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Uber die Quantisierung der skalaren relativistischen
Wellengleichung
von W. Pauli und V. Weisskopf in Zirich.
(27. VIIL. 34.)

Zusammenfassung. In der vorliegenden Arbeit wird die konsequente An-
wendung des Heisenberg-Pauli’schen Formalismus der Quantisierung der Wellen-
felder auf die skalare relativistische Wellengleichung fiir Materiefelder im Falle
von Einstein-Bose-Statistik der Teilchen durchgefithrt. Dabei ergibt sich ohne
weitere Hypothese die Existenz von zu einander entgegengesetzt geladenen Teil-
chen gleicher Ruhmasse, die unter Absorption bzw. Emission von elektromagne-
tischer Strahlung paarweise erzeugt bzw. vernichtet werden konnen. Die Héaufig-
keit dieser Prozesse erweist sich als von derselben Grossenordnung wie die fir
Teilchen derselben Ladung und Masse aus der Dirac’schen Lochertheorie folgende
(§ 4). Die hier untersuchte, ebenfalls den Relativitiatsforderungen geniigende
korrespondenzmissige Moglichkeit von entgegengesetzt geladenen Teilchen ohne
Spin mit Einstein-Bose-Statistik hat gegeniiber der Loéchertheorie den Vorzug,
dass die Energie von selbst immer positiv ist. Ebenso aber wie aus der urspriing-
lichen Fassung der Lochertheorie folgt aus der hier besprochenen Theorie neben
den unendlich grossen Selbstenergien auch eine unendliche Polarisierbarkeit des
Vakuums.

§ 1. Der Zusammenhang der skalaren relativistischen Wellengleichung
mit der Existenz entgegengesetzt geladener Teilchen.

Bekanntlich 1st die skalare relativistische Wellengleichung, die
mit Einfithrung der Operatoren

0

v = ) 0
I =1h ot Pr— 1 L g z*

(1)
(k=1,2,3)

imm kriftefreien IFFall geschrieben werden kann,

ok 5.
2 —AZ pi—m2e?2=0 (2)
;= ]

(hier und 1m folgenden bedeutet stets h die durch 2=z dividierte

und ¢ die Lichtgeschwindigkeit), allgemein zugunsten der Dirac-
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schen vierkomponentigen Wellengleichung verlassen worden, da
erstere nicht den Spin der Teilchen liefert und daher fir Elek-
tronen sicher eine ungeniigende Approximation der Erfahrung
darstellt. Es bedart daher einer besonderen Rechtfertigung, wenn
m Folgenden die Diskussion der Konsequenzen aus der ersteren
Wellengleichung wieder aufgenommen wird. Wir glauben eine
solche Rechtfertigung insbesondere durch den Nachweis geben
zu konnen, dass die empirische Entdeckung des Positrons und ihre
theoretische Deutung durch die von Dirac herrithrende Neuinter-
pretation der m semer urspriinglichen Theorie auftretenden Zu-
stinde negativer Energie eine Revision derjemigen auf der all-
gemelnen quantenmechanischen Transformationstheorie basieren-
den a priort Argumente Dirac’s erforderlich macht, mit denen
von ihm urspriinglich der Ubergang von der skalaren relativisti-
schen Wellengleichung zu seiner Spinorwellengleichung begriindet
wurde. Im folgenden soll niamlich gezeigt werden, dass bei An-
wendung der allgemeinen Vorschriften zur Quantisierung von
Wellenfeldern, die friher von Hemsexsere und Pavinil) formu-
liert wurden, auf das vorliegende Problem nicht nur keine allge-
meinen Emmwinde gegen die skalare Wellengleichung vom Stand-
punkt der quantenmechanischen Transformationstheorie aufrecht
erhalten werden konnen, sondern dass man auf diese Welse unter
Wahrung der relativistischen und der Eichinvarianz der Theorie ohne
jede weitere Hypothese zur Konsequenz des Vorhandenseins entgegen
gesetzt geladener Teilchen, und des Auftretens von Prozessen der
Erzeugung und Vernichtung solcher Teilchenpaare gelangt, wobet
iiberdies von selbst die Energie des Materiewellenfeldes sich als stets
positiv ergibt. Fiir die Teilchen muss hierber die Statistik sym-
metrischer Zustinde (EinsTrIN-Bosk-Statistik) angenommen wer-
den, aber es 1st wohl nur als befriedigend anzusehen, dass ohne
gleichzeitige Eimfihrung des Spins die Einfithrung des Ausschlhes-
sungsprinzips sich nicht unter Wahrung der relativistischen In-
varianz der Theorie durchfiihren lisst.

Was nun das erwidhnte a priori-Argument Dirac’s gegen die
skalare relativistische Wellengleichung?) betrifft, so beruht es
wesentlich auf zwei Voraussetzungen.

1. Es 1st in der relativistischen Quantentheorie widerspruchs-
fre1 moglich, em FEwnkorperproblem zu formulieren.

) Zeitschr. f. Phys. 56, 1, 1929.

) Man findet dieses am ausfiihrlichsten dargestellt in den Leipziger Vor-
trigen 1932 (gesammelt erschienen unter dem Titel Quantentheorie und Chemie),
S. 85ff.

1
2
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2. Die (statistisch zu interpretierende) réumliche Teilchen-
dichte o(z) i1st ein sinnvoller Begriff. Nach Integration tiber ein
beliebiges endliches Volumen erhiilt man aus ihr eine ,,Obser-
vable’® (im Sinne der Transformationstheorie) mit den Eigen-
werten 0 und + 1.

Sobald die erste Voraussetzung zutrifft, i1st es nédmlich nicht
notwendig, den Formalismus der Quantelung der Wellenfelder
auf das Problem anzuwenden; es ist dann vielmehr moglich, mit
dem gewohnlichen Wellenfeld 1im dreidimensionalen Raum auszu-
kommen. Die zweite Voraussetzung hat zur Folge, dass die Teil-
chendichte nicht nur die vierte Komponente eines Vierervektors
sein und einer Kontinuititsgleichung gentigen muss, sondern auch
die Eigenschaft haben muss, niemals negativ zu sein. Uberdies
werden die Eigenwerte der zugehorigen Dichtematrix nach Inte-
gration iiber ein unendliches Volumgebiet, wie Dirac zeigte, nur
dann die richtigen, wenn die Teilchendichte von der Form i1st!):

0 (x) = N7y,

r

Dagegen hat die Teilchendichte, die zur skalaren relativisti-
schen Wellengleichung gehort, die Form

*

2z O . L 0y
o (x) =yp* (1 h —a‘qf —e P, q)) - (1 h (;’{t + e @, tp*) p (3)

wenn e die Ladung des Teilchens und @, das #dussere skalare
Potential bedeutet. Da diese nicht von der verlangten Form ist,
scheint emn Widerspruch hergestellt.

Bekannthich hat nun Dirac — gestiitzt auf den Umstand,
dass aut Grund seiner Wellengleichung ein Wellenpaket aus Zu-
stinden negativer Energie sich in einem #dusseren Feld so bewegt,
wie es einem Teilchen mit entgegengesetzter Ladung, gleicher
Masse und positiver Energie entsprechen wiirde — die Zustinde
negativer Energie zur Deutung des Positrons in folgender Weise
herangezogen. Es sollen nur die Abweichungen von dem Fall,
wo alle Zustédnde negativer Energie besetzt sind, die ,,ldcher
in der Besetzung der Zustinde negativer Energie, beobachtbar
sein, das heisst zur ,,wahren” (felderzeugenden) Ladungsdichte
und zur eigentlichen (dann positiven) Energie beitragen.

) Erst aus dieser Form fiir o wird dann weiter geschlossen, dass die Wellen-
gleichungen von erster Ordnung in 0/0t sein miissen.
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Ohne auf die Schwierigkeiten einer widerspruchsfreien und
relativistisch und eichenvarianten Formulierung dieser Dirac’schen
Lochertheorie von Elektron und Positron 1im Falle dusserer Felder,
die ja mehrfach in der Literatur diskutiert worden sind, ndher
einzugehen, kénnen wir folgendes feststellen:

1. Wegen der Prozesse der Paarerzeugung und wegen der
neuen Interpretation der Zusténde negativer Energie tiberhaupt
1st es nicht mehr moglich, sich auf ein Einkorperproblem zu
beschrianken.

2. Die Teilchendichte hat keinen direkten physikalischen
Sinn mehr!). Im kriaftefreien Fall 1st allerdings noch die Zahl
der Teilchen mit gegebenem Impuls (Wahrscheinlichkeitsdichte
im Impulsraum) und daher auch die Gesamtzahl der vorhandenen
Teilchen eine sinnvolle ,,Observable’

3. Dagegen ist nicht nur die Gesamtladung, sondern auch
die Ladungsdichte o(x) eine sinnvolle Observable. Nach Inte-
gration iber ein beliebiges endliches Volum muss sie — auch bel
Vorhandensein dusserer Felder — (bei Anwendung des For-
malismus der Quantisierung der Wellen) die Eigenwerte 0, + 1,
+2....+ N,... haben, die jetzt sowohl positiv wie negativ
sein konnen. (Im Fall des Ausschliessungsprinzips ist die 7 ahl N
bel gegebener Grosse des betrachteten Raumgebietes nach oben
begrenzt.) Die Ladungsdichte o(x) und die Gesamtzahl der wvor-
handenen Teilchen sind {brigens nicht vertauschbar.

Diese Forderungen sind nun gegeniiber den urspriinglichen
eines echten relativistischen Einkorperproblems so weit modifi-
ziert, dass fiir die spezielle Form Zwy} vy, bei der Ladungsdichte

r

kein Grund mehr vorliegt. Wir werden iiberdies zeigen, dass die
zuletzt formulierten Forderungen in der skalaren relativistischen
Theorie fir spinlose Teilchen mit Einstein-Bose-Statistik ebenso
erfiillt sind wie in der Dirac’schen Loéchertheorie. Iieber ist
naturgeméss der Ausdruck (3) nicht mehr als Teilchendichte,
sondern als Ladungsdichte zu interpretieren.

1 Ist y)j der ,,positive‘’ (aus Zustinden positiver Energie zusammengesetzte),
yy der ,negative” Teil der Wellenfunktion in der Dirac’schen Lochertheorie,
so hat die Ladungsdichte als Operator die Form

0(z) = 2 {w“ —y Y+ v v, TYitv )

Wegen des Auftretens der gemischten Glieder lasst sie sich schon bei Abwesen-
heit dusserer Krifte nicht so in zwei Teile teilen, dass jeder Teil fir sich einer
Kontinuititsgleichung geniigt und die 4-Komponente eines Vierervektors bildet.



Quantisierung der skalaren relativistischen Wellengleichung. 713

Das Hauptinteresse der letzteren Theorie scheint uns darin
zu liegen, dass in ihr automatisch — das heisst ohne eine neue,
der Locheridee dquivalente Hypothese und ohne dem Formalis-
mus der Quantentheorie fremd gegeniiberstehende Grenziiber-
gangs- und Subtraktionskunstgriffel) — die Energie der mate-
riellen Teilchen nach Ausfiihrung der Quantisierung der Wellen-
felder stets positiv ist. Dies ergibt sich daraus, dass die Hamilton-
funktion des Materiewellenfeldes in der hier diskutierten skalaren

Theorie — 1im Gegensatz zum entsprechenden Ausdruck der
Dirac’schen Spinortheorie — die stets positiv definite Form an-
nimmt :

ST o
3
+1 . 01p |2
+ N ihe _ D 2 .4 2| . 4
Lﬁ\tzc ()kare upl + m2ct | p| 4)

Angesichts der Hypothesenfreiheit dieser skalaren relativisti-
schen Theorie konnte man vielleicht auf den ersten Blick tber-
rascht sein, warum ,,die Natur'® von dieser Moglichkeit der Exi-
stenz entgegengesetzt geladener Teilchen ohne Spin mit Bose-
Statistik, die durch Zerstrahlung bzw. Materialisationsprozesse
entstehen und vergehen konnen, ,,keinen Gebrauch gemacht hat*?).
Man muss aber bedenken, dass die Frage der Anwendbarkeit
der hier diskutierten Theorie, z. B auf «-Teilchen wegen der sich
hiebei geltend machenden Effekte der Kernstruktur, wohl ausser-
halb des Giltigkeitsbereiches der jetzigen Quantentheorie iiber-
haupt liegen diirfte. Auch fihrt die hier diskutierte Theorie,
wie in § 4 gezeigt wird, bel den Fragen der Polarisation des Va-
kuums zu dhnlichen Unendlichkeiten wie die urspriingliche Form
der Lichertheorie®). Sie fiihrt tibrigens ebenfalls zu einer unend-
lichen Selbstenergie nicht nur der elektrischen Teilchen, sondern
auch zu einer unendlichen materiellen Selbstenergie der Licht-
quanten?). Ein weiterer Fortschritt in diesen Fragen dirfte daher
wohl erst durch ein theoretisches Verstdndnis des numerischen
Wertes der Sommerfeld’schen Feinstrukturkonstanten zu erwarten
seln.

1) P. A. M. Drrac, Proc. Cambr. Phil. Soc. 30, Pt. I1, 150, 1934. — R. PEIERLS,
Proc. Roy. Soc. 146, 420, 1934. — W. HEISENBERG, ZS. f. Ph. 90, 209, 1934.

2) Vgl. P. A. M. Dirac, Proc. Roy. Soc. 133, 60, 1931, bes. S. 71.

3) P. A. M. Dirac, Solvay-Report 1933.

1) Analog wie bei W. HEISENBERG, 1. c. — Uber den Wert des Umstandes,
dass in manchen Formulierungen der Lochertheorie zwar die Polarisationseffekte
endlich, die Selbstenergien aber doch unendlich sind, kann man im Zweifel sein.

*



714 W. Pauli und V. Weisskopf.

§ 2. Durchfithrung der Quantisierung des Wellenfeldes!) im kriifte-
freien Fall.

Die Lagrangefunktion der skalaren relativistischen Theorie
lautet (mit p,»...=1 bis 4 und z, = 1€t):

0 Oy

By Oy — h? 2\" oy Oy m2cty*y. (5)

_h2
. ot dt < gg* 0zx*

Der relativistische Energie-Impulstensor wird

, 0yp* Oy Oy* Oy
T = =Wt (G + 5 ga) — 0w ©)

also die Energie (Hamiltonfunktion)
B f T, dV

:f{iz‘)"’ 0"0+h222J V2OV e e w]dV (7)

ot ot oxk 0k

und der Impuls

v _ [ 0y* Oy | Oy* Oy
Gk—C/TM.dV /h(dt e+ 5 Ot)dV. (8)

Wir haben nun »* und p als ¢g-Zahlen (auf das Schriodinger-
funktional wirkende Operatoren) aufzufassen, wobei y* hermitesch
konjugiert zu u ist. Wir bezeichnen im folgenden stets die zu
ciner gegebenen g-Zahl hermitesch Konjuglerte mit einem *. Wir
haben dann die zu p und y* kanonisch konjugierten Impulse =
und #* zu bilden nach der Regel:

1 0Lk R 8v e 1 4L _.ly g
T . y T * ’
H o (52) ot o) o

die be1l Teilchen mit Einstein-Bose-Statistik den kanonischen Ver-
tauschungsrelationen (abgekiirzt: V.-R.) gentigen:

iz (x, 1), p (@, )] =6 (x—2), i[2* (1), p* (@, )] = b (z—2) (])

1) Uber die Ausdriicke fiir Lagrangefunktion, Energie-Impulstensor und
Stromvektor in der skalaren relativistischen Theorie vgl. z. B. W. Gorpon,
Zeitschr. f. Phys. 40, 117, 1926.
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worin auf der rechten Seite é(x — z’) die bekannte Dirac’sche
#-Funktion bedeutet und wie tblich

(4,B]— AB—BA (10)

oesetzt 1st. Die Grissen vy, w* sowie 7, 2* untereinander, ferner

m mit p*, sowie #* mit y sind vertauschbar.
Die Anwendung der Regel »
0f v s,
== 11

auf y, p* fihrt auf eine Identitdt, die Anwendung auf =, n*
mit Hilfe von (9) fithrt zu den Wellengleichungen

hz(()j;i =htctAy—micty (12)
*
hz%fz =h2c* Ayp*—m2ctyp*. W)

Ferner ist, wie es sein muss, die Regel

of i
W:*W(Gk,ﬂ (18)

fiir alle Grossen f erfiillt. Man wird sehen, dass nur im Ausdruck
fir den Impuls eine Zweideutigkeit der Reihenfolge der Faktoren
eintritt. Diese wurde so gewihlt, dass der Integrand des Aus-
druckes (8), der die Impulsdichte darstellt, ein hermitescher Ope-
rator 1st.

Wir kommen nun zu den Ausdriicken fir die (in der Einheit
der elektrischen Teilchenladung e gemessenen) Ladungsdichte g

und Stromdichte i = ¢s, die mit s, =19 zum Vierervektor s,
zusammengefasst ist, der der Kontinuitatsgleichung

5 0g "
%‘5% = oder 3?+ divi=0 (14)

gentgt.
Diese sind gegeben durch

TA ak
5= hei (PVL ——"lw*) (15)
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oder
0 p* oy . 0 0
— _pifOw* Oy )__ ( y* Oy )
g ( ot ¥ ot ¥ hl—r ot ¥
0 0
=4t'b(w (;‘Ut —y* of) (15a))

(9 v* oy o 2
By = hcz("é;kf ok ¥ ) (15b))

Die Striche auf der rechten Seite beziehen sich auf die Zwei--
deutigkeit der Rethenfolge der Faktoren im Ausdruck fir diee
Dichte p und sollen bedeuten, dass die einzelnen Summandem
hermitisiert werden sollen. Eine Festlegung der IFaktorenreihen--
folge auf Grund der Forderung der Hermitizitéat des Dichteopera--
tors allein ist hier nicht moglich. Die hier getroffene Festsetzungr
erwelst sich aber als die zweckmissigere, da sie zu keiner Null--
punktsdichte Anlass gibt, wie spéater gezeigt wird. Sie ist tiber--
dies mit der relativistischen Invarianz und der Kontinuitits--
gleichung 1m Einklang.

Wie man sieht, kann man die Dichte mit Riicksicht auf (9))
auch schreiben:

e = —i(ay —a*y¥) = —i(pr —p*a¥). (16))

Wir wollen nun beweisen, dass diese an einer bestimmtem
Raumstelle z, die Eigenwerte

o(a) = N - 3(— a9
mit N =0, + 1, ... besitzt. Zu diesem Zweck 1st es am ein:-
fachsten, v in hermitesche Operatoren

1 . 1 .
P= V—é(u1+@u2)s p* = V—é—(ul_"“z)

und entsprechend

1 : 1 -
n*EVE(THWL’Lpz), = ﬁ (Py—1p2)

zu zerlegen, wobel folgt

-+ * Uy = —— — p*
1/2 (p+ 9%, 2 (y—y*)
pl_ dt .——]/2‘ ), p2_ Ot - VQ‘ T e

Dann gilt
1Py (0), uy (2)] = o(x — ), 1 [Pa(), us()] = 0(x — '),
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wiahrend jede Grosse mit dem Index 1 mit jeder Grosse mit dem
2 vertauschbar ist. Wihrend Energie, Impuls und Wellenglei-
chungen additiv zerfallen in Ausdricke die bzw. nur von p,, %,
und von p,, u, abhingen, gilt dann

0 = PrlUy — PaUy. (16a)

Auf Grund der Analogie mit dem Ausdruck fir eine Kom-
ponente des Drehimpulses erkennt man hieraus sofort, dass p(z)
die Eigenwerte N .éd(x— ') mit N =0, 41, ... besitzt. (Der
Faktor é(x — z') kann hierin z. B. durch einen Grenziibergang
von einer diskreten Einteillung des Raumes zu emner kontinuier-
lichen gerechtfertigt werden.) Da die Werte der Dichte an ver-
schiedenen Raumstellen miteimnander vertauschbar sind, folgt also
in der Tat, dass die innerhalb eines beliebigen endlichen Gebietes v

befindliche Ladung
e,= [odV

(in der Einheit e gemessen) die Eigenwerte 0, +1,... 4+ N
besitzt.

Wir bemerken noch, dass in der vorliegenden Theorie alle
Relationen einschliesslich der V.-R. richtig bleiben, wenn man
alle Operatoren mit ihren hermitesch konjugierten (also y mit
p*, @ mit 7*) vertauscht. Da hierbei der Viererstrom sein Vor-
zeichen wechselt, ergibt sich hieraus die Symmetrie der Theorie
In bezug auf positive und negative Ladungen.

Nebenbel ser hier noch bemerkt, dass eine Zerlegung der
Dichte g in vertauschbare Teile mit nur positiven und nur nega-
tiven Eigenwerten zwar auf unendlich viele Weisen moglich 1st,
dass aber keiner dieser Teile fiir sich einer Kontinuititsgleichung
zenligt und auch nicht relativistisch invariant istl).

') Man erhilt solche Zerlegungen z. B. unter Einfiihrung einer beliebigen
Konstante @ von der Dimension Wurzel aus Energie (z. B. a = y/mc?) gemiss
lem Ansatz

g 4

a
= —— (3 + ¢2) s y == — (T — )
\/20"1 ¢3) Yy V2 a 1 P2
a —1
nt = V2 (7 + @)y y*= ———(pf— ).
Es ist dann 4
[y (2), @F ()] = O (z—2), [g2 (2), ¢F ()] = & (z—2"),
wiahrend Grossen mit Index 1 und solche mit dem Index 2 kommutieren. Und
8 gilt
0= @3 Py—@F @1
Hieraus ergibt sicl: ein neuer Beweis fiir die Eigenwerte von g.
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Wir wollen nun, was sowohl fir Anwendungen von Wichtig- -
keit ist als auch an und fiir sich physikalisches Interesse bean--
sprucht, untersuchen, wie sich die Verhéltnisse im Impulsraumn
gestalten. Um statt Integralen im Impulsraum Summen zun
erhalten, verwenden wir die bekannte formale Methode, denn
Wellenfeldern die Bedingung aufzuerlegen, einen Wiirfel derr
Kantenlinge L, also mit dem Volumen L3 = V, als Perioditiits--
gebiet zu haben, so dass die Komponenten des Ausbreitung:--

- % ¥ 2n . v
vektors k der Wellen ganzzahlige Vielfache von - sein miissen..

L
Wir verwenden ferner
1 a3 _
u = —— e 2 (17))
VvV
als ein vollstindiges System orthogonaler normierter ¢-Zahl--
Eigenfunktionen, fir die also gilt

fuz: (@) w, (@) AV = by, (18))

v

Hierbei schreiben wir als Index k hier und 1im folgenden derr
Einfachheit halber stets nur einen Index statt der den drei Kom--

ponenten von k entsprechenden drei Indices und #@hnliches solll
gelten fir Summen iber k.

Zerlegen wir nun die Funktionen w, 7w, v*, #* nach den wu,
gemaiss

1 ik 1 < gt —i (k )
DI b L DI (k) )
IS R
i ]/V x.‘pke ’ ), E=W: P (A) (o

mit den Umkehrformeln

1 e Tk 5 e . 1 / i D :
e e av, = —— [ y*e dv 19¢))
Q. ]/Vf'l’ qx v Y (
Vv vV
% 1 4 (B 377 ikz) 377 C
pk:*__ﬁfn*e AV, po=— [2eFdT  (194))
Vv, v

so geniigen die g-Zahlen pi, q. Py, ¢ (man beachte, dass Py, g
nicht hermitesche Operatoren und pj, q¢f die hermiteschen Kon--
jugierten von p; g sind) gemiss (I) den V.-R.

’i[’Pk,q;]=5m. 1 [Plt, Qf]:ékz, (11))
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wihrend die g, und ¢/ untereinander, die p, und p, unterein-
ainder, sowie die p, mit dem g; und die p; mit den ¢, kommu-
tiieren. Uberdies gilt nach (9)

Pe=hqk, Pi=hq. (20)
F'ar Hamilton-Funktion und Impuls erhilt man nach (7) und (8)
H= > (pipe+ E2 g q) (21)
;
G = 7.’]5,\"_‘1;"7 (Pe 9k — Gk P) - (22)

IHierin i1st zur Abkiirzung gesetzt
B2 = e2(h2k? + m2¢?). (28)

Wir werden im folgenden unter
Ep = + ¢ /h2k® + m2c? (23 a)

stets die positive Wurzel verstehen.
Man bestéatigt leicht die Giltigkeit der Regel (11) fir
Dis @i, Pr» Qr; 1nsbesondere ergibt sich -

. — 1 "

Py = ﬁh»[H’ Pr] = T E.2 g5, (24a)
. Ve . 1

Pi =3 [H, Pi] = — - B g (24b)

Wir schreiben weiter auf Grund von (16) und (15b) noch die
Ausdriicke fiir die Gesamtladung

&:deV
vV

iLJ:jde

¢ v

und den Gesamtstrom

in ihrer Zerlegung nach den Anteilen der verschiedenen Impuls-
eigenfunktionen hin. Wir erhalten

E= _TjZ(Pk Q. — Pk Gr) » (25)
k
LT =2heShqiq. (26)
/ k

Man wird sehen, dass der letztere nicht zeitlich konstant ist.
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Wir wollen nun zeigen, dass die Anteile der einzelnen Eigen-
schwingung k zur Gesamtladung, zur Energie und zum Impuls
sich zugleich 1n zwel Teile zerlegen lassen, die einer einfachen
physikalischen Interpretation fahig sind. Zu diesem Zweck fithren
wir folgende Variable a,, af, by, by ein:

VE,

= ay+ b)), @=———(—a,+ b; 27)
Px ]/2 (ay %) % = ]/2 ]/ Jk( k r) (
VE,
* = a, + b}), %:,,,_. - (af — by 27*
P ]/2 (ay k) h ]/2 ]/Ek (ag k) (27%*)

mit den Umkehrformeln

a, = ]/2 (]/EL pt—i ]/E‘;qk), a5 ]/2 (]/Lk pr+ 1 VEx qg) (28a)
1

| . 1
b= — (——p —i VErgt), b= +iVE; ) 28b)
* ]/2( Bk al “‘q") V2 (1/1 Pit iV Eqi)

Fir die neuen Variablen folgen die V.-R.

[a’kﬁ a’;} == 6kl3 [bk; brj = 61’.‘15 (III)

wahrend die @, oder af untereinander, die b, oder b; unter-

einander, sowie die @, mit den b; und die a; mit den b, kom-
mutieren.

Man erhilt weiter
H = _?_ E. 3 (a, af + af a,+ b% b, + b, b¥)
= _} E, (a} a, + b} by, + 1) (2)
G=h _\_‘,Z 1 (a} a; + a; ai — bt b — b, by)

k

= h DV k (af ap—bE by). (30)
%
Ferner fir die Gesamtladung

é= >\ 1(a} ay + a; a} —b} b — b, b})
A

- :((l-}f a,—- by by). (31)

k
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Schliesslich ergibt sich nach (26) fiir den Gesamtstrom

-

] & N\ ' v
-——th(}}_J { (af ay + by by — ag by —ag by)

= he _?_1, 7{}; (af ap + by by—ag b —a by + 1), (32)

Die V.-R. fir die @, b, a*b* haben zur Folge, dass die Opera-
toren

Ni=aia., Ni=0b;b, (33)
vertauschbar sind und beide die niemals negativen ganzzahligen
Eigenwerte 0,1,2 ... besitzen. Die Ausdricke fiir Ladung,
Energie und Impuls berechtigen uns in dem hier betrachteten
kriaftefreien Fall zu folgender Interpretation:

ISs bedeutet N die Zahl der Teilchen mit der Ladungszahl + 1
und dem Impuls hk, und N7 die Zahl der Teilchen mit der Ladungs-
zahl —1 und dem Impuls — k1 4.

Es se1 noch darauf hingewiesen, dass der Term mit + 1 1m
Energieausdruck eine Nullpunktsenergie (Vakuumenergie) der
Materiewellen bedeutet, die aber, ganz analog wie die Nullpunkts-
energie der elektromagnetischen Strahlung, bei allen Anwendungen
und unbeschadet der relativistischen Invarianz der Theorie fort-
gestrichen werden kann. Ahnliches gilt vom Term mit + 1 im
Ausdruck fir den Strom. Von entscheidender physikalischer
Wichtigkeit 1st, dass auch abgesehen von diesem Term die En-
ergie von selbst stets positiv ist.

Wichtig sind die Terme mit @b, und ajb; im Ausdruck fir
den Strom, welche dessen zeitliche Konstanz selbst im krifte-
freien Fall verhindern. Wie man aus den Bewegungsgleichungen

b= ity b=—ilhb, (34)
und 1hren Integralen
_i Ek _; Bk,
a=a,0e ", bi=0b(0)e " (35)
, Er
P T
g = Ay (O) e , bA = bk (0) (35*)

1) Nochmals sei bemerkt, dass eine entsprechende Definition fiir eine raum-
liche Dichte gt (z) und o~ (z) der Teilchensorten nicht in physikalisch sinnvoller
Weise moglich ist. Bildet man z. B. aus a; und bk

1 '\1 a(i. .r)
a(x)=- b(x)= L€
V'V

FEAL ’ yy
Vo \/
8 zeigt sich, dass der Ausdruck a*(z)a(r)—b*(x)b
cichte iibereinstimmt.

»M

(x

~—

nicht mit der Ladungs-

46
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ersieht, die sich gemiss (11) aus (III) und (29) ergeben, habenn
diese Terme eine enge Analogie zur Schrodinger’schen Zitter--
bewegung und geben, wie im folgenden § gezeigt wird, ber Vor--
handensein geeigneter dusserer Felder in der Tat Anlass zu Pro--
zessen der Paarerzeugung bzw. Paarvernichtung.

Wie bereits in der Einleitung erwihnt, ist eine widerspruchs--
freie Durchfiihrung der skalaren relativistischen Wellentheorie fiirr
Teilchen mit Ausschliessungsprinzip nicht méglich, da sich, wiee
eine nihere Untersuchung der Hamiltonfunktion mit den Varia--
blen @ und b zeigt, ber Giltigkeit der Fermi-Statistik die rela--
tivistische Invarianz des Viererstromes nicht erreichen lisst. Ess
hingt dies auch damit zusammen, dass aus den Gleichungen

p(@) yp*(x) + p* (@) p(z) =0, p(@)y(2) + p(@)yp(z) =0
p(x) = 0 und p*(z) = 0 folgen wiirde.

§ 3. Fall des Vorhandenseins iiusserer Kriiite.

n

Man gelangt fir ein Teilchen mit der Ladung e vom krifte--
freien Fall zum Fall des Vorhandenseins eines dusseren elektro--
magnetischen Feldes mit dem Viererpotential @, (@, = 1®).,
wenn man den Operator p, ersetzt durch

e .
Pu—> p.u_""“g“¢;u (36))
was den Substitutionen
0 0 1e 0 w* 0 1e
e T A e e PRy

entspricht!). Die Lagrangefunktion des Materiefeldes wird danin

— — h2 A2 \" 1 . x\ ([ _ = 4
L h(\_(i"+hc¢”w>(' hcdlw)m('y)y)

0 1e 0 1e
()3

01p oy 1e .
2 2 \ *
h2¢ \ ( hc <15 ") )(03:’* e D, 'P) m2ety*yp. (377)

1) In der Dirac’schen Theorie wird die Substitution

e
P,—>2,+ " ‘15“

eingefiithrt, da die Elektronenladung dort mit (—e) bezeichnet wird. Unsere Bee-
zeichnungen sind in Ubereinstimmung mit W. Gorpox, L. c.
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IDie Hamiltonfunktion des Materiefeldes

— i, OpF i 0y
H z'/{(h"'dt_’le@o'tp)(hw‘} ?/3@ )

) (hc L Y w) + mBetyt y)}d V. (37a)

0x*

AMddiert man hiezu die Ausdriicke fiir die elektromagnetische
ILagrangefunktion

1 s
elm .. __ — 15 T 2
L 3 (E2— H?) (38)
bozw. tir die elektromagnetische Energie
1
clm — 2 2
H 81./(E +H?)dV (38a)

sé0 erhdlt man das Energieintegral

Hm™ + Helm — const.

uind ferner durch Variieren des Wirkungsintegrals
f(Lm+ Lemy @V dt

mach den Feldgrossen y, p*, @,, einerseits die Wellengleichungen

0 , 0
(h 57 e @0)(13 i —1e Dy )y

0

0
= \‘(h(’—A — - zecb,c) (hc()xk

+ 08 ¢k)tp +m2cty (39)
k=1 0z

0 0
(h()t +ze@)(h Y + 1 e Dy | p*

s 0 0
=L2ui (h(f'—d—ﬁ—le@k) (h/ 0 ¥

) w* e m2 04 y}* (39*)
ainderseits die Maxwell’schen Gleichungen

i=4dnes (40)

rot H——h 4me %

div. F=4neo (41)
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mit den folgenden Ausdriicken fiir ¢ und 5

o= [(h (3” +ie Cpow)tp ﬂ(h 0;;—?36 ‘Do”‘l’*) V’]
_}”(%;p p* 001;; ‘P)“Q‘f’@ﬂw*w (42)

5 =1 [(hcg'ft + ieQ?kw*)’P—(hC 3;‘; —ied, w) w*}
rihc(gik y;—gy;w)—Qe Dy y* y (43)

die sich von den entsprechenden Ausdriicken des kriftefreien
Falles (15a) und (15b) um charakteristische Zusiitze unterscheiden.
Sowohl aus den Wellengleichungen (39) als auch aus den Max-
well’'schen Gleichungen folgt die Giiltigkeit der Kontinuitits-
gleichung (14) fiir die neuen Ausdriicke von ¢ und s;. Eine un-
mittelbare Folge von (36) ist die Invarianz der Lagrange- und
Hamiltonfunktion und auch der Ausdriicke fiir Strom und
Ladungsdichte gegeniiber den Eichtransformationen

0 A , i L. 2 5
_0}7 . Y =y e he (3bb)

!
Qﬂ = @u i
Wichtig ist ferner, dass die Wellengleichungen, die Maxwell’schen
Gleichungen und die Hamilton-Funktion bestehen bleiben, wenn
man ¥ mit p* vertauscht und gleichzeitig e durch — e ersetzt,
was die Symmetrie der Theorie in bezug auf positive und nega-
tive Ladung zur Folge hat. Alle diese Aussagen bleiben bestehen,
wenn man y, p*, @ als g-Zahlen betrachtet.
Wichtig 1st, dass die Bedeutung von =, a* gegeniiber (Y)
abgeiindert 1st gemiiss

1 oL, oy
hd(w)"“m

1 oL oy .

¥ =~ = h

h 0 (_()_w ) 0t
Diese neuen z gentigen jetzt den V.-R. (I)

il (e, b), p(a', 0] = d(x — ), ila*(x, 1), y* (2, O] = (x — ') (I

und sind mit den elektromagnetischen Feldgriossen vertauschbar.

T ==

— e Py p* (44)

tieDyy. (44*)
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Gemiiss (42) wird dann die Ladungsdichte wieder formal iber-
elinstimmend mit (16)

o = 1(A*p* —my) = o (p*a*— pm). (16)

Daher bleiben die Figenwerte der Ladungsdichte auch ber Vorhanden-
sevn eines dusseren Potentials dieselben wie vm kriftefreien Fall.
Der materielle Teil (37a) der Hamiltonfunktion schreibt sich nun

) ™ = Ho + H1
mit

— 1 0 *
H(,:f-{muhz 2"\1 . g;”k »m%w*wjdv (45,)

{, L Oy Oy* 2
H, = leh(:];_:_i D, (1/’ Sk B y)) + 621;1 D2 y*yw dV (45)

Mit den bekannten V.-R. fiir die Feldstdirken und elektro-
magnetischen Potentiale kann dann die Quantenelektrodynamik
in der gewohnten Weise formuliert werden, wober die Maxwell-
schen Gleichungen (40) aus Anwendung der Regel (11) gemiss

A
o1 = W E

gewonnen werden konnen. Wir moéchten hierauf nicht naher ein-
gehen, mochten nur an die bekannten Komplikationen erinnern,
die dadurch entstehen, dass die Gleichung (41) nur mit den eich-

invarianten Grossen vz, v* x*, K, H vertauschbar ist mit den
anderen wie 7, *, p, p*, @, aber nicht. Soll die Regel (11)

of i g
or ~w W1

auch fiir diese Grossen giiltig sein, so muss man einen Ausdruck
der Form

frpo(4ne9—div. Eyav

formal zu der Summe aus (38a), (45,) und (45,) addieren?).
Fir den nicht mit (37a) tbereinstimmenden Teill H'

H =H,+H, + H, (47)
H2=ef@ong=ief®o(n* v —ay)dV (45,)

1) Vgl. hiezu W. HeisENBERG und W. PavLrl, Zeitschr. f. Phys. 59, 168,
1930; insbes. S. 179, GI. (38).
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der Hamiltonfunktion gilt also
ol =g [H ) (48)

und entsprechende Relationen fir die kanomsch konjugierten
¥, ¥,

Diese (nicht eichinvariante) Hamiltonfunktion H’ hat daher
auch die Eigenschaft zeitlich konstant zu sein, wenn die Poten-
tiale @, und @, zwar von den Raumkoordinaten, aber nicht
von der Zeit abhingen. Fiir viele Zwecke gentigt es, die Vierer-
potentiale als gegebene ¢-Zahlfunktionen zu betrachten. In diesem
Fall muss nint der durch H’ gegebenen Hamiltonfunktion ge-
rechnet werden. Diese ergibt sich {ibrigens auch durch die kano-
nische Umformung von L™ nach der Formel:

H = [nypdV+ fn*¢*dl"~L'".

- Wir wollen nun die Zusatzteile H; und H, der Hamilton-
funktion auch im Impulsraum anschreiben, wie dies mit dem
urspriinglichen Teil H, bereits im vorigen § geschehen ist [vgl.
Gl. (21)]. Sind in bezug aut das orthogonale Funktionssvstern: (17)
in iiblicher Weise die Matrixelemente einer Funktion f(x) (z. B.
der Potentiale) definiert durch

fa= [ @ FPav, (49)

so erhalten wir aus (19a), (19b) unmittelbar
H,= MTI> Pict (P7 gk — P Q1) (50)
Iqle_,\;;[hce(cpk,,k—}- 0)—e2 (D)%, ] gk q, (51)
oder mit Einfihrung der Variablen a;. b, gemiss (27), (28), in

welchen H, durch (29) gegeben 1st:

k‘l

E, + E, B, — B cel
Hz-—- %622 @kl ]/E—E ((J;L a, — bl bk) G /Ii——— = ( lbk_a‘k bl) (‘)2)
k1

_ 1 < 1
H,=} %VEkEl[hce((pkh : 1)_32(@)2&:1]

{
(a-k a,-, _{" bk b[ _ak b?_—bk CL;) . (53)




Quantisierung der skalaren relativistischen Wellengleichung. 727

§ 4. Die Paarerzeugung durch Lichtquanten und die Polarisation des
Vakuums,

Aus den Vertauschungsrelationen (III) fiir die a}, ap bzw.
by, b tfolgen in bekannter Weise die Eigenschaften dieser Opera-
toren bei ihrer Anwendung auf ein von den Besetzungszahlen
N7, N7 abhiingiges Schrédingerfunktional (... Nf...;... N;...).
Es 1st

age{...N}...;..Ny..)=yYNf+1e¢(...Nf+1...5...N;5..)
age(...Ny...;...Ng..) = YNie(...Nf—1...;...N;...)
bie(...Ni...;...N;...) = ]/N;—Ill ¢(...Nf...:...N;+1..)
bee(...N}...;...Ng..) = y/Nye(...Nf...; ... Ny —1..)) (54)

Man sieht dann leicht, dass die Zusdtze H, und H,, die bei
Vorhandensein von #usseren Feldern zu der Hamiltonfunktion
hinzutreten, infolge der Faktoren a;b; und b, a; Glieder enthalten,
die zur Paarerzeugung und Paarvernichtung Anlass geben. Diese
Glieder fithren ndmlich zu Matrixelementen zwischen Zustidnden,
die sich gerade um ein positives und ein negatives Teilchen unter-
scheiden, wiahrend die Faktoren a;a;, bzw. b,b] nur Uberginge
eines positiven bzw. eines negativen Teilchens von einem Zustand
zum andern liefern.

Wir wollen nun 1m folgenden die Wahrscheinlichkeit der
Paarerzeugung durch ein Lichtquant der Energie hy > 2 m¢? aut
Grund der Ausdriicke (52) und (53) berechnen, um sie mit den
entsprechenden Ausdriicken der Lochertheorie, wie sie von BETHE
und HrirLer!) gerechnet wurden, zu vergleichen.

Infolge des Energie- und Impulssatzes verschwindet diese
Wahrscheinlichkeit im feldfreien Raum. Wir nehmen daher an,
es herrsche 1im Raum ein durch ein zeitunabhéngiges skalares
Potential @, darstellbares elektrisches Feld (etwa das Coulomb-
feld eines Kerns), das den Impulsiiberschuss aufnehmen kann.

Wir berticksichtigen den Einfluss des Feldes ebenso wie
BerneE und HEITLER nur in erster Néherung, indem wir vom
feldfreien Raume ausgehen und sowohl @, als auch das Potential
der Lichtwelle als Storung auffassen.

Wenn wir nun nach der Wahrscheinlichkeit W fragen, dass
pro Zeiteinheit ein positives und ein negatives Teilchen mit den
Impulsen bk bzw. — hl und der Energie E; bzw. E, durch Absorp-
tion eines Lichtquants hy == E, + E; im leeren Raum entsteht,

1) Proc. Roy. Soc. 146, 83, 1934.
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so erhalten wir erst in zweiter Ndherung ein von Null verschie-
denes Resultat:

. 1 |<wH,(40)H,(CB) H,(40) H, (CB)
e \ 1 2 =
V=% = m,—B, Ei—E, |= 9

A sei der Zustand des Vakuums (alle N == 0), B sei der
Endzustand (N{ =21, N; =1, alle andern N = 0), C bedeute
irgend einen Zwischenzustand. H, (4C) ... etc. bedeutet das
Matrixelement von H; zwischen den Zustinden 4 und C, wobel
in H, das skalare Potential @, und in H, das Vektorpotential @
der Lichtwelle mit der Frequenz » einzusetzen ist. Infolge des
Impulssatzes, der sich bei der Berechnung von H, ergibt, kommen
nur folgende 4 Zwischenzustande in Frage:

C;—>N}; =1, N;_ =1
Cy—> Nf,=1, N =1 l
C, — N} —1, N.=1 l
C,b—>N,_,=1, N; =1

alle andern N = 0

Die betreffenden Matrixelemente lassen sich aus (52) und (53)
berechnen und fihren zu einem Ausdruck, den wir als differen-
tiellen Wirkungsquerschnitt 4 @ anschreiben, dass ein unpolari-
siertes Lichtquant der Frequenz » ein positives Teilchen mit der
Energie zwischen F, und E, + dE ein negatives mit der Energie
zwischen F_ und E_ —dFE erzeugt (K, + F_ = hv) und deren
Impulse p, und p_ mit der Richtung des Lichtquants die Winkel
¥, und &_ einschliessen:

1 e2 1
d
0= 873 he h3 3
.| E?pisin?é, .. E7 p? sin®9_
[(E — P, cos ® AL (E —cp_ n_ cosd_ )

sin#, sin®_d &, dd_dg p;bp dl“'ﬁb@ |2

2HE, E_p.p_sind. sind_cos ¢
(B, —ep,cosd,)(B_—ep_cos &)

(56)

¢ 1st der Winkel zwischen den Ebenen, die aus der Richtung
des Lichtquants und den Richtungen p,. bzw. p_ gebildet werden.

®,(q) bedeutet hier das Matrixelement

O @ = [ By e “Pav.

{Es enthilt 1im Gegensatz zu (49) nicht mehr das Gesamtvolumen V),
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wobel hq der an das elektrische Feld abgegebene Impulsiiberschuss

h‘@ = (ps—p-— h%)

ist. 7 st der Ausbreitungsvektor des Lichtquants.

Im Coulombfeld @, = Z: 1st zu setzen:
@, (q Ze )
O(Q)m4ﬂf e _(ia— .

Der entsprechende Ausdruck in der Loéchertheorie lautet nach
Berne und Herrner:

1 e?

T —

87 he h3»3
p2+ sin’, &, (B2 — h?e?q%/4) ' P%“ sin® ¢_ (K> — h2¢2q?%/4)

.l, ,
1 (I, —ep., cos #,)2 N (E_ —e¢p_cos 9_)2

sin 0. sin 0_do.doé_dyg Pw;{fm: dE 1®,(7) 2.

Bp-p. 8o 8. and, 60 pHI, + W4

| . : - —

' (B, —ep, cos®,) (E_—ep_cos 9

_ 3h*v3([pisin®d, + plsin®8_ 4 2p, p_sind, sind_cos ¢]
(B, —¢p._cos &) (E_—cp_cos §)

Er unterscheidet sich von dem aus der skalaren Wellengleichung
gewonnenen Ausdruck (56) nur durch das dritte Glied in der
geschwungenen Klammer und in den dort auftretenden Gliedern
mit q2. Die letzteren sind aber bei hohen Energien zu vernach-
lassigen, da he | q |« hy fir hyv ) me2

Setzt man fiir @, das Coulombpotential ein, so ldsst sich
die Integration iiber die Winkel fiir den Grenztall hy)mec? leicht
ausfiihren!). Man erhilt:

me?

CZ%e* o2 \232 K K./ 2B, K. |
0= (er) 5w (€ home —3)

und fiir den Gesamtquerschnitt:

Q_”Zf?ei’ e? \2 16l 2hv 104
" he (m(*z) (9 & mez 27 )

1) Wir schulden Herrn BetHE fiir die Uberlassung des Manuskriptes seiner
in den Proc. Cambr. Phil. Soc. erscheinenden Arbeit, in der éahnliche Integra-

tionen durchgefithrt werden, vielen Dank.
*
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Die entsprechenden Formeln der Lochertheorie lauten nach BETne
und IEITLER:

W= \me

Z2%2e? 1 2 \2 FE: L E? +3 E; E_ 2E, E_
— ~| 4 lg ——5 — 4
he ( ) h ( )

bezw.

Z%e% ;e \2 281 2hy 218
(e
Der Querschnitt fir die Paarerzeugung ist also in der hier behan-
delten Theorie fiir den Limes hv)me® etwa um den Faktor 4/7
kleiner.

Zum Schlusse se1 noch die Polarisation des Vakuums durch
ein elektrostatisches Feld berechnet. Wir berechnen zu diesem
Zweck die zusitzliche Ladungsdichte o (), die durch das Feld @,
einer im Raume vorhandenen ,dusseren’ Ladungsdichte go(a)
entsteht; o(x) 1st dann die durch emm Potential @, induzierte
Ladungsdichte in einem Raum, der in bezug auf die durch die
Wellengleichung beschriebenen positiven und negativen Teilchen
leer ist.

Es 1st vorteilhaft, eine I'ourierzerlegung der Dichte vorzu-
nehmen. Man erhédlt dann aus (16) und (19) fir den Fourier-
koeffizienten:

P2 1 e i(Ex 7 N * %
0 (C)= '17_/9(45) e DAV =SV (p! gk —Pr )
k

wobei 1 = 1;+ E . Weiter entstebt nach (27) durch Einfihrung der
Operatoren a und b:

0 (0) =

b — By ara,—br b)) + ——t(ak b} —a, b))\ . (57)

VB By

Diesen Operator haben wir nun auf das durch das dussere I'eld @,
gestorte Schrodingerfunktional des leeren Raumes ¢(..0..;..0..)
anzuwenden. Durch eine Storungsrechnung ergibt sich in erster
Néherung aus (52):

L
%

BleasQissirss Oone= Ble s Daaatasalleai])

1 E.—E,
- R

2 . VE E, (B + Ey)

Cplese dpesngossdyses); (88)

wober eg(...0...;...0..)und ¢(..1..;...1;...) die Funk-
tionale des feldfreien Zustandes 1mm Vakuum bzw. 1m Falle:
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(N7 =1, N;=1, alle andern N = 0) bedeuten. Bildet man nun

den Erwartungswert des Operators o (¢) fiir den Zustand ¢ (.. .0 .;
. 0..) so erhdlt man

i1 2
o (B =— [ NGRS (B —E)
& \=/ — ¢ 0\>/ ~ 3 1 "l m
2 — LB (B, + E))
Die Summe tber & divergiert logarithmisch, wie man leicht sehen
kann. Man erhilt nimlich nach Integration iiber die Richtungen

von k:

,I=Fk+C.

x

== e > d |I‘v; . .
olf) = — 19 hon? _:2* (bg(",)f !l;f -+ endl. Glieder.
ko

Kehrt man in den Koordinatenraum zurtck, so ergibt dies:

o(r) = K 1@, + endl. Glieder

ra 1 e d|k|
1272 he k| -

Die induzierte Ladungsdichte hat entgegengesetztes Vorzeichen,

1 : :
— 4 4 Py und 1st zu dieser propor-

wie die dussere Dichte g, =

tional, mit dem divergierenden Proportionalititsfaktor 4 # K, was
zur Folge hatte, dass jede #ussere Ladung durch die induzierte
vollstindig kompensiert wiirde. Dieses Resultat stimmt mit dem
von Dirac!) auf Grund semner Lochertheorie berechneten voll-
stindig tiberein. Selbst der Faktor K des divergierenden Gliedes
1st der gleiche.

Zirich, Physikalisches Institut der E. T. H.

1) P. A. M. Dirac, Solvay-Bericht 1933.



	Über die Quantisierung der skalaren relativistischen Wellengleichung

