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Sur les limites de la théorie élémentaire des électrons
métalliques

par Lothar Nordheim (Haarlem).

Introduction *).

Au cours de son développement, la théorie des métaux est
devenue assez compliquée, non seulement à cause du formalisme
mathématique qu'elle emploie, mais aussi par suite des conceptions
physiques qu'elle nécessite. Je ne pense pas qu'on puisse considérer
cela comme ohjection sérieuse à sa valeur. L'état solide est d'une
nature complexe qui ne peut pas être modifiée à loisir. Aussi
doit-on rechercher quelles suppositions sont essentielles pour la
compréhension des divers phénomènes observés, lorsqu'on ne
peut éviter d'introduire des méthodes compliquées dans l'étude
du problème posé.

Les propriétés caractéristiques des conductibilités électrique
et thermique des métaux sont bien décrites par la théorie de

Sommerfeld, qui suit étroitement les conceptions classiques bien
connues et qui peut être présentée maintenant sous une forme
assez simple2). A l'apparition de son mémoire, on est généralement
tombé d'accord que les difficultés les plus sérieuses de la théorie
antérieure étaient aplanies. Mais quelques inhomogénéités restaient,
dues justement à l'emploi simultané de conceptions classiques et
de la statistique quantique. Nous nous proposons dc critiquer
ces conceptions classiques du point de vue quantique.

Les hypothèses principales auxquelles est due la simplicité
de la théorie de Sommerfeld sont les suivantes:

I. L'idée des électrons libres: On emploie les lois de mouvement

des particules libres pour les électrons dans les métaux.

1) Les articles suivants: L. Brillouin, Die Quantenstatistik (Berlin, Springer,
1931) — Sommerfeld und Bethe (Hdb. der Phys. XXIV, 2, Berlin, Springer,
1933) — L. Nordheim, statistische und kinetische Theorie d. met. Zustandes,
Müller-Pouillet, Bd. IV, 4 (Braunschweig, Vieweg, 1934) seront indiqués
dans les références par les abréviations Br., S. B., et N., respectivement.

2) S.B., chap. I; N., chap. VIII.
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IL L'idée d'un libre parcours, qui schématise l'influence de

perturbations responsables des effets dépendant du temps, tels

que la diminution d'un courant induit.
Nous discuterons ces deux hypothèses en détail en résumant

en même temps les effets qui en découlent.

1. L'Hypothèse des électrons libres.

Il est évident que l'expression d'électrons libres ne doit pas
être interprétée trop littéralement. Elle signifie seulement que le

comportement des électrons peut être décrit à partir de conceptions

associées généralement à des particules libres. Dans ce

sens, trois propriétés sont à considérer:

1) Indépendance: Il est possible, en première approximation,
de traiter les électrons comme isolés et d'obtenir des effets globaux
par sommation sur les électrons individuels.

2) Courant: On peut faire correspondre à chaque état électronique

un transport d'électricité.
3) Accélération: Les électrons sont soumis à l'influence de

forces extérieures et ne sont pas liés comme dans les atomes.
Le premier point est peut-être le plus important et en même

temps le plus difficile à discuter. 11 signifie que la réaction d'un
ensemble d'électrons vis-à-vis des variations d'états d'un seul
d'entre eux est négligeable par rapport à la moyenne des actions
des électrons de l'ensemble sur cet électron particulier. La méthode
du champ self-consistent fait une supposition équivalente et
l'on sait qu'elle donne de bons résultats pour les atomes. Comme
toutes les théories plus fouillées en font usage aussi, nous ne la
discuterons pas ici1). Il suffit que cette supposition permette
d'assigner aux électrons des états stationnaires avec des énergies
définies ek et d'introduire une fonction de répartition n (k) pour
ces états.

Les deux autres points peuvent alors être aisément discutés.
Le champ moyen doit avoir les mêmes propriétés de symétrie
que le cristal; il est par conséquent périodique avec la période
du réseau des ions. Les fonctions d'onde pour un champ périodique
sont d'un type très analogue à celui qui correspond à des particules
libres, c'est-à-dire à des ondes planes. Il en découle l'existence
du courant et la possibilité qu'ont les électrons d'être accélérés,
cela en vertu des théorèmes généraux énoncés d'abord par Bloch

*) L. Brillouin a étudié de plus près le champ self-consistent pour des
métaux (voir son rapport dans le présent fascicule).
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et pour lesquels on possède maintenant plusieurs preuves
satisfaisantes1). Us sont résumés dans le tableau suivant en regard
des formules classiques, ce qui met en évidence leur analogie :

champ périodique particules libres

A. fonctions propres

B. vitesse de groupe

C. accélération

1 de
V*-ïhj>k-

¦1 Tt i ,~ *¦
—r \P r

y) u e (u constant)

«* de,'dpx

p F

A détermine la forme des fonctions propres, qui sont des
« ondes modulées », uk étant une fonction périodique de même

période que le réseau, k le vecteur nombre d'onde par cm. Pour
le courant et l'accélération, il faut naturellement considérer des

groupes d'ondes.
B n'est autre que la relation de De Broglie pour la vitesse

de groupe, qui subsiste, parce que le facteur périodique n'affecte
pas les propriétés de propagation. Le courant sera

s e v (1)

C donne l'accélération due à une force extérieure F. Il en
résulte simplement un déplacement uniforme des nombres d'onde.
C'est une conséquence directe de B et du théorème de conservation
d'énergie2).

Uva donc une correspondance complète entre kh et
l'impulsion p. Aussi toutes les expressions qui ne dépendent que des

impulsions ou de la vitesse peuvent-elles être traduites immédiatement

en substituant kh à p.
Cependant une différence fondamentale subsiste. L'énergie

comme fonction d'onde sera généralement différente de k2h2j2m,
expression qui correspondrait, pour des particules libres, à:

P2 k2h2

2 m 2 m

1) S.B. §§ 8, 9, 33; N., ch. IX, §§ 2—4. Voir aussi Jones et Zener, Proc.
Roy. Soc, A, 144, 101, 1934.

2) Le changement de l'énergie doit être égal au travail fait par F, et l'on a
alors :

*£ Ä:dfe* ^«-^ü«.
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Les relations A, B, C permettent de justifier le traitement
semi-classique d'une série de phénomènes. Par exemple tous les
effets d'émission peuvent être réduits à des courants élémentaires
à l'intérieur du métal, en considérant le transport de l'électricité
à travers un élément de surface dans la masse même du métal. La
contribution des électrons pour un certain intervalle de nombres
d'onde dans l'état d'équilibre thermique sera évidemment:

e d s
d ix e rx n0 d kx dky dkz n0 (e) -r- -rr- dkx dkv d k.

e de dky dk.
h g <«-*)/*r + j (3)

Grâce au fait que la fonction de distribution n0 ne dépend
que de l'énergie et grâce à la relation B, on obtient une expression
universelle indépendante de l'individualité des substances, qui
n'intervient que dans la discussion des limites de sommation.
Bethe1) en a déduit que toutes les applications basées sur
cette formule restent inchangées. Ce sont l'effet thermionique,
l'émission froide, l'effet Volta et la dépendance de la limite dans
le rouge de l'effet photoélectrique envers la température2).

Dans certains chapitres de l'optique des métaux3), on rencontre
un autre groupe d'effets importants, où la correspondance entre
des particules libres et des particules dans un champ périodique
admet une interprétation simple. L'indice de réfraction n par
exemple est donné en optique générale par la formule:

n2-l P= Zex/E (A)

où x est le déplacement produit par un champ électrique E. Cet
entraînement se calcule presque comme dans la mécanique ordinaire.
Naturellement on doit se servir encore des groupes d'ondes, et
alors (B et C) :

dcx ; eE d2 e T. ,_.
d kx h2 d kx

Si E ^e27"'"'. on obtient:

1 e F d2e
(6)

h2 An2v2 dki

J) S.B. § 18 c.
2) R. H. Fowlek, Phys. Rev., 38, 45, 1931.
3) Mott et Zener, Proc. Cambr. Phil. Soc, 30, 249, 1934.
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d'où
e2 N

P e iy f (7)An2v2m' V '

avec :

jV - ///¦"-**¦ik- ¦ i=iUli Z "- "¦ '*- (8)

/ est égale à l'unité pour des particules libres. La sommation
porte sur toutes les places occupées et N est le nombre des
électrons. (On peut ici se borner à la distribution pour T 0). Au
facteur / près, (7) est identique à la formule classique. On

pourrait assimiler mjf à une sorte de masse apparente moyenne,
ce que suggère aussi l'analogie

d v ¦ 1 d2 e F
dkx h2 dkl

Pour les effets que nous venons d'envisager, l'introduction
d'un champ périodique ne produit qu'un changement de quelques
constantes. Mais certains points restent encore à préciser.
Premièrement, qu'entend-on par « le nombre des électrons libres»?
Cette question s'impose, car, au sein d'un champ périodique,
il n'y a pas une distinction nette entre des états libres et liés.

Pour cette discussion, la connaissance de quelques résultats
détaillés de la théorie du champ périodique sont indispensables.
La caractéristique de la distribution des valeurs propres est sa
structure zonale étudiée par Brillouin1). Du théorème suivant:

- 0 aux bords d'une zone,
" "normal

on conclut immédiatement que

/ 0 pour une zone complètement remplie. (10)

Les zones complètes ne prennent donc pas part aux effets
de transport et il est inutile de s'occuper des électrons provenant
des couches intérieures des atomes, qui forment des zones complètes
dans le cristal. Ce ne sont alors que les electrons de la dernière
zone dans laquelle se trouvent encore des électrons, qui
interviennent, et cette zone correspond généralement aux électrons de
valence.

*) Br. ch. VIII, §§ 3—13; S. B. §§ 8—13; N. ch. IX, §§ 3—5.
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d2 eMentionnons comme conséquence de la relation D que -,.,x
peut et doit être négatif pour quelques parties d'une zone et que
l'on peut considérer les places libres et occupées comme
complémentaires entre elles. Cela constitue le point de départ pour
la distinction entre isolateurs, semi-conducteurs et conducteurs
et pour l'explication des effets anormaux tels que les effets Hall
et Thomson de signe inverse.

Les considérations exposées jusqu'ici se résument dans la

question suivante: le terme /0 -,- d2ejdk'x est-il de l'ordre de

l'unité ou en diffère-t-il peut-être entièrement? On ne peut pas
donner une réponse générale, mais on peut faire comprendre,
grâce à un raisonnement dû à Bethe1) que, pour des métaux
simples comme les alcalins, l'image des électrons libres fournit
des résultats raisonnables.

Rappelons la règle de sommation suivante, analogue aux
théorèmes B, C2) :

— m d2 e —,, „ _,E /o U aV- 1 "S /"' * + 2~~ />*-2+ tkki,

i — I T) |2Ikk' — ; JT Pkk'
m (e — £

Ici les / sont les « puissances oscillatriees » correspondant
j* Ti r, i m d2e „,aux passages k —v k L expression /0 -,2 .,2 peut être

considérée comme la puissance oscillatrice correspondant au
passage à des états immédiatement voisins. Les fkk, se divisent
en deux groupes, ceux qui correspondent aux états d'énergie
plus petite que ek (signe négatif), ceux qui correspondent à des
états d'énergie plus grande que ek (signe positif). On peut estimer
les premiers, parce qu'ils sont pratiquement les mômes quo pour
les atomes libres. Aux environs des noyaux, les fonctions d'onde
diffèrent peu des fonctions atomiques et pour des niveaux bas, elles
sont essentiellement concentrées dans ce domaine. La somme H~ sera
donc, d'après Bethe, d'ordre % au maximum. Ainsi /0 ne peut
être beaucoup plus grand que 1, ni la masse effective beaucoup plus
petite que la masse vraie. D'autre part, /0 ne sera pas beaucoup
plus petit que 1, car les dimensions d'un cristal sont déterminées
approximativement par le diamètre des orbites des électrons de

valence, et par conséquent l'effet de résonnance, qui détermine
la possibilité d'échanges des électrons entre les atomes est consi-

M S. B. § 9c et § 13.
2) S. B. § 9c.
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dérable. On peut illustrer ce point en rappelant l'image que Bloch
donne des électrons liés. On peut exprimer /0 par une intégrale de
résonnance dont la valeur devient alors considérablement plus
grande que 1. Ce qui signifie naturellement que l'image des électrons
liés n'est pas suffisante et, de plus, que /0 ne doit pas avoir une
valeur trop différente du maximum donné par la relation E.
Or, si f0 — 1, les dimensions de la zone des électrons de valence
doivent être de l'ordre de celui des zones d'électrons libres, de
sorte que l'on retombe sur des valeurs semblables pour les
grandeurs ayant une réelle signification telles que la densité des valeurs
propres et la niasse apparente aux environs dc l'énergie critique de
Fermi. Toutefois, cela ne signifie pas que les électrons sont libres
au sens qu'impliquerait un champ périodique presque constant.

L'hypothèse des électrons libres peut donc être appliquée en
vertu des cinq théorèmes A, B, C, D, E. Les trois premiers montrent
l'analogie entre le mouvement que nous étudions et le mouvement
libre. D permet de donner un sens exact au nombre des électrons,
et E précise des ordres de grandeur.

2. L'hypothèse du parcours libre (temps de relaxation).

Nous abordons maintenant la critique de l'emploi d'un
parcours libre résumant les effets d'interaction entre les électrons et le
réseau ionique. U est plus clair et plus commode, peut-être, de

parler d'un temps de relaxation.
Le sens physique de cette conception est le suivant: les dits

effets, spécialement l'influence de l'agitation thermique du réseau,
tendent toujours à placer les électrons dans un état d'équilibre.
Celui-ci peut être détruit par des influences extérieures, et l'on
peut parler d'un temps de relaxation lorsque le rétablissement
d'équilibre s'effectue selon un processus indépendant de la
perturbation initiale.

Mathématiquement cela signifie ceci: l'état de l'ensemble
des électrons est décrit par une fonction de répartition n (t, r, k),
qui dépend du temps et du lieu, ainsi que de k. La fonction n
connue, on évalue facilement toutes les grandeurs intéressantes,

par exemple le courant électrique i et le courant de chaleur w:

i=efffvndk; w= fflevndk; (dk dkxdkv dkz) (11)

n est déterminé par la condition que sa dérivée temporelle s'annule
(Boltzmann) :

dn dn dn ,- dn _ ,.,„,+¦ x t— + kz—— + +a — b 0. (12)
dt dt à x dkx



10 L. Nordheim.

Cette dérivée se compose de la dérivée totale ordinaire, ainsi
que de la contribution (a—b) des chocs, a étant le nombre des
électrons émis dans l'unité de temps de l'élément d'espace de

phase considéré, et b le nombre des électrons diffusés en retour
dans cet élément. D'après les expressions B et C du § 1, et les

suppositions usuelles suivantes :

- =0; n n0 + n1; nx« n0; n0 ^_^ltT + j (13)

on obtient :

G + Q nx 0, (14)
où la fonction

h dkx de | àx\ kT j \

est connue, et :

Qnx a-b /// 01 « (1 - n') - V% n' (1 - n)} d k'

- JJf Vk, j n (1 - n') - eLiT~ n (1 - n)) d k' (16)

est un opérateur intégral appliqué à la fonction inconnue nx.
Les parenthèses (1 —n) et (1—w') sont les facteurs caractéristiques
de la statistique de Fermi. (En (15) nous avons fait usage du
théorème de réciprocité pour les probabilités de transition V,

Vl eIkT'Vkk,

qui découle de la condition de l'existence d'un équilibre thermique
Qn0= 0). La formule (16) est tout à fait générale et constitue
la base de théories plus détaillées.

La définition logique d'un temps de relaxation r est la suivante.
Si au temps t 0 il y a, en l'absence de toute influence extérieure,
une perturbation nx de l'équilibre, celle-ci disparaît d'après la loi:

nx (t) nx (0) e-( r (17)

(t pourrait encore être une fonction de k, mais indépendante
de nx (0)). Le libre parcours sera défini par:

l TV. (18)

Pour que (17) soit une conséquence de (12), il faut évidemment

que

Qnx —nx, (19)
T
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car alors, en l'absence d'autres perturbations, dnjdt =—nx (1/t).
Autrement dit, l'opérateur doit reproduire la fonction initiale;
le résultat de l'opération ne doit dépendre que de la valeur de la
fonction nx dans l'élément de phase considéré. En vertu de (19),
l'équation intégrale de Boltzmann devient une équation ordinaire,
qui a pour solution:

/i t G (20)

En général, la condition (19) n'est pas remplie parce que Q
est un opérateur intégral. Mais (19) n'est pas nécessaire si nx
est arbitraire. Il faut seulement que ce terme puisse compenser
une perturbation donnée sous la forme assez spéciale (voir (15)):

G= Òdlj^)' (21a)

où g est une fonction de l'énergie seulement. Reste à savoir alors
les propriétés de Vf, et e (k), qui font que (19) est vrai si nx est
do la forme analogue:

¦H-£*(.). (21b)

Le fait que l'opération Q implique une sommation sur l'énergie
est en désaccord avec la condition (19). Mais on sait que le transfert

d'énergie entre les électrons et le réseau des ions lourds est
étroitement limité. Aussi les V\, n'existent-ils que pour des
états très voisins d'énergie. On peut développer:

X (e') X (e) + (e' -e) ** + £z_el -d* X
+ (22)

de 2 de

ainsi que le facteur é'~•/W*T, et (16) est remplacé en première
approximation par :

% », - x m /// n, £ - *£ u.- *v *k ¦ m
Il est remarquable que les facteurs de Fermi disparaissent

automatiquement lors de cette approximation; c'est là la cause
essentielle de la simplicité de la théorie de Sommerfeld.

Jusqu'à quel point peut-on appliquer ce développement?
Au terme ü0nx près, toutes les grandeurs de l'équation complète (12)
contiennent l'énergie par l'intermédiaire de la fonction n0 ou de

ànjàe Pour que le développement (22) soit raisonnable, il faut
et il suffit alors que le changement de n0 correspondant à un
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transfert maximum d'énergie soit petit par rapport à l'unité
(domaine total des valeurs possibles de n). D'après l'idée qu'on
se fait actuellement sur l'interaction entre le réseau et les
électrons, il peut se produire une absorption ou une émission d'un
quantum d'une des oscillations élastiques du cristal. Grâce à la
structure atomique de ce dernier, il existe une fréquence maxima
définie par:

h vm k0. (24)
(O température de Debye).

C'est donc la limite supérieure de l'énergie transportable. La
fonction Un a la forme bien connue presque rectangulaire (voir
fig. 1). La tangente au point e e0 (?„ est le paramètre de la distri-

2AT

sMT

Fig. 1.

bution) coupe l'abscisse à une distance 2k T de e0. Le domaine où la
variation de n0 se fait est par conséquent de l'ordre de k T. Donc si

I. T> 0,
le changement de n0 pour des variations de e de l'ordre de k O
est petit. I est alors la première condition indispensable pour
l'existence d'un temps de relaxation. Cela n'a aucun sens de

parler d'un libre parcours au-dessous de cette limite.
Mais cette condition n'est pas encore suffisante. Comme on

le voit immédiatement, il faut, de plus (comparer (21), (23)), que

/// de' de
VI, dkx d ky dkj -k dkJ dk (25)

à une fonction de e près. Il y a deux cas simples où cette condition
est remplie, et je pense qu'ils sont seuls d'une portée assez
générale pour en tirer des conclusions.

Le premier cas s'exprime par:
lia. V\r V(\k\ - \k'\),



Sur les limites de la théorie élémentaire des électrons métalliques. 13

soit: la probabilité de passage est indépendante de la direction
de k'. Dans ce cas, l'expression (25) pour b s'annule parce queas j.

dkj est une fonction impaire de kx. On ne trouve donc ici aucune
restriction pour la fonction e (k), mais la condition imposée à
V\, est très sévère. Pour x, on obtient

y =/// v\> dkx' dky' dkz' (26)

L'autre cas consiste en ceci:

IIb- «W e(k), et V\, V (\k -k'\),
c'est-à-dire que le cristal présente une symétrie sphérique
complète, de sorte que £ n'est une fonction que de la valeur absolue

¦/fM

X
Fig. 2.

du vecteur k, et V ne dépend que de l'orientation relative de k et
k', mais pas de leur position absolue. Un calcul élémentaire donne
alors\

t 2nIIj vk'2~d~7de'i1 ~ k
cos 0)sin 0d&- (27)

Abstraction faite de possibilités accidentelles, la théorie du
libre parcours est justifiée pour autant que l'une des deux
hypothèses lia ou IIb est admissible.

x) En introduisant, pour les angles, les notations indiquées dans la figure 2
on a: 6 '

de de kx

Itk'-JkT'' k* kc™»'> K'^k'œaê';
cos d' ----- cos 0 cos & +- sin & sin & cos a

et alors, pour n, ~~ kx :

QoK ^ ffj(kx-hx') VdV

J j JVk'2 — de' {k cos &-k' (cos 0 cos 0 +- sin 0 sin » cos a)) sin 0 d© da,
ce qui donne (27^ après la sommation sur a.
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Dans les théories détaillées, on suppose toujours IIb (la
condition que V satisfait est une conséquence de la symétrie
de e). Pour des températures élevées, les résultats sont nécessairement

identiques à ceux que l'on obtient à partir de (27). Mais
il est très difficile d'estimer les erreurs qu'impliquerait la
supposition lib. On sait que la symétrie sphérique n'est certainement
pas réalisée rigoureusement, mais on ne possède aucune méthode

pour traiter une fonction e non sphérique.
On peut cependant estimer l'erreur introduite par le développement

(22). On peut considérer notre solution comme le premier
pas d'un calcul par approximations successives. En posant:

Q Qn -f ûx ; n n0 + nx + n2 + - • - (28)

les approximations successives de l'équation (14) seront :

nx —xG ; n2 — Qx nx Qx xG etc. (29)

Comme l'opération Qx contient une sommation sur l'énergie
et que V est, comme on le montre, très approximativement une
fonction paire en (e—e'), la contribution des termes en (f—e')
disparaît et le développement commence par un terme quadratique,
c'est-à-dire d'ordre (QjT)2. Ce résultat a été trouvé aussi par
Brillouin1) grâce à une discussion détaillée de l'équation de
BOLTZMANN.

Il nous reste à voir quels résultats on obtient par la méthode
du libre parcours. Il est inutile de répéter ici le mécanisme d'un
calcul bien connu, mais il sera utile, peut-être, de donner la forme
des résultats qu'impliquent les assomptions faites. La conductibilité

électrique x devient :

One2 e2 NI Sn
* -inrfco*o= Kh° (puisque N= 3 kl). (30)

L'indice 0 correspond à la valeur e0 de e Comme fc0 est une
grandeur géométrique ne dépendant que du nombre des électrons,
la détermination de /0, d'après cette formule où l'on prend pom-
la conductibilité la valeur expérimentale, doit être bonne s'il
s'agit d'un métal tel qu'un métal alcalin pour lequel le nombre
des électrons est bien défini.

Pour la conductibilité thermique y, on obtient la loi de Wiede-
mann-Franz :

>) Br. ch. VIII, §§ 23, 24.
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Cette relation représente le résultat le plus important de

toute la théorie élémentaire, car l n'y figure pas.
On peut calculer enfin les effets thermoélectriques. Il suffit

de donner un exemple. Le coefficient a de Thomson vaut:

(nk)2T à log (k2 l)
3 de

(32)

relation qui contient la dérivée logarithmique du produit fc2 /,
produit qui lui-même détermine x. Aussi, non seulement la valeur
de cette expression pour l'énergie critique e0, mais aussi l'allure
de la courbe qui la représente à cette limite interviennent-elles
dans le calcul. Les effets thermoélectriques ne rentrent donc

pas rigoureusement dans le cadre de la théorie élémentaire, et la
détermination des valeurs absolues des conductibilités non plus.
Mais c'est là une remarque générale, l'expression (27) de x peut
être employée aussi pour des calculs quantitatifs et permet d'obtenir

facilement tous les résultats correspondant à de hautes
températures. Pour les effets thermoélectriques, le calcul est assez simple
pour être donné ici. •

Il suffit de savoir que les processus possibles sont les réflexions
de Bragg des ondes électroniques par les ondes élastiques, avec
émission ou absorption d'un quantum de son. C'est-à-dire:

k — k'A-f— 0 (condition d'interférence)
(33)

V\, — V(f) ô(e — e' Az hcf) (conservation d'énergie)

où / est le vecteur de propagation pour les ondes élastiques. De
plus, comme c, la vitesse du son, est beaucoup plus petite que
celle des électrons, e' est toujours presque égal à e, et par conséquent

fc' à fc. A partir des approximations raisonnables V(f) ne
dépend que de la valeur absolue de /, et pas des fc,fc'. Dans (27), on
introduit alors / au lieu de & comme variatile. D'après (33), on a:

fc2 + fc'2 - f2
cos «9=

2fcfe,
(34)

Le seul facteur de (27) qui dépende encore des énergies est:

dk' f fc' \ dk' k2-k'2 + f2 fdf s

-r-r k'2 1 - cos 0 sin 0 d 0 -T, k'2 „„ ' '-.'-. 35
rte \ fc / de 2 fc2 fcfc
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Dans cette expression, on peut négliger la petite différence
entre fc et fc' et l'on obtient:

/de \2
l xv proportionnel à fc2 1 (36)

C'est un résultat déjà obtenu par Bethe1) à l'aide de la
solution explicite de l'équation dc Boltzmann. Une fois e(k)
connu, on peut évaluer (32). Si par exemple e ~ fc2 (même relation
que pour des électrons libres), on obtient:

ölog(fc2/)
de

(n k)2 T
(37)

Sommerfeld2) a montré que (37) est en très bon accord
avec les valeurs observées pour les métaux alcalins, si l'on prend
pour £0 la valeur correspondant à des électrons libres. Mais comme,
d'après la formule (36), les effets thermoélectriques sont assez
sensibles aux particularités de la distribution des valeurs propres,
on ne doit pas s'attendre à ce qu'il en soit de même pour d'autres
métaux.

Il reste une dernière classe de phénomènes que l'on traite
généralement par la méthode élémentaire, c'est l'influence d'un
champ magnétique sur les conductibilités. Je me bornerai à

quelques remarques. Formellement on ne rencontre pas de
difficultés. Les formules générales restent inchangées, si l'on introduit
pour la force l'expression de Lorentz:

F=er[Hv]. (38)

Si la direction du champ est parallèle à l'axe des z, la terme
nouveau dans l'équation de Boltzmann devient:

eH I de d de d \Hn Hni=— - —) n, 89)1
ch2 \dky àkx àkx dkj '

car II Un 0. L'hypothèse IIb de la symétrie sphérique fournit
encore une solution rigoureuse. Pour le coefficient de Hall.
on trouve:

R -TT \t (4°)chknx ecN ' '

1) S. B. § 36d.
2) S. B. § 6d.
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ce qui est presque la valeur classique. Mais pour la variation
de la résistance électrique, les valeurs théoriques sont beaucoup
trop petites, parce que l'influence d'un champ magnétique sulla

fonction de répartition peut être compensée exactement par
un champ électrique (le champ de Hall) lorsqu'on ne considère

que des électrons ayant une même vitesse. Alors, comme les
électrons des environs de £0 jouent seuls un rôle essentiel, la première
approximation usuelle, dans laquelle on néglige les énergies
différentes de celte valeur, ne fournit qu'une variation de second
ordre dv la résistance. Cette compensation, due à un champ
électrique, n'a lieu que si e est sphérique. Sinon la vitesse n'est

pas la même pour tous les électrons de même énergie et le changement

de la résistance devient un effet de premier ordre, l'ordre
des valeurs observées1).

Les effets thermoélectriques présentent un caractère un peu
différent. Ils sont bien aussi de second ordre, mais il est évident
qu'ils sont nuls au premier ordre, même pour des e non sphériques,
car un courant ou un développement de chaleur est impossible
s'il n'y a que des électrons d'une seule énergie. Il n'est donc pas
contradictoire de faire usage de la théorie élémentaire pour établir
la loi de Wiedemann-Franz, mais elle ne suffit pas pour calculer
les effets magnétiques.

En résumé, il est donc toute une partie de la théorie des métaux,
admettant un maniement relativement simple, qui constitue
une approximation logique de la réalité. Elle est dans ses grandes
lignes identique à la théorie originale de Sommerfeld, basée sur
les conceptions des électrons libres et d'un parcours libre, et elle

permet de rendre compte qualitativement des effets produits à

de hautes températures, pour autant que ces effets ne dépendent
pas d'une façon trop sensible de la distribution des valeurs propres.

J'ai à remercier M. A. Mercier pour sa collaboration
précieuse dans la révision du texte français.

') Voir à cc sujet un travail de Jones et ZeHER (Proc. Roy. Soc. A. 145.

2(58. 1934) qui obtiennent des résultats raisonnables à partir de l'hypothèse Ha.
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