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Inkohärente Röntgenstreuung und Dichteschwankungen
eines entarteten Fermigases

von F. Bloch, z. Zt. in Rom1).

(22. IL 34.)

Zusammenfassung. Es wird darauf hingewiesen, dass sich die inkohärente
Röntgenstreuung von Atomen im Rahmen des THOMAS-FERMl'schen Gasmodells
als der von den Dichteschwankungen des Elektronengases herrührende Streuanteil

interpretieren lässt, analog zu der RAYLEIGH-Streuung der Atmosphäre oder
der TYNDALL-Streuung von Flüssigkeiten. Der Versuch, ähnlich wie in einer
von Einstein gegebenen Theorie der TYNDALL-Streuung die inkohärente Streuung
der Wirkung gewisser Schallwellen zuzusehreiben, führt zu einer Diskussion der
Existenz elastischer Wellen in einem entarteten Fermigas. Die Tatsache, dass sich
während der hier in Betracht kommenden Schwingungszeiten das thermische
Gleichgewicht nicht einstellen kann, spielt dabei eine wichtige Rolle.

§ 1. Problemstellung.

Vor einiger Zeit haben wir das Bremsvermögen von Atomen
hoher Ordnungszahl berechnet2), indem wir nach dem Vorbild
von Thomas3) und Fermi4) die Elektronenwolke des Atoms als
ein entartetes Fermigas betrachteten. Dabei war es wesentlich,
über die übliche statische Anwendung dieses Modells hinauszugehen

und verallgemeinernd sein dynamisches Verhalten durch
hydrodynamische Bewegungsgleichungen zu beschreiben. Ferner
hat Heisenberg5) schon früher gezeigt, dass die Berechnung der
inkohärenten Röntgenstreuung nach dem Gasmodell ebenfalls auf
Züge führt, die wesentlich von seinen statischen Eigenschaften
abweichen. Es schien uns von einigem Interesse, zu untersuchen,
ob und inwiefern sich auch diese Abweichungen mit Hilfe der
dynamischen Beschreibung des Elektronengases erfassen lassen.

Um uns über die hier entscheidenden Umstände zu
orientieren, wollen wir zuerst den rein klassischen Fall eines Elektronengases

betrachten, das, durch thermische und elektrische Kräfte
im Gleichgewicht gehalten, der Störung einer äusseren
monochromatischen Lichtwelle unterworfen wird und dadurch zu einer
Streuung des Lichtes Anlass gibt.

x) Fellow of the Rockefeller Foundation.
2) F. Bloch, Zeitschr. f. Phys. 81, 363, 1933.
3) L. H. Thomas, Proc. Cambr. Phil. Soc. 23, 524, 1927.
*) E. Fermi, Zeitschr. f. Phys. 48, 73. 1928.
5) W. Heisenberg, Phys. Zeitschr. 32, 737, 1931.
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386 F. Bloch.

Solange man das Gas durch seine mittlere Dichte beschreibt,
indem man über Teilvolumina mittelt, die zwar eine hinreichend
grosse Anzahl von Elektronen enthalten, aber noch klein sind
gegen das Gesamtvolumen des Gases, lässt sich die Ursache der
inkohärenten, d. h. frequenzverschobenen Streuung noch nicht
erkennen. Unter dem Einfluss der schwachen Störung der Lichtwelle

wird nämlich die mittlere Dichte des Gases, die im
Gleichgewicht zeitlich konstant ist, entsprechend einem System
harmonischer Oszillatoren kleine erzwungene Schwingungen um die
Gleichgewichtskonfiguration ausführen mit der selben Frequenz,
wie die der einfallenden Lichtwelle. Man wird also dann nur das
kohärente Streulicht erhalten, das dieselbe Frequenz hat wie das
einfallende Licht, und wir werden später sehen, dass, auf den
Fall des entarteten Fermigases angewandt, die Berechnung seiner
Intensität in der Tat zu der von Debye1) gegebenen Formel für
die kohärente Röntgenstreuung führt.

Um einen Anhaltspunkt für das Auftreten inkohärenter Streuung

zu erhalten, muss man also offenbar berücksichtigen, dass
bereits im Gleichgewicht die Dichte in einem Teilvolumen nicht
konstant, sondern infolge der Sehioankungseigenschaiten des Gases

kleinen zeitlichen Änderungen unterworfen ist. Die in der
zeitlichen Fourierzerlegung dieser Dichteschwankungen auftretenden
Frequenzen werden sich der Frequenz der oben besprochenen
erzwungenen Schwingung überlagern und deshalb im wirksamen
Streumoment auch frequenzverschobene Fourierkomponenten
auftreten lassen. Wir werden später die naheliegende Vermutung
bestätigen, dass gerade diese Berücksichtigung der Dichteschwankungen

die Ursachen der inkohärenten Röntgenstreuung liefert.
Die Sachlage ist soweit ganz analog der, wie man sie bei

der RAYLMGH'schen Theorie des Himmelsblau findet. Nach dieser
Theorie führt ja auch erst die Dichteschwankung der atmosphärischen

Luft zu der beobachteten inkohärenten Streuung; sie ist
ebenfalls wegen des Dopplereffektes an den streuenden
Molekülen frequenzverschoben, wenn auch hier diese Verschiebung
praktisch zu vernachlässigen ist. Während aber in der klassischen
Theorie der inkohärenten Streuung von Flüssigkeiten und Gasen
die Dichteschwankungen nur durch die endliche Temperatur und
die mit ihr verbundene thermische Bewegung der Moleküle
hervorgerufen wird, liegt der Sachverhalt beim Elektronengas der Atome
insofern anders, als dieses ja als völlig entartet zu betrachten ist,
seine Eigenschaften also im wesentlichen dieselben sind, wie am

J) P. Debye. Phys. Zeitschr. 31, 419, 1930.
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absoluten Nullpunkt der Temperatur. An Stelle der thermischen
Energie tritt hier die bekannte Nullpunktsenergie des Fermigases,
wodurch der zu untersuchende Effekt zu einem reinen
Quantenphänomen gestempelt wird. Die folgenden Ausführungen werden
sich daher wesentlich mit den dadurch bedingten Abweichungen
zu beschäftigen haben, wobei wir uns aber dennoch bemühen
werden, die grösstmögliche Analogie zur klassischen Rechnung
aufrecht zu erhalten.

4j 2. Streuung eines Elektrononjiases.

Wir betrachten ein Gas von Elektronen, dessen Dichte im
Gleichgewicht wir mit g bezeichnen. Diese Dichte ist eine Funktion

des Ortsvektors r1) und hängt ferner wegen der Schwankungen

von der Zeit / ab. Es ist also

Q Q(r,t).
Das Gas stehe unter dem Einfluss der Störung durch eine schwache,
ebene und monochromatische Lichtwelle, die in der ^-Richtung
polarisiert sein und sich in der x-Richtung fortpflanzen möge.
Ihre elektrische Feldstärke hat also die Form

K E„ 0 ; E, Eneo'

Die Frequenz v sei so gross, dass

a) während der Schwingungszeit r — die Impulsänderung
der Elektronen infolge der auf sie im Atom wirkenden Kräfte
klein ist gegen ihren mittleren Impuls im Gleichgewicht,

b) dass die Lichtschwingung rasch erfolgt gegenüber
denjenigen Zeiten von der Grössenordnung T, während derer die
Änderung von g durch die Schwankungen erfolgt.

Ferner sei die Frequenz so klein, dass
c) hv{{ mc2 gültig ist.
Die Bedingungen a) und c) sind, wie schon Heisenberg (1. c.)

bemerkt hat, für normale Röntgenstreuung und Atome nicht zu
hoher Ordnungszahl erfüllt. Dasselbe gilt für die zusätzliche
Bedingung b), die, wie wir später sehen werden, zutrifft, sobald
die mittlere Geschwindigkeit der Elektronen klein gegen die
Lichtgeschwindigkeit ist. Aus c) folgt, dass wir den Compton-
Effekt vernachlässigen dürfen, aus a), dass ein Elektron für die

l) Wir werden im folgenden Vektorgrössen stets durch einen Pfeil
charakterisieren.
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Streuung als frei betrachtet werden darf, so dass ihre Berechnung
so erfolgen kann, wie bei der bekannten Herleitung der Thomson-
schen Streuformel. Aus b) folgt schliesslich, dass wir die zeitliche
Veränderung der Dichte während der Streuung vernachlässigen
und quasistatisch rechnen dürfen. Die Streuung wird also
dieselbe, wie sie sich nach der klassischen Theorie an freien
Elektronen ergibt, die mit einer (in erster Näherung) zeitlich konstanten
Dichte g im Raum verteilt sind.

Aus der Bewegungsgleichung

m'z eE0e
lx-ct)

für ein Elektron (die von der magnetischen Feldstärke herrührende
Kraft dürfen wir vernachlässigen), folgt nun in einfacher Weise,
dass durch die Lichtwelle an Stelle der ursprünglichen Dichte
g (7, t) die neue Dichte

-r s r s
dsCr,t) eEn ^(^>

Q (r,t) Q(r,t) + À
A » l e' ' Oz An2 vlm v '

und eine Stromdichte in der z-Richtung
2 xi v

¦ v (x-ct)
-, i*- \ i* \ lehn <•

*'.lr.t)=e(r,t)-inv0me (2)

erzeugt wird.
Aus (1) und (2) berechnet man in bekannter Weise mittels

retardierter Potentiale die Feldstärken der gestreuten Lichtwelle
in der Wellenzone, und zwar an einer Beobachtungsstelle, deren
Abstand R vom Gas gross sei gegen dessen Lineardimensionen.
Sind n und n' beziehungsweise Einheitsvektoren in der
Portpflanzungsrichtung der einfallenden Welle (also nx 1 ; ny nz 0)
und in der Beobachtungsrichtung, so ergeben sich für diese
Feldstärken

Ex' Anx'n.' Ev' Any'nz' Ez' A (n/ — 1)

H' — — An'\ HJ — AnJ H' 0
(3)

wobei zur Abkürzung

(II-rl)
e2E0 e

(«-«',*)
^=- 1-^T-— n Je(r,t)e dr (4)

m c ¦ R
gesetzt ist1).

1) dr steht in (4) in üblicher Weise für das Volumelemcnt dxdydz. Wir
werden im folgenden durchwegs die analoge Bezeichnungsweise für Volum-
elemento in dreidimensionalen Vektorräumen gebrauchen.
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Bei der Herleitung von (3) und (4) sind die zeitlichen
Ableitungen von g(7, t) vernachlässigt worden; ihre Berücksichtigung

würde zu Zusatztermen der relativen Grössenordnung ,„ führen,
die aber wegen der obigen Bedingung b) vernachlässigbar klein
sind. In dieser Näherung stellen also (3) und (4) die richtigen
Strahlungsfeldstärken dar und lassen die Richtigkeit der in § 1

aufgestellten Behauptung erkennen, dass neben der Frequenz v

der Primärwelle im Streulicht neue Frequenzen auftreten. Sie

sind durch die zeitlichen Veränderungen von g(j-, t), also durch
die Dichteschwankungen bedingt und ihre Verschiebung gegenüber

der Frequenz r ergibt sich aus denjenigen Frequenzen, die
bei einer zeitlichen Fourierzerlegung der Grösse gÇr, 0 auftreten.
Indem wir uns zunächst nicht weiter für diese Frequenzen
interessieren, gehen wir von (3) und (4) zur Intensität Is tier gestreuten
Strahlung über.

Sei lp die Intensität der Primärstrahlung, & der Winkel
zwischen Einfalls- und Beobachtungsrichtung; man findet dann
nach (3) und (4), indem man über sämtliche Polarisationsrichtungen
mittelt,

7
/ e2 \-l4-cos2i9- f r ™-(7,-7'.7)

wobei der Querstrich zeitliche Mittelung bedeuten soll.
Wenn wir mit

QoCr) qG, t)

den zeitlichen Mittelwert von g bezeichnen und setzen

e(r,0 QoCr) + QiG,t),

so folgt aus (5), da

(5)

ßi(r,t) 0

wird

mit

L. 1.
e2 yij-co^r^o|, + |Ar,} (6)

Rmc2l 2

P0 J Q0(r)e <¦ dr (7)

/\(t)=: [e1Cr,t)e~~^~{'
' r)dTr. (8)
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Der Term mit | -Tn |2 in (6) stellt die Intensität der kohärenten
Streuung dar. Setzt man in (7) für ß0(7) die mittlere Dichte der
Elektronen im Atom nach dem TnoMAS-FERMi'schen Gasmodell
ein, so erhält man tatsächlich die von Debye (1. c.) erhaltene
und diskutierte Intensität der kohärenten Streuung.

Dagegen stellt der mit \FX\2 auftretende Term von (6) die
Intensität der inkohärenten Streuung dar, wie sie nach (8) durch
die Dichteschwankungen bedingt ist, und mit ihm werden wir
uns im folgenden beschäftigen.

§ :{. Dichteschwankungen des entarteten Fermigases.

Während unter den bisher gemachten Voraussetzungen a),
b), c) von §2 die Formel (6) für die Intensität der Streustrahlung
allgemeine Gültigkeit beanspruchen darf, müssen wir jetzt eine
weitere einschränkende Bedingung einführen, um die in (6)
auftretende unbekannte Grösse \FX\2 nach dem TuoMAS-FERMi'schen
Gasmodell berechnen zu können. Wir werden sehen, dass diese
Bedingung zwar nicht unerfüllbar ist, die Anwendbarkeit des
Gasmodells für das betrachtete Problem aber wesentlich herabsetzt
und bei normalen Röntgenwellenlängen bereits fraglich erscheinen

(9)

(10)

Wie man sieht, spielt in (1.0) die örtliche Veränderung von gx

innerhalb Lineardimensionen der Grössenordnune; — die wesent-
'* lliehe Rolle; für nicht allzu kleine Streuwinkcl wird - nach (9)

lässt.
Wir führen die Bezeichnung

2 ~c v --j.il,- -,s — n — n ;
c

LI-
Anv &

-—Tsm-2
ein. Dann wird aus (8)

r1C*,t) I<!xCr .De' (7 -7) rdr

von der Grössenordnung A - der einfallenden Lichtwellenlänge.
Die Anwendbarkeit des Thomas-Fermi'scIicii Modells verlangt
nun, dass man die spezifischen Eigenschaften des Elektronengases

nur innerhalb Volumgebieten des Atoms benötigt, die zwar
noch eine hinreichend grosse Anzahl von Elektronen enthalten,
deren Lineardimensionen aber klein sind gegenüber denjenigen
Gebieten, innerhalb derer sich das mittlere auf die Elektronen
wirkende Potential merklich verändert, so dass die Elektronen
im betrachteten Volumgebiet als frei zu betrachten sind.
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Im Gasmodell verändert sich nun das Potential bei einem
Atom der Ordnungszahl Z längs Strecken der Grössenordnung

io-8
a —r

Z-.,- cm,

und wir hätten nach dem Obigen zu verlangen, dass die
Bedingung

IO"8
d) A« a —^- cm

Zt

erfüllt ist. Diese neue Bedingung d) steht zwar für Atome nicht
allzu hoher Ordnungszahl nicht im Widerspruch mit den in §2
gemachten Voraussetzungen a), 1>), c). Jedoch hat z. B. bei der
Mo-Ka-StrahIung das Röntgenlicht die Wellenlänge 0,71 ¦ 10~8 cm,
so dass hier die Bedingung d) durchaus nicht erfüllt ist, sondern
A bestenfalls von derselben Grössenordnung wie a wird. Man wird
also nicht erwarten dürfen, dass in diesem Fall das Gasmodell
mehr als einen grössenordnungsmässig richtigen Ausdruck für die
inkohärente Streuung liefert. Dagegen wäre seine Anwendung bei
einer ca. 10 mal kürzeren Wellenlänge (weiche y-Strahlung) durchaus

legitim.
Es sei hier darauf hingewiesen, dass dieselbe Einschränkung

d) auch der Anwendbarkeit der IlEiSENBERG'schen Rechnung (1. c)

aufzuerlegen ist, obwohl sie von Heisenberg nicht explizit
erwähnt wurde. Bei Heisenberg wurde nämlich so gerechnet
(Formel (19) 1. c), dass innerhalb Volumgebieten, in denen die
Elektronen als frei zu betrachten sind, sie durch die Lichtstreuung
Impulsänderungen der Grösse

\s\h ii

^_2* A

erfahren. Ein solches Verfahren ist nun natürlich nur dann
gestattet, wenn die Impulsä?idertm</ òp gross ist gegen die Impuls-
ungenauigkeit \p der Elektronen, die von ihrer Lokalisierung
innerhalb Dimensionen herrührt, die klein gegen a sind. Infolgedessen

ist nach der Ungenauigkeitsrelation
h

A p » —
a

und die Bedingung Ap((òp besagt also

h li
— «-.-¦ 0(ler A«fl

a /.

in Übereinstimmung mit der Bedingung d).
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Wir möchten ferner noch bemerken, dass sich wohl nur unter
der Bedingung d) ein einfacher Ausdruck für die inkohärente
Streuung finden lässt. Ist nämlich A vergleichbar mit a, so
verlangt die Berechnung von rx die Kenntnis des Verlaufs von gx
und mithin der Eigenfunktionen der Elektronen im ganzen Atom,
was zwar, etwa mit Hilfe der IlARTREE'schen Methode1), nähe-
rungsweise, keinesfalls aber ohne grösseren Rechenaufwand
geschehen kann.

Wir wollen also im folgenden die Bedingung d) als erfüllt
voraussetzen, um mit Hilfe des Gasmodells die uns interessierende
Grösse \FX\2 zu berechnen.

Ist d) erfüllt, so ist es nach dem Obigen erlaubt, das Gas
in Teilvolumina Vt zu zerlegen, deren Lineardimensionen viele
Lichtwcllenlängen enthalten, und in denen eine grosse Anzahl nt
von Elektronen ein entartetes Fermigas bilden. Diese Teilvolumina

werden, wie bei der atmosphärischen Licht Zerstreuung,
additiv zur inkohärenten Streuung beitragen, so dass wir setzen
dürfen

R\P ^!ÄT2 (ii)
mit

F^Ct)^ fgXrJie^'^ dr. (12)
i-.i

Das Zeichen V, in (12) soll bedeuten, dass das Integral nur über
das Volumen T, zu erstrecken ist.

Um nunmehr zur Quantenmechanik überzugehen, haben wir
zu bedenken, dass die in (12) auftretende Grösse gx, also mithin
auch rxi und | Fxi\2, wie jede dynamische Grösse in der
Quantenmechanik durch einen Operator darzustellen ist. Der zeitliche
Mittelwert D irgendeiner dynamischen Grösse D ist in der
Quantenmechanik gegeben durch das Integral über den Konfigurationsraum

D j ip*DfdT,

wo ip die Eigenfunktion des Zustandes ist, für den der Mittelwert

zu berechnen ist, ip* ihre konjugiert Komplexe und D der
Operator der Grösse D. Es ist also

Trx~ÇàJY2 fw*\FliCs)\2ydT. (13)

ip ist in unserem Falle eine antisymmetrische Funktion der
Koordinaten sämtlicher n, freien Elektronen des Volumens TV

]) I. Waller und D. R. Hartree, Proc. Roy. Soc. 124, 119, 1929.
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Sie lässt sich als das antisymmetrisierte Produkt von ebenen
Wellen schreiben, deren jede einem durch Elektronen besetzten
Impulszustand entspricht. Die Integration in (13) ist für jedes
Elektron über das ganze Volumen T zu erstrecken.

Es handelt sich nun darum, die Form des Operators rxiÇs)
zu finden. Nach der Definition von gx in § 2 ist nach (12)

A, Cs / gCr,t)e'r"~] ch - j g0Cr)e
' '" '

d'r (14)
v v.

Die mittlere Dichte o0 ist im Volumen Vt als örtlich konstant

zu betrachten; sobald also - klein ist gegen die Lineardimensionen

von I',. was wir wegen der Bedingung d) annehmen dürfen,
kann

./ g0Cr)e'
' ' dr 0

gesetzt werden, und wir erhalten also nach (14)

FllG)=JgCr,i)eia~)dri). (15)

Dazu konjugiert komplex ist

F,VG)=fgCr,t)e~iCrr)cfr. (15a)

Um gÇr) als Operator auszudrücken, bedienen wir uns der
Methode der quantisierten Wellen, wie sie für den Fall der Fermi-
statistik von Jordan und Wioner2) entwickelt worden ist.
Danach hat man zu setzen

QCr) a*Cr)aCr). (16)

Die Grössen "*(/•) und a(r) sind hier Operatoren, die gewissen
Vertauschungsrelationen genügen, und über deren spezielle Form
wir zunächst nichts zu wissen brauchen.

Von den Operatoren a*Çr) und «(7) im Koordinatenraum
gehen wir nun zu neuen Operatoren im Impulsraum über mittels

a*(p) h,: I a*(r)e " dr
(17)if ---r~(77) „(p) p;; / a (r) e

' d

') Wir wollen hier und im folgenden das Zeichen Vt unter dem Integral
weglassen und bis auf weiteres alle Integrationen im Raum über das Volumen Vt
verstehen, indem wir uns dieses vorübergehend als unendlich gross vorstellen.

-) P. Jordan und E. Wioner, Zeitschr. f. Phys. 47, 631, 1928.
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Aus (15). (16) und (17) erhalten wir

r, ,G)= /|3 fa* (}') a G) d} dp' Je" " " 2* ' ' dr

Ja* (p) a (p)ô (p - y + l i) dp dp' ')

oilerlei

FUG) fu*(p h~)a(p)dp /a*(p)a(p-||)dp. (1«)

Den konjugiert komplexen Operator ^'(s) erhält man nach
(15a), indem man in (18) 7 durch — s ersetzt. Also wird

/\7 G) fo* (p - J i) « (p) dp ^ /a* (p) a (p + ~) dp (18a)

Es empfiehlt sich, statt der hier kontinuierlich variablen
Impulszustände vorübergehend diskrete Zustände einzuführen, wie
dies ja in einem endlichen Volumen V{ tatsächlich der Fall ist,
und das Integral im Impulsraum durch eine Summe zu ersetzen.

Wir schreiben also statt (18), bzw. (18a)

FuG) ^b*G) !>(]>-'£) (19)

/Vi(«) £fc*(p)&(p + Ü) (19a)
p

wobei sich die Operatoren b*, b von den vorher benutzten a*, a
durch einen Normierungsfaktor unterscheiden.

Um mm den zeitlichen Mittelwert von

\r,,Gs)\2 PuC^TuG)
berechnen zu können, müssen wir die explizite Form der Operatoren

b*Çp), b(p) angeben. Hierzu ist es nach Jordan und Wigner
(1. c.) notwendig, eine bestimmte Ordnung der Impulszustände
vorzunehmen. Sei N(p) die Zahl der Elektronen im Zustand
mit dem Impuls p, die — indem wir zunächst die Tatsache des

Elektronenspins ausser Acht lassen — die Werte 0 und 1

annehmen kann. Ferner sei

v(p) (7[l-2N(p')] (20)
v1

') Die Integrationen im Impulsraum erstrecken sich über sämtliche Werte
der Impulskomponenten von - x bis -fon.
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eine Grösse, die demnach -+- 1 oder — 1 sein kann. Die Produkt-
bildung (20) erstreckt sich neben dem Zustand p über alle
diejenigen Zustände, die liei der getroffenen Anordnung vor dem
Zustand p zu stehen kommen. Dann ist

b*(p) N(p)A(p)v(p)
b(p) v(p)A(p)N(p).

Der Operator l(p), angewandt auf irgend eine Funktion f[N(p)]
von NQj) bedeutet

l(p)f[N(p)}--=f[l-N(p)}.
Aus (21) folgen für die b*(p) und b(p) die Relationen

/ 1 für p p'
b*(V)b(p') + b(p')b*(p)= : /t

0 tur p r p

b*(p)b*(p') + b*(p')b*(p) b(p)b(p') -+- bÇp')b(p) 0

und insbesondere

b*(p)b(p) NCp)

6(p)6*$) l-N(p).
Wir betrachten nun eine antisymmetrisehe Wellenfunktion ip

sämtlicher », freien Elektronen, bei der (wieder unter
Vernachlässigung des Elektronenspins) bestimmte Impulszustände besetzt
sein mögen. Es ergibt sich mm nach (19) und (19a)

Es ist leicht zu sehen, dass wegen der Orthogonalität der
Eigenfunktionen in der Doppclsumme (23) nur diejenigen Glieder von
Null verschieden sind, für die

* ' * L h * 'Ip p + _ ist.

Also wird

\I\GG)\2 vfv*b*Cp)b(~p + ||Wp +£)l>Cp)v>dT. (24)

r
Oder mit Benutzung von (22) und wenn man berücksichtigt,
dass J y>* ip d r 1 ist :

h srlt.(;.)|2 vA'(-) N V 2 71
(25)
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Die V(p) geben die Zahl der Elektronen an, die bei der betrachteten

Wellenfunktion einen Impuls p haben; sie sind Null oder
Eins, je nachdem, ob der betreffende Zustand besetzt oder unbesetzt

ist. Anschaulich gesprochen sagt die Summe in (25) aus,
wie oft es bei der gegebenen Besetzung der Zustände möglich
ist, ein Elektron von einem besetzten Zustand p nach einem

unbesetzten p -f zu bringen.
Bei einem vollkommen entarteten Fermigas sind alle

Zustände bis zu einem gewissen Maximalbetrag p0 des Impulses
besetzt, die übrigen unbesetzt. Indem wir nunmehr den
Elektronenspin berücksichtigen, steht p0 mit der mittleren Dichte g0
in der Beziehung

¦in
3 m

Der Ausdruck (25) ist unter Vernachlässigung des Elektronen-
spins hergeleitet worden; er kann auch so aufgefasst werden,
dass er nur den Anteil der Elektronen einer Spinorientierung
wiedergibt. Die Berücksichtigung der beiden Orientierungsrichtungen

hat also zur Folge, dass der richtige Ausdruck für | /\,-(s) j2

das Doppelte des Ausdrucks (25) ist. Mit Berücksichtigung von

2 \\y (*) „,.
v

finden wir also

h s\riiG)\2 ni-2 £N(p)7v (p + |±] (26)
i>

Indem wir uns die möglichen p-Werte nunmehr praktisch
wieder als ein Kontinuum vorstellen und bedenken, dass sich

- V ¦ -in einem Element dp des Impulsraumes ,-j- dp Zustände befinden,

lässt sich die in (26) auftretende Summe als das -A -fache gemeinsame

Volumen zweier Kugeln im Impulsraum interpretieren, die
den Radius p0 haben, und deren Mittelpunkte um den Betrag
h\s\
2.-T gegeneinander verschoben sind. Dieses Volumen ist

An l /i|-s'|\2 / h\s
IT

und wir erhalten also

3 \P°~Tn) \P°+ 8n

r, ,-m, 8.-T V{ k\s\\21 i b\s\ \ ,„_>lA,-(.s)|2 ^- 3 h,(p0--JJ.)(p0 + -gLL). (20
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Also ist nach (11)

IÄ^-2irT^-=2Jn^¥&(ft-^)!(P. + |ö)),28)

Bezeichnen wir mit

N 2»<
i

die Gesamtzahl der Elektronen und schreiben wir statt der Summe
E in (28) ein Integral über den Gesamtraum des Gases, was wegen
der relativ langsamen Veränderlichkeit von p0 gestattet ist, so
erhalten wir also schliesslich

p0 p0 (7) ist hier eine Funktion des Ortes, die mit dem
Fermi'sehen Potential <P(r) in der Beziehung steht

po(r) y2me0Cr). (30)

Das Integral in (29) ist über den gesamten Raum des Gases,
d. h. über das ganze Atom zu erstrecken.

Der Ausdruck (29) stimmt mit dem von Heisenberg (1. c.)
unter Benutzung der WALLER'schen Streuformel hergeleiteten
überein und bestätigt die in § 1 gemachte Aussage, dass sich die
inkohärente Röntgenstreuung, soweit sie aus dem Thomas-Fermi-
schen Gasmodell herleitbar ist, als der von den Dichteschwankungen

des Elektronengases herrührende Streuanteil auffassen lässt.

§ \. Methode der Schallwellen.

In einer Arbeit über die Intensität der Tyndallstreuung am
kritischen Punkt hat Einstein1) die Dichteschwankungen eines
Gases hergeleitet, indem er als dynamische Variable die Elonga-
tionen der verschiedenen elastischen Wellen einführte, die sich
in dem Gas fortpflanzen können. Das Äquipartitionstheorem der
klassischen Statistik führt dann sofort zu dem mittleren Quadrat
der Elongation einer Schallwelle, das direkt in den Ausdruck für
die Streuintensität eingeht.

Es liegt nahe, ein entsprechendes Verfahren für die Behandlung

unseres Problems zu verwenden. Zu diesem Zweck schreiben

') A. Einstein. Ann. d. Phys. 33, 127.5, 1910. Für den Hinweis auf diese
Arbeit bin ich Herrn Prof. W. Pauli zu Dank verpflichtet.
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wir die Dichte g(r,t) innerhalb dem in §3 eingeführten
Teilvolumen Vt in der Form eines Fourierintegrals

1 f - -<(I'7)
Q(r,t)=-±- b(k,t)e dk. (31)

(2 n)0 J

Es folgt

b(k,t) J g(r,t)e dr
v

und mithin durch Vergleich mit (15)

bCs,t) rxiCs,t). (32)

Die Grösse bÇs, t) stellt die Elongation der Dichteschwankung dar,
die durch eine elastische Welle mit dem Ausbreitungsvektor 7- im
Volumen Vt erzeugt wird. Nach (11) geht ihr mittleres Quadrat
direkt in die Grösse |i^i|2 und damit nach (6) in die Intensität
der inkohärenten Streuung ein, vollkommen analog, wie in der
zitierten Arbeit von Einstein. Hätten wir es mit einem System
zu tun, das der klassischen Statistik gehorcht und für das also
das Äquipartitionstheorem gelten würde, so könnten wir direkt
die von Einstein berechneten mittleren Elongationsquadrate in
(11), bzw. (6) einsetzen und hätten dann sofort den richtigen
Ausdruck für die Intensität der inkohärenten Streuung.

Indessen liegt in unserem Fall ein vollkommen entartetes
System vor, für das das Äquipartitionstheorem nicht mehr
anwendbar ist. Man sieht das sofort ein, wenn man bedenkt, dass
nach der klassischen Statistik das mittlere Elongationsquadrat
einer elastischen Wolle, d. h. eines harmonischen Oszillators,
proportional der absoluten Temperatur T wird, also am absoluten
Nullpunkt verschwindet, während in der Quantentheorie infolge
der Nullpunktsenergie des Oszillators ein endliches Schwankungs-
quadrat übrig bleibt.

Um das hier anzuwendende Verfahren an einem einfacheren
Beispiel zu erläutern, betrachten wir zunächst den Fall eines
eindimensionalen entarteten Fermigases, das sich innerhalb einer
Strecke der Länge L{ befinden möge. Zunächst lässt sich

\rxi(s)\2 \b(s) 2 1\

wde in § 3 direkt berechnen. Der dort gegebene Ausdruck (25)
bleibt auch hier gültig, wenn man den Pfeil weglässt und die

') Wir lassen hier den Vektorgrössen charakterisierenden Pfeil weg, da im
eindimensionalen Fall alle Grössen skalaren Charakter haben.
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Summation über die hier nur eindimensionale Mannigfaltigkeit
der Impulse erstreckt. Indem man die diskreten Impulse wieder
durch ein Kontinuum ersetzt, findet man sofort

L< \s\

\ru(s)\2=\b(s)\2=-^ (33)

Um denselben Ausdruck mittels Schallwellen herzuleiten,
müssen wir die elastische Energie des Gases als Funktion der
Grössen b(s) kennen. Sei E E (g) die Energiedichte des Gases
als Funktion der Dichte o. Betrachten wir nun eine kleine
Abweichung gx von der mittleren Dichte g0. d. h. setzen wir wieder
Q Qo ~\~ Qi> so wird bis auf höhere Potenzen von gx die potentielle,

elastische Energie des Gases gegeben durch

P * d2E \

K I s eo

Setzen wir nun entsprechend (31)

0](.r) -- fb(k)e~Hkx)dk, (34)
'Ji n 4

k')x
dx

b(k)b(-k)dk.

Setzen wir nun, um an Stelle der Komplexen b reelle Variable <x, ß
einzuführen :

b(k) oi(\k\)+iß(\k\); b(-k) x(\k\)-iß(\k\), (35)

so wird
1 d2E rl{y.2(\k\) + ß2(\k\)}d\k\. (36)

so wird

P
1 d2E
2 dg2

1

/
4 n2 J

1 d2E
An dg2

p
2n dg2

Führen wir eine diskrete Schwingungsmannigfaltigkeit ein, indem

wir bedenken, dass sich im Intervall d\k\ eine Anzahl —-dlkl
von Eigenschwingungen befinden, so können wir auch schreiben

p-£SÉL(§''<i*i>+«i*i>}- <37>
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P hat also die Form der potentiellen Energie einer Reihe
ungekoppelter harmonischer Oszillatoren. Da der Mittelwert der
potentiellen Energie eines Oszillators gleich der Hälfte seiner
totalen Energie ist, und diese im Grundzustand bekanntlich den

Nullpunktswert-5-hat, wo v die Frequenz des betreffenden Oszillators

ist, wird also

hv(\k\)
<y.mk\) ß2(\k\)=-2-^-- ^ (38)

4
da

Um weiter rechnen zu können, müssen wir einen bestimmten
Zusammenhang zwischen Energiedichte E und Dichte g annehmen.
Es liegt nahe, für diesen Zusammenhang denjenigen zu wählen,
wie er beim entarteten Gas auftritt. Bei diesem sind sämtliche
Zustände bis zu einem Maximalbetrag p0' des Impulses besetzt1),
die übrigen unbesetzt. Dieser Maximalimpuls steht mit der Dichte
— unter Vernachlässigung des Elektronenspins — im Zusammenhang

Po'—/- (39)

Man findet dann leicht
„'S 7. 3! S

(40)
a Um Z4m

also
/72 v. 1,2 „

(41)

Um die Frequenz v(|fc|) zu berechnen, machen wir von der
hydrodynamischen Beziehung Gebrauch, dass die Schallgeschwindigkeit
v mit dem Druck p in der Beziehung steht

7._ Po'3 b2g3
'èhm 24 m

d2E h2g0

dg2 A m
Do

(42)
y m dg Q '.'0

Anderseits ist der Druck beim eindimensionalen Gas

h2o3
¦n 2 E Q

(43)r 12m

Also ist nach (42)

2 m 1n
(44)

l) Wir bezeichnen mit ;>„' den Maximalimpuls als Funktion der Dichte r.
mit pn seinen Wert, wenn die Dichte gleich ihrem Mittelwert ij0 ist.
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Mithin wird die Frequenz einer elastischen Welle mit der

Wellenlänge 1 -rrr

Mit Hilfe von (41) und (45) wird also aus (38)

ä* | k | j fP(W) Lip- ^JM- ML. (46)Vl " h2 g0 lbnm An v

Anderseits ist nach (35)

\b(s)\2 b(s)b(-s) *2(\s\) + ß*(\s\),

also nach (46)

Li l.s'l

|ö(.s-)|2=2a2(|.s|) ^ (47)

in Übereinstimmung mit (33).

Während also beim eindimensionalen Gas die Methode der
quantisierten Schallwellen tatsächlich zum richtigen Ausdruck für
die Dichteschwankung und damit für die Intensität der inkohärenten

Streuung führt, tritt beim dreidimensionalen Gas eine
charakteristische Schwierigkeit auf.

Nehmen wil¬

ls! h

an, was für das uns interessierende Problem der Röntgenstreuung
vollkommen zutrifft1), so ist der richtige Ausdruck für | J^£(s) |3

|b(s)|2, wenn man bis zu den in \s\ linearen Termen geht und
den Elektronenspin vernachlässigt, nach (27) gegeben durch

\bG\)2 —£Ì^- (48)

Setzt man nun entsprechend zu (35)

b(k) oi(k) + iß(k); b{-%) -«(£)-iß(k), (49)

*) Physikalisch bedeutet diese Annahme offenbar, dass die Länge der
betrachteten Schallwellen gross sein soll gegen die mittlere de Broglie-Wellenlänge
der Elektronen. Für kürzere Schallwellen würde sich eine Dispersion fühlbar
machen und die Sachlage wesentlich komplizieren.
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so liefert die Methode der quantisierten Schallwellen vollkommen
analog zu (38)

a2(fc) ß2(k) -™ f^, (50)
<*e2 I«.

indem lediglich das eindimensionale Volumen L,- durch das
dreidimensionale Vi zu ersetzen ist.

Nehmen wir wieder den Zusammenhang zwischen E und g,
wie er beim entarteten Gas vorliegt. Unter Vernachlässigung
des Elektronenspins wird der Maximalimpuls p0' gegeben durch

4Wp0'^
3 \ h

und es wird

also
5 m7i3 5m \4:rc

d2E
dg2

Anderseits ist der Druck

3 y/. / fe*

471/ V3mo0'*

(51)

(52)

(53)

- A f- 47lfe2 f3e\;'P^ 3 15m \4w

also die Schallgeschwindigkeit

1 dp
m dg

l /8e„\" fe

(54)
y"3 \4ti/ m

Daraus bestimmt sich die Frequenz v(|fe|) zu

1 ' 2n 2n/J \An I m v ;

und man erhält mit Hilfe von (51), (53) und (55) schliesslich

Vi Po21«|
|ò(S)|2 2a2(*) ^-^. (56)

y 3 h2

Wie man sieht, unterscheidet sich das richtige Resultat (48)

von dem hier erhaltenen durch einen Faktor^—. Dieser Unter-
2

schied beruht nicht etwa, wie man zunächst glauben könnte, auf
einem einfachen Rechenfehler, sondern hat seine Ursache darin,
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dass beim dreidimensionalen Gas eine Rechnung, die lediglich
mit dem Zusammenhang zwischen Dichte und Energiedichte beim
entarteten Gas operiert, im vorliegenden Fall überhaupt nicht
statthaft ist.

Die Formel (52) gilt nämlich nur dann, wenn sich bei jedem
Wert der Dichte das thermische Gleichgewicht einstellt, so dass
die Impulse der Elektronen um den mittleren Impuls kugelsymmetrisch

verteilt sind. Anderseits wurde bei der Herleitung von
(48) angenommen, dass zwischen den Elektronen keine Wechselwirkung

besteht. Betrachtet man nun eine bestimmte elastische
Welle, so wird durch ihre Wirkung das Gas nur in ihrer
Fortpflanzungsrichtung dilatiert und komprimiert; es werden also die
Inipulskomponenten dieser Richtung ausgezeichnet, und da keine
Wechselwirkung zwischen den Elektronen angenommen ist, besteht
auch keine Möglichkeit, die durch die Welle bedingte Anisotropie
der Impulsverteilung wieder auszugleichen. Beim eindimensionalen

Gas spielt dieser Umstand keine Rolle, da hier die Impulse
ohnehin sämtlich dieselbe Richtung haben.

Den wesentlichen Unterschied zwischen dem ein- und
dreidimensionalen Fall sieht man auch einfach ein, wenn man bedenkt,
dass ja die Anregungsstufen fcv(|fc|) der Energie der
Wellenoszillatoren nichts anderes sind als die Anregungsenergien, die
jeweils nötig sind, um aus dem Grundzustand des Gases ein
Elektron in einen Zustand zu bringen, dessen Impuls von dem

ursprünglichen um — verschieden ist. Solche Anregungen können,

wenn —Li « p0 ist, nur dann stattfinden, wenn der ursprüngliche

Impuls seinem Betrage nach nahezu p0 ist. Im eindimensionalen
Fall ist nun bis auf höhere Potenzen von |fc| diese Anregungsenergie

2m \\P+ 2n V 2nm '

und mit dem Wert (45) der Frequenz r(|fc[) sieht man tatsächlich,
dass die Beziehung

A E h v

gilt.
Beim dreidimensionalen Gas aber hängt diese Anregungsenergie

noch von den Impulskomponenten senkrecht zu k ab;
man erhält tatsächlich zu einem gegebenen Ausbreitungsvektor k
ein ganzes Kontinuum von Frequenzen, während wir in (55)
einen ganz bestimmten Wert berechnet hatten.
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Es ist übrigens möglich, auch im dreidimensionalen Fall
mittels gequantelter Schallwellen zum Ziel zu kommen. Allerdings

darf man hier nicht so verfahren, dass man einem gegebenen

Ausbreitungsvektor k, wie es oben geschehen ist, nur zwei Oszil-

latorena (k) und ß(k) zuordnet. Vielmehr hat man zu gegebenem
k so viele Schallwellen zu unterscheiden, als es Paare erlaubter

Impulskomponenten der Elektronen senkrecht zu k gibt. Jedem
solchen transversalen Elektronenimpuls ist eine elastische Welle,
also zwei Oszillatoren zuzuordnen. Es lässt sich zeigen, dass jede
solche Welle additiv zum mittleren Schwankungsquadrat der
Dichte beiträgt; eine Rechnung, die im wesentlichen von den im
eindimensionalen Fall aufgestellten Beziehungen Gebrauch macht,
liefert dann in einfacher Weise das richtige Resultat (48)1).

Obzwar die Frequenz einer Schallwelle im dreidimesionalen
Fall bei gegebenem k nicht einen festen Wert, sondern einen
kontinuierlichen Variabilitätsbereich hat, ist ihre Grössenordnung
stets durch den Ausdruck (45) gegeben. Diese Feststellung erlaubt
uns, die in § 2 aufgestellte Behauptung zu rechtfertigen, dass die
dort formulierte Bedingung b) gleichbedeutend damit ist, dass
die mittlere Geschwindigkeit der Elektronen klein gegen die
Lichtgeschwindigkeit ist. Damit b) zutrifft, muss offenbar die
Frequenz vL des Röntgenlichtes gross sein gegen die Frequenz v einer
elastischen Welle. Nun ist für nicht zu kleine Streuwinkel

und aus

folgt nach (45)

v,Ç£,\k\ c

v 1

p0/mc ^«l,
wenn v0 die Maximalgeschwindigkeit der Elektronen bedeutet ;

diese ist aber von der Grössenordnung der mittleren Geschwindigkeit.

Nachdem wir im obigen gesehen haben, dass cs für die
Berechnung der Dichteschwankung wesentlich ist, anzunehmen, dass
sich die Isotropie der Impulsverteilung der Elektronen nicht ein-

x) Wir wollen die etwas langwierige Untersuchung, ob und inwiefern es

gestattet ist, statt von einem Gas freier Elektronen von gequantelten Schallwellen

zu sprechen, hier nicht wiedergeben, sondern auf diese Frage eventuell
an anderer Stelle zurückkommen.
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stellt, wollen wir uns noch überlegen, ob diese Annahme für das

vorliegende Problem gerechtfertigt ist. Die Bedingung dafür lautet
offenbar, dass die mittlere Zahl derjenigen Zusammenstösse eines
Elektrons mit andern, bei denen sich seine Bewegungsrichtung
wesentlich ändert, während der Zeitdauer einer elastischen Schwingung

klein gegen Eins ist. Der Wirkungsquerschnitt für solche
Stösse ist wegen der CouLOMß'schen Wechselwirkungsenergie der

/ e2 \2Elektronen von der Grössenordnung j) wo v von der Grössen-ö \ m v2 J '
Ordnung ihrer mittleren Geschwindigkeit ist. Ein Elektron erfährt
also während der Zeit 1/c im Mittel

s m (~y~e (57)
V mvl tv

merklich ablenkende Zusammenstösse. Dabei ist g die Dichte
der Elektronen; sie steht mit ihrer mittleren Geschwindigkeit
grössenordnungsmässig in der Beziehung

m v

Dies in (57) eingesetzt liefert

o R
Sen —,V

wo R von der Grössenordnung —j^- der Rydbergfrequenz ist.

Bedenken wir anderseits, dass grössenordnungsmässig v Ç£ vL • ——

ist, so bedeutet also die Bedingung S « 1 :

— ¦ -«1. (58)
VL ''O

Die Frequenz des Röntgenlichtes ist aber mindestens lOOmal
grösser als die Rydbergfrequenz, so dass, abgesehen von Atomen
der kleinsten Ordnungszahl, für die die TiioMAS-FERMi'sche
Methode ohnehin nicht mehr brauchbar ist, die Bedingung (5)
weitgehend erfüllt ist. Infolgedessen sind die Zusammenstösse der
Elektronen für das betrachtete Problem tatsächlich völlig zu
vernachlässigen.

Herrn Professor Fermi möchte ich für die freundliche
Aufnahme an seinem Institut und für manche wertvolle Diskussion
an dieser Stelle herzlich danken.

Rom, Istituto Fisico dell'Università.


	Inkohärente Röntgenstreuung und Dichteschwankungen eines entarteten Fermigases

