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Inkohédrente Rontgenstreuung und Dichteschwankungen
eines entarteten Fermigases
von F. Bloeh, z. Zt. in Rom?).
(22. TL. 34.)

Zusammenfassung. Es wird darauf hingewiesen, dass sich die inkohérente
Rontgenstreuung von Atomen im Rahmen des THomaS-FERMI'schen Gasmodells
als der von den Dichteschwankungen des Elektronengases herriithrende Streuan-
teil interpretieren lisst, analog zu der RAYLEIGH-Streuung der Atmosphire oder
der TYNDALL-Streuung von Flissigkeiten. Der Versuch, #hnlich wie in einer
von EINSTEIN gegebenen Theorie der TyNDALL-Streuung die inkohérente Streuung
der Wirkung gewisser Schallwellen zuzuschreiben, fithrt zu einer Diskussion der
Existenz elastischer Wellen in einem entarteten Fermigas. Die Tatsache, dass sich
wiahrend der hier in Betracht kommenden Schwingungszeiten das thermische
Gleichgewicht nicht einstellen kann, spielt dabei eine wichtige Rolle.

§ 1. Problemstellung.

Vor einiger Zeit haben wir das Bremsvermégen von Atomen
hoher Ordnungszahl berechnet?), indem wir nach dem Vorbild
von Tuaomas®) und Frrmi?) die Elektronenwolke des Atoms als
ein entartetes Fermigas betrachteten. Dabei war es wesentlich,
tiber die iibliche statische Anwendung dieses Modells hinauszu-
gehen und verallgemeinernd sein dynamisches Verhalten durch
hydrodynamische Bewegungsgleichungen zu beschreiben. Ferner
hat HeiseNnBERG®) schon frither gezeigt, dass die Berechnung der
inkohiirenten Rontgenstreuung nach dem Gasmodell ebenfalls auf
Ziuge fithrt, die wesentlich von seinen statischen Eigenschaften
abweichen. Es schien uns von einigem Interesse, zu untersuchen,
ob und inwiefern sich auch diese Abweichungen mit IHilfe der
dynamischen Beschreibung des Elektronengases erfassen lassen.

Um uns iiber die hier entscheidenden Umstédnde zu orien-
tieren, wollen wir zuerst den rein klassischen Fall eines Elektronen-
gases betrachten, das, durch thermische und elektrische Krifte
im  Gleichgewicht gehalten, der Stérung einer #dusseren mono-
chromatischen Lichtwelle unterworfen wird und dadurch zu einer
Streuung des Lichtes Anlass gibt.

1) Fellow of the Rockefeller Foundation.

?) F. BrocH, Zeitschr. f. Phys. 81, 363, 1933.

3) L. H. Taomas, Proc. Cambr. Phil. Soc. 23, 524, 1927.
) E. FErm1, Zeitschr. f. Phys. 48, 73, 1928.

b _Vv'. HEeisENBERG, Phys. Zeitschr. 32, 737, 1931.
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Solange man das Gas durch seine mittlere Dichte beschreibt,
mdem man iiber Teillvolumina mittelt, die zwar eine hinreichend
grosse Anzahl von Elektronen enthalten, aber noch klein sind
gegen das Gesamtvolumen des Gases, lasst sich die Ursache der
mkohérenten, d.h. frequenzverschobenen Streuung noch nicht
erkennen. Unter dem Einfluss der schwachen Storung der Licht-
welle wird ndamlich die mittlere Dichte des Gases, die 1im Gleich-
gewicht zeithich konstant 1st, entsprechend einem System har-
monischer Oszillatoren kleine erzwungene Schwingungen um die
Gleichgewichtskonfiguration ausfithren mit der selben Frequenz,
wie die der einfallenden Lichtwelle. Man wird also dann nur das
kohiarente Streulicht erhalten, das dieselbe Frequenz hat wie das
einfallende Licht, und wir werden spiéter sehen, dass, auf den
Fall des entarteten Fermigases angewandt, die Berechnung seiner
Intensitdt in der Tat zu der von DEBYE?!) gegebenen Formel fiir
die kohdrente Rontgenstreuung fihrt.

Um emen Anhaltspunkt fiir das Auftreten inkohiirenter Streu-
ung zu erhalten, muss man also offenbar beriicksichtigen, dass
bereits im Gleichgewicht die Dichte in einem Teilvolumen nicht
konstant, sondern infolge der Schwankungseigenschaften des Gases
kleinen zeitlichen Anderungen unterworfen ist. Die in der zeit-
lichen Fourierzerlegung dieser Dichteschwankungen auftretenden
Frequenzen werden sich der Frequenz der oben besprochenen er-
zwungenen Schwingung iiberlagern und deshalb im wirksamen
Streumoment auch frequenzverschobene Fourierkomponenten auf-
treten lassen. Wir werden spater die naheliegende Vermutung
bestidtigen, dass gerade diese Berticksichtigung der Dichteschwan-
kungen die Ursachen der inkohédrenten Rontgenstreuung liefert.

Diec Sachlage ist soweit ganz analog der, wie man sie bel
der Ravrereu’schen Theorie des Himmelsblau findet. Nach dieser
Theorie fithrt ja auch erst die Dichteschwankung der atmosphéri-
schen Luft zu der beobachteten inkohirenten Streuung; sie 1st
ebenfalls wegen des Doppleretfektes an den streuenden Mole-
kiilen frequenzverschoben, wenn auch hier diese Verschiebung
praktisch zu vernachlassigen 1st. Wéahrend aber in der klassischen
Theorie der inkohidrenten Streuung von Flissigkeiten und Gasen
die Dichteschwankungen nur durch die endliche Temperatur und
die mit ihr verbundene thermische Bewegung der Molekiile hervor-
gerufen wird, liegt der Sachverhalt beim Elektronengas der Atome
msofern anders, als dieses ja als vollig entartet zu betrachten 1st,
seine Eigenschaften also 1m wesentlichen dieselben sind, wie am

1) P. DEBYE, Phys. Zeitschr. 31, 419, 1930.
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absoluten Nullpunkt der Temperatur. An Stelle der thermischen
Energie tritt hier die bekannte Nullpunktsenergie des Fermigases,
wodurch der zu untersuchende Effekt zu einem reinen Quanten-
phdnomen gestempelt wird. Die folgenden Ausfiihrungen werden
sich daher wesentlich mit den dadurch bedingten Abweichungen
zu beschéftigen haben, wobel wir uns aber dennoch bemiihen
werden, die grosstmogliche Analogie zur klassischen Rechnung
aufrecht zu erhalten.

§ 2. Streuung eines Elektronengases.

Wir betrachten em Gas von Elektronen, dessen Dichte 1m
Gleichgewicht wir mit p bezeichnen. Diese Dichte 1st eme Funk-
tion des Ortsvektors 7!) und hingt ferner wegen der Schwan-
kungen von der Zeit t ab. Es 1st also

o=10(r,1).

Das Gas stehe unter dem Eintluss der Stérung durch eine schwache,
ebene und monochromatische Lichtwelle, die in der z-Richtung
polarisiert sein und sich in der z-Richtung fortpflanzen moge.
Ihre elektrische Feldstiarke hat also die Form

2aiv

B,=E,=0; E. = Ee

(z—ct)

Die Frequenz » sel so gross, dass
a S 1 1 ]- % ..
a) wihrend der Schwingungszeit T = die Impulsinderung

der Elektronen infolge der auf sie 1im Atom wirkenden Krifte
klein ist gegen ihren mittleren Impuls im Gleichgewicht,

b) dass die Lichtschwingung rasch erfolgt gegeniiber den-
Jenigen Zeiten von der Grossenordnung T, wéhrend derer die
Anderung von g durch die Schwankungen erfolgt.

Ferner sei die Frequenz so klein, dass

c) hv{me? giltig 1st.

Die Bedingungen a) und ¢) sind, wie schon HeE1sexBeRrG (l. c.)
bemerkt hat, fiir normale Rintgenstreuung und Atome nicht zu
hoher Ordnungszahl erfiillt. Dasselbe gilt fiir die zusétzliche Be-
dingung b), die, wie wir spiter sehen werden, zutrifft, sobald
die mittlere Geschwindigkeit der Elektronen klein gegen die
Lichtgeschwindigkeit i1st. Aus ¢) folgt, dass wir den ComPTON-
Effekt vernachlissigen diirfen, aus a), dass ein Elektron fir die

1) Wir werden im folgenden Vektorgrossen stets durch einen Pfeil charak-
terisieren.
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Streuung als frei betrachtet werden darf, so dass ihre Berechnung
so erfolgen kann, wie bel der bekannten Herleitung der THoMsoON-
schen Streuformel. Aus b) folgt schliesshich, dass wir die zeitliche
Verianderung der Dichte wihrend der Streuung vernachlissigen
und quasistatisch rechnen diirfen. Die Streuung wird also die-
selbe, wie sie sich nach der klassischen Theorie an freien Elek-
tronen ergibt, die mit einer (in erster Niherung) zeitlich konstanten
Dichte ¢ 1im Raum verteilt sind.

Aus der Bewegungsgleichung

2 i
B ' e (x—ct)
mz == elhys °
fiir ein Elektron (die von der magnetischen Feldstarke herriihrende
Kraft diirfen wir vernachlédssigen), folgt nun in einfacher Weise,
dass durch die Lichtwelle an Stelle der urspringlichen Dichte

o(r, t) die neue Dichte

. N 09(7, t) e Eo -‘T : (x—rct)
o' (r,t) = elr,1) +7*02 T dateim® (1)
und eine Stromdichte in der z-Richtung
N Qn'il;(x_”)
"I L - ) 1e }4‘0 ]
13(-;,t)—9(1,t)2nvme (2)

erzeugt wird.

Aus (1) und (2) berechnet man in bekannter Weise mittels
retardierter Potentiale die Feldstirken der gestreuten Lichtwelle
in der Wellenzone, und zwar an einer Beobachtungsstelle, deren
Abstand R vom Gas gross se1 gegen dessen Lineardimensionen.
Sind 7 und %’ bezichungsweise Einheitsvektoren in der Fortpflan-
zungsrichtung der einfallenden Welle (also n, = 1; n, = n, = 0)
und in der Beobachtungsrichtung, so ergeben sich fiir diese Feld-
stirken

B, = A, iy =48 B ), = A(n,’ —1) (3)
L
Hy == A%’y Hy = Ang Iy =)
wobel zur Abkirzung
2air
, e el 2 (-, T)

N Doty mr =

eli, e - ¢ ’ -
A= =) - Jo(r,t)e dr 4

m c? R R (4)

gesetzt 1stl).

1) d7 steht in (4) in iiblicher Weise fiir das Volumelement dzdyd:. Wir
werden im folgenden durchwegs die analoge Bezeichnungsweise fir Volum-
elemente in dreidimensionalen Vektorraumen gebrauchen.
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Be1 der Herleitung von (3) und (4) sind die zeitlichen Ab-
leitungen von ¢ (7, t) vernachlédssigt worden; 1hre Beriicksichtigung
T
_ " T
die aber wegen der obigen Bedingung b) vernachliassigbar klein
sind. In dieser Niherung stellen also (3) und (4) die richtigen
Strahlungsfeldstirken dar und lassen die Richtigkeit der in §1
aufgestellten Behauptung erkennen, dass neben der Frequenz v
der Primirwelle im Streulicht neue Frequenzen auftreten. Sie
sind durch die zeitlichen Veriinderungen von o(7, t), also durch
die Dichteschwankungen bedingt und ihre Verschiebung gegen-
tiber der Frequenz » ergibt sich aus denjenigen Frequenzen, die
bel einer zeitlichen Fourierzerlegung der Grisse o (7, t) auftreten.
Indem wir uns zunéchst nicht weiter fir diese Frequenzen inter-
essieren, gehen wir von (3) und (4) zur Intensitit I der gestreuten
Strahlung tiber.

Sei I, die Intensitit der Primirstrahlung, ¢ der Winkel
zwischen Einfalls- und Beobachtungsrichtung; man findet dann
nach (3) und (4), indem man iiber samtliche Polarisationsrichtungen
mittelt,

wiirde zu Zusatztermen der relativen Grossenordnung -, fiihren,

Ay - -

et 1icostd| [ . . ZG-WT L
Ii= 11:(11»,,,—;-3,) —5 | ) elr.t)e ar ), (%)

wobel der Querstrich zeitliche Mittelung bedeuten soll.
Wenn wir mit

00 (1) = o(r, 1)

den zeitlichen Mittelwert von o bezeichnen und setzen

-

o(r, ) = 0o(7) + 0,07, V),

so folgt aus (5), da

-

Ql("’: t) =0

wird
e 21 cos?d -
I =1 (% Y_7T°¢ T2 W ANE- 3
" ]P(\ Rwm 1'2) 2 (ol + N (6)
mit
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Der Term mit | I7y|2 in (6) stellt die Intensitat der kohirenten
Streuung dar. Setzt man in (7) fiir g,(7) die mittlere Dichte der
Elektronen 1m Atom nach dem Tromas-Fermr'schen Gasmodell
ein, so erhilt man tatsichlich die von DeBYE (l. ¢.) erhaltene
und diskutierte Intensitat der kohédrenten Streuung.

Dagegen stellt der mit | [ |? auftretende Term von (6) die
Intensitat der inkohérenten Streuung dar, wie sie nach (8) durch
die Dichteschwankungen bedingt ist, und mit thm werden wir
uns 1m folgenden beschaftigen.

§ 3. Dichteschwankungen des entarteten Fermigases.

Wihrend unter den bisher gemachten Voraussetzungen a),
b), ¢) von § 2 die Formel (6) fiir die Intensitit der Streustrahlung
allgemeine Giltigkeit beanspruchen darf, missen wir jetzt eine
weiltere einschrankende Bedingung eintiihren, um die in (6) auf-

tretende unbekannte Grosse |/7)]? nach dem THoMAs-FrErMI'schen
(Gasmodell berechnen zu konnen. Wir werden sehen, dass diese
Bedingung zwar nicht unertillbar ist, die Anwendbarkeit des Gas-
modells fiir das betrachtete Problem aber wesentlich herabsetzt
und bel normalen Rontgenwellenlingen bereits fraglich erscheinen
lasst.

Wir fithren die Bezeichnung

47y . &

Q2a v »

T e e [ s e ] s B (
S . (n—m'); |$] . S (9)
ein. Dann wird aus (8)
Fl(:'et):,/.01(7&15)3,‘(“—”(17& (10)

Wie man sieht, spielt in (10) die értliche Verinderung von g,
mnerhalb Lineardimensionen der Grissenordnung - - die wesent-
liche Rolle; fir nicht allzu kleine Streuwinkel wird -~ nach (9)
" . @ s o p ”

von der Grossenordnung 4= - der einfallenden Lichtwellenléinge.
Die Anwendbarkeit des TaoMmAs-FrrMmr'schen Modells verlangt
nun, dass man die spezifischen Eigenschaften des Elektronen-
gases nur innerhalb Volumgebieten des Atoms benétigt, die zwar
noch eine hinreichend grosse Anzahl von Elektronen enthalten,
deren Lineardimensionen aber klein sind gegeniiber denjenigen
Gebieten, innerhalb derer sich das mittlere auf die Elektronen
wirkende Potential merklich veriandert, so dass die Elektronen
im betrachteten Volumgebiet als frei zu betrachten sind.
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Im Gasmodell verdindert sich nun das Potential bei einem
Atom der Ordnungszahl Z lings Strecken der Grissenordnung

1078

i = Zlf: -

cm,
und wir hitten nach dem Obigen zu verlangen, dass die Be-
dingung
(l) LA = ]rﬂ,_,:i— cm
/

erfilllt 1st. Dicse neue Bedingung d) steht zwar fiir Atome nicht
allzu hoher Ordnungszahl nicht 1m Widerspruch mit den in § 2
gemachten Voraussetzungen a), b), ¢). Jedoch hat z. B. be1 der
Mo-K,-Strahlung das Rontgenlicht die Wellenldnge 0,71 - 108 ¢m,
so dass hier die Bedingung d) durchaus nicht erfiillt 1st, sondern
A bestenfalls von derselben Grossenordnung wie @ wird. Man wird
also nicht erwarten diirfen, dass in diesem Fall das Gasmodell
mehr als elnen grossenordnungsmiissig richtigen Ausdruck fiir die
mkohirente Streuung liefert. Dagegen wiire seine Anwendung bei
einer ca. 10mal kiirzeren Wellenlinge (weiche p-Strahlung) durch-
aus legitim.

Es ser hier daraut hingewiesen, dass dieselbe Einschrinkung
d) auch der Anwendbarkeit der IHHersenBERG schen Rechnung (1. ¢)
aufzuerlegen 1st, obwohl sie von HeiseNnBerG nicht explizit er-
wihnt wurde. Ber Hrmsexsrre wurde ndmlich so gerechnet
(Formel (19) 1. ¢.), dass innerhalb Volumgebieten, in denen die
Elektronen als frei zu betrachten sind, sie durch die Lichtstreuung
Impulsinderungen der Grosse

Cfslh R
27 Y

erfahren. Ein solches Verfahren ist nun natirlich nur dann ge-
stattet, wenn die Impulsdnderung 0p gross ist gegen die Impuls-
ungenawigkeit 1p der Elektronen, die von ihrer Lokalisierung
mnerhalb Dimensionen herriihrt, die klein gegen a sind. Infolge-
dessen 1st nach der Ungenauigkeitsrelation

Ap» L3

a

Op -

und die Bedingung Ap < op besagt also
h

B g eder i¢n
a /.

in Ubereinstimmung mit der Bedingung d).
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Wir mochten ferner noch bemerken, dass sich wohl nur unter
der Bedingung d) ein einfacher Ausdruck fir die inkohirente
Streuung finden ldsst. Ist namlich 2 vergleichbar mit a, so ver-
langt die Berechnung von I'} die Kenntnis des Verlaufs von g,
und mithin der Eigenfunktionen der Elektronen im ganzen Atom,
was zwar, etwa mit Hilfe der HarrtreEr’schen Methodel), nihe-
rungsweise, keinesfalls aber ohne grisseren Rechenaufwand ge-
schehen kann.

Wir wollen also 1m folgenden die Bedingung d) als erfiillt
voraussetzen, um mit Hilfe des Gasmodells die uns interessierende
Grosse | 1'y|? zu berechnen.

Ist d) erfiillt, so 18t es nach dem Obigen erlaubt, das Gas
i Teilvolumina V; zu zerlegen, deren Lineardimensionen viele
Lichtwellenldngen enthalten, und 1n denen eine grosse Anzahl n;,
von Elektronen ein entartetes Fermigas bilden. Diese Teilvolu-
mina werden, wie bel der atmosphirischen Lichtzerstreuung,
additiv zur inkohdrenten Streuung beitragen, so dass wir setzen
dirfen

T2 =X (11)
mit
P - o il(%3) -
l’l,-(.&‘,t):_/gl(r,t)e dr. (12)
i

Das Zeichen V; in (12) soll bedeuten, dass das Integral nur tber
das Volumen V', zu erstrecken 1st.

Um nunmehr zur Quantenmechanik iberzugehen, haben wir
zu bedenken, dass die in (12) auftretende Grésse o, also mithin
auch I'}; und | I} ;|?, wie jede dynamische Grosse in der Quanten-
mechanik durch einen Operator darzustellen i1st.  Der zeitliche
Mittelwert D irgendeiner dynamischen Grosse D 1st in der Quanten-
mechanik gegeben durch das Integral iber den Konfigurations-
raum

D = [ y*Dydx,

wo v die Eigenfunktion des Zustandes ist, fiir den der Mittel-
wert zu berechnen ist, p* 1thre konjugiert Komplexe und D der
Operator der Grosse D. Es 1st also

[Ty (3) 2= [ 9*| Iy ,(5)|2pdr. (13)

w 1st In unserem Falle eine antisymmetrische Funktion der
Koordinaten siamtlicher n; freilen Elektronen des Volumens V;.

1) I. WALLER und D. R. HarRTREE, Proc. Roy. Soc. 124, 119, 1929.
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Sie lasst sich als das antisymmetrisierte Produkt von ebenen
Wellen schreiben, deren jede einem durch Elektronen besetzten
Impulszustand entspricht. Die Integration in (13) ist fir jedes
Elektron iber das ganze Volumen V', zu erstrecken.

Es handelt sich nun darum, die Form des Operators 17} ;(%)
zu finden. Nach der Defimition von o, 1n §2 1st nach (12)

0,(r) e dr. (14)

-

- i - % [(-:7) - 3

fl,(.w):‘=_/ olr t)e dr “'/

r v

[ i

Die mittlere Dichte o, 15t 1m Volumen 17, als ortlich konstant
1 2 i ;

zu betrachten; sobald also - klem 1st gegen die Lineardimen-

sionen von 1',, was wir wegen der Bedingung d) annehmen diirfen,

kann

gesetzt werden, und wir erhalten also nach (14)

i 5 LLCEF) =
olr)e dr =0

=)

-

L - i(57) - .
Iy, (s) :'/‘Q(r',f)e drl). (15)
Dazu konjugiert komplex ist

/1]'):7 (:) :'/A(_}(T', f)e_i(sr)d’l'. (153)

Um o(7) als Operator auszudriicken, bedienen wir uns der
Methode der quantisierten Wellen, wie sie fiir den Fall der Fermi-
statistik von Jorpax und WiGNER?) entwickelt worden ist. Da-
nach hat man zu setzen

o(r) = a*(r)a(r). (16)

Die Grossen «* () und a(r) sind hier Operatoren, die gewissen

Vertauschungsrelationen geniigen, und iber deren spezielle Form
wir zundchst nichts zu wissen brauchen.

Von den Operatoren «*(7) und a(7) im Koordinatenraum

gehen wir nun zu neuen Operatoren 1m Impulsraum- iiber mittels

» 2ai >

. 1 & (p7) o
[ a* (p) = 71“:,/ a*(r)e ” dr
o 2 (17)

I . 1_/ o = EEETT
« (_pJ:-ha: al(r)e ar:

1) Wir wollen hier und im folgenden das Zeichen V, unter dem Integral
weglassen und bis auf weiteres alle Integrationen im Raum iiber das Volumen V;
verstehen, indem wir uns dieses voriibergehend als unendlich gross vorstellen.

%) P. Jorvax und E. WIGNER, Zeitschr. f. Phys. 47, 631, 1928.
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Aus (15), (16) und (17) erhalten wir

2ai (= -, N lLE -r-r _
Iy, (s) = ,.;ju (p)dp r]pf ! (‘I L )dr
h:‘) et bV AR
= * (. — el Im dn’ !
./ a*(p’) a(p)ﬁ( ) —p' 5 dpdp ')
oder

- e BEN ey = C e (= hsy -
LI < s L _ 3 p — * ( ; ) ]H
T ls) fu (\p 23)(((;})(1;) ]u (p)a (\p 21)(1}" (18)
Den konjugiert komplexen Operator I %(s) erhilt man nach
(15a), indem man in (18) § durch — 5 ersetzt. Also wird

At ] = hs - - [ hs -
['* (s ‘—f/a*(f s = )u( Ydp = [ a*(p)a ( n + ——~——) dp. (18a)
0 (s) P 5. )ap)d plalp + 5 Jdp. (
Es empfiehlt sich, statt der hier kontinulerlich variablen
Impulazustamle voriibergehend diskrete Zustiinde einzufiihren, wie
dies ja In einem OlldllCllOll Volumen 17, tatsichlich der Fall 1st,
und das Integral im Impulsraum (1111(}1 elne Summe zu ersetzen.

Wir schreiben also statt (18), bzw. (18a)

- Al - , ]b
{3 =N p*( - 19
Tyl : b (1))1)(;) 2_{) (19)
- | = [~ h\
il e S h# (i 194
') : b (p)b( 21) (19a)

wobel sich die Operatoren b*, b von den vorher benutzten a*, «a
durch emen Normierungsfaktor unterscheiden.
Um nun den zeithichen Mittelwert von

IF l — Fl:(:)Flr(:)

berechnen zu konnen, missen wir die explizite Form der Opera-
toren b*(p), b(p) angeben. IHierzu ist es nach Jorpax und WiGNER
(. ¢.) n()twendlg, eine bestimmte Ordnung der Impulszustiande
vorzunehmen. Sei N (p) die Zahl der Elektronen im Zustand
mit dem Impuls }), die — 1ndem wir zunichst die Tatsache des
Elektronenspins ausser Acht lassen — die Werte 0 und 1 an-
nehmen kann. Ferner sel

v(p) = (1 =2 N ()] (20)
v

1) Die Integrationen im Impulsraum erstrecken sich iber saimtliche Werte
der Impulskomponenten von — o« bis - oo,
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eine Grosse, die demnach -+ 1 oder — 1 sein kann. Die Produkt-
bildung (20) erstreckt sich neben dem Zustand p iiber alle die-
jenigen Zustinde, die ber der getroffenen Anordnung vor dem
Zustand p zu stehen kommen. Dann ist

-

b*(p) = N(p) A (p) »(p)
b(p) = »(p) A (p)N(p).

Der Operator 1(p), angewandt auf irgend eine Funktion f [N (p)]
von N (p) bedeutet

AP [[IN@)] = f[1 —N(p).

Aus (21) folgen fir die b*(p) und b(p) die Relationen

(21)

—_— . 1 tir p =P’
b*(_r))[)(p ) + l)(“u )b"‘(p) o L
' ~ 0 fur P *F p'

() b* (5) + b* (3 b* () = b(P)b() + b(p)b(p) = 0
und insbesondere

(b*(p)b(p) = N(p)
Lb(@)b* (p) =1 — N(p).

Wir betrachten nun eine antisymmetrische Wellenfunktion
samtlicher n; freien Elektronen, bei der (wieder unter Vernach-
lissigung des Elektronenspins) bestimmte Impulszustinde besetzt
sein mogen. Is ergibt sich nun nach (19) und (19a)

I3
27

(22)

lp”(;”zﬁ\‘\‘/‘w*b* b(p+_hf_) b*( )b(p —
I

Es ist leicht zu schen, dass wegen der Orthogonalitiat der Eigen-

funktionen in der Doppelsumme (23) nur diejenigen Glieder von

Null verschieden sind, fiir die

) pdr. (23)

- - hs .
= st.
p pT 2oy !

Also wird

1 1y:() |2 = \‘fw*b*(;))b(,) n ’__[.) b*(p +—)b( vyl (24)
v
Oder mit Benutzung von (22) und wenn man beriicksichtigt,

dassf p*ydt =1 1st:

L@E= 3NN+ 5] 25)
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Die N(p) geben die Zahl der Elektronen an, die bei der betrach-
teten Wellenfunktion einen Impuls p haben; sie sind Null oder
Eins, je nachdem, ob der betretfende Zustand besetzt oder unbe-
setzt 1st. Anschaulich gesprochen sagt die Summe 1n (25) aus,
wie oft es bei der gugebenon Besetzung der Aust(mde moghch
ist, ein Elektron von einem besetzten Zustand p nach einem

unbesetzten p + f; zu bringen.

Bei emmem vollkommen entarteten IFermigas sind alle Zu-
stande bis zu emmem gewissen Maximalbetrag p, des Impulses
besetzt, die {brigen unbesetzt. Indem wir nunmehr den Elek-
tronenspin berticksichtigen, steht p, mit der mittleren Dichte g,

in der Beziehung
8z [ Py \3
— 5] = -
3 \ h

Der Ausdruck (25) 1st unter Vernachlissigung des Elektronen-
spins hergeleitet worden; er kann auch so aufgefasst werden,
dass er nur den Anteill der Elektronen einer Spinorientierung
wiedergibt. Die Berticksichtigung der beiden Ormntwmnngh-
tungen hat also zur Folge, dass der richtige Ausdruck fur | I} ;(s) |?
das Doppelte des Ausdrucks (25) 1st. Mlt Beriicksichtigung von

S'N(p) = n,
finden wir also ’
T @ =n—2 XNGN (5 + 25, (26)

4

Indem wir uns die méglichen p-Werte nunmehr praktisch
wieder als ein Kontinuum vorstellen und bedenken, dass sich

s 3 - V, ~ . -
in einem Element dp des Impulsraumes -3 dp Zustéinde befinden,
lisst sich die in (26) auftretende Summe dls das 3 -fache gemein-

same Volumen zweler Kugeln im Impulsraum 111t-elp1et1elen, die

den Radius p, haben, und deren Mittelpunkte um den Betrag

his . . . .
‘,J gegeneinander verschoben sind. Dieses Volumen ist

4n( hh» ( I_h@)
3 \PoT qa) \PeT g )

und wir erhalten also

R 8z T, ( h.s‘i)z( o h LSI) =
. T2 e oy, — iy _MSINY(, o .
| 1:(")’ L 3 3 .pO 17 Po S+ /) (27)
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Also 18t nach (11)

gp—f'gz‘v_*‘ﬁmé;gv[,_S”r}( _hf)w. uﬁﬁy,zs
D) P =2 Do) 1P = 2= g g \Po— 3 ) \Po + 5 ) (28)

Bezeichnen wir mit

AT b
A S _\_Jﬂl
l.

die Gesamtzahl der Elektronen und schreiben wir statt der Summe
2 1n (28) ein Integral iber den Gesamtraum des Gases, was wegen
- 2
der relativ langsamen Veridnderlichkeit von p, gestattet ist, so
erhalten wir also schliesshich

f e R " 8= ’ his])“( hls}) -
| [ E < Y [ L\ - A _ FEL ENL. ., ¢ b
Iy (s) 3”3](1)0 1) \Pot+ g )dr. (29)

Po = Po(7) 1st hier eme Funktion des Ortes, die mit dem
-

Fermr'schen Potential @(%) in der Beziehung steht
Po(r) = Y2 me®(7). (30)

Das Integral in (29) 1st dber den gesamten Raum des Gases,
d. h. tber das ganze Atom zu erstrecken.

Der Ausdruck (29) stimmt mit dem von Hrisexserc (. c.)
unter Benutzung der WaLLER’schen Streuformel hergeleiteten
iiberein und bestitigt die in § 1 gemachte Aussage, dass sich die
mkohérente Rontgenstreuung, soweit sie aus dem THomAs-FErRMI-
schen Gasmodell herleitbar ist, als der von den Dichteschwan-
kungen des Elektronengases herriihrende Streuanteil auffassen lisst.

§ 4. Methode der Schallwellen.

In einer Arbeit iber die Intensitit der Tyndallstreuung am
kritischen Punkt hat Einsrein?!) die Dichteschwankungen eines
Gases hergeleitet, indem er als dynamische Variable die Elonga-
tionen der verschiedenen elastischen Wellen einfiihrte, die sich
in dem Gas fortpflanzen kénnen. Das Aquipartitionstheorem der
klassischen Statistik fiihrt dann sofort zu dem mittleren Quadrat
der Elongation einer Schallwelle, das direkt in den Ausdruck fir
die Streuintensitiit eingeht.

Es liegt nahe, ein entsprechendes Verfahren fiir die Behand-
lung unseres Problems zu verwenden. Zu diesem Zweck schreiben

1) A. EINsTEIN, Ann. d. Phys. 33, 1275, 1910. Fiir den Hinweis auf diese
Arbeit bin ich Herrn Prof. W. Pauli zu Dank verpflichtet.
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wir die Dichte o(7,t) innerhalb dem in §3 eingefiihrten Teil-
volumen 17; in der Form eines Fourierintegrals

e 1 - —i(F7)
e(r,t) = (2 ) [b(lls t)e df. (3])
JOR fulgt

- = 1(77) 5=
b(’\', t) == /Q(f', t)e d;'

I’

i
und mithin durch Vergleich mit (15)

(s, t) = Iyi(s, t). (32)
Die Grosse b (s, t) stellt die Elongation der Dichteschwankung dar,
die durch eine elastische Welle mit dem Ausbreitungsvektor 5 im
Volumen V; erzeugt wird. Nach (11) geht 1hr mittleres Quadrat
direkt in die Grosse | I;|? und damit nach (6) in die Intensitit
der inkohirenten Streuung ein, vollkommen analog, wie n der
zitierten Arbeit von Einstrin. Ildtten wir es mit einem System
zu tun, das der klassischen Statistik gehorcht und fiir das also
das Aquipartitionstheorem gelten wiirde, so konnten wir direkt
die von EinsteiNn berechneten mittleren Elongationsquadrate in
(11), bzw. (6) emnsetzen und hétten dann sofort den richtigen
Ausdruck fiir die Intensitit der inkohédrenten Streuung.

Indessen liegt 1in unserem Fall ein vollkommen entartetes
System vor, fiir das das Aquipartitionstheorem nicht mehr an-
wendbar 1st. Man sieht das sofort ein, wenn man bedenkt, dass
nach der klassischen Statistik das mittlere Elongationsquadrat
einer elastischen Welle, d. h. eines harmonischen Oszillators, pro-
portional der absoluten Temperatur 1' wird, also am absoluten
Nullpunkt verschwindet, wihrend in der Quantentheorie infolge
der Nullpunktsenergie des Oszillators emn endliches Schwankungs-
quadrat ibrig bleibt.

Um das hier anzuwendende Verfahren an emmem einfacheren
Beispiel zu erliutern, betrachten wir zunichst den Fall eines ein-
dimensionalen entarteten Fermigases, das sich innerhalb einer
Strecke der Lénge L; befinden moge. Zunichst lisst sich

Lya(s)[* = 1b(s)[* 1)

wie in §3 direkt berechnen. Der dort gegebene Ausdruck (25)
bleibt auch hier giiltig, wenn man den Pfeill weglisst und die

1) Wir lassen hier den Vektorgrossen charakterisierenden Pfeil weg, da im
eindimensionalen Fall alle Gréssen skalaren Charakter haben.
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Summation iber die hier nur eindimensionale Mannigfaltigkeit
der Impulse erstreckt. Indem man die diskreten Impulse wieder
durch em Kontinuum ersetzt, findet man sofort

(33)

Um denselben Ausdruck muttels Schallwellen herzuleiten,
missen wir die elastische Energie des Gases als Funktion der
Grossen b(s) kennen. Sei E = [J(p) die Energiedichte des Gases
als Funktion der Dichte p. Betrachten wir nun eine kleine Ab-
weichung o, von der mittleren Dichte g4, d. h. setzen wir wieder
0 = py + 05, so wird bis auf hohere Potenzen von g, die poten-
tmlle, elastische Energie des Gases gegeben durch

1 d2E
)

2 do®

P = j‘gl‘z dz.

L 0= 0

Setzen wir nun entsprechend (31)

gy () = .)1--?/ b(kye " ak, (34)
so wird
1 d2r 1 7/ ) -kt k)
P=5 5| |2 | b0 Ak [ e dz

1 d? ff
“indet - [bRb(—ydr.

Setzen wir nun, um an Stelle der Komplexen b reelle Variable «, 8
einzufithren:

bk = a(lkl) + (k) b(—k) = a([k])—iB(|k]), (35)
so wird

1 d*E |

1):2'::'(192!

Ja2(k]) + (k) alk]. (36)

Fiihren wir eine diskrete Schwingungsmannigfaltigkeit ein, indem
wir bedenken, dass sich im Intervall d|k| eine Anzahl d|i.|

von Eigenschwingungen befinden, so konnen wir auch b(,hrelben

1 a2 |
P: == \‘a2 ’l: 2 A- . o
L de7 | (o (1kD + £21kD) (37)
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P hat also die Form der potentiellen Energie einer Reihe
ungekoppelter harmonischer Oszillatoren. Da der Mittelwert der
potentiellen Energie eines Oszillators gleich der Halfte seiner
totalen Energie ist, und diese im Grundzustand bekanntlich den
Nullpunktswert ZI‘?—] hat, wo » die Frequenz des betreffenden Oszilla-
tors 1st, wird also

— = - L,  hov(k|) ‘
o]} — B = g g (38)

do? e,

Um weiter rechnen zu konnen, miissen wir einen bestimmten
Zusammenhang zwischen Energiedichte E und Dichte p annehmen.
Es liegt nahe, fir diesen Zusammenhang denjenigen zu wihlen,
wie er beim entarteten Gas auftritt. Bei diesem sind sdmtliche
Zustiande bis zu einem Maximalbetrag p,” des Impulses besetzt?),
die tbrigen unbesetzt. Dieser Maximalimpuls steht mit der Dichte

— unter Vernachlissigung des Elektronenspins — 1m Zusammen-
hang
., h g
Man findet dann leicht
S TR _ 40
b= 3hm 24m’ (40
also
d* b | h?o,
e e B
de® | 4m (41)
2o

Um die Frequenz »(|%|) zu berechnen, machen wir von der hydro-
dynamischen Beziehung Gebrauch, dass die Schallgeschwindigkeit
v mit dem Druck p in der Beziehung steht

dp |
— R 42
Vo e -

Anderseits 1st der Druck beim eindimensionalen Gas

. h?p3 .
fi= 28 = 12311.' (43)
Also 18t nach (42)
peo P (44)
2m m

1) Wir bezeichnen mit p,” den Maximalimpuls als Funktion der Dichte ¢,
mit p, seinen Wert, wenn die Dichte gleich ihrem Mittelwert ¢, ist.
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Mithin wird die Frequenz einer elastischen Welle mit der

Wellenldnge 24 = 2 T

V(“t‘]) _ . h QO[H p0|k| (45)

. dam  2am’

Mit Ihilfe von (41) und (45) wird also aus (38)
dm  h*gylk| _ L;|k|

2(|k|) = B2(|k|) _111}2 0. 16am im (46)
Anderseits 1st nach (35)
[0(5)[2 = b(s)b(—s) = «2(|s]) + B*(]s]),
also nach (46)
562 = 2a3(js]) = 2 (47)

in Ubereinstimmung mit (33).

Wiihrend also beim eindimensionalen Gas die Methode der
quantisierten Schallwellen tatsichlich zum richtigen Ausdruck fir
die Dichteschwankung und damit fiir die Intensitit der inkohi-
renten Streuung fiithrt, tritt beim dreidimensionalen Gas eine
charakteristische Schwierigkeit auf.

Nehmen wir

s[h )
2n <Po

an, was fiir das uns interessierende Problem der Rontgenstreuung
vollkommen zutrifftl), so ist der richtige Ausdruck fir |I'y,(3)|2
= |b(3)|2, wenn man bis zu den in |s| linearen Termen geht und

den Elektronenspin vernachlissigt, nach (27) gegeben durch

(48)

Setzt man nun entsprechend zu (35)

b(k) =alk) +1B(k); b(—k)=o(k)—18k),  (49)

1) Physikalisch bedeutet diese Annahme offenbar, dass die Lange der be-

trachteten Schallwellen gross sein soll gegen’die mittlere de Broglie-Wellenldange

der Elektronen. Fiir kiirzere Schallwellen wiirde sich eine Dispersion fithlbar
machen und die Sachlage wesentlich komplizieren.

26
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so liefert die Methode der quantisierten Schallwellen vollkommen
analog zu (38)

= ” V. hv(k
a?(k) = p2(k) = A*E i— 7’4(| ) » (50)
dg® g,

indem lediglich das eindimensionale Volumen L; durch das drei-
dimensionale V', zu ersetzen ist.

Nehmen wir wieder den Zusammenhang zwischen E und p,
wie er beim entarteten Gas vorliegt. Unter Vernachlissigung
des Elektronenspins wird der Maximalimpuls p," gegeben durch

4n ‘3
= (PhO) =0 (51)

und es wird

27 Py’ 2nh2(39)‘5
= bl 4 5
b= 5 mhd3 5m \4a/’ (52)
also
d*E m( 3 )’;.( h? ) =
do? |, \4m 3m90]"" . {58)
Anderseits 1st der Druck
2 . 4mh* (8 Q)”=
) Gl 15m (4;7 ’
also die Schallgeschwindigkeit
)y — 1 dp —= __1_" (ﬁ_@_@_)]{. _E_ A
v Vm Aol Y8 \dx) m o

Daraus bestimmt sich die Frequenz »(|k|) zu

_olkl 1 (3 Qo)"' h k| "
’V(lk|)'_' 2.75 - 2Hﬁ 47{ m ’ (OO)

und man erhilt mit Hilfe von (51), (53) und (55) schliesslich

b ()2 = 202 () — VPO ISL (56)

Wie man sieht, unterscheidet sich das richtige Resultat (48)
von dem hier erhaltenen durch einen Faktor 3/5-:”—. Dieser Unter-

schied beruht nicht etwa, wie man zunéchst glauben konnte, auf
einem einfachen Rechenfehler, sondern hat seine Ursache darin,
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dass beim dreidimensionalen Gas eine Rechnung, die lediglich
mit dem Zusammenhang zwischen Dichte und Energiedichte beim
entarteten Gas operiert, im vorliegenden Fall iiberhaupt nicht
statthaft 1st.

Die Formel (52) gilt ndmlich nur dann, wenn sich bei jedem
Wert der Dichte das thermische Gleichgewicht einstellt, so dass
die Impulse der Elektronen um den mittleren Impuls kugelsym-
metrisch verteilt sind. Anderseits wurde bei der Herleitung von
(48) angenommen, dass zwischen den Elektronen keine Wechsel-
wirkung besteht. Betrachtet man nun eine bestimmte elastische
Welle, so wird durch ithre Wirkung das Gas nur in ihrer Fort-
pflanzungsrichtung dilatiert und komprimiert; es werden also die
Impulskomponenten dieser Richtung ausgezeichnet, und da keine
Wechselwirkung zwischen den Elektronen angenommen 1st, besteht
auch keine Moglichkeit, die durch die Welle bedingte Anisotropie
der Impulsverteillung wieder auszugleichen. Beim eindimensio-
nalen Gas spielt dieser Umstand keine Rolle, da hier die Impulse
ohnehin sémtlich dieselbe Richtung haben.

Den wesentlichen Unterschied zwischen dem ein- und drei-
dimensionalen Fall sicht man auch einfach ein, wenn man bedenkt,
dass ja die Anregungsstufen hv(|k|) der Energie der Wellen-
oszillatoren nichts anderes sind als die Anregungsenergien, die
jeweils notig sind, um aus dem Grundzustand des Gases ein
Elektron in einen Zustand zu bringen, dessen Impuls von dem

-

1 h k . . “
urspriinglichen um ¢~ verschieden ist. Solche Anregungen kénnen,
wenn };Lk‘ « P 18t, nur dann stattfinden, wenn der urspriingliche

T

Impuls seinem Betrage nach nahezu p, ist. Im eindimensionalen
Ifall ist nun bis auf hohere Potenzen von |k| diese Anregungs-

energie
5 ‘

2m l 27 — 2am
und mit dem Wert (45) der Frequenz »(|k|) sieht man tatsachlich,
dass die Bezlehung

AE = hv
gilt.

Beim dreidimensionalen Gas aber hingt diese Anregungs-
energie noch von den Impulskomponenten senkrecht zu k abj;
man erhilt tatsichlich zu einem gegebenen Ausbreitungsvektor k
ein ganzes Kontinuum von Frequenzen, wéhrend wir in (55)
einen ganz bestimmten Wert berechnet hatten.
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Es ist ibrigens moglich, auch i1m dreidimensionalen Fall
mittels gequantelter Schallwellen zum Ziel zu kommen. Aller-
dings darf man hier nicht so vertahren, dass man einem gegebenen

Ausbrmtungsvc,ktor Ik, wie es oben geschehen ist, nur zwei Oszil-
latorena (l{) und ﬁ(k) zuordnet. Vielmehr hat man zu gegebenem
k so wviele Schallwellen zu unterscheiden, als es Paare erlaubter

Impulskomponenten der Elektronen senkrecht zu & gibt. Jedem
solchen transversalen Elektronenimpuls ist eine elastische Welle,
also zwei Oszillatoren zuzuordnen. Es lidsst sich zeigen, dass jede
solche Welle additiv zum mittleren Schwankungsquadrat der
Dichte beitrigt; eine Rechnung, die 1m wesentlichen von den 1m
eindimensionalen Fall aufgestellten Beziehungen Gebrauch macht,
liefert dann in einfacher Weise das richtige Resultat (48)1).
Obzwar die I'requenz einer Schallwelle im dreidimesionalen

Fall be1 gegebenem k nicht einen festen Wert, sondern einen kon-
tinuierlichen Variabilititsbereich hat, 1st 1hre Grossenordnung
stets durch den Ausdruck (45) gegeben. Diese Feststellung erlaubt
uns, die in § 2 aufgestellte Behauptung zu rechtfertigen, dass die
dort formulierte Bedingung b) gleichbedeutend damit 1st, dass
die mittlere Geschwindigkeit der Elektronen klein gegen die Licht-
geschwindigkeit ist. Damit b) zutrifft, muss offenbar die Fre-
quenz v; des Rontgenlichtes gross sein gegen die Frequenz » einer
elastischen Welle. Nun 1st fiir nicht zu kleine Streuwinkel

c

LL
und aus

v
e B 1
folgt nach (45)
polme =~ 1,

wenn v, die Maximalgeschwindigkeit der Elektronen bedeutet;:
diese 1st aber von der Grossenordnung der mittleren Geschwin-
digkeit.

Nachdem wir im obigen gesehen haben, dass es fiir die Be-
rechnung der Dichteschwankung wesentlich 1st, anzunehmen, dass
sich die Isotropie der Impulsvertellung der Elektronen nicht ein-

1) Wir wollen die etwas langwierige Untersuchung, ob und inwiefern es
gestattet ist, statt von einem Gas freier Elektronen von gequantelten Schall-
wellen zu sprechen, hier nicht wiedergeben, sondern auf diese Frage eventuell
an anderer Stelle zuriickkommen.
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stellt, wollen wir uns noch iiberlegen, ob diese Annahme fir das
vorliegende Problem gerechtfertigt ist. Die Bedingung dafiir lautet
offenbar, dass die mittlere Zahl derjenigen Zusammenstosse eines
Elektrons mit andern, bei denen sich seine Bewegungsrichtung
wesentlich dndert, wihrend der Zeitdauer einer elastischen Schwin-
gung klein gegen Eins ist. Der Wirkungsquerschnitt fir solche
Stosse 1st wegen der Couromp’schen Wechselwirkungsenergie der

2 il 2
Elektronen von der Grossenordnung 7:1"17) , wo v von der Grossen-

ordnung ihrer mittleren Geschwindigkeit i1st. Ein Elektron erfiahrt
also wihrend der Zeit 1/ 1m Mittel

. e? 2 p
so (=), o0

merklich ablenkende Zusammenstosse. Dabel 1st o die Dichte
der Elektronen; sie steht mit ihrer mittleren Geschwindigkeit
grissenordnungsmissig in der Beziehung

(_'m'v )3
h )

i3

v

!'\

0
-

Dies in (57) eingesetzt liefert

»n

I

" m et
wo R von der Grissenordnung —

der Rydbergfrequenz ist.

Bedenken wir anderseits, dass grossenordnungsmiissig » &2 v, - -fl
1st, so bedeutet also die Bedingung S 1:
R ¢
— - — 1. (58)
v, g

Die Frequenz des Rontgenlichtes ist aber mindestens 100mal
grosser als die Rydbergfrequenz, so dass, abgesehen von Atomen
der kleinsten Ordnungszahl, fir die die Tnomas-Fermr'sche Me-
thode ohnehin nicht mehr brauchbar ist, die Bedingung (5) weit-
gehend erfillt ist. Infolgedessen sind die Zusammenstiosse der
Elektronen fiir das betrachtete Problem tatsdchlich vollig zu
vernachlédssigen.

Herrn Professor Fermr miochte ich fir die freundliche Auf-
nahme an seinem Institut und fir manche wertvolle Diskussion
an dieser Stelle herzlich danken.

Rom, Istituto Fisico dell’Umversita.



	Inkohärente Röntgenstreuung und Dichteschwankungen eines entarteten Fermigases

