande importance.

La plupart des exposés didactiques sont basés sur cette
méthode1).

La méthode du champ périodique peut servir aussi bien dans
le cas d'électrons presque libres (potentiel presque constant) que
dans le cas d'électrons presque liés (potentiel très variable d'un
point à un autre). Cette méthode a fourni des renseignements
très importants mais elle n'est pas correcte parce qu'eue omet
complètement les échanges; ce n'est pas une première approximation
logique.

F. Bloch remarqua la relation entre cette méthode et celle
du champ self-consistent de IIartree; dans les calculs de Hartree
sur les atomes, on obtient une bonne approximation en se servant
d'un champ moyen, dû aux charges positives et à la répartition
moyenne des électrons, représentée par les densités %p xp*. Dans
un réseau métallique, les ions positifs ne donnent pas à eux seuls

un potentiel périodique, car le réseau d'ions porte une densité

1) L. Brillouin. Statistiques quantiques, Presses Universitaires, Paris
(1930). — L. Brillouin, Quantenstatistik, Springer, Berlin (1931), Kap. 8, (on
fera attention à l'erreur signalée par Peierls). — R. Peierls, Elektronentheorie
der Metalle, Ergebnisse der exakten Naturwissenschaften, Springer, Berlin (1932).
— L. Nordheim, Statistische und kinetische Theorie der metallischen Zustände,
Müller-Pouillet, Lehrbuch der Physik, 11. Auflage, IV, 4. Vieweg,
Braunschweig (1934). — A. Sommerfeld et H. Bethe. Elektronentheorie der Metalle.-
Hdb. der Physik, XXIV, 2. 2. Auflage, Springer, Berlin (1934).
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positive moyenne d'électricité; la répartition moyenne des électrons,
représentée par les tp rp*, c.-à-d. B B* donne une densité moyenne
qui compense celle des ions; cette répartition est périodique,
puisque les B sont périodiques; l'ensemble des ions et de la densité
moyenne des électrons nous fournit un potentiel périodique. Nous
voici donc ramenés à un processus de champ self-consistent, qu'il
faut analyser de près.

3. Les méthodes de champ sell'-coiisislent.

Ces méthodes ont été discutées très sérieusement par Hartree,
Gaunt et surtout Fock; j'ai repris ces démonstrations par une
voie différente1), qui permet de se rendre mieux compte de la
valeur de l'approximation réalisée.

Hypothèse faites:

1° on néglige les effets relativistes et l'on considère un réseau
d'ions au repos, où circulent des électrons de vitesses faibles devant
celle de la lumière.

2° on néglige les termes de spin dans le hamiltonien.
3° on néglige les actions mutuelles magnétiques entre électrons

en mouvement; deux électrons de vitesses vt et vk ont une énergie
c2

magnétique mutuelle —j (v, • vk) ; la somme de ces termes donne

l'énergie de self-induction \ LJ2; tout cela est omis dc la théorie.
On doit donc étudier le mouvement de A/ électrons dans le

champ des ions positifs, formant un réseau au repos; ces électrons
agissent les uns sur les autres par leurs champs de Coulomb. Cela
conduit à écrire une équation de Sciirodinger dans un espace
à 3 X dimensions, et à chercher une onde globale cp dépendant des

coordonnées des N électrons. Comme l'équation d'onde ne contient
pas les spins, on est sûr que l'onde globale 0 se scinde en une
onde de spins A et une onde W portant sur les coordonnées d'espace

03N A (X spin s) XF (3 N coord.). (1)

Cette condition générale est respectée dans les théories de Hartree
et Fock (I) dont nous parlerons plus loin, mais pas dans la méthode
de Fock-Dirac.

l) Journal dc Physique, 1933, 1934; divers articles résumés et précisés
dans les exposés suivants: L. Brillouin — La méthode du champ self-consistent, —
Les champs self-consistents de Hartree et de Fock, — L'atome de Thomas-
Fermi et la méthode du champ self-consistent. — Collection des Actualités scientifiques

et industrielles, n° 71. 159 et 160, Hermann, Paris 1933—1934.



36 L. Brillouin.

Le problème général étant pratiquement insoluble, on cherche
une approximation dans laquelle l'onde globale cp se scinde en
une série d'ondes partielles cp relatives chacune à un électron; on
tient compte du principe de Pauli et des échanges en écrivant 0
sous forme d'un déterminant des cp.

Pour chaque onde cp, nous avons 3 coordonnées d'espace
r (x, y, z) et une coordonnée s de spin, capable de prendre 2 valeurs

±| ; il y a 3 nombres quantiques d'espace a (a, b, c) et un nombre
quantique de spin a, qui peut prendre deux valeurs ± 2 Les
différentes méthodes se distinguent par la forme d'onde cp qu'on
choisit :

1° Hartree ou Fock (I) admettent pour chaque onde partielle
cp une décomposition en onde de spin et onde d'espace, comme on
le trouve dans l'onde globale (éq. 1).

cp (a, a; r, s) a (a, s) xp (â, f ; (2)

le caractère général (1) est respecté; les ondes de spin a sont régies
seulement par des conditions de symétrie; l'onde xp est gouvernée
par une équation ondulatoire.

3° Dirac a modifié les équations de Fock, de telle sorte que
la séparation (2) en onde de spin et onde d'espace n'est plus
possible. On renonce ainsi à un caractère essentiel de l'onde globale
(éq. 1) mais l'approximation réalisée est nettement meilleure.

Nous discuterons plus loin les conditions dans lesquelles ces
trois théories peuvent devenir équivalentes, et la valeur de

l'approximation obtenue.
Dans la théorie de Hartree, on écrit pour chaque onde xp une

équation de Sciirödinger usuelle, où figure le potentiel self-
consistent, c.-à-d. le potentiel des charges positives et de la répartition

moyenne des électrons1) définie par les xp \p*; l'approximation
obtenue est bonne en ce qui concerne les interactions électrostatiques

des électrons; les termes d'échange, en revanche, donnent
une grosse correction dans l'énergie totale. Si nous appliquons
cette méthode aux électrons dans un réseau, nous trouvons un
potentiel périodique; l'équation d'onde et l'onde xp sont donc du
même type que dans la théorie provisoire exposée plus haut ;

mais une différence essentielle apparaît dans la formule donnant
l'énergie totale; celle-ci n'est pas égale à la somme des énergies
partielles Ek des divers électrons. La ligne 3 du tableau récapitule
les formules essentielles.

J) La densité moyenne des électrons en un point r est q (r) X Va (r) Vk (r)
i

et le potentiel P est la somme des potentiels Va(r) des divers ions positifs (a)
et du potentiel donné par la densité q.
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La première méthode de Fock pose, pour chaque onde xpk une
équation différente; outre le potentiel self-consistent P, il y
apparaît un opérateur A, qui tient compte des échanges; par
suite de la séparation des termes de spin, l'équation d'onde est
la même pour deux électrons ayant mêmes nombres quantiques
d'espace, mais des spins opposés; les opérateurs A n'ont pas la
même forme suivant qu'il y a, sur une même onde xp, deux électrons
avec spins opposés ou que l'onde ne porte qu'un électron; cela
complique assez sérieusement les formules. J'ai indiqué (tableau
général, ligne 4) la torme de cet opérateur pour une onde doublement

occupée, si l'on suppose que toutes les ondes simplement
occupées portent des électrons do spin -f- \; pour le détail des

formules, on se reportera aux exposés cités. Dans un réseau métallique,

les ondes xp ont encore une amplitude périodique comme
chez Hartree; la variation de l'énergie Ek en fonction de ak
(c.-à-d. de la quantité de mouvement des électrons) n'a pas été
discutée; elle ressemblerait à celle du système Fock-Dirac.

L'énergie totale a encore un aspect assez complexe;
l'approximation est nettement meilleure que chez Hartree, mais il
reste d'assez sérieuses corrections sur les termes d'échanges.

La méthode de Fock, modifiée par Dirac, représente la meilleure
approximation que l'on puisse obtenir avec des ondes distinctes
pour chaque électron; les variables d'espace et de spin jouent des
rôles semblables; les formules sont beaucoup plus symétriques
que dans la théorie Fock I; l'opérateur A a la même structure
pour toutes les ondes, qu'elles soient simplement ou doublement
occupées. Deux électrons ayant mêmes nombres quantiques
d'espace (ak) et des spins opposés obéissent à des équations
différentes. Dans un réseau, l'énergie partielle Ek de l'électron k est
représentée, en fonction de ak (c.-à-d. de la quantité de mouvement

pk) par une courbe assez complexe ; supposons une répartition
où les électrons occupent, deux par deux, toutes les ondes dont
la quantité de mouvement est petite (| ak | < g); la courbe
s'affaisse au centre, présente une montée brusque pour \ ak\ g et
s'aplatit ensuite aux limites où se produisent les discontinuités.
Dans l'énergie totale, on voit encore apparaître des termes
correctifs, mais bien moins importants qu'auparavant (tableau,
ligne 5).

La différence entre ces diverses théories apparaît nettement
si l'on calcule l'augmentation d'énergie totale pour l'adjonction
d'un électron supplémentaire (tableau, colonne VI). Chez Hartree
et Fock I cette variation d'énergie totale n'a aucun rapport simple
avec 1'« énergie partielle » EN_ x, que l'on peut tirer de l'équation
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d'onde de ce dernier électron. Dans la théorie Fock-Dirac, la
variation A EU)t est juste égale à EN + X; les équations d'onde de
Fock-Dirac donnent donc directement les potentiels d'ionisation
et les niveaux d'énergie corrects. Dans un système comportant
un très grand nombre d'électrons, on pourra écrire:

Etot ^fEkA-Cte, (3)

tant qu'on ne comparera que des répartitions peu différentes les

unes des autres, la plupart des électrons restant sur les mêmes
ondes et quelques-uns seulement changeant d'onde. Cette formule
(3) suffira powr tous les cas pratiquement intéressants. Elle indique
clairement la valeur toute particulière de la méthode Fock-Dirac.

C'est en s'appuyant sur les formules de cette dernière théorie
qu'on trouve une approximation très bonne, et un cadre général
qui ressemble beaucoup à celui de la théorie provisoire. Il faut
seulement tenir compte de la forme particulière de la courbe Ek (ak).

4. Courant total et courants partiels.

F. Bloch a indiqué une formule très importante relative au
courant total; sa démonstration est rigoureuse en mécanique
ondulatoire; l'interprétation classique, très simple, est la suivante:
Considérons des électrons répartis entre une série d'ondes et

supposons, pour simplifier, que toutes les ondes dont les points
représentatifs a (a, b, c) sont intérieurs à une surface S soient
occupés par deux électrons chacune. Faisons agir un champ
électrique Fx pendant un temps dt; toutes les quantités de mouvement
sont augmentées de

dpx — eFx dt
ce qui signifie

da= 1 Fxdt (A)

puisque la quantité a signifie h~i px; appelons du. une telle
translation, parallèle à Ox, de toute la répartition, en bloc. Cette translation

amène la surface limite S en S' (fig. 1) et produit une augmentation

d Etot de l'énergie totale. Mais d'autre part, si la répartition
initiale possède un courant Jx résultant, nous savons que

dEtot FxJxdt, (5)
donc

J'= h à, ¦ (6)
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Dans le cas des électrons libres, sans couplage magnétique,
l'augmentation d'énergie totale est due à l'accroissement d'énergie
cinétique ; lorsque nous rétablirons le couplage magnétique (négligé
dans ces théories), nous verrons apparaître ici l'énergie de self-
induction. La relation (6) est très importante parce que rigoureuse.
Voyons son application aux différentes théories.

Les corrections électrostatiques et les termes d'échange sont
très peu sensibles à une translation d'ensemble de la répartition,
au moins pour des électrons presque libres (amplitudes B des

^

Fig. L

ondes presque constantes). Nous pourrons alors définir des courants
partiels

e dEk
1kx= -r- -t (7)

h dak

aussi bien dans la méthode Hartree que dans celles de Fock;
ces courants partiels seront très différents dans les trois cas; mais
le courant résultant obtenu sera presque le même, puisque les
corrections à l'énergie totale (colonne V du tableau) dépendent
peu du paramètre a; en tous cas, c'est l'évaluation suivant Fock-
Dirac qui sera la plus sûre.

5. Remarques générales sur les méthodes de chump self-consistent.

Les trois méthodes ont un trait commun, c'est de s'appuyer
sur des équations non-linéaires, puisque le potentiel P moyen et
l'opérateur A sont eux-mêmes des fonctions (ou plutôt des fonc-
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tionnelles intégrales) des ondes cp à déterminer. Ce trait devient
tout à fait apparent lorsqu'on recherche une solution demi-classique
(méthode Brillouin-Wentzel-Kramers) et qu'on retrouve ainsi
le modèle d'atome de Fermi-Thomas (par la méthode de Hartree)
ou celui de Fermi-Dirac (en partant des équations Fock-Dirac).

Un autre point remarquable, noté par Fock, c'est que les
énergies totales obtenues sont minima; pour trouver les formes
optima d'équations partielles, Fock a employé des potentiels P
et des opérateurs A arbitraires dépendant d'un certain nombre
de paramètres inconnus, et constaté que la meilleure approximation

s'obtient lorsqu'on rend minima l'énergie totale; cela lui a
servi, d'une manière générale, à déterminer la meilleure forme
d'équations; ce peut être aussi un moyen pratique de formation
des P et A dans des problèmes particuliers (Blochinzew-Fock).

D'après ce résultat général, nous pouvons prévoir que la forme
des ondes partielles cp peut être assez inexacte, et fournir pourtant
une valeur très convenable pour l'énergie totale. De même, en
passant de l'onde globale cp décomposée en ondes partielles (notre
hypothèse du § 3) à l'onde globale 0 rigoureuse, il est probable
que nous n'aurions qu'une très petite correction sur l'énergie totale.

Pour se faire une idée de la valeur de l'approximation obtenue,
le mieux est de calculer la perturbation qui reste et qui représente
l'écart entre la solution approchée obtenue et une solution
rigoureuse. Nous connaissons l'opérateur Htot représentant l'bamil-
tonien du système de N électrons. Nous pouvons former sans
difficultés la matrice représentant cet opérateur Htot dans le
système des fonctions 0 que nous avons calculées ; cette matrice
comprend

1°) des termes diagonaux

(ax ax, «2 a2,—ax aN j Htot \ axax, a2 a2.—ax aN)

par rapport aux nombres quantiques akak d'espace et de spin de
tous les électrons; ces ternies diagonaux sont les valeurs Etot
approchées de l'énergie totale, que nous avons indiquées.

2°) des termes non diagonaux, qui représentent la perturbation
restante. Ceux-ci sont de deux sortes:
a) — Saut d'un électron; les nombres quantiques sont les

mêmes des deux côtés, sauf pour un électron (k) qui saute de

xk ak à ak ak

(ax ax, a2 a2-ak ak-aN aN \ Htot j ax ax, a2 oy •¦«,,.
' ak'-as as) ;

ces termes sont :
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notables chez Hartree,
faibles dans la méthode de Fock I,
tous nuls avec le schéma de Fock-Dirac.

ß) — Sauts de deux électrons; tous les nombres quantiques
sont les mêmes sauf pour deux électrons i et k

(ax ax-a, a,—a,, ak—as oy \ HM \ ax ax—a/ a,'—a,,' ak'—aN ay)

Ces éléments de matrice sont irréductibles, on doit toutefois noter
que Hartree et Fock I ne permettent que des sauts sans changements

de spin (a/ <r, et ak a,) ; au contraire, Fock-Dirac
permet les changements de spins et donne donc un plus grand
nombre d'éléments de ce type que la méthode Fock I; cela
correspond au fait que l'onde globale 0 de Fock-Dirac ne satisfait
pas à la condition générale (1). On a donc l'impression que les
solutions Fock I et Fock-Dirac doivent encadrer la solution
exacte ; l'une doit donner une solution par excès et l'autre par défaut.

Dans certains problèmes, les diverses méthodes deviennent
équivalentes. Si le système n'a pas de spin résultant, de telle sorte
que toutes les ondes portent deux électrons à spins opposés, et
aucune onde ne porte qu'un seul électron, on constate que les
méthodes Fock I et Fock-Dirac deviennent identiques.

Si les charges positives sont réparties uniformément et constituent

une sorte de fluide positif dans lequel nageraient les électrons
on trouve des ondes à amplitude constante, comme pour les
électrons libres; en outre, les éléments de matrice non diagonaux
correspondant au saut d'un seul électron (cas a) sont automatiquement

nuls. Les trois méthodes Hartree, Fock I et Fock-Dirac
deviennent alors équivalentes; toutes trois donnent des ondes à

amplitudes B constantes; elles évaluent différemment les énergies
partielles Ek et les courants partiels jkx, mais redonnent les mêmes
valeurs pour l'énergie totale Etot et le courant total Jx.

On peut donc prévoir que les trois méthodes donneront des
résultats très voisins pour le cas d'électrons presque libres, mais
différeront sensiblement pour les électrons presque liés.

(5. Applications aux électrons dans les métaux.

J'ai poursuivi systématiquement l'application des méthodes de
champ self-consistent aux électrons dans les métaux. La méthode de

Hartree étant plus simple au premier abord, c'est surtout sur elle

que je me suis appuyé; mais dans un travail récent1), j'ai pu dis-

') Journ. Phys. 5 (1934), p. 413.
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cuter d'une manière très générale la méthode de Fock-Dirac1) et
montrer qu'elle ne change rien d'essentiel à ce qu'on peut tirer de
la méthode de Hartree. Si l'on voulait calculer numériquement les

ondes, on verrait une différence; tant qu'on s'en tient aux résultats
qualitatifs, les deux méthodes se valent. On obtient seulement
l'assurance qu'une meilleure approximation (donnée par Fock-
Dirac) peut s'obtenir sans modifier sérieusement les faits.
Naturellement, la méthode Fock-Dirac donne des énergies partielles
Ek et des courants partiels jk différents de ceux de Hartree, mais
l'énergie totale et le courant total sont peu touchés.

Dans un premier travail2), j'ai discuté le cas des électrons
libres, ce qui correspond à l'hypothèse de charges positives réparties
uniformément, suivant la remarque du paragraphe précédent.
J'ai cherché les propriétés magnétiques de ces électrons, et
retrouvé un résultat de F. Bloch, d'après lequel le ferromagnétisme
ne pourrait apparaître que pour de faibles densités d'électrons
(réseaux à grande constante réticulaire). Cette conclusion
paradoxale tient à l'emploi d'un modèle trop grossier, avec ces charges
positives continues. Sur cet exemple, j'ai cherché à évaluer la
correction due aux éléments non diagonaux de la matrice d'énergie
totale, et j'ai trouvé qu'ils ne fournissent que des corrections en

VÎVUogAU,-^-,

etc. c.-à-d. des contributions négligeables devant le terme calculé
qui est proportionnel au nombre total N d'électrons.

Ce dernier calcul est basé sur le fait que tous les termes
correspondant au saut d'un électron sont nuls (§ 5, a) et qu'il reste
seulement les termes de double saut (§ 5, ß). Cette circonstance
ne se retrouve pas dans le cas général de la méthode Hartree,
aussi pouvait-on craindre qu'il n'y eût là une source de corrections
notables; mais dans la théorie Fock-Dirac on rencontre les mêmes
conditions. Je pense donc que la méthode Fock-Dirac doit
donner correctement les termes en N dans l'énergie totale, et ne
laisser que des erreurs de l'ordre de -\/N, log N, etc.

Le champ self-consistent de Hartree peut se calculer très
bien pour des électrons presque liés3); F. Bloch l'avait remarqué.

1) Les ondes appelées y dans cet article correspondent aux tp du présent
exposé, et portent à la fois sur les variables d'espace et de spin.

2) Journ. Phys., 3 (1932), p. 585 et 4 (1933), p. 1.

a) On trouvera une discussion analogue dans l'article de Bethe (présent
fascicule des H.P.A.).
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mais son calcul comportait une erreur notable, que j'ai corrigée
dans un article du Journal de Physique1). J'y traite aussi le cas
des réseaux cubiques centrés ou à faces centrées, au lieu de me
contenter du réseau cubique simple, seul considéré auparavant.
Les discontinuités de l'énergie se présentent sur des surfaces
polyédriques de dessin curieux. L'énergie peut, dans certains cas
exceptionnels, présenter des minima secondaires, dont j'ai pensé
qu'ils pourraient jouer un rôle pour la supraconductibilité; mais
cette partie du travail est sujette à caution. En annexe, on trouvera
le schéma du raisonnement de F. Bloch, cité au §4 du présent travail.

Les répartitions des électrons, avec ou sans courant, peuvent
se discuter sur des figures, et l'on illustre ainsi nettement l'effet
perturbateur d'un champ électrique ou magnétique. C'est ce que
j'ai fait2) en me basant sur la méthode de Hartree. La nécessité
de tenir compte des corrections d'échanges, dans l'énergie totale,
complique sérieusement les choses; tout serait beaucoup plus
simple du point de vue Fock-Dirac Revenant sur le problème
de la supraconductibilité, je montre que ma tentative ne pourrait
donner que des courants métastables, alors que les résultats
empiriques exigeraient une véritable stabilité des courants permanents.

La formule de Bloch (§ 4) représente le gros obstacle à toute

interprétation de la supraconductivité; s'il y a courant, l'énergie
ne peut être minima: une translation d'ensemble (a) de la répartition

permettra toujours de diminuer l'énergie; tout ce qu'on peut
faire, dans le cadre de nos théories, c'est d'inventer un modèle
dans lequel une telle translation d'ensemble (a) ne puisse être
produite par les perturbations naturelles dues à l'agitation
thermique du réseau. On peut imaginer un courant métastable, mais
non pas réellement stable. Un dernier article3) discute le modèle
d'atome de Fermi-Dirac, qui se déduit de la méthode du champ
self-consistent de Fock-Dirac4). Les effets d'échanges, dont la
théorie de Fermi-Dirac tient compte, sont indispensables pour
l'explication des potentiels d'ionisation des métaux; cette méthode
explique aussi clairement le mécanisme par lequel tout excès de

charge (positif ou négatifi sur un métal se traduit par l'apparition
d'une densité superficielle d'électricité.

Un rapport, présenté l'an dernier au Congrès de Chimie
Physique, à Paris, a été publié dans les Actualités Scientifiques

») Journ. Phys. 4 (1933), p. 333.
2) Journ. Phys. 4 (1933), p. 677.
3) Journ. Phys. 5 (1934), p. 185.
4) On trouvera d'ailleurs une discussion plus complète dans le fascicule 160

des Actualités Scientifiques (Hermann, Paris, 1934).
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Electrons dans

I Méthode II Equation III Onde partielle IV Energie partielle

** Ym- Pk

V. J

Théories provisoires

Electrons libres

Potentiel
périodique

P(X, V, «)

mécanique classique

8JT m

Potentiel constant Pn

1, ak pk

Schröüinger usuelle

8 .-r2m
'-A+P-E, V'fc 0

Vk BexT,27ii(ak- r)

amplitude constante H

xpk=B(ak,r)exp27ii(akr)

amplitude B périodique1

Théories correctes, Champ self-consistent

Hartree

fournit un
potentiel P
périodique

Fock I

Fock-Dirac
représente la

meilleure
approximation
possible avec
des ondes cp

séparées pour
chaque électron.

Schrodinger usuelle

\....]Wk--0
ro(r')dr'i

Vfp=Sy«iW+/-É

potentiel *

des ions
i potentiel
I moyen

des
électrons

Schrodinger modifiée

[•¦•¦] Vx Aj-V'fc
potentiel P périodique

comme ci-dessus

opérateur d'échanges pour
onde doublement occupée

(r\i>\r')y>k(r')dr'

Onde separable,
spin et espace
<p(ak,ok; r,s)
a(ok,s)y>(ak,r)

y>(a-k, r)
B(ofc,r)exp2îti(afcr)

amplitude lì périodique

Ek(ak)
comme ci-dessus

*kVk=f( r- r'\
0\'A'"l ^V,(r)VÎ(r')

i
(Somme prise pour spins + \)

Schrodinger modifiée

[....] cpk Akcpk

potentiel P périodique

Opérateur d'échanges
Ak <Pk

(r.s\n\r'.s')tri.(r',s')
- \r-r'\

matrice de densité

(r,s\g\r'.s')
=^?1<Pi(r>s)<P)'(''¦*')

onde separable comme
ci-dessus

Deux électrons placés
sur une même orbite ak
avec spins opposés ont

{même
onde t/'/.-

même énergie Ek

E,A«k)

pas discuté
analogue au cas

ci-dessous

/

onde non separable

<Pk(r,s)
B ak, ak ; r,s) exp 2 n i(ak- r)

amplitude B périodique
Deux électrons placés
sur une même orbite
ak et de spins opposés
(ak 4- i-) ont des

ondes a> différentes et
des énergies F,,.

différentes

^.

1
v.

J

A 0 '/> a*

onde* occupiti I

pardu èfetrar]

ondes ne portant
aucun e'tectron
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less métaux.

W. Energie totale
VI Variation d'énergie
totale par adjonction

d'un électron

VII Courant
partiel

VIII Courant total

fftot=2Ê* J£tot= /,;.vTl
e

hx e vkx ' l'kx "x ~ /i Ikx
k

N

"to, ^k /1/-tot ^V+l

ùKk"*-- dpk

e dEk
hx~ h da,.~

¦', Z fc-
k

A'tot

N

rv£,
k

— (correction
électrostatique)

— (échanges)

\F -[ES+l
>tot \ - (échanges)

Les corrections
électrostatiques sont com¬

pensées

e ÔEk
'kx h dak

Formule générale
e d Etot

x h da

J««2fc*
k

car les corrections
électrostatiques et les

échanges sont presque
insensibles à a —

£tot.- '-•

s**
k

— (correction
ES)

+ (correction
aux échanges)

AE -
' + (correction

>cot I aux
I échanges)

Les corrections
électrostatiques et la majeure

partie des termes
d'échanges sont déjà

compensés

e 0Ek
hx h ~dak jx~y^ii.x

k

£tot '

y,"k
k

— (correction
ES)

+ (petite
correction aux
échanges)

''«tot" EN+1

Les corrections
électrostatiques et d'échanges
sont totalement
compensées. — La théorie
donne directement des

niveaux d'énergie
exacts.

e dEk
hx~ h 0ak

¦' x - / h. x
k
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(Hermann, Paris, 1934, fascicules 88 et 89). J'y expose d'une
manière assez complète les résultats d'application de la méthode
de Hak.tb.ee aux électrons dans les métaux, puis la théorie de la
conductibilité1). Je renvoie à ces fascicules pour plus de détails,
mais j'espère que le présent résumé, et surtout le tableau synoptique

des formules essentielles, aideront les lecteurs à la compréhension

de ces délicats problèmes.
Signalons un intéressant travail de Chr. Möller et M. S.

Plesset2) sur le traitement d'un système à nombreux électrons
par une méthode d'approximations successives. Ces auteurs
partent des formules de Fock-Dirac qui leur servent d'approximation

d'ordre zéro. Ils calculent l'opérateur représentant la perturbation

restante, et développent les approximations ultérieures.
La première approximation donne une correction sur les fonctions
d'onde, mais aucune correction à l'énergie totale, ni à la densité
électronique totale. Sur ces deux grandeurs essentielles, il n'y
aurait que des corrections du 2ème ordre, seulement; Möller et
Plesset ont pu évaluer ces ternies correctement.

Ces résultats confirment entièrement ceux de mes propres
études; la disparition de la correction du 1er ordre est due aux
propriétés de minimum de l'énergie totale, et à l'annulation des
éléments de matrice correspondant au saut d'un électron, résultats
caractéristiques de la méthode Fock-Dirac. On déduirait de là
directement les conclusions de Möller et Plesset, en utilisant
un procédé général d'approximation que j'ai donné au début du
fascicule 71 des Actualités Scientifiques (Hermann).

*) La théorie usuelle s'applique bien aux réseaux cubiques, cubiques centrés
ou cubiques à faces centrées, qui sont tous des réseaux simples de Bravais. Les
métaux à réseau hexagonal ont un réseau avec base; ce cas introduit dc nombreuses
complications, qui n'ont encore été qu'incomplètement discutés.

2) Phys. Bev. 46, 618 (1934).


	Les bases de la théorie électronique des métaux et la méthode des champs self-consistents

