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Quantitative Berechnung der Eigenfunktion von
Metallelektronen

von H. Bethe (Bristol).

Bis vor anderthalb Jahren waren für die Behandlung der
Eigenfunktionen von Metallelektronen nur zwei Störungsverfahren
bekannt, nämlich erstens die Näherung von freien Elektronen
her und zweitens die Approximation durch atomare Eigenfunktionen.

Beide Verfahren konvergierten ausserordentlich schlecht.
das erste konnte allenfalls für so leichte Atome wie Lithium oder
Beryllium gerechtfertigt werden, während es z. B. für ein Metall
wie Kupfer nicht nur bei Leitungselektronen völlig versagen muss,
sondern sogar noch bei Energien von 10,000 Volt mir grade eben
anwendbar ist. Der Grund für die schlechte Konvergenz ist die
sehr beträchtliche Grösse der Potentialfelder im Metall. Die
zweite Methode gibt zwar für die inneren Elektronen eines Metalls
vorzügliche Näherungen, für die Leitungselektronen jedoch muss
sie notwendig versagen. Der Grund dafür, dass beide Approximationen

nicht funktionieren, liegt darin, dass sie nicht zueinander
komplementär sind, wie man zunächst erwarten musste. Bei der
Methode freier Elektronen muss das Potential klein sein gegenüber
der Energiedifferenz zweier Zustände mit Wellenzahlen, die sich
um ein Vielfaches von 2.T/Gitterkonstante unterscheiden: dies ist
eine strengere Bedingung als dass das Potential einfach klein
sein soll gegenüher der Energie. Bei der Annäherung von
gebundenen Elektronen hei' muss die Wechselwirkung zwischen zwei
Atomen im Metall klein sein gegenüber der Encrgiedifferenz be-
nachbartor Zustände des Elektrons im freien Metallatom ; auch dies
wieder ist eine sehr scharfe Bedingung. Bei dieser Sachlage konnte
man von der Theorie nur eine qualitatire Erklärung des

Eigenwertspektrums der Metallelektronen und ihrer sonstigen physikalischen

Eigenschaften erwarten.

II. Die VVigner'schc Methode.

1933 publizierten Wioner und Seitz1) ein neues, direktes
Verfahren zur Berechnung von Metalleigenfunktioiien. Es basiert
darauf, dass in regulären Kristallen zu jedem einzelnen Atom sich
ein Elementargebiet abgrenzen lässt, welches nahezu Kugelsym-

») E. Wioner u. F. Seitz. Phvs. Rev. 43, 804. 1933 und 46. .r>09. 1934.



Quantitative Berechnung der Eigenfunktion von Metallelektronen. 19

metric besitzt. Innerhalb eines solchen Elementargebietes wird
man infolgedessen das Potential als praktisch kugelsymmetrisch
um den Kern herum annehmen dürfen. Der Potentialverlauf wird
im Atominnern derselbe sein wie im freien Atom. Ausserhalb des

Atomrumpfes wird er davon abweichen ; jedoch ist die Methode
so gewählt, dass kleine Abweichungen im Potentialverlauf keinen
merklichen Einfluss auf Eigenfunktion und Eigenwert haben, im
Gegensatz z. B. zu dem Näherungsverfahren von gebundenen
Elektronen her, bei dem der genaue Verlauf des Potentials eines
Atoms in dem Gebiet seines Nachbaratoms in die Rechnung
eingeht (Austauschintegral). Das Verfahren von Wioner bestellt
nun darin, in dem vorgegebenen Potentialfeld einfach die Schrö-
ilingergleichung numerisch zu integrieren. Wegen der Kugelsymmetrie

des Potentials macht das keine Schwierigkeiten.
Das Hauptproblem besteht dann in dem Anschluss der

Eigenfunktionen in benachbarten Elcmentargebieten aneinander. Wenn
z. B. die Eigenfunktion rein periodisch sein soll, d. h. Wellenlänge
unendlich, so lässt sich diese Bedingung der Periodizität ersetzen
durch eine Grenzbedingung für die Eigenfunktion an der
Oberfläche eines Elementargebietes. Die Grenzbedingung hängt ab
von der räumlichen Symmetrie der Eigenfunktion innerhalb der
Zelle. Ist die Eigenfunktion kugelsymmetrisch (s-Term), so muss
ihre Ableitung am Rande der Zelle senkrecht zur Oberfläche
offenbar verschwinden, um einen stetigen Anschluss an die
Eigenfunktion der Nachbarzelle zu gewährleisten, welche ja identisch
sein soll mit derjenigen in der ersten Zelle. Bei komplizierterer
Symmetrie der Eigenfunktion ergeben sich kompliziertere
Grenzbedingungen ; für manche Symmetrien sind z. B. die Grenzbedingungen

auf den verschiedenen Oberflächen der Elementarzelle

verschieden, etwa-%-- auf einer Sorte von Flächen, y>=0 auf
on ' '

anderen. Ebenso macht die Wahl einer endlichen Wellenlänge
die Grenzbedingungen komplizierter.

III. Die Eigenl'unktioiu'ii in Metall und freiem Atom.

Die Eigenfunktionen eines Metallelektrons unterscheiden sich
in der Wignerschen Approximation von denen eines Elektrons
im freien Atom nur bezüglich der Grenzbedingungen. Für den
•s-Zustand ist z. B. im freien Atom die Bedingung, dass die
Eigenfunktion im Unendlichen verschwinden soll; im Metall dagegen
soll dipjdr am Rande der Elementarzelle null sein. Der Rand
liegt z. B. für Na in einer Entfernung r 4 atomare Einheiten vom
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Kern. Man sieht unmittelbar aus Figur 1, dass die Krümmung der
Kurve, welche die Eigenfunktion als Funktion des Abstands vom
Kern darstellt, für das Metallelektron nicht so gross wie für das
Atomelektron zu sein braucht, und daraus folgt mit Hilfe der
Schrödingergleichung sofort, dass die Energie des Metallelektrons
tiefer ist als die des Atomelektrons; dass also die Bindung im
Metall fester ist. Dies bezieht sieh allerdings nur auf den untersten
Zustand des Energiebandes der Leitungselektronen. Bei den
höheren Zuständen kommt die kinetische Energie des Leitungselektrons

hinzu, sodass die Energie des energiereichsten Leitungselektrons

(Abfallstelle der Fermi-Verteilung) grösser sein kann
als die des Leuchtelektrons im Atom.

Gehen wir beim Atom zu höheren Quantenzuständen über, so
erhöht sich die Energie nur sehr wenig: die Eigenfunktion erhält
neue Knoten nur in grossen Abständen vom Atomkern und bleibt
in Abständen bis z. B. / 4 praktisch ungeändert. Die
Eigenfunktionen der höheren Bänder im Metall haben jeweils einen
Knoten mehr im Inneren der Elementarzelle: die Energie steigt
infolgedessen sehr erheblich von Band zu Band. Dies zeigt noch
einmal besonders deutlieh, wie wenig man sich von einer
Annäherung der Eigenfunktion insbesondere höherer Zustände des
Metallelektrons durch atomare Eigenfunktionen versprechen kann.

IV. Die Freiheit der Elektronen in Alkalien.

An Figur 1 fällt sofort die sehr genaue Konstanz der
Eigenfunktion über einen weiten Bereich auf. Für ein vollkommen
freies Elektron wäre die Eigenfunktion im ganzen Metall konstant:
die Funktion des Na-Leitungselektrons nähert sich also derjenigen
eines freien Elektrons sehr weitgehend an. Nur innerhalb des
kleinen Atomrumpfes weicht sie von der Konstanz ab, schliesst
sich dem Verlauf der atomaren 3 s-Eigenfunktion an und hat
infolgedessen zwei Knoten. In der Nähe des Kerns erreicht die
Eigenfunktion sehr viel höhere Werte als ausserhalb des
Atomrumpfes; jedoch sorgen die Knotenstellen dafür, dass die
Aufenthaltswahrscheinlichkeit des Elektrons innerhalb des Rumpfes
fast genau so gross ist wie in einem ebenso grossen Volumen des
Aussenraumes.

Der ausserordentlich gute Anschluss an das freie Elektron
ist wohl nicht völlig zu verstehen. Ein gewisses Verständnis
gewinnt man immerhin daraus, dass durch die Grenzbedingung ein
horizontaler Verlauf der Eigenfunktion am Rande des Atoms
vorgeschrieben ist. Dazu kommt noch, dass Energie und Potentielle
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Energie ausserhalb des Rumpfes sich fast genau aufheben, damit
zusammenhängt, dass die Kohäsion des Metalls auf die
Leitungselektronen zurückzuführen ist.

Die Analogie zum freien Elektron erstreckt sich dann weiter
auf die Abhängigkeit der Energie von der Wellenzahl. Diese ist
fast exakt (bis auf 1%) durch die Formel für freie Elektronen
gegeben. Zur Berechnung der Energie als Funktion der Wellenzahl

hat Wigner Gebrauch gemacht von dem /-Summensatz der
kontinuierlichen Spektren
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Eigenfunktion des Leitungselektrons des Xa (nach Wigner) und Eigenfunktion
des Valenzelektrons im Na-Atom.

sich leicht abschätzen und ergeben sich als sehr klein. Für die
restlichen Übergänge kann die Summe nach einem
Vollständigkeitstheorem abgeschätzt werden; sie wird dabei im wesentlichen
auf die Berechnung des Wertes der 3 s-Eigenfunktion an der
Oberfläche der Elementarzelle zurückgeführt.
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wo ü0 Volum der Elementarzelle. K Hadius der Zelle,
E0, i/>n Eigenwert und Eigenfunktion des 3 »-Elektrons für Wellenlänge unendlich,

V potentielle Energie,
Ek mittlere Energie der /»-Zustände, die mit 3 .-¦ optisch kombinieren (bei

.Na ist E,.- Ea ~ 5 Rydberg).
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Die Berechnung von d2Ejdk2 kann kontrolliert werden durch
Auswertung der Energie eines speziellen höheren Zustandes in
der Mitte des Energiebandes. Das Resultat ist das gleiche.

V. Kollusion des Metalls.

Wigner und Seitz haben aus den Eigenwerten der einzelnen
Metallelektronen die Energie des Gesamtnietalls und damit dessen
Sublimationswärme bestimmt. Zu diesem Zweck muss die Wechselwirkung

der Elektronen untereinander berücksichtigt werden.
In militer Nahrung hat Wigner angenommen, dass jedes Leitungs-
elektron bei einem bestimmten Metallion ist; die potentielle
Energie auf ein Elektron wird dann gleich der des Metallions.
In erster Näherung ergibt sich dann eine Energieerhöhung
dadurch, dass sich zwei Elektronen häufig im Gebiete ein und
desselben Atoms befinden und dann erheblich stärkere abstossungs-
kräfte aufeinander ausüben. Bei zwei Elektronen mit gleichem
Spin ist allerdings die Wahrscheinlichkeit, dass sie sich näher
kommen als auf einen Atoniabstand. wegen der Antisymmetric
der räumlichen Eigenfunktion (Pauliprinzip) sehr klein. Die
Wahrscheinlichkeit, dass sich im Abstand r von einem gegebenen
Elektron ein zweites mit gleichem Spin befindet, ist z. B.

w (r) w (cc)
rsin (rjd)-(rjd) cos (rfd)'

'
I (rjd)3

wenn die Elektronen als völlig frei betrachtet werden. Dabei ist
d ^ün/'on^ i/Aj.) n- R 0,52 R, (Q0 Volum, R Radius der
Elementarzelle) Die Elektronendichte w (r) ist Null für r 0 und
erreicht die Hälfte von wi(oo) erst im Abstand r — 0,95 R vom
gegebenen Elektron. Es ist also um jedes Elektron herum ein Gebiet
von etwa 1 Atoinvoluni fast frei von Elektronen gleichen Spins.
Auch Elektronen mit entgegengesetzten Spin sind bestrebt, einen
grösseren Abstand voneinander einzuhalten, vermöge ihrer
elektrostatischen Wirkung. Die Berechnung dieser Korrelation der
Elektronenorte ist ein sehr kompliziertes Problem und wohl auch
Wigner noch nicht endgültig gelungen. Immerhin dürfte seine

Abschätzung die richtige Grössenordnung geben; sie zeigt, dass
durch die Korrelation die elektrostatische Wechselwirkungsenergie
der Elektronen um immerhin 12 kcal, herabgedrückt wird, und
dass in unmittelbarer Nähe eines Elektrons die Wahrscheinlichkeit,
ein weiteres Elektron anzutreffen, kleiner als die Hälfte der
Normalwahrscheinlichkeit ist.
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Das Resultat für die Sublimationswärme des Na ist 23,2 kcal,
gegenüber einem experimentellen Wert von 26,9 kcal. Die
Unsicherheit des Wignerschen Wertes liegt hauptsächlich in der
Abschätzung der Elektronenkorrelation und beträgt etwa 5 kcal.

VI. Ilei-ccliiiiiiiji angeregter Elektronenterme.

Für die ultraviolette Absorption der Metalle ist es von grosser
Wichtigkeit, die höheren Zustände der Metallelektronen zu
berechnen. Besonders einfach ist die Rechnung für den jeweils
tiefsten und den höchsten Zustand eines Energiebandes. In diesen
Fällen ist die Eigenfunktion entweder einfach periodisch mit der
Periode des Gitters, oder sie wechselt gerade ihr Vorzeichen beim
Fortschreiten von einem Atom zum Nachbaratom. Innerhalb
einer Elementarzelle lässt sich die Eigenfunktion zweckmässig in
eine Reihe nach Kugelfunktionen entwickeln, dabei treten dank
der kubischen Symmetrie des Problems nur solche Kugelfunktionen

gemeinsam auf, die sich bei kubischen Symmetrieoperationen

in gleicher Weise transformieren1).
Aus den Grenzbedingungen ergeben sich, wie bei s-Termen,

Randbedingungen für das Verhalten der radialen Eigenfunktionen
bei r R (Rand der Elementarzelle), welche den Eigenwert zu
bestimmen gestatten. Wioner hat speziell die Breite der
verbotenen Energiebänder bei Na untersucht. Für Elektronen, die
sich parallel zur Würfel diagonale bewegen, sind z. B. die Energien
von 5,7 bis 6,8 Volt verboten, also nur ein sehr kleines Energie-
intervall, verglichen mit der Breite der erlaubten Energiebänder
(ca. 6 Volt). Ähnlich sehmal sind die verbotenen Energie-
intervalle für die anderen Bewegungsrichtungen, nämlich 0,9 Volt
für Bewegung in der Flächendiagonale, am breitesten (3,1 Volt) für
Bewegung in der Würfelkante. Völlig verbotene Energiewerte,
d. h. solche, zu denen überhaupt keine Eigenfunktion irgendeiner

Bewegungsrichtung existiert, gibt es gar nicht. Auch dies

zeigt wieder die grosse Ähnlichkeit des Verhaltens der
Leitungselektronen von Na mit völlig freien Elektronen2).

M Vgl. H. Bethe. Ann. d. Phys. 3, 133, 1929. Bei nichtverschwindender
Wellenzahl treten dagegen Kugelfunktionen verschiedener Symnictrieeigenschaften
gemischt auf.

2) Wir möchten nochmals betonen, dass trotzdem die übliche Approximation
von freien Elektronen her versagt: sie gibt z. B. als Breite des ersten verbotenen
Energiebandes bei Xa ca. 7 Volt.
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