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Über die Quantisierung- der skalaren relativistischen

Welleng-leichung

von \V. Pauli und V. Weisskopf in Zürich.

(2;. VII. 34.)

Zusammenfassung. In der vorliegenden Arbeit wird die konsequente
Anwendung des Heisenberg-Pauli'schen Formalismus der Quantisierung der Wellenfelder

auf die skalarc relativistische Wellengleichung für Materiefelder im Falle
von Einstein-Bose-Statistik der Teilchen durchgeführt. Dabei ergibt sich ohne
weitere Hypothese die Existenz von zu einander entgegengesetzt geladenen
Teilchen gleicher Ruhmasse, die unter Absorption bzw. Emission von elektromagnetischer

Strahlung paarweise erzeugt bzw. vernichtet werden können. Die Häufigkeit

dieser Prozesse erweist sich als von derselben Grössenordnung wie die für
Teilchen derselben Ladung und Masse aus der Dirac'schen Löchertheorie folgende
(§ 4). Die hier untersuchte, ebenfalls den Relativitätsforderungen genügende
korrespondenzmässige Möglichkeit von entgegengesetzt geladenen Teilchen ohne
Spin mit Einstein-Bose-Statistik hat gegenüber der Löchertheorie den Vorzug,
dass die Energie von selbst immer positiv ist. Ebenso aber wie aus der ursprünglichen

Fassung der Löchertheorie folgt aus der hier besprochenen Theorie neben
den unendlich grossen Selbstenergien auch eine unendliche Polarisierbarkeit des
Vakuums.

§ 1. Der Zusammenhang der skalaren relativistischen \\ clleiij|leichunj)
mit der Existenz entgegengesetzt geladener Teilchen.

Bekanntlich ist die skalare relativistische Wellengleichung, die
mit Einführung der Operatoren

E ih ddr P, =-**ro (1)

(fc=l,2,3)

im kräftefreien Fall geschrieben werden kann,

E2 3
0¦==-- V pj.-m2c2-A) (2)

(hier und im folgenden bedeutet stets h die durch 2 n dividierte
Planck'sche Konstante, ferner m die Ruhemasse des Elektrons
und c die Lichtgeschwindigkeit), allgemein zugunsten der Dirac-
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sehen vierkomponentigen Wellengleichung verlassen worden, da
erstere nicht den Spin der Teilchen liefert und daher für
Elektronen sicher eine ungenügende Approximation der Erfahrung
darstellt. Es bedarf daher einer besonderen Rechtfertigung, wenn
im Folgenden die Diskussion der Konsequenzen aus der ersteren
Wellengleichung wieder aufgenommen wird. Wir glauben eine
solche Rechtfertigung insbesondere durch den Nachweis geben
zu können, dass die empirische Entdeckung des Positrons und ihre
theoretische Deutung durch die von Dirac herrührende Neuinterpretation

der in seiner ursprünglichen Theorie auftretenden
Zustände negativer Energie eine Revision derjenigen auf der
allgemeinen quantenmechanischen Transformationstheorie basierenden

a priori Argumente Dirac's erforderlich macht, mit denen
von ihm ursprünglich der Übergang von der skalaren relativistischen

Wellengleichung zu seiner Spinorwellengleichung begründet
wurde. Im folgenden soll nämlich gezeigt werden, dass liei
Anwendung der allgemeinen Vorschriften zur Quantisierung von
Wellenfeldern, die früher von Heisenberg und Palli1) formuliert

wurden, auf das vorliegende Problem nicht nur keine
allgemeinen Einwände gegen die skalare Wellengleichung vom Standpunkt

der quantenmechanischen Transformationstheorie aufrecht
erhalten wertlen können, sondern dass man auf diese Weise unter
Wahrung der relativistischen und der Eichinvarianz der Theorie ohne
jede weitere Hypothese zur Konsequenz des Vorhandenseins entgegen
gesetzt geladener Teilchen, und des Auftretens von Prozessen der

Erzeugung und Vernichtung solcher Teilchenpaare gelangt, wobei
überdies von selbst die Energie des Materiewellenfeldes sich als stets

positiv ergibt. Für die Teilchen muss hierbei die Statistik
symmetrischer Zustände (EiNSTEiN-BosE-Statistik) angenommen werden,

aber es ist wohl nur als befriedigend anzusehen, dass ohne
gleichzeitige Einführung des Spins die Einführung des
Ausschliessungsprinzips sich nicht unter Wahrung der relativistischen
Invarianz der Theorie durchführen lässt.

Was nun das erwähnte a priori-Argument Dirac's gegen die
skalare relativistische Wellengleichung2) betrifft, so beruht es

wesentlich auf zwei Voraussetzungen.
1. Es ist in der relativistischen Quantentheorie widerspruchsfrei

möglich, ein Eiiikörperproblem zu formulieren.

') Zeitschr. f. Phys. 56, 1, 1929.
2) Man findet dieses am ausführlichsten dargestellt in den Leipziger

Verträgen 1932 (gesammelt erschienen unter dem Titel Quantentheorie und Chemie),
S. 85 ff.
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2. Die (statistisch zu interpretierende) räumliche Teilchendichte

g(x) ist ein sinnvoller Begriff. Nach Integration über ein
beliebiges endliches Volumen erhält man aus ihr eine „Observable"

(im Sinne der Transformationstheorie) mit den
Eigenwerten 0 und + 1.

Sobald die erste Voraussetzung zutrifft, ist es nämlich nicht
notwendig, den Formalismus der Quantelung der Wellenfelder
auf fias Problem anzuwenden; es ist dann vielmehr möglich, mit
dem gewöhnlichen Wellenfeld im dreidimensionalen Raum
auszukommen. Die zweite Voraussetzung hat zur Folge, dass die Teil-
chendichte nicht nur die vierte Komponente eines Vierervektors
sein und einer Kontinuitätsgleichung genügen muss, sondern auch
die Eigenschaft haben muss, niemals negativ zu sein. Überdies
werden die Eigenwerte der zugehörigen Dichtematrix nach
Integration über ein unendliches Volumgebiet, wie Dirac zeigte, nur
dann die richtigen, wenn die Teilchendichte von der Form ist1) :

0(X)= ^frfr-
r

Dagegen hat die Teilchendichte, die zur skalaren relativistischen

Wellengleichung gehört, die Form

o (x) ip* (i h -jVt - e 0O VJ - (i h dJ* + e 0n y*) ip (3)

wenn e die Ladung des Teilchens und 0O das äussere skalare
Potential bedeutet. Da fliese nicht von der verlangten Form ist,
scheint ein Widerspruch hergestellt.

Bekanntlich hat nun DlKAC — gestützt auf den Umstand,
dass auf Grund seiner Wellengleichung ein Wellenpaket aus
Zuständen negativer Energie sich in einem äusseren Feld so bewegt,
wie es einem Teilchen mit entgegengesetzter Ladung, gleicher
Alasse und positiver Energie entsprechen würde — die Zustände
negativer Energie zur Deutung des Positrons in folgender Weise
herangezogen. Es sollen nur die Abweichungen von dem Fall,
wo alle Zustände negativer Energie besetzt sind, die „Löcher"
in der Besetzung der Zustände negativer Energie, beobachtbar
sein, das heisst zur „wahren" (felderzeugenden) Ladungsdichte
und zur eigentlichen (dann positiven) Energie beitragen.

') Erst aus dieser Form für o wird dann weiter geschlossen, dass die
Wellengleichungen von erster Ordnung in d'dt sein müssen.
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Ohne auf die Schwierigkeiten einer widerspruchsfreien und
relativistisch und eichenvarianten Formulierung dieser Dirac'schen
Löchertheorie von Elektron und Positron im Falle äusserer Felder,
die ja mehrfach in der Literatur diskutiert worden sind, näher
einzugehen, können wir folgendes feststellen:

1. Wegen der Prozesse der Paarerzeugung und wegen der
neuen Interpretation der Zustände negativer Energie überhaupt
ist es nicht mehr möglich, sich auf ein Einkörperproblem zu
beschränken.

2. Die Teilchendichte hat keinen direkten physikalischen
Sinn mehr1). Im kräftefreien Fall ist allerdings noch die Zahl
der Teilchen mit gegebenem Impuls (Wahrscheinlichkeitsdichte
im Impulsraum) und daher auch die Gesamtzahl der vorhandenen
Teilchen eine sinnvolle „Observable".

3. Dagegen ist nicht nur die Gesamtladung, sondern auch
die Ladungsdichte g(x) eine sinnvolle Observable. Nach
Integration über ein beliebiges endliches Volum muss sie — auch bei
Vorhandensein äusserer Felder — (bei Anwendung des
Formalismus der Quantisierung der Wellen) die Eigenwerte 0, + 1

•

± 2. ± X. haben, die jetzt sowohl positiv wie negativ
sein können. (Im Fall des Ausschliessungsprinzips ist die Zahl X
bei gegebener Grösse des betrachteten Raumgebietes nach oben

begrenzt.) Die Ladungsdichte g(x) und die Gesamtzahl der
vorhandenen Teilchen sind übrigens nicht vertauschbar.

Diese Forderungen sind nun gegenüber den ursprünglichen
eines echten relativistischen Einkörperproblems so weit modifiziert,

dass für die spezielle Form Zy>*yir bei der Ladungsdichte

kein Grund mehr vorliegt. Wir werden überdies zeigen, dass die
zuletzt formulierten Forderungen in der skalaren relativistischen
Theorie für spinlose Teilchen mit Einstein-Bose-Statistik ebenso
erfüllt sind wie in der Dirac'schen Löchertheorie. Iliebei ist
naturgemäss der Ausdruck (3) nicht mehr als Teilchendichte,
sondern als Ladungsdichte zu interpretieren.

]) Ist rp-ì- der „positive''(aus Zuständen positiver Energie zusammengesetzte),

y<- der „negative" Teil der Wellenfunktion in der Dirac'schen Löchertheorie,
so hat die Ladungsdichte als Operator die Form

q(x) £ {v+*v+-v;*v>-+v>l! v>~ + v>t*v>~*} ¦

Wegen des Auftretens der gemischten Glieder lässt sie sich schon bei Abwesenheit

äusserer Kräfte nicht so in zwei Teile teilen, dass jeder Teil für sich einer

Kontinuitätsgleichung genügt und die 4-Komponente eines Vierervektors bildet.
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Das Hauptinteresse der letzteren Theorie scheint uns darin
zu liegen, dass in ihr automatisch — das heisst ohne eine neue,
der Löcheridee äquivalente Hypothese und ohne dem Formalismus

der Quantentheorie fremd gegenüberstehende Grenzübergangs-

und Subtraktionskunstgriffe1) — die Energie der
materiellen Teilchen nach Ausführung der Quantisierung der Wellen-
felder stets positiv ist. Dies ergibt sich daraus, dass die Hamilton-
funktion des Materiewellenfeldes in der hier diskutierten skalaren
Theorie — im Gegensatz zum entsprechenden Ausdruck der
Dirac'schen Spinortheorie — die stets positiv definite Form
annimmt :

r f I d w _, 2

H= j dV\\ih-]r\-e0nip\
'! d w 2 1

+- y^, ihc k+-e0kip +m2ci\ip\2\
*=i Gx

(4)

Angesichts der Ilypothesenfreiheit dieser skalaren relativistischen

Theorie könnte man vielleicht auf den ersten Blick
überrascht sein, warum „die Natur" von dieser Möglichkeit der
Existenz entgegengesetzt geladener Teilchen ohne Spin mit Bose-

Statistik, die durch Zerstrahlung bzw. Materialisationsprozesse
entstehen und vergehen können, „keinen Gebrauch gemacht hat"2).
Man muss aber bedenken, dass die Frage der Anwendbarkeit
der hier diskutierten Theorie, z. B auf a-Teilchen wegen der sich
hiebei geltend machenden Effekte der Kernstruktur, wohl ausserhalb

des Gültigkeitsbereiches der jetzigen Quantentheorie
überhaupt liegen dürfte. Auch führt die hier diskutierte Theorie,
wie in § 4 gezeigt wird, bei den Fragen der Polarisation des
Vakuums zu ähnlichen Unendlichkeiten wie die ursprüngliche Form
der Löchertheorie3). Sie führt übrigens ebenfalls zu einer unendlichen

Selbstenergie nicht nur der elektrischen Teilchen, sondern
auch zu einer unendlichen materiellen Selbstenergie der
Lichtquanten4). Ein weiterer Fortschritt in diesen Fragen dürfte daher
wohl erst durch ein theoretisches Verständnis des numerischen
Wertes der Sommerfeld'sehen Feinstrukturkonstanten zu erwarten
sein.

P. A. M. Dirac, Proc. Cambr. Phil. Soc. 30, Pt. II, 150,1934. — R. Peieels,
troc. Roy. Soc. 146, 420, 1934. — W. Heisenberg, ZS. f. Ph. 90, 209, 1934.

2) Vgl. P. A. M. Dirac, Proc. Roy. Soc. 133, 60, 1931, bes. S. 71.
3) P. A. M. Dirac, Solvay-Report 1933.
4) Analog wie bei W. Heisenberg, 1. c. — Über den Wert des Umstandes,

dass in manchen Formulierungen der Löchertheorie zwar die Polarisationseffekte
endlich, die Selbstenergien aber doch unendlich sind, kann man im Zweifel sein.
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§ 2. Durchführung der Quantisierung des Wellcnfeldes1) im kräfte¬
freien Fall.

Die Lagrangefunktion der skalaren relativistischen Theorie
lautet (mit u, v 1 bis 4 und x4 ict):

L -h2c2^^*---^- m2c*xp*xp

_h2ÒW* dW _h2 C2 v ll* -iL_ m2 c* w* w (5Ìh
dt dt

h C 2j dir* dx" m C W W- (0)

Der relativistische Energie-Impulstensor wird

C [dx* dx> dx' dx") ^Ö"v W

also die Energie (Hamiltonfunktion)

H=fTudV
r [ djp* d« 3 (hp*_ d^

J yl dt dt+flc £i àx" oxk+m c f v

und der Impuls

G^±[TikdV - [vfWpL+t&tSSdV. (8)
c J J \ dt dxk dxk dt '

Wir haben nun y>* und xp als g-Zahlen (auf das Schrödinger-
funktional wirkende Operatoren) aufzufassen, wobei xp* hermitesch
konjugiert zu xp ist. Wir bezeichnen im folgenden stets die zu
einer gegebenen c-Zuhl hermitesch Konjugierte mit einem *. Wir
haben dann die zu xp und xp* kanonisch konjugierten Impulse n
und n* zu bilden nach der Regel:

1 dL dxp* 1 dL dy,
71 "7 —a~t~ « ¦ aT ¦. n '= -, ia »\ — » ^ (9)

*'(*) " "<>(£) "
die bei Teilchen mit Einstein-Bose-Statistik den kanonischen Ver-
tauschungsrelationen (abgekürzt: V.-R.) genügen:

i[7i(x,t),xp(x',t)]=ò(x—x'), i[n*(x,t),xp*(x',t)]=ô(x—x) (I)

q Über die Ausdrücke für Lagrangefunktion, Energie-Impulstensor und
Stromvektor in der skalaren relativistischen Theorie vgl. z. B. W. Gordon,
Zeitschr. f. Phys. 40, 117, 1926.
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worin auf der rechten Seite b(x — x') die bekannte Dirac'sche
^-Funktion bedeutet und wie üblich

[A,B] AB-BA (10)

gesetzt ist. Die Grössen xp, xp* sowie n,n* untereinander, ferner
tu mit xp*, sowie n* mit xp sind vertauschbar.

Die Anwendung der Regel

Tt T [H' n (11)

auf xp, xp* führt auf eine Identität, die Anwendung auf n, n*
mit Hilfe von (9) führt zu den Wellengleichungen

h2lXP2=h2c2Axp—m2cixp (12)

d
h2-rf2- h2c2Axp* — m2cixp*. (12*)

Ferner ist, wie es sein muss, die Regel

df i
dxk h [Gk,f] (13)

für alle Grössen / erfüllt. Man wird sehen, dass nur im Ausdruck
für den Impuls eine Zweideutigkeit der Reihenfolge der Faktoren
eintritt. Diese wurde so gewählt, dass der Integrand des
Ausdruckes (8), der die Inipulsdichte darstellt, ein hermitescher
Operator ist.

Wir kommen nun zu den Ausdrücken für die (in der Einheit
der elektrischen Teilchenladung e gemessenen) Ladungsdichte g

und Stromdichte i es, die mit s4 ig zum Vierervektor s„
zusammengefasst ist, der der Kontinuitätsgleichung

y^Sv=0 oder 44-+divT=0 (14)
„tj dx, dt

genügt.
Diese sind gegeben durch

"»»(4É»-&V) <">
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oder

•--"(^'-tH--»'.^--^
/ dy>* d xp \=---ln[xp __v*_j (15a))

sk hci(%f-l^r) (15b))

Die Striche auf der rechten Seite beziehen sich auf die
Zweideutigkeit der Reihenfolge der Faktoren im Ausdruck für dice
Dichte g und sollen bedeuten, dass die einzelnen Sumniandeni
hermitisiert werden sollen. Eine Festlegung der Faktorenreihen--
folge auf Grund der Forderung der Hermitizität des Dichteopera--
tors allein ist hier nicht möglich. Die hier getroffene Festsetzung
erweist sich aber als die zweckmässigere, da sie zu keiner Null--
punktsdichte Anlass gibt, wie später gezeigt wird. Sie ist überdies

mit der relativistischen Invarianz und der Kontinuitäts—
gleichung im Einklang.

Wie man sieht, kann man die Dichte mit Rücksicht auf (9))
auch schreiben :

g — iinxp — n* xp*) — i(xpn — xp*n*). (16))

Wir wollen nun beweisen, dass diese an einer bestimmtem
Raumstelle x0 die Eigenwerte

g(x) N ¦ ô(x — x0)

mit N 0, i 1, besitzt. Zu diesem Zweck ist es am
einfachsten, xp in hermitesche Operatoren

1
N

1

xp=-j^(ui + iu2), xp* — (ux — i u2)

und entsprechend

™* -7=(Vi + i Pü). n= -7= (P1—ÌV2)

zu zerlegen, wobei folgt

ux -ri (y> + v*)-. u2 ~j~ (v — w*)

Vl h^r y2{71 +n)' V2 h-jr^^{71 n)-

Dann gilt
i[px (x), ux(x')] ô(x — x'), i[p2(x), u2(x)] ô(x-x'),



Quantisierung der skalaren relativistischen Wellengleichung. 717

während jede Grösse mit dem Index 1 mit jeder Grösse mit dem
2 vertauschbar ist. WTährend Energie, Impuls und Wellengleichungen

additiv zerfallen in Ausdrücke die bzw. nur von px, ux
und von p2, u2 abhängen, gilt dann

9 PiU2 — p2ux. (16a)

Auf Grund der Analogie mit dem Ausdruck für eine
Komponente des Drehimpulses erkennt man hieraus sofort, dass g(x)
die Eigenwerte N ò(x — x') mit N 0, ± 1> • ¦ • besitzt. (Der
Faktor ô(x-x') kann hierin z.B. durch einen Grenzübergang
von einer diskreten Einteilung des Raumes zu einer kontinuierlichen

gerechtfertigt werden.) Da die Werte der Dichte an
verschiedenen Raunistellen miteinander vertauschbar sind, folgt also
in der Tat, dass die innerhalb eines beliebigen endlichen Gebietes v
befindliche Ladung

ev= I gdV

(in der Einheit, e gemessen) die Eigenwerte 0, ± U • • • i N
besitzt.

Wir bemerken noch, dass in der vorliegenden Theorie alle
Relationen einschliesslich der V.-R. richtig bleiben, wenn man
alle Operatoren mit ihren hermitesch konjugierten (also xp mit
xp*, n mit n*) vertauscht. Da hierbei der Viererstrom sein
Vorzeichen wechselt, ergibt sich hieraus die Symmetrie der Theorie
in bezug auf positive und negative Ladungen.

Nebenbei sei hier noch bemerkt, dass eine Zerlegung der
Dichte g in vertausehbare Teile mit nur positiven und nur negativen

Eigenwerten zwar auf unendlich viele Weisen möglich ist,
dass aber keiner dieser Teile für sich einer Kontinuitätsgleichung
genügt und auch nicht relativistisch invariant ist1).

l) Man erhält solche Zerlegungen z. B. unter Einführung einer beliebigen
Konstante a von der Dimension Wurzel aus Energie (z. B. a \/mc2) gemäss
lern Ansatz

n= —7=(<Pl + <rt), V>= ,— (?* — <Pi)

•\/2 V2 "

\/2 \/2 a
Es ist dann

[<P,(X), tp* (£')]- ir(X-x'), [cp2(x), <p* (x')]= ô(x-x'),
während Grössen mit Index 1 und solche mit dem Index 2 kommutieren. Und
'S gilt

Hieraus ergibt sieb ein neuer Beweis für die Eigenwerte von g.
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Wir wollen nun, was sowohl für Anwendungen von Wichtig- -

keit ist als auch an und für sich physikalisches Interesse bean- -

spracht, untersuchen, wie sich die Verhältnisse im Impulsraumn
gestalten. Um statt Integralen im Impulsraum Summen zu i
erhalten, verwenden wir die bekannte formale Methode, den i
Wellcnfeldern die Bedingung aufzuerlegen, einen Würfel derr
Kantenlänge L, also mit dem Volumen L3 V, als Perioditäts--
gebiet zu haben, so dass die Komponenten des Ausbreitung---

*- 2 71

vektors k der Wellen ganzzahlige Vielfache von -=- sein müssen.;.

Wir verwenden ferner

Vv
als ein vollständiges System orthogonaler normierter c-Zahl--
Eigenfunktionen, für die also gilt

/
v

uî(x)ul(x)dV ôkl. (18))

Hierbei schreiben wir als Index k hier und im folgenden derr
Einfachheit halber stets nur einen Index statt der den drei
Komponenten von k entsprechenden drei Indices und ähnliches soll 1

gelten für Summen über k.
Zerlegen wir nun die Funktionen xp, n, y>*,n* nach den ukk

gemäss

™ ±y<)teiK, w* ^=S'qîe-ii£'i (19a))

]>>Jet(**\ ^-^Vp^-1^ (19b»
Vvi? ' V'v

mit den Umkehrformeln

qk^7vJy'e~ * ql TfJre v (19c))

V V

Vl -Lrj'»* e-iVk%)dV, Vk^-lrJneHjI)dV (19d))

v v

so genügen die g-Zahlen pk,qk p*., ql (man beachte, dass pk,qkk
nicht hermitesche Operatoren und p*k,q*. die hermiteschen Kon--
jugierten von pk qk sind) gemäss (I) den V.-R.

i[pk,qi] ôkl, i[pt,qï] ôkl, (li))
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während die qk und q* untereinander, die pk und p* untereinander,

sowie die pk mit dem q* und die pk mit den qx kommu-
tieren. Überdies gilt nach (9)

Pk^hqî, P*k hqk. (20)

Für Ilamilton-Funktion und Impuls erhält man nach (7) und (8)

H yi(pîpk + El?qtqk) (21)
i-

G= -ihVl(p,.qk-q;.pl). (22)
*¦

Hierin ist zur Abkürzung gesetzt

Ek2=-- c2(h2k2 + m2c2). (23)

Wir werden im folgenden unter

Ek= + cijh2k2 + m2c2 (23 a)

Sitets die positive Wurzel verstehen.
Man bestätigt leicht die Gültigkeit der Regel (11) für

Pk, 9k, Pt, q*'y insbesondere ergibt sich

Vk=lh[H,pk] -lEk2q:., (24a)

Vl=lh[H,pì]^--\-E2qk. (24b)

Wir schreiben weiter auf Grund von (16) und (15 b) noch die
Ausdrücke für die Gesamtladung

ë g dV
v

und den Gesamtstrom

— 3= fsdV

in ihrer Zerlegung nach den Anteilen der verschiedenen
Impulseigenfunktionen hin. Wir erhalten

ê - i 2 (Pk 9k — Pt qt), (25)
*

— J 2hcyiq\(h. (26)
c k

Man wird sehen, dass der letztere nicht zeitlich konstant ist.
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Wir wollen nun zeigen, dass die Anteile der einzelnen
Eigenschwingung k zur Gesamtladung, zur Energie und zum Impuls
sich zugleich in zwei Teile zerlegen lassen, die einer einfachen
physikalischen Interpretation fähig sind. Zu diesem Zweck führen
wir folgende Variable ak, a*k,bk,bl ein:

'A-

mit den Umkehrformeln

a. -L (-L n» - ,: l/K. n, 1 «* — (-1

'»"^¦(^-"^*)- «-^Urt + i^*) <28W

Für die neuen Variablen folgen die V.-R.

[ak,aï]=ôkl, [bk,bj] òkl! (III)

während tlie ak oder ö* untereinander, die bk oder b*.

untereinander, sowie die ak mit den b* und die a*. mit den bt kom-
mutieren.

Man erhält weiter

H y, E„ 1 (a« a? + «î a, + ÒJ 6, + 6, 6»
/¦

^F,.(«l«k + btbk+l) (29)
t

G h 2£ Â' -| («* a* + "i n* — bt b,, — bk bt)
k

h*Zk(a*kak-bîbk). (30)
k

Ferner für die Gesamtladung

ë=S]h («î cik + ak al — b*kbk — bk bt)
k

?>(.<* ak-bibk). (31)
k
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Schliesslich ergibt sich nach (26) für den Gesamtstrom

— J hc 2 ,1 (at ak + bkb*k — a*k b% — ak bk)
C k 'Jk

kc2.4-(atak-+btbk-a*kbl-akbk+l). (32)

Die V.-R. für die a, b, a*b* haben zur Folge, dass die Operatoren

Xk+ atak, Xj. btbk (33)

vertauschbar sind und beide die niemals negativen ganzzahligen
Eigenwerte 0,1,2... besitzen. Die Ausdrücke für Ladung,
Energie und Impuls berechtigen uns in dem hier betrachteten
kräftefreien Fall zu folgender Interpretation:

Es bedeutet N~]j. die Zahl der Teilchen mit der Ladungszahl -f- 1

und dem Impuls hk, und Xj. die Zahl der Teilchen mit der Ladungszahl

— 1 und dem Impuls — hk1).
Es sei noch darauf hingewiesen, dass der Term mit -f- 1 im

Energieausdruck eine Nullpunktsenergie (Vakuumenergie) der
Materiewellen bedeutet, die aber, ganz analog wie die Nullpunktsenergie

der elektromagnetischen Strahlung, bei allen Anwendungen
und unbeschadet der relativistischen Invarianz der Theorie
fortgestrichen werden kann. Ähnliches gilt vom Term mit + 1 im
Ausdruck für den Strom. Von entscheidender physikalischer
Wichtigkeit ist, dass auch abgesehen von diesem Term die
Energie von selbst stets positiv ist.

Wichtig sind die Terme mit akbk und a*1?* im Ausdruck für
den Strom, welche dessen zeitliche Konstanz selbst im kräftefreien

Fall verhindern. Wie man aus den Bewegungsgleichungen

ak -ih^ak, h,. t' ]'; hk (34)

und ihren Integralen
-iFf,

ak ak(Q)e " bk=bk(0)e " (35)

'4 at(0)e " bt b*k(0)e h (35*)
1) Nochmals sei bemerkt, dass eine entsprechende Definition für eine räum-

l.che Dichte Q+(x) und g~(x) der Teilchensorten nicht in physikalisch sinnvoller
Weise möglich ist. Bildet man z. B. aus ak und bk

V1 k Vi k

si zeigt sich, dass der Ausdruck a*(x)a(x) — b*(x)b(x) nicht mit der Ladungsdichte

übereinstimmt.
40

1
h

ih

h (0)e~
Ek

K (0)e+ l-hl
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ersieht, die sich gemäss (11) aus (III) und (29) ergeben, haben i

diese Terme eine enge Analogie zur Schrödinger'sehen Zitter—
bewegung und geben, wie im folgenden § gezeigt wird, bei
Vorhandensein geeigneter äusserer Felder in der Tat Anlass zu
Prozessen der Paarerzeugung bzw. Paarvernichtung.

Wie bereits in der Einleitung erwähnt, ist eine Widerspruchs--
freie Durchführung der skalaren relativistischen Wellentheorie fürr
Teilchen mit Ausschliessungsprinzip nicht möglich, da sich, wiee
eine nähere Untersuchung der Hamiltonfunktion mit den Variablen

a und b zeigt, bei Gültigkeit der Fermi-Statistik die
relativistische Invarianz des Viererstromes nicht erreichen lässt. Ess

hängt dies auch damit zusammen, dass aus den Gleichungen

xp(x)xp*(x') + xp*(x')xp(x) 0, xp(x)xp(x) -\- xp(x')xp(x) 0

xp(x) 0 und xp*(x) 0 folgen würde.

§ 3. Fall des Vorhandenseins äusserer Kräfte.

Man gelangt für ein Teilchen mit der Ladung e vom kräfte--
freien Fall zum Fall des Vorhandenseins eines äusseren elektro-»-
magnetischen Feldes mit dem Viererpotential 0/i(0i i0Q)i,
wenn man den Operator p^ ersetzt durch

Pr—t-Pß—T**. (36»
c

was den Substitutionen

àxp àxp te d xp* ày>*
t le /n„-r-l- —> -~ - 0,1 xp, -r-2— —>. ~-çP~ + -r— 0,i W (36a i)dx" dx'' hc ß Y dx<1 à x" hc '

entspricht1). Die Lagrangefunktion des Materiefeldes wird danin

dxp* i e \ / d xp i e

-"!(ÏV-T*«^(ar + T*»"

-"!«!È(^ + ft" •>*){&- Sì**)—"v*- (sir;

J) In der Dirac'schen Theorie wird die Substitution

' n f c f
eingeführt, da die Elektronenladung dort mit —e) bezeichnet wird. Unsere Bec-
zeichnungen sind in Übereinstimmung mit W. Gordon, 1. c.
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Iüie Hamiltonfunktion des Materiefeldes

Hm= j \{h-Jt ie0oxp*)j(h-^ + ie 0oxp

' + y^(kc-~ +- ie 0kxp*\(hc -r^r- — ie0kxp\ + m2c4xp* ipidV. (37a)

A\ddiert man hiezu die Ausdrücke für die elektromagnetische
ILagrangefunktion

L-i™ -J— (E2 - H2) (38)
o n

bbzw. für die elektromagnetische Energie

//dm
1 f iE2 + H2)dV (38a)

8 n J

SSO erhält man das Energieintegral

Hm + Hiim const,

rund ferner durch Variieren des Wirkungsintegrals

[(L™ + L^™)dVdt

mach den Feldgrössen xp, xp*, 0^, einerseits die Wellengleichungen

' 2(h c Jxk +ie0k^j(hcdxk ie 0ky I m* e* xp (39)

d
(hJT + ie0n")(h1rr + ie0oy

2 {hcT* "ie 0k) {hc^-ie 0fc)w*+ m2 c4 w* (39*}

amdcrseits die Maxwell'sehen Gleichungen

rot È.— — È Anell-Anel; (40)
c c

div. È 4 n e g (41)
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mit den folgenden Ausdrücken für g und s :

dxp ¦ ^ \ * /, dip*
g i h~dT + ie0orjy,*-(h Jt~Ì60° xp*\ xp

hi(-r^-y*- -lì v)-^e0oxpdt dt (42)

s, l ''c~öh + 'e0kw*)v~{hc àlk ~ie0*v) 1'*

idxp* à xp a _ _
1 C ' ~dxk w ~~ Txk w " e * V W (43)

die sich von den entsprechenden Ausdrücken des kräftefreien
Falles (15a) und (15b) um charakteristische Zusätze unterscheiden.
Sowohl aus den Wellengleichungen (39) als auch aus den Max-
weH'schcn Gleichungen folgt die Gültigkeit der Kontinuitäts-
gleichimg (14) für die neuen Ausdrücke von g und sk. Eine
unmittelbare Folge von (36) ist die Invarianz der Lagrange- und
Hamiltonfunktion und auch der Ausdrücke für Strom und
Ladungsdichte gegenüber den Eichtransformationen

0 ' — 0
dX

dx1' ' xp — ip e (36 b)

Wichtig ist ferner, dass die Wellengleichungen, die MaxweH'schen
Gleichungen und die Hamilton-Funktion bestehen bleiben, wenn
man xp mit xp* vertauscht und gleichzeitig e durch — e ersetzt,
was die Symmetrie der Theorie in bezug auf positive und negative

Ladung zur Folge hat. Alle diese Aussagen bleiben bestehen,
wenn man xp, xp*, 0/t als g-Zahlen betrachtet.

Wichtig ist, dass die Bedeutung von n,n* gegenüber (9)
abgeändert ist gemäss

dL

»(£)"
dL

°m

dxp*
h /. —ie 0O ip*

h

dt

à ip

dt ie 0nip.

(44)

(44*)

Diese neuen n genügen jetzt den V.-R. (I)

i[n(x,t),ip(x',t)]=ô(x-x'): ¦(x,t),y>*(x;t)]= ò(x-x')[l)
und sind mit den elektromagnetischen Feldgrössen vertauschbar.
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Gemäss (42) wird dann die Ladungsdichte wieder formal
übereinstimmend mit (16)

g=i(n*xp*—nxp) i(xp*n*—xpn). (16)

Daher bleiben die Eigenwerte der Ladungsdichte auch bei Vorhandensein

eines äusseren Potentials dieselben wie im kräftefreien Fall.
Der materielle Teil (37a) der Hamiltonfunktion schreibt sich nun

Hm - Ho + Hi
mit

H0=J\nn* + Vc*t^l% + m*c*V*V}dV (450)

Hi=J[e h c S 0k (v* "/J- df-k v) t e2 2 0k* y>* xp j dV (45,)

Mit den bekannten V.-R. für die Feldstärken und
elektromagnetischen Potentiale kann dann die Quantenelektrodynamik
in der gewohnten Weise formuliert werden, wobei die Maxwell-
schen Gleichungen (40) aus Anwendung der Regel (11) gemäss

gewonnen werden können. Wir möchten hierauf nicht näher
eingehen, möchten nur an die bekannten Komplikationen erinnern,
die dadurch entstehen, dass die Gleichung (41) nur mit den eich-

invarianten Grössen xpn, xp* n*, E, H vertauschbar ist mit den
anderen wie n,n*, xp, xp*, 0ß aber nicht. Soll die Regel (11)

auch für diese Grössen gültig sein, so muss man einen Ausdruck
der Form

[0n(Aneg— div. È) dV

formal zu der Summe aus (38a), (450) und (45,) addieren1).
Für den nicht mit (37a) übereinstimmenden Teil H'

H' Hn + Hx+ H2 (47)

H2 e [ 0nQdV ie f 0n(n* xp* — nxp)dV (452)

x) Vgl. hiezu W. Heisenberg und W. Pauli, Zeitschr. f. Phys. 59, 168,
1!*30; insbes. S. 179, Gl. (38).
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der Hamiltonfunktion gilt also

7i y[H>], ip=
*

[H',xp] (48)

und entsprechende Relationen für die kanonisch konjugierten
n*, xp*.

Diese (nicht eichinvariante) Hamiltonfunktion II' hat daher
auch die Eigenschaft zeitlich konstant zu sein, wenn die Potentiale

0n und 0k zwar von den Raumkoordinaten, aber nicht
von der Zeit abhängen. Für viele Zwecke genügt es, die Vierer-
potentiale als gegebene c-Zahlfunktionen zu betrachten. In diesem
Fall muss mit der durch H' gegebenen Hamiltonfunktion
gerechnet werden. Diese ergibt sich übrigens auch durch die
kanonische Umformung von Lm nach der Formel:

' fnxpdV ¦+¦ fn* xp* dV — L"H

Wir wollen nun die Zusatzteile Hx und H2 der Hamiltonfunktion

auch im Impulsraum anschreiben, wie dies mit dem
ursprünglichen Teil H0 bereits im vorigen § geschehen ist [vgl.
Gl. (21)]. Sind in bezug auf das orthogonale Funktionssystem (17)
in üblicher Weise die Matrixelemente einer Funktion f(x) (z. B.
der Potentiale) definiert durch

fk^—Jf&e-'^dV, (49)

so erhalten wir aus (19a), (19b) unmittelbar

H2 t e 2 2 #*« (Pt gl - Pk 9i) (50)
*

Hi - -^^[hce(0kl,k+- T)-e2 (0)2kl]qt qt (51)
i *-

oder mit Einführung der Variablen ak. bk gemäss (27), (28), in
welchen H0 durch (29) gegeben ist:

H2~x}eYiVi0k', ~=(atal-bîbk)+--k-=rr1(aibk-a*kbt)
VEkE,y ' VEkVi

(52)

Hi-i^yj^f[hce(0kl, k+~l)-e2(0)2kl\

(atal + bkbt-atb:-bkal). (53)



Quantisierung der skalaren relativistischen Wellengleichung. 727

§ 4. Dift Paarerzeugunfl durch Lichtquanten und die Polarisation des

Vakuums.

Aus den Vertauschungsrelationen (III) für die a£,% bzw.
fc*, bk folgen in bekannter Weise die Eigenschaften dieser Operatoren

bei ihrer Anwendung auf ein von den Besetzungszahlen
A7£, Njj abhängiges Schrödingerfunktional c(. Nk ...;.. Nk...).
Es ist

a:.c(...Nt...;...N^....) i/Nf+Ac(...Nt+l...;...N-k...)
akc(...Nt....;...Xj:....) ]/Xj.c(...X+k-l...;...X-h...)
b:.c(...Nt....;...N-k...)=--]/Xi + lc(...Xt...-,...N-k-rl...)
bkc(...N+k...;...N-k...) yN-kc(...N+k...;...N-k-l...) (54)

Man sieht dann leicht, dass die Zusätze Hx und H2, die bei
Vorhandensein von äusseren Feldern zu der Hamiltonfunktion
hinzutreten, infolge der Faktoren a£ò*und bka, Glieder enthalten,
die zur Paarerzeugung und Paarvernichtung Anlass geben. Diese
Glieder führen nämlich zu Matrixelementen zwischen Zuständen,
die sich gerade um ein positives und ein negatives Teilchen
unterscheiden, während die Faktoren alat bzw. bkb* nur Übergänge
eines positiven bzw. eines negativen Teilchens von einem Zustand
zum andern liefern.

Wir wollen nun im folgenden die Wahrscheinlichkeit der
Paarerzeugung durch ein Lichtquant der Energie hv > 2 mc2 auf
Grund der Ausdrücke (52) und (53) berechnen, um sie mit den
entsprechenden Ausdrücken der Löchertheorie, wie sie von Bethe
und Heitler1) gerechnet wurden, zu vergleichen.

Infolge des Energie- und Impulssatzes verschwindet diese
Wahrscheinlichkeit im feldfreien Raum. Wir nehmen daher an,
es herrsche im Raum ein durch ein zeitunabhängiges skalares
Potential 0O darstellbares elektrisches Feld (etwa das Coulombfeld

eines Kerns), das den Impulsüberschuss aufnehmen kann.

Wir berücksichtigen den Einfluss des Feldes ebenso wie
Bethe und Heitler nur in erster Näherung, indem wir vom
feldfreien Räume ausgehen und sowohl 0O als auch das Potential
der Lichtwelle als Störung auffassen.

Wenn wir nun nach der Wahrscheinlichkeit W fragen, dass

pro Zeiteinheit ein positives und ein negatives Teilchen mit den

Impulsen hk bzw. — hl und der Energie Ek bzw. Et durch Absorption

eines Lichtquants hv — Ek -f- Fn im leeren Raum entsteht,

Proc. Roy. Soc. 146, 83, 1934.
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so erhalten wir erst in zweiter Näherung ein von Null verschiedenes

Resultat:

W J_
h2 2 Hx(A C) H2 (CB)

+ H2(A C) Hx (C B)
EB — EC Es —Er (55)

A sei der Zustand des Vakuums (alle N — 0), B sei der
Endzustand (N% — 1, Nj — 1, alle andern N 0), G bedeute
irgend einen Zwischenzustand. Hx (AC)... etc. bedeutet das
Matrixelement von Hx zwischen den Zuständen A und C, wobei
in H2 das skalare Potential 0O und in Hi das Vektorpotential 0
der Lichtwelle mit der Frequenz v einzusetzen ist. Infolge des

Impulssatzes, der sich bei der Berechnung von Hi ergibt, kommen
nur folgende 4 Zwischenzustände in Frage:

Nï_.= 1

X,
Ci-*NÎ -1,
C2^JVf+„=l,
C3-+Ni 1, tf7+n=

alle andern N 0

Die betreffenden Matrixelemente lassen sich aus (52) und (53)
berechnen und führen zu einem Ausdruck, den wir als differen-
tiellen Wirkungsquerschnitt d 0 anschreiben, dass ein unpolari-
siertes Lichtquant der Frequenz v ein positives Teilchen mit der
Energie zwischen E+ und E+ -+- dE ein negatives mit der Energie
zwischen E_ und E_ — dE erzeugt (E+ + E_ hv) und deren
Impulse p,. und p_ mit der Richtung des Lichtquants die W7inkel
-&+ und & _ einschliessen :

dQ
1

Sn3

e2

hc

1

h3 v

1 El p\ sin2*+

sin#,sm#_d&,d&„dcpV-±AvrdE I

E^pisin**.
|(È'+ — cp+ cos #+)""2

+
(#_ — cp_cös#_p

2 E+E_ p+P- sin^j. sin#_ cos ç>

*o(9)

+
(-E+ — cp+ cos#+) (E_ — cp_ cos #_)

(56)

g? ist der Winkel zwischen den Ebenen, die aus der Richtung
•des Lichtquants und den Richtungen p+ bzw. p__ gebildet werden.

0oÇq) bedeutet hier das Matrixelement

0o(q) f<I>o(x)^'rx)dV.

{Es enthält im Gegensatz zu (49) nicht mehr das Gesamtvolumen V),



Quantisierung der skalaren relativistischen Wellengleichung. 729

wobei hq der an das elektrische Feld abgegebene Impulsüberschuss

h g (p+ — p _ — hn)

ist. n ist der Ausbreitungsvektor des Lichtquants.
ZeIm Coulombfeld 0O ist zu setzen:

0o(q) AnZejr.
Der entsprechende Ausdruck in der Löchertheorie lautet nach
Bethe und Heitler:

d Q «Tl T" 7

31
3

si n *- sin »-d#+dtr_dcp P±f: rf 7<7 1<Z>0 (Ç |2.
8 7t3 rtC ftJ l"1 ft*

1 e2 1

n3 hc h3 v

p\ sin; #+ (£i - fc*c_sg2/4)
_ pi sin: g_ (g. - h2c2q2jA)

~~(J&V — cp.r cosTj2 (#_ — cp_ cos *_)2

2 p_p+ sin #_ sin 0+ cos 95 (E_E+ + c2h2q2jA)

(£'+ — cp+ cos #+) (E_ — <¦ p_ cos #._)

J/i2v2[p2fsin2^J. -f p!_sin2#_ -f- 2 p., p_sin#+ sin &_cos cp] |

+

(JE+ — cp+ cos #+) (J5_ — c p_ cos *_) |

Er unterscheidet sich von dem aus der skalaren Wellengleichung
gewonnenen Ausdruck (56) nur durch das dritte Glied in der
geschwungenen Klammer und in den dort auftretenden Gliedern
mit q2. Die letzteren sind aber bei hohen Energien zu vernachlässigen,

da hc I q I « h v für hv » m c2.

Setzt man für 0O das Coulombpotential ein, so lässt sich
die Integration über die Winkel für den Grenzfall hv))mc2 leicht
ausführen1). Man erhält:

_
Z2 e2 i e2 \2 '02* E+ E__ (,n 2 E+E_ x

hc \mc2 J 3 h3 v3 \ hvmc2 2

und für den Gesamtquerschnitt:

n Z2e2 i e2 \2 / lo
Q hc-\mc2) (lTlg

Z2e2 / e2 \2 / 16 2h v 104

rac2 27

1) Wir schulden Herrn Bethe für die Überlassung des Manuskriptes seiner
in den Proc. Cambr. Phil. Soc. erscheinenden Arbeit, in der ähnliche Integrationen

durchgeführt werden, vielen Dank.
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Die entsprechenden Formeln der Löchertheorie lauten nach Bethe
und Heitler:

Z2 e2 i e2 \ 2 El - El - 2 E+ £_ /, 2 E. EàQ-^r ~2) 4 — I.J + Hghc \mc2) h3 v3 \ hvmc2 '"'

bezw.

„ Z2e2 ; e2 \2 /28 2 /i r 218
fe c \ m c2 / \ 9 wi r2 27

Der Querschnitt für die Paarerzeugung ist also in der hier behandelten

Theorie für den Limes hv))mc2 etwa um den Faktor 4/7
kleiner.

Zum Schlüsse sei noch die Polarisation des Vakuums durch
ein elektrostatisches Feld berechnet. Wir berechnen zu diesem
Zweck die zusätzliche Ladungsdichte g(x), die durch das Feld 0O
einer im Räume vorhandenen ,,äusseren" Ladungsdichte g0(x)
entsteht; g(x) ist dann die durch ein Potential 0O induzierte
Ladungsdichte in einem Raum, der in bezug auf die durch die
Wellengleichung beschriebenen positiven und negativen Teilchen
leer ist.

Es ist vorteilhaft, eine Fourierzerlegung der Dichte
vorzunehmen. Man erhält dann aus (16) und (19) für den Fourier-
koeffizienten:

g (C) y- J g (x) e-rôï) d y £ (p* gj _ Pk qù

wobei l k + f. Weiter entsteht nach (27) durch Einführung der
Operatoren a und b:

e (0 4- SI E)~tl (°2 a< -b* W + £fc~- («î W - o, w). (57)

Diesen Operator haben wir nun auf das durch das äussere Feld 0O

gestörte Schrödingerfunktional des leeren Raumes c(.. 0.. ;.. 0

anzuwenden. Durch eine Störungsrechnung ergibt sich in erster
Näherung aus (52) :

c(. ..0... ;...()... r0(...0... ;...0...)

-ïS^^ffe^-1'-'-1'-»- (58)

wobei r0(. 0 ; 0 und c0(. lk ..;.,. 1(. die
Funktionale des feldfreien Zustandes im Vakuum bzw. im Falle:
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(Nk 1, Xj~= 1 alle andern N 0) bedeuten. Bildet man nun
den Erwartungswert des Operators g(C) für den Zustand c 0 ;

0 so erhält man

-„- th '
ch mv (Hk — Hi)2 7_7. _i_7

Die Summe über k divergiert logarithmisch, wie man leicht sehen
kann. Man erhält nämlich nach Integration über die Richtungen
von k :

cc

i&--nh:^^fd^+e,„».GUe„tr.
k.

Kehrt man in den Koordinatenraum zurück, so ergibt dies:

~g(x) =-- K A 0O + endl. Glieder

1 e f d I k I

K
12n2 hc I \k

Die induzierte Ladungsdichte hat entgegengesetztes Vorzeichen,

wie die äussere Dichte g0 — 7— A 0O und ist zu dieser proportional,

mit dem divergierenden Proportionalitätsfaktor AnK, was
zur Folge hätte, dass jede äussere Ladung durch die induzierte
vollständig kompensiert würde. Dieses Resultat stimmt mit dem
von Dirac1) auf Grund seiner Löchertheorie berechneten
vollständig überein. Selbst der Faktor K des divergierenden Gliedes
ist der gleiche.

Zürich, Physikalisches Institut der E. T. IL

P. A. M. Dirac, Solvav-Bericht 1933.
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