Zeitschrift:	Helvetica Physica Acta
Band:	7 (1934)
Heft:	VII
Artikel:	Zur Intensitätsverteilung in Bandenspektren zweiatomiger Moleküle
Autor:	Wehrli, M.
DOI:	https://doi.org/10.5169/seals-110393

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 24.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Zur Intensitätsverteilung in Bandenspektren zweiatomiger Moleküle

von M. Wehrli.

(19. VII. 34.)

Inhalt: Die Intensitätsverteilung im Bandensystem eines Moleküls weicht von der üblichen ab, wenn die Abstände der Gleichgewichtslagen der Kerne in den beiden Elektronenzuständen (vor und nach der Absorption oder Emission des Bandensystems) miteinander übereinstimmen, die zugehörigen Kernschwingungsfrequenzen dagegen verschieden sind. Es ergibt sich in diesem Falle, dass nur Übergänge mit geradzahliger Änderung der Oszillationsquantenzahlen erlaubt sind. Diese Auswahlregel ist an den Molekülspektren von InJ und GaJ annähernd verwirklicht und wird hier wellenmechanisch begründet. Es zeigt sich, dass bei den Beobachtungen an InJ und GaJ die Wellenfunktionen der Kernschwingung deutlich hervortreten.

§ 1. Einleitung: Stellt man die beobachteten Intensitäten der Kanten eines Bandensystems geordnet nach den Schwingungsquantenzahlen v', v'' in einer Tabelle (Kantenschema) zusammen, so gruppieren sich die Beobachtungswerte um eine Parabel, die von den Banden grösster Intensität gebildet wird. Diese Gesetzmässigkeit hat zuerst J. FRANCK¹) nach den halbklassischen Vorstellungen der alten Quantentheorie und etwas später E. Con-DON²) im Sinne der Wellenmechanik erklärt. Im allgemeinen wird das wellenmechanische Ergebnis bei sehr hohen Quantenzahlen mit dem klassischen Resultate übereinstimmen. Dagegen sind bei kleineren Quantenzahlen Abweichungen zu erwarten, was schon E. CONDON voraussieht. Bis jetzt scheinen in Bandensystemen Fälle von Intensitätsverteilungen, welche nur wellenmechanisch erklärt werden können, nicht beobachtet zu sein. Gemeinsam mit E. MIESCHER³) habe ich beim Bandensystem A des GaJ und kürzlich⁴) ganz analog beim System A des InJ eine von der üblichen abweichende Intensitätsverteilung festgestellt. In Tabelle 1 ist das Kantenschema für GaJ in geschätzten Inten-

¹) J. FRANCK, Trans. Faraday Society 21, part 3, 1925.

²) E. CONDON, Phys. Rev. **32**, 858, 1928.

³) E. MIESCHER und M. WEHRLI, Helv. Phys. Acta, 7, 331, 1934.

⁴) M. WEHRLI, Helv. Phys. Acta, 7, 611, 1934.

															_		
v'''	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	10_P	5_P	2_{P}														
1	8 _P	$\boldsymbol{9}_P$	5_P	2_{P}	0 _P			2									
2	4_{P}^{l}	9 _P	8 _P	5_P	2_{P}	1_P	00_P										
3			$\frac{10_P}{3_R}$	7_{P}^{l}	4_P	$egin{array}{c} {f 3}_P \ {f 0}_R \end{array}$	0 _P	0_P									
4				$7^m_P \\ 7_R$	7_P^m 4_R	2^l_P	4 _P	0 _P	0_{P}								
5			3 _{<i>R</i>}		6_R	$oldsymbol{2}_P^m oldsymbol{6}_R$		3_{P}^{m} 2_{R}	00^m_P	\mathbf{I}_P^l							
6				4_R			6 _R	1_R	$egin{array}{c} 2_P^m \ 3_R \end{array}$		0_R	-					
7								6_R	1_R	4_{R}	00_R	1_{R}					
8									5_{R}	1_R	3_R	1_R	\mathbf{I}_{R}				
9										3_{R}	2_R	2_R	$\overline{0_R}$	\mathbf{I}_R			
10											0_{R}		2_{R}	$\overline{0_R}$	$\overline{0_R}$		
11												0_R				$\overline{0_R}$	
12													e.				00 _R

Tabelle 1 (beobachtet).Kantenschema GaJ System A.

sitäten nach Beobachtungen an einer Absorptionsaufnahme nochmals abgedruckt. Man erkennt daran, dass bei höhern Quantenzahlen die Diagonalgruppen mit gerader konstanter Quantenzahldifferenz v'-v'' deutlich bevorzugt sind, indem in diesen die Banden meist grössere Intensität aufweisen, als in den dazwischenliegenden mit ungeraden v'-v''. Für v' = 7 ergeben sich z. B. nach Tabelle 1 die beobachteten Intensitäten:

6, 1, **4**, 00, **1**,

wobei die 3 fettgedruckten Werte in die Diagonalen mit v'-v''=0, -2 und -4 gehören. Ganz entsprechendes beobachtet man noch deutlicher im Kantenschema des InJ (l. c.), bei dem 4 intensivere Diagonalen auftreten. Es sieht so aus, wie wenn in diesen beiden Bandensystemen eine Auswahlregel nahezu verwirklicht wäre gemäss der Gleichung:

$$v' - v'' = 2 n.$$
(1)
(n = ganze Zahl)

Es soll in der vorliegenden Arbeit untersucht werden, inwiefern man diese Beobachtungen nach der Wellenmechanik verstehen kann.

§ 2. Die oben beschriebenen Bandensysteme zeigen auch anderweitig ein spezielles Verhalten. Sie bestehen gleichzeitig aus violett und rot abschattierten Banden. Man schliesst daraus, dass die Kernabstände der Moleküle im obern und untern Elektronenzustand nahezu dieselben sind. Tatsächlich führt die Wellenmechanik gerade in diesem Falle auf die Auswahlregel (1), wie im folgenden gezeigt wird. Die massgebende Grösse für die relative

Intensität in einem Bandensystem ist nach der Wellenmechanik¹) das Matrixelement:

$$P_{v',v''} = C_1 \int_{-\infty}^{+\infty} \psi_{v'} \psi_{v''} dx.$$
(2)

 $\psi_{v'}$ und $\psi_{v''}$ sind die Wellenfunktionen der Kernbewegung im obern bzw. untern Zustande des Moleküls. x ist die Integrationsvariable und bedeutet die Distanz des bewegten Kerns von der Gleichgewichtslage r_0' im obern Zustande (s. Fig. 1).

 C_1 ist von x unabhängig. Im Falle eines Absorptionsspektrums gilt für die Intensität:

$$I_{v',v''} = \text{const} \ e^{-G_{v''}/kT} \ v_{v',v''} (P_{v',v''})^2, \tag{3}$$

wo k die Boltzmannsche Konstante, T die absolute Temperatur im Absorptionsrohr, $G_{v''}$ die Schwingungsenergie im Zustande v''und $v_{v',v''}$ die Frequenz der entsprechenden Bande bedeuten.

¹) Siehe z. B. W. WEIZEL, Bandenspektren 1931.

Intens. Verteilung von Bandenspektren zweiatom. Moleküle.

679

Die Kernschwingung werde harmonisch angenommen, was bei kleinen Quantenzahlen angenähert richtig ist. Mit den bekannten Wellenfunktionen des harmonischenOszillators¹) wird Gleichung(2):

$$P_{v',v''} = \frac{1}{N_{v'}, N_{v''}} \int_{-\infty}^{+\infty} e^{-\frac{(\beta'+\beta'')}{2}x^2} H_{v'} [\sqrt{\beta'} x] H_{v''} [\sqrt{\beta''} (x+\Delta)] dx.$$
(4)

 $H_{v'}$ und $H_{v''}$ sind die HERMITE'schen Polynome vom Grade v' bzw. v''. Die Grösse \varDelta ist die Änderung des Gleichgewichtsabstandes gemäss Fig. 1. $N_{v'}$ und $N_{v''}$ sind die Normierungsfaktoren der Wellenfunktionen. Ihre Werte ergeben sich aus den Gleichungen:

$$N_{v'} = \left(2^{v'}v'! \left| \sqrt{\frac{\pi}{\beta'}} \right)^{1/2}; \quad N_{v''} = \left(2^{v''}v''! \left| \sqrt{\frac{\pi}{\beta''}} \right)^{1/2}.$$
(5)

Die Grössen β' und β'' gehorchen den Beziehungen:

$$\beta' = \frac{4 \pi^2 c}{h} \left(\frac{m_1 \cdot m_2}{m_1 + m_2} \right) \omega_e'; \quad \beta'' = \frac{4 \pi^2 c}{h} \left(\frac{m_1 \cdot m_2}{m_1 + m_2} \right) \omega_e''. \quad (6)$$

Es bedeuten: c die Lichtgeschwindigkeit, h die Plancksche Konstante, m_1 , m_2 die beiden Atommassen, ω_e' und ω_e'' die Kernschwingungszahlen in Wellenzahlen nach und vor der Absorption.

§ 3. Spezialfall. Es sei $\Delta = 0$ (s. Fig. 1) aber β' wesentlich verschieden von β'' . Man hat dann in Gleichung (4) unter dem Integralzeichen ein Produkt von 3 Funktionen, die in Bezug auf xentweder gerade (g) oder ungerade (u) sind. Die Exponentialfunktion ist stets gerade und die HERMITE'schen Polynome $H_{v'}$ und $H_{v''}$ sind gerade oder ungerade, je nachdem v' bzw. v'' gerade oder ungerade ist.

Von den 4 möglichen Kombinationen:

v'	gerade,	$v^{\prime\prime}$	gerade	:	ggg	\longrightarrow	Gesamtfunktion	g
v'	ungerade,	$v^{\prime\prime}$	ungerade	:	guu		,,	g
v'	gerade,	$v^{\prime\prime}$	ungerade	:	ggu		,,	u
v'	ungerade,	$v^{\prime\prime}$	gerade	:	gug		,,	u

ergeben die ersten beiden Fälle eine gerade Gesamtfunktion, die beiden letzten eine ungerade. Da das Integral einer ungeraden Funktion null ist, verschwindet das $P_{v',v''}$ in den 2 letzten Fällen,

¹) A. SOMMERFELD, Atombau und Spektrallinien, Bd. 2, 1929.

M. Wehrli.

die entsprechenden Übergänge sind verboten. Es ergibt sich somit für die erlaubten Übergänge die Auswahlregel v'-v''=2n $(n=0, \pm 1, \pm 2, \pm 3, \ldots)$, welche mit Gleichung (1) identisch ist. In Tabelle 2 ist ein solch ideales Kantenschema durch Kreuze angedeutet, wobei jede zweite Diagonale ausfällt.

v"	U	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	X	١	×													
1	1	X	-	X												
2	×	-	X	-	X											
3		X	1	X	1	X	1	×								
4			X	-	X	-	X	-	X							
5				X	-	X	-	×	-	X						
6					X	-	X	-	X	1	×					
7				×	-	X	-	X	1	X	1	X				
8		-			X	1	X	-	X	I	X	1	X			
9						×	I	×	1	X		X	I	Х		
10							×	_	X	-	Х	-	X	-	Х	
11								X	-	X	-	X	-	X	-	X

Tabelle 2.

Theoretisches Kantenschema für $\Delta = 0$.

- Übergang verboten.

§ 4. E. HUTCHISSON¹) hat die Integrale der Gleichung (4) explizite ausgewertet. Seine Formeln führen auch auf die Auswahlregel (1); im weitern liefern sie aber noch quantitative Angaben über $P_{r',r''}$. Für $\Delta = 0$ wird:

$$P_{v', v''} = C_3 \frac{(v'! v''!)_{2}}{2^{(v'+v')_{2}}} \sum_{l=0}^{v' \text{ oder } v''} a_{2l} b_{2l} c_{2j}$$
(8)

i und j sind ganze positive Zahlen und bestimmt durch die 2 Bedingungen:

$$2 i = v' - l$$
 und $2 j = v'' - l$. (9)

¹) E. HUTCHISSON, Phys. Rev. 36, 410, 1930.

Als obere Grenze der einfachen Summe in Gleichung (8) ist die kleinere der Quantenzahlen v' und v'' massgebend. Die Faktoren C_3 , a, b und c ergeben sich aus den Gleichungen:

$$C_{3} = \left[\frac{2}{(1+\alpha^{2})\alpha}\right]^{1/2} \qquad a_{2l} = \frac{1}{l!} \left(\frac{4\cdot\alpha}{1+\alpha^{2}}\right)^{l} \\ b_{2l} = \frac{1}{i!} \left(\frac{1-\alpha^{2}}{1+\alpha^{2}}\right)^{i} \qquad c_{2j} = \frac{1}{j!} \left(\frac{-(1-\alpha^{2})}{1+\alpha^{2}}\right)^{j}$$
(10)

Die Grösse α errechnet sich nach:

$$\alpha = \sqrt{\frac{\omega_{e}^{\,\prime\prime}}{\omega_{e}^{\,\prime}}} \tag{11}$$

enthält also das Verhältnis der Kernfrequenzen vor und nach der Absorption.

Die beobachteten Fälle werden den obigen idealen Grenzfall nie ganz erreichen, sondern es sind folgende Abweichungen zu erwarten: Die Kernschwingung ist anharmonisch. Nach E. HUT-CHISSON¹) ergibt sich, dass dann die Auswahlregel (1) durchbrochen werden kann. Dasselbe tritt ein, wenn Δ nicht genau Null ist, d. h. es überlagert sich dem Schema nach Tabelle 2 ein zweites Schema. Dessen Intensität nimmt mit steigendem Δ rasch zu, so dass das erstere schliesslich bei grösserm Δ vollständig verwischt wird. In den Spektren von GaJ (s. Tabelle 1) und InJ treten deshalb auch die Diagonalen mit ungeradem v'-v'' mit merklichen Intensitäten auf. Aus den bekannten Kantenformeln der Bandensysteme A von GaJ und InJ lassen sich die Werte von α nach Gleichung (11) angeben.

Es ist:

$$\alpha = \sqrt{\frac{216,4}{193,2}} = 1,060$$
 für GaJ und
 $\alpha = \sqrt{\frac{177,1}{158,5}} = 1,058$ für InJ.

Wenn $\alpha = 1$ ist und gleichzeitig $\Delta = 0$, so verschwindet das $P_{v',v''}$, ausgenommen, wenn v' = v'', da das Integral in Gleichung (4) identisch wird mit der Orthogonalitätsrelation der HERMITE'schen Polynome. In diesem bekannten Falle tritt daher im Kantenschema nur die Mitteldiagonale v' = v'' auf. Damit auch die äussern Diagonalen beobachtet werden können, muss α von 1 abweichen.

¹) E. HUTCHISSON, Phys. Rev. 37, 45, 1931.

681

*

M. Wehrli.

§5. Es soll nach obiger Theorie berechnet werden, ob diese äussern Diagonalen mit dem Werte $\alpha = 1,06$ noch mit merklicher Intensität auftreten. Zu diesem Zwecke sind in Tabelle 3 einige nach den Formeln (8) bis (11) erhaltene $P_{v',v''}$ zusammengestellt.

Diagonale	[v', v'']	$ P_{v'}, v'' $	$\frac{ P_{v'v''} }{ P_{v'v''} }$	$lpha=1,06$ $(P_{v'v''})^2$	I_0/I_2
Mitteldiagnale 1. äussere	[0, 0] [0,1][1,0]	1 0	10 0	100 0	620
2. äussere	[0,2][2,0]	$0,707 \cdot b_2$	0,4	0,16)
Mitteldiagonale	[4,4]	$1,5 (b_4 c_4 + a_4 b_2 c_2 + a_8)$	6,6	43	1
1. äussere	[3,4][4,3]	0	0	0	31
2. äussere	[2,4][4,2]	$0,86 \ (b_2c_4 \ + \ a_4c_2)$	1,2	1,4	J
Mitteldiagonale	[8,8]	$107,5(b_8c_8+a_4b_6c_6+a_8b_4c_4+a_{12}b_2c_2+a_{16})$	6,5	42	1
1. äussere	[7,8][8,7]	0	0	0	8,7
2. äussere	[6,8][8,6]	$42,2 (b_6c_8 + a_4b_4c_6 + a_8b_2c_4 + a_{12}c_2)$	2,2	4,8)
Mitteldiagonale	[7,7]	26,9 $(a_2b_6c_6 + a_6b_4c_4 + a_{10}b_2c_2 + a_{14})$	6,4	41)
1. äussere	[7,8][8,7]	0	0	0	7,2
2. äussere	[7,9][9,7]	$167 (a_2b_6c_8 + a_6b_4c_6 + a_{10}b_2c_4 + a_{14}c_2)$	2,4	5,7)
4. äussere	[7,11][11,7]	$1080 \ (a_2b_6c_{10} + a_6\overline{b_4c_8} + a_{10}b_2c_6 + a_{14}c_4)$	0,5	0,25	

Tabelle 3.Matrixelemente.

Die letzten 3 Kolonnen enthalten Zahlenwerte mit der Annahme $\alpha = 1,06$. Dabei ist $P_{0,0}$ willkürlich gleich 10 gesetzt. Die letzte Kolonne enthält die Quotienten je zweier $(P_{v',v''})^2$. Diese entsprechen nach Gleichung (3) jeweils dem Intensitätsverhältnisse I_0/I_2 , wenn I_0 und I_2 die Intensitäten in der Mittel- bzw. 2. äussern Diagonalen bedeuten. Denn die Änderung von $v_{v',v''}$ darf vernachlässigt werden, und die Quantenzahl v'' ist gemäss Kolonne 2 jeweils für I_0 und I_2 dieselbe. Man erkennt aus Tabelle 3, dass der Intensitätsabfall I_0/I_2 bei kleiner Quantenzahl gross ist. Er nimmt mit wachsenden Quantenzahlen [v',v''] von 620 an rasch ab und erreicht bei höhern Quantenzahlen den Wert 7,2. Die letzte Zeile von Tabelle 3 enthält einen $(P_{v',v''})^2$ -Wert in der 4. äussern Diagonale. Er beträgt 0,25 und übertrifft den $(P_{v',v''})^2$ -Wert in der 2. äussern Diagonale für kleine Quantenzahlen, da sich für [0,2] nur 0,16 ergibt.

Zusammenfassend lautet das Ergebnis: Im Grenzfalle $\Delta = 0$ weisen die äussern Diagonalen nur bei höhern Quantenzahlen (oberhalb 5) Intensitäten von der gleichen Grössenordnung wie die Mitteldiagonale auf. Dieses Verhalten ist in Tabelle 2 durch die Intensität der Kreuze angedeutet. Die Auswahlregel (1) wird sich demgemäss nur bei höhern Quantenzahlen deutlich auswirken, eine Forderung, die mit den Beobachtungen bei GaJ (s. Tabelle 1) und bei InJ recht gut im Einklange steht¹).

Die Auswahlregel (1) kann nach den frühern FRANCK'schen Vorstellungen in keiner Weise verstanden werden, da sich nach ihnen die Kernschwingungen bei geraden und ungeraden Quantenzahlen prinzipiell nicht voneinander unterscheiden. Es handelt sich bei den Beobachtungen am InJ und GaJ vielmehr um einen Fall von Intensitätsverteilung, bei dem die Wellenfunktionen der Kernschwingungen deutlich hervortreten.

Basel, Physikalische Anstalt.

¹) Ein quantitativer Vergleich kann nicht durchgeführt werden, da die Zahlen in Tabelle 1 nur qualitativ geschätzt sind.