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Bestimmung der elastischen Eigenschaften quasiisotroper
Vielkristalle durch Mittelung
von A, Huber und E. Sechmid.
(13. VIL 34.)

Zusammenfassung. Aus der Orientierungsabhiangigkeit des Elastizitats- und
Torsionsmoduls kubischer und hexagonaler Kristalle werden durch Mittelwerts-
bildung iiber den gesamten Orientierungsbereich die Moduln des regellosen, quasi-
isotropen Vielkristalls berechnet.

Die Eigenschaften emes Vielkristalls stehen, sofern es sich
nicht ausschliesslich um Wirkungen der Korngrenzen handelt,
engem Zusammenhang mit den Eigenschaften der thn aufbauenden
Einzelkorner. Fiir die elastischen Eigenschaften ist eine Mittelung
zur Berechnung der Vielkristalleigenschaften aus denen des Ein-
kristalls erstmals von Voier!) angegeben worden zu einer Zeit,
als experimentelles Material zur Prifung seiner Formeln nur
spéarlich zur Verfiigung stand. Neuerdings haben sich BRuceEMax?®)
und Rruss?®) wieder miut diesem Problem befasst.

Alle Mittelungen gehen von den Voraussetzungen aus, dass
die Kristallkorner 1. klein sind gegeniiber den Abmessungen der
untersuchten Proben, jedoch gross gegeniiber den Reichweiten
der Gatterkrifte, und 2. dass sie den Raum hickenlos erfiillen.
Dem Zusammenhalt der Korner wiihrend der elastischen Bean-
spruchung wird beir Vorar durch die Grenzbedingung stetigen
Ubergangs der Verriickungen und ihrer Ableitungen, der Deforma-
tionen, an den Korngrenzen Rechnung getragen. Die Mittelung
fiir den quasiisotropen Vielkristall ist dadurch auf die Mittelwerts-
bildung der elastischen Parameter ¢, zurtickgefiithrt. Integration
der betreffenden Ausdriicke tiber den gesamten Orientierungs-
bereich liefert sodann die elastischen Parameter und daraus weiter
die gewohnten Grossen Elastizitiits- und Torsionsmodul des
Vielkristalls.

1) W. Voiar, Lehrb. d. Kristallphysik, Teubner, 1910.

2y D. A. G. BruccEMAN, Utrechter Dissertation 1930 (J. B. Wolters,
Groningen-Den Haag).

%) A. REvuss, Zeitschr. angew. Math. u. Mech. 9, 49, 1929.
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BruGceremAaN zeigte zunichst durch Priifung an einer Reihe
von Metallen, dass die Vorar’sche Theorie nur bei schwach aniso-
tropem Kristallmaterial ziemlich richtige Werte liefert, dass sie
dagegen mit zunchmender Anisotropie immer schlechter stimmt.
Er fihrt dies auf die verwendeten Grenzbedingungen fiir die
Korngrenzen zuriick. Da nach dem Reaktionsprinzip zweifellos
die drer senkrecht zur Grenzfliche stehenden Spannungskompo-
nenten m Nachbarkristallen emnander gleich sein miissen, kénnen
im allgemeinen nicht alle sechs elastischen Deformationen, sondern
nur deren drei je einander gleich sein. Der Durchfithrung der Mit-
telung unter den neuen Grenzbedingungen erwachsen sehr erheb-
liche Schwierigkeiten. Die Annahme eines besonderen lamellen-
artigen Aufbaus des Vielkristalls erweist sich als notwendig. Als
Ergebnis der reichlich verwickelten Rechnungen folgen deutliche
Abweichungen von der Vorer’schen Mittelung, die sich jedoch
als erste Annidherung fiir geringe Anisotropie ergibt.

Reuss fihrt die Berechnung der elastischen Konstanten des
quasnsotropen Korpers auf zwel verschiedene Arten durch. Ent-
weder werden wie bel Voiet die Deformationen fiir die einzelnen
Korner gleichgesetzt und die Mittelwerte der Spannungen berechnet,
oder es wird von gleichen Spannungen ausgegangen und die Deh-
nungen werden gemittelt. Der erste Fall deckt sich mit der Voiar-
schen Theorie. Ahnlich einfache Formeln fiir die Moduln des
(uasiisotropen Aggregats liefert auch Fall zwei.

Mit Riicksicht darauf, dass die Mittelungen nach Voier und
Reuss nur in sehr roher Ubereinstimmung mit der Erfahrung
sind!) und dass die Mittelung nach BrRucGEMAN ein sehr spezielles
Bauprinzip des | vielkristallinen Aggregats voraussetzen muss,
haben wir eine neuerliche Behandlung des Problems versucht.
Spezielle Grenzbedingungen an den Korngrenzen haben wir dabel
vollig ausser acht gelassen, ausgehend von der Erwigung, dass
der Zusammenhalt der Kérner gegebenenfalls durch Verzerrungen
in den #dussersten Randschichten gewahrt bleibt, wie man dies ja
bei den viel stirkeren, zu plastischen Verformungen fithrenden
Beanspruchungen unmittelbar beobachtet. Die Mittelung wurde
in der Weise ausgefiihrt, dass die von der Theorie der Kristall-
elastizitit gelieferten Ausdriicke fiir den Elastizitats- und Tor-
sionsmodul einer in beliebiger Richtung zu den kristallographischen
Achsen entnommenen, kreiszylindrischen Probe iiber den gesamten
Orientierungsbereich integriert wurden.

1) Vgl. hierzu die folgende Mitteilung.
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I. Quasiisotropes Aggregat hexagonaler Kristalle.

Fir die Orientierungsabhingigkeit des Elastizitatsmoduls (E)
und Torsionsmoduls () gelten die beiden Ausdriicke?)

11‘; =813 (1 — 1?2 + 5535 24 4 (2 5153 4 S44) 22 (1 — 2?) 1
=Aga*+ Bga*+ Cg= @ (D
7 = Sa [(510—812) — % S4a] (1 —22) +2 (53 + 33— 2 813—844) 22 (1 —2?)
= Agxt+ Bga?+ Cy = 1”i;r) (ID

worin s, die elastischen Koeffizienten, x den Richtungscos des
Winkels ¢ zwischen der betrachteten Richtung und der hexagonalen

Achse bedeuten. Die Koeffizienten 4,, ... C, ergeben sich zu:

— ! ’ » . — [y | ’ . — .
Ap = su = S35 — 2813 — 800 Bp = — 25y + 2815 + 8403 Cp = 5113
Ag= =281 — 2855+ 48153+ 28445 Bp = s33 + $1p — 4813 + 2535

— 3 & ¥ — . 1
3843 Cg =811 — 812+ 3 544.

Die gesuchten Mittelwerte fiir den quasiisotropen Vielkristall
sind durch einen Ausdruck von der Form:

2 1

o = 2 ff Fcos)sinlZdide = fF (r)dx  gegeben.
7
(

) 0 0

Die Auswertung dieser bestimmten Integrale erfolgt ver-
schieden, je nach dem Vorzeichen des Koeffizienten von x4, Beide
Fialle treten sowohl fiir den K- als auch fir den G-Modul ein.

1. A positiv.

Es zeigt sich, dass bel den in Frage kommenden Werten der
s die Nullstellen des 1m Nenner des Integrals stehenden Polynoms
Azx* 4+ Bx? + C samtlich komplex ausfallen, da B2—4 AC
negativ wird. Da ferner 4 und C stets gleiches Zeichen haben, so
werden

el 1 e
@zl/{i und tga:——g.]/.:}AC—B? (1)
reell, und man findet, wenn noch
o= ]/E'Cos; (2)

1) W. Voigr, L. c.



Elastische Eigenschaften quasiisotroper Vielkristalle. 523

gesetzt wird, die folgende reelle Zerlegung:

1
F(z)
Nach Durchfiihrung der Partialbruchzerlegung erhilt man damit
tolgende Darstellung des gesuchten Integrales (J):

=Axt+ Bx!+C =4 (x2—202x+ 9) (22 + 202 + 9).

}__[ _dz
) Azt + Bx2 + C
(1]
|
_ 1 / { 2r+20+ 20 _21—2;7:2_0;} iz

oder nach Auswertung der einzelnen einfachen Integrale wegen (2)

oL

1 41/0 cos -

;1,] o _____._:7 . l,(l- 1 + ,,__} _-,V,?,
8 0" :cos 1—~2yocosa—f—g
4 — ] ldl(t(" ? -+ arctg l—o l
_1g % [ “Vo—o? “Yo—a?|’

Indem man den in {j stehenden Ausdruck nach der bekannten

, x + : :
Formel arctg x + arctg y = arctg 1-—~‘l’i noch weiter vereinfacht,
erhilt man schliesslich fiir das gesuchte Integral die folgende
Darstellung:

o
1 41/ 0 cos
AJ =~ — lge (1 4+ ]/_ 2
8 0’ cos 2 1—2 1/@ cos;-}—g
2 1/0sin - ,
=D ———1 arctg —]/————--—“—, (3)
4Q°=Sin; g=1

wobel ¢ und « nach (1) zu berechnen sind.

2. A negativ.

Hier setzt man zweckmissig — 4 = A4’, und es handelt sich
nun um die Auswertung des folgenden Integrals,

f dzr

e] -— — — o

—A'z*+ Bzx2+C
0
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Es zeigt sich, dass von den Nullstellen des Nenners nur ein Paar
komplex wird, so dass man die reelle Zerlegung hat:

— A'x* + Bx? 4+ C = — A’ (2% — a?) (2% + B3,

wobei:

/]/Bz—»—elA C+B ud g — 1/B ~—446’f B (4)

24" 24’

Nach der nun einfachen Partialbruchzerlegung folgt

2a
T f L e,
2A a(@2+ ) ) lr+a x—a a2+ B2

oder wegen (4)

B 1 (1 x+1 1 . 1) _
TYB L AAC|2a a1 T EE g P

II. Quasiisotropes Aggregat kubischer Kristalle.

Elastizitats- und Torsionsmodul parallel einer Richtung, deren
Winkel zu den Wiirfelachsen durch die Richtungscos y;, y, und
vs gegeben sind, sind hier durch die Ausdriicke

1 ] = | G i
E - S$'g3 = S11— 2[ (811 — S12) — & Saa) (2292 + va2ys® + yPy,®) (I1I)

1 .
Vel = 1 (8'9s + 8"55) = Sqa + 4[(511— S12) — § Sad)

(Y22 + pa?ys® + va¥rd)  (IV)
dargestellt.

Setzt man hier, je nachdem es sich um den [- oder um den
(G-Modul handelt,

4 — {311 und B — {“‘ 2 (311 — S12— % Saa)
S 4 (833 — S12 — 3 Sa4) 5

so erfordert die analoge Mittelung zu I die Auswertung von Inte-
gralen der folgenden Form:

a/2 1
___l__ff ddo (6)
7 [4 + Bo(l—o(l—cos®gsin?g)]4/1—p’
0 0
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oder wenn der Kiirze wegen

Ij =a und o (1 — o (1 —cos?gsin2¢)) =f (o, ¢ (7)

gesetzt wird,

deodo
And = : 8
" //\/l—o-l-Lu f(o, )] )

Hier liesse sich zwar eine Integration in geschlossener Form
durchfihren, jedoch erfordert dann die zweite Integration eme
recht komplizierte Reihenentwicklung, so dass es vorteilhafter
sein diirfte, den Integranden gleich von vorneherein in cine Reihe
zu entwickeln, deren Gheder Produkte von je zwer Funktionen
von nur je einer der beiden Integrationsvariabeln o bzw. ¢ sind.
Zaur Erzielung einer rascheren Konvergenz dieser Reihe formen wir
unter Einfiihrung eines vorliufig unbestimmt bleibenden Para-
meters 4 den zweiten Faktor des Integranden in (8) folgender-
massen um:

1 _ 1 2 1
T E T T e — 7. a
1+ a-f(o ) 1+-—£~wu( m—f) & = }'lm—“iz (1 — 4f)
Unter der Annahme, dass im ganzen Integrationsgebiete
a |
—— (11— <1
PR 1

bleibt, kann man setzen:

1 A a a \?2 .
LS R 1—Af) + ] B « o
1+a-f a—{—l{ Ca ( Af)'( ) ( A ]
und hat fir (8):

wobel:

(8]

K,— ff}_:if--dcpdg (i=0,1,2...) (10)

40
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Es zeigt sich nun, dass fiir die in Frage kommenden Werte der
s stets @ > —3 wird. Wenn also die K, geschriankt bleiben,
dann wird die Rethe (9) konvergent fiir alle a > — 3, wenn
A = 6 gewiithlt wird. Damit aber die noch von 4, aber nicht mehr
von a abhiangigen K; geschrinkt bleiben fiir wachsendes 7, muss im
Integrationsgebiet: 0 < ¢ <a/2 und 0 < p < 1 stets |1 —4f|=1
sein. Nun i1st aus (7) sofort zu sehen, dass in jenem Gebiet f
(0, @) positiv und kleiner als !/; bleibt; es muss also, damit stets
1—24f | =1 wird: 0 =4 =6, somit 2= 6 gewihlt werden. Wir
konnen daher fir (10) setzen:

> ’.1 3 j ?, . ’
K, =\ (—6) (?> L. (10')

=0

wobel nach (7):

¥ o o 2 2
L _ff ¢’[1 — o (1 —cos®¢sin® g)) dads
\/l—o

2

i+ ok r
) f/ljZf(]—cosztpsin?(p)dw. (11)

_ 2](—1)’“(:;

k=0 .

IHier kann man nun leicht jedes der beiden Integrale auswerten,
und zwar findet man zunichst

1 1
‘ 9?'“ .
0
20+ k) (M pmy— M; )
also:
2( + K
M. .= - M.,
1 i+ k (7+’i)+1 -+ hk—1
und da
1

so folgt schliesslich

?\‘I*A:‘.

7

(12)

2:4-6<--2(j+k
5-7- (2g+2h+)'
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Ferner wird

a2 72

—ons 4 @)k
Nk::_[(l—sin2¢ cos? 'F)Kdtpzv/‘(]_l C%S4¢)) dg
0

0

2 2 m

1 T -+ cos Y k 1 (k21 /g Tk—21
g — j S — N ; .| cos2! ,
1 ( g ) dy 4 1"_-_6(2[) gk cos*lydy

\ /

0 0

2 Smafigl 2o B]
; .

9. gk = 2 1621
da ja bekanntlich
P 1-8-5-+-(21—1)
052 y-dy = 23
f“) L S A N Y

0

Der Ausdruck fir N, lisst sich noch vereinfachen, da
k\ 1:8-5---(21—1) kk—1)---(k—21+1)
(21) T = (N
g0 dass:

~ |

4

[ 920 - (I1)2 !

(k2] (e —1) - (k—21] L \
Nk — g 4 }1 7,;._21 ]l (’ , 1) (]1 fﬁl‘;ﬁﬂi . 13)
2-8% =, 4t - (I1)2 '
Hat man also eine geniigend grosse Anzahl der M, , und der N,
berechnet, so hat man nach (11):

1 1 J 7
L= N (—1D*(1\M,... N,
7 13 - “,_6( 1) (]1.) ‘JIJH'k \l.!

. .1 = ine .
womit man nach (1) die ~ K, findet. Den gesuchten Mittelvert
(.J) findet man schliesslich nach (9), wobei 2 = 6 zu setzen ist.

Da in unserm Fall stets

(£ . 2
Tl_(f’< 1, so geniigen die fol-

= 1 -
genden Werte der — K,;:

i |1 |2 | 3 4 | 5 6

0,200 | 0.314 i—o,ogo 0,175 '-0.05 0,09
i I

|
|
|
I
"1
|
|
|

(]

-1— K; | +1,000
.

Eine Priifung der hier beschriebenen Mittelbildung an der
Erfahrung wird im Vergleich mit den anderen Mittelungen 1m
nachfolgenden Artikel durchgefiihrt.

Physikal. Institut der Universitdat Freiburg.
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