Zeitschrift: Helvetica Physica Acta

Band: 6 (1933)

Heft: \%

Artikel: Uber selbsterregte nichtlineare Rohrenschwingungen
Autor: Straub, Hans

DOl: https://doi.org/10.5169/seals-110280

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-110280
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Uber selbsterregte nichtlineare Rohrensechwingungen
von Hans Straub.

(24. V. 33)

A. Einleitung.

Das Problem der Schwingungserzeugung hat seine klassische
Behandlung durch Barkuausen erfahren. Darnach kénnen 1n
einem System, das nur konstante elektromotorische Krifte besitzt,
nur dann dauernd Wechselstréome bestehen, wenn entweder Wider-
stand, Induktion oder Kapazitiat im Laufe der Zeit ithre Grosse
andern. Im Falle der Verwendung von Elektronenrshren iiber-
nimmt bei geeigneten Schaltungen der variable Widerstand der
Rohren diese stromerzeugende Rolle. Nach Form und Entstehungs-
weise der Schwingungen bilden die harmonischen Schwingungen
und die von FRIEDLANDERS®)*) untersuchten Kippschwingungen,
resp. die damit tibereinstimmenden, von vaN pER PoL und ApPPLE-
ToN1)~%) zuerst genauer erforschten Relaxationsschwingungen die
beiden Grenzfille, zwischen die sich alle vorkommenden Schwin-
gungstypen einordnen lassen. Rein harmonische Schwingungen
sind nur in einem widerstandsfreien, aus Kapazitaten und Selbst-
induktionen aufgebauten Kreis moglich, in dem also die Schwin-
gungsenergie ohne Energieabgabe an das Gesamtsystem zwischen
mindestens zwei Energiespeichern hin und her pendelt. Reine
Relaxationsschwingungen liegen vor, wenn die gesamte in einem
Energiespeicher pulsierende Energie wihrend jeder Periode irre-
versibel nach aussen, z. B. in Form von Warme abgegeben wird.
Mit dem einfachsten Fall hat man es zu tun, wenn nur ein in
energetischer Hinsicht wesentlicher Speicher vorkommt und die
gesamte darin fliessende Energie wihrend jeder Periode in Wiarme
verwandelt wird. Dieser Fall ist aber nur angenéhert realisierbar,
da zur Schwingungserzeugung immer ein zweiter Speicher gleicher
oder anderer Art notwendig ist, der zwar fir die Energiebilanz
beliebig wenig in Betracht kommen kann, aber unvermeidbar ist.
Letzteres geht schon daraus hervor, dass die Schwingungsgleichung

*) Die hochgestellten Ziffern beziehen sich auf die Nummern des Literatur-
verzeichnisses. '
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338 Hans Straub.

von hoherer als der ersten Ordnung sein muss, was das Vorhanden-
sein von mindestens zwel nichtohnuschen Widerstdnden voraus-
setzt.

Zur Verdeutlichung der obigen Ausfihrungen werde die
Schwingungsgleichung in ihrer einfachsten Form

dzﬂ} dJ' L
A w () T e

herbeigezogen. Fir w = 0 legt die Differentialgleichung der har-
monischen Schwingungen vor, fiir w = const. > 0 (positiver ohm-
scher Widerstand) diejenige der gediampften Sinusschwingungen.
Ist aber w = const. < 0 (Widerstand negativ), so erkennt man
den Fall eines angefachten Systems mit einer iber alle Grenzen
ansteigenden Amplitude. Da eine solche Schwingung physikalisch
unmoglich 1st, so kann diese Differentialgleichung nicht fir alle
Zeiten giiltig sein, sondern es muss notwendig der Moment ein-
treten, wo der Widerstand positiv wird, w (zr) muss also eine
zwischen positiven und negativen Werten schwankende Funktion
sein. Es habe w(x) der Einfachheit halber die Form emer Po-
tenzreihe:

w@)y=—u@d+bx-+byx?+...) mt u>0.

Ist &1, so konnen selbsterregte dauernde Schwingungen
von nahezu harmonischem Charakter bestehen, die eine um so
reinere Sinusform aufweisen, je kleiner u 1st. Wird u )1, so
1st das Auftreten von eigentlichen Kippschwingungen zu erwarten.

Der Beweis fiir die Existenz periodischer Losungen solcher
nichtlinearen Differentialgleichungen und die Methode zu deren
niherungsweisen Berechnung im Falle kleiner Parameter u ist von
Poincarg®) angegeben worden. Ist in einem Fall die formale
Méglichkeit solcher periodischer Ldsungen dargetan, so 1st noch
der Nachweis von deren Stabilitit zu erbringen.

Wir hatten vor liangerer Zeit Gelegenheit zur oszillographischen
Untersuchung von Schwingungen verschiedener Elektronenrohren-
schaltungen ; dabe1l wurde das Schwergewicht auf die Untersuchung
solcher Systeme gelegt, die im wesentlichen nur Speicher einer
Sorte enthalten. Natiirlich lassen sich die Speicher der andern
Art nie ganz vermeiden und es ergab sich die weitere Aufgabe,
den Einfluss dieser oftmals unerwiinschten und uberflissigen
Schaltelemente zu ermitteln. Im folgenden werden die Ergeb-
nisse der experimentellen und theoretischen Untersuchungen an
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zwel zu Relaxationsschwingungen befahigten Schaltungen (s. Fig. 1
und 2) mitgeteilt, von denen die erste, von vaN DER PoLr!) ange-
gebene, 1m wesentlichen nur aus Kapazititen und Ohm’schen
Widerstianden, die zweite nur aus Selbstinduktionen und Wider-
stinden aufgebaut ist. Wahrend die erste Schaltung bei Vernach-
lassigung der leicht vermeidbaren Selbstinduktionen auf eine
nichthineare Gleichung zweiter Ordnung fiithrt, verlangt die zweite
Anordnung mit Ricksicht auf die unumginglichen Réhrenkapazi-
titen die Behandlung einer Gleichung vierter Ordnung, hat also

C? R K f"‘t 2
Tk A
L T it fi
—'IE" Ey—
Fig. 1.

Kapazititsschaltungen — Tetrodenschaltung

Fig. 1a.

Kapazitatsschaltungen — Zweitriodenschaltung
(Multivibrator von Abraham und Bloch?)

unter Umstédnden das Auftreten zweler gekoppelter Schwingungen
und damit von Schwebungen zur Folge. Aus der Theorie geht
ohne Schwierigkeit hervor, warum unter gewohnlichen Bedin-
gungen nur eine einzige Schwingung auftritt.

Der Gegenstand der vorliegenden Arbeit war urspriinglich
nur als Einleitung zu einer Untersuchung der erzwungenen Kipp-
schwingungen geplant. Diese Absicht musste aber aus beruflichen
Griinden aufgegeben werden, dafiir wurde das Schwergewicht auf
die Behandlung der Differentialgleichung vierter Ordnung fiir die
selbsterregte Schwingung gelegt.
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B. Theoretischer Teil.

1. Qualitative Erkliirung der Wirkungsweise der benutzten Schaltungen.

Die Rohrenkapazititen der beiden Schaltungen (Fig. 1 u. 2)
konnen zur qualitativen Erklarung der Schwingungsvorgiinge ohne
weiteres beiseite gelassen werden, da sie auf die Schwingungs-
erregung 1m allgemeinen keinen bestimmenden FEinfluss haben.
Dann reduzieren sich die Systeme der Fig. 1 und 2 auf die durch
kraftigere Linienfithrung hervorgehobenen einfachern Schaltungen.

—

ti,

G

ti, ir] (Wr|tiu

Fig. 2.
Selbstinduktionsschaltungen — Tetrodenschaltung

Fig. 2a.
Selbstinduktionsschaltungen — Triodenschaltung

a) Kapazititsschaltung.

Denken wir uns fiir einen Moment R = oo, dann stellt sich
ein stationdrer Gleichstromzustand ein: Das dussere Gitter ladet
sich soweit auf, bis der Gitterstrom vollstandig verschwunden ist,
und der Emissionsstrom verteilt sich nach Massgabe der Anoden-
spannung und des Widerstandes W in einer aus den Tetroden-
charakteristiken (s. Fig. 3a u. 3b) ersichtlichen Weise aut Anoden-
platte und positiv geladenes inneres Gitter, das also die Rolle eines
Raumladegitters iibernimmt, wihrend das #Hussere Gitter zum
Steuergitter wird. Schalten wir jetzt den Gitterableitungswider-
stand R ein, so entladet sich das negativ geladene Steuergitter
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und dessen Spannung steigt. Mit Riicksicht aut die Gestalt der
(3, €,)-Charakteristiken sinkt der Raumladungngttelstmm was
wegen des abnehmenden Spannungsabfalls im Widerstand ein
Steigen der Raumladungsgitterspannung zur Folge hat. Dieser
\])anmmgqanstleg wird durch die Kapazitit C wenigstens teil-
weise auf das Steuergitter tibertragen und verstarkt so die Ab-
nahme des Raumladegitterstroms. Dieser Prozess geht so lange
vor sich, bis eine (bezgl. §,) untere Gleichgewichtslage des Systems
erreicht 1st. Wegen des Gitterableitungswiderstandes R kann
aber das System nicht in diesem Zustand verharren, das unter-

30 Charakteristiken (3,. €,) (Y, G&,)-Charakteristiken &y = const
E 4 =35 Volt »-16
E=3sVolt A @ s
A
0
S 3, 9
Charakteristiken (“i" El MA
L 4,5 r2.¢
3,
16 -
Q' =10
.,_4—-———-% =5 Volt 15
* 14 166G, —Volt ’
.3'
& 5
74\ 30 MA
r10
N M
€, =30
L =
Qf =6
_.,_‘_, € =14 Los
=12
———*aL\ =10
F P S -6
—F,=5 / 5
40 - T > - =
10 o e, 0 7 70 20 G, (Volt) 3
Fig. 2a. Fig. 3b.

dessen positiv. gewordene Steuergitter entlidt sich und dessen
Spannung sinkt, so dass das System wieder in das labile Gebiet
der fallenden Charakteristik gelangt. Hier bewirkt jetzt die Ver-
ringerung der Steuerspannung eine Zunahme des Raumladungs-
stromes und damit eine Abnahme der Raumladegitterspannung,
was ein weiteres Fallen der Steuergitterspannung zur Po]ge hat,
d. h. das System springt in die obere Gleichgewichtslage, in dem
thm aber wegen des Ableitungswiderstandes R auch kein Bleiben
vergonnt 1st. So kippt also das System von Gleichgewichtslage
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zu Gleichgewichtslage, und zwar erfolgt dieser Sprung um so
jaher, je kleiner die Kapazititen C,C,C, sind, um bei verschwin-
denden Kapazititen momentan zu erfolgen.

b) Selbstindulitionsschaltung.

Das auf die notwendigen Elemente reduzierte System besteht
aus den beiden Selbstinduktionen L und F und dem Gitterableit-
widerstand. Im weitern sei L klein gegen F. Fnts’pricht zu Beginn
der Stromungszustand des Systems cinem Punkte im Gebiete
des fallenden Teiles der Charakteristik und tritt im ersten Moment
am Steuergitter eine Spannungszunahme auf, dann erfiahrt der
Raun'lla(lung«trom eine Abnahme und damit die Spannung des
Raumladegitters eine Erhohung. Diese wird durch die kleine
Selbbfm(lul\tmn L auf das Steuergitter ibertragen und bewirkt
ein weiteres Sinken des Raumladungsstroms, bis das System in
die obere Gleichgewichtslage gelangt ist. In diesem Moment
weist die Spannung am Steuelglttm un(l damit die Stroménderung
in der Selbstinduktion F ein Maximum auf. Durch diese Strom-
dnderung wird das System aus der Gleichgewichtslage in das labile
Gebiet gezogen, von wo der Sprung in die untere Gleichgewichts-
lage erfolgt. Aber auch dieser Stromungszustand ist wegen der
Stroménderungen in I’ nicht von Dauer. Mit wachsendem L
entsteht zwmchen den beiden Gitterspannungen eine zunehmende
Phasenverschiebung, die bei gentigender Grosse das Auftreten
von Schwingungen verunmoglichen muss. Dagegen sind auch fiir
verschwindendes L im allgemeinen wegen der Unvermeidbarkeit
der Rohrenkapazititen Schwingungen moglich.

2. Die Differentialgleichungen der Tetrodenschaltungen.

a) Kapazititsschaltung.

Wir werden 1m folgenden die Momentanwerte des Stromes
resp. der Spannung mit den grossen gotischen Buchstaben §
resp. €, die Mittelwerte mit den lateinischen Grossbuchstaben
J und £ und die Momentanwerte des iibergelagerten Wechsel-
anteils mit den réomischen Kleimnbuchstaben ¢ resp. e bezeichnen,
und zwar sel

J, = Heizstrom der Riéhre

4= J+ 14 = Anodenstrom

8, = J, + 1, = Raumladungsgitterstrom

Fe = Ju + 1, = der im Widerstand W fliessende Strom
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¥, = J, + 1, = Steuergitterstrom

Br = Jp+ 1, = der im Widerstand R fliessende Strom

0. =1, = der Strom in der Kapazitit C

3, = 1., resp. §., = 1, resp. ., = 1., die Strome in den Ka-

pazititen Cy. C,, Cs.

In analoger Weise bedeutet

F = FE | — Batteriespannung = Anodengitterspannune
A e ) ]
€, = F, + e, — Raumladegitterspannung

¢, = E, + e, = Steuergitterspannung.

Die Einfithrung einer Selbstinduktion /' in den H-Kreis erlaubt
den Einfluss eines allfilligen Lautsprechers angenihert zu beriick-
sichtigen. .

Nach Fig. 1 gelten dann folgende Bezichungen fiir die Wechsel-

grossen:

Ly lc"—’r, iu' (1)
te = 1R+ 15 + ¢, + 1, (2)
e, = I.R R (3)
. v ’ ' de'l \
iy =0ge, =il at (4a)
t.,=Cse, (4h)
1 -
e @’,. = __CTI_ i“ dt (t)a)
i W+ I -d(‘-{" . (51)
R Jicdt. B
Aus 2), 3) und 4) folgt
eﬂ ' ’ Y '
le == ]{ T €y (62"‘- 03) Las (6)
aus 5) und 6)
. ’ . Cr_) ‘** Cr3 A E’y ) ?‘g —
I“—_~Cl[€g (1 N ‘—-_C*;)*— CR -t—-C] (l)



344 Hans Straub.
und aus 1), 5), 6) und 7)

) 1 at ! | | | ey’ [ _g_l_
te = 7 —F e, (Cl" 02'17037‘@? (Cy + C3) TR (1‘}' C

o ,Q) ( G0\ 1 f
i)+, (1-r - ]--eg 1ﬁ-~_77——)--zyR e, dt

—ﬂf’g;dt]- (8)

Dann wird mit Riicksicht auf 1) und nach emmmaliger Differentia-
tion die erste Schwingungsgleichung fiir e,:

Agq e;;” + A, e;,' + A, e;, + Age, + By ’L; + B '.f’r
. i Fo,
+I))ulu+br+ ’w Ly :0? (I)

wo die konstanten Koeffizienten mit den Grossen der Schaltele-
mente durch die Beziehungen

- o

dy= 5 (C1 + O+ Oy + %l (Cy + 03))

bkl ) 5%

szcéw’ (Ia)
B ()

Ef:1T€}

E“"chf )

verkniipft sind.

Da 1, und 1, Funktionen von e, und e, sind:

’f,. = fl (e,,, ey) y irJ = fz ((’,,, ey) ’ (Ib)
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so benétigt man zur vollstindigen Bestimmung des Problems
noch eine zweite Differentialgleichung in e, und e,. Als solche
bietet sich nach 5) und 6)

B C, + Ca)_._ 1 .
e, = ¢, (1 i ——é— ?R_ di+ C 'f"y di (II)

dar. Um eine allzu komplizierte Gestalt der Schwingungsglei-
chungen zu vermeiden, fithrt man zweckmaissigerweise einige Ver-
einfachungen ein. Die wirksamste wird durch die Vernachlassi-
sung der Gitterriickwirkung erreicht. Dann sind ndmlich 2, und
i, nur Funktionen von e,, also 1, = f,(e,), 1, = fs(e,). Diese An-
nahme tut zwar den experimentellen Tatsachen einige Gewalt an,
falscht sie aber nicht so weit, dass der Charakter der Schwingungen
dadurch prinzipiell veriindert wiirde. Der entscheidende Vorteil
besteht darin, dass dann die Gleichung I nur noch die eine ab-
hingige Vauablc e, aufweist. Nach deren Losung ergibt 11 ohne
welteres auch e,. Man kann aber die Raumladegitterriickwirkung
m erster Naherung in Rechnung ziehen, ohne die Schwingungs-
gleichung allzu uniibersichtlich zu machen, indem man

=re. +f,(e)

setzt, wo r gleich dem reziproken Wert des innern Widerstandes
R; im Gebiete zwischen Kathode und Raumladegitter bedeutet:
r=1/R;. Lassen sich f, und 1, n eine Potenzreihe von e, entwickeln,
haben also die Form:

3 1 < ! 2
L, =Te€ + 8 6+ 86+ (9)
. & | 2 3 )
lg = Y1 €y 7T G2 €5 T G364 T

dann erhalt man durch Kombination der Gleichungen I, Ia, ID
und II die Schwingungsgleichung fiir die Steuergitterspannung:

5 d’e d* . Py d - 8. T o
Ag dt3 tap (e, +Co€y—+---) +——(bye, -byeg+bgeg+ ---)
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mit den Bezeichnungen

_ - rF C,+C = I

c1 =4, + W ( + __?7;’_1> + g By + W o

_ = F .

Cn= B2 gﬂ *I*F Sn fUI‘ n > ]

= e Cy+Cy\  Fr rg, B’ ,

bl e ‘41 "{— r (] ":_ '2“0 2 ) T ‘[/I,rciRJ i I;J.'l(‘! e gl ]‘)1 o Sl

(I1Ta)

l_)n = {ly (Bl T é:é,) < 8y fiir n > 1

b) Selbstinduktionsschaltung.

Werden alle vorkommenden, auch die nicht notwendigen,
aber unvermeidbaren Speicher und Widerstiinde beriicksichtigt,
so sind ausser den bei der Kapazititsschaltung vorkommenden
Grossen noch die Selbstinduktion L und die Widerstinde w, und
wy, und damit die Strome

Br=1,+4JL Br="Jp+ 1

einzufithren. In der Folge soll w; = C =C;, =0 und damit
1., = ( gesetzt werden, weil unter dieser Voraussetzung ohne Aut-
gabe wesentlicher Eigenschaften namhafte Vereinfachungen ein-
treten.

Aus den Beziehungen

Ty T 0, =1, + U5+ Uy

1, =1, + g+ 1, + 1,
e!,:‘i-RR
i, =B de, i .4 (Lo
Ca ‘2 dt e - Y3 dt

e ver digp 1 /. . dr
=y WeigWet FoL = — [ dt=—igB—LZ%

di 0 dt



Selbsterregte nichtlineare Réhrenschwingungen. 347

und den daraus resultierenden Ausdriicken:

iz =1, Tig T (Cy + C3) R}

'iw= — ! (QRR ik L dl'ﬂL) =

W dt |
—%,UNR+LUﬁdthQ+C§REE]
iﬁ:~c{Rf£?eLi;£}
= O [Rig+ L iy +in+ (Cy+ (3) RiE)] (11)
'G=—-ﬁfFRRTih@frFﬁ-ﬁﬁ):-%[ﬂRKéﬁCﬁ

LF
+FR {0+ 046 + o]
Iy ] 1 . I{ Il f i 1 f 0 7 1 ) B 4
+ g L ((1 == W (( 9 T (3)) -+ I (1 L ((_) (3) IIIR
& Al = P‘L b T '] Teprs
fLJ;mLappg;Irmffmng} |

folgt in dhnlicher Weise wie oben:
rrrs 1 rrr o = s, = ' 14 wrr .’
‘44 eg _L “‘13 Pg T -"2[2 F,’g = ,.‘11 eg = flo eg =S 133 }[I T B_). l‘y =" Bl 1.‘1
~We(@,+1)+Fi, =0, (D)
mit den Koeffizienten

A,=FC, L(C,-+Cy)

= o C - (jg o ('- A r y '] f ]
As;I?L( § A2 ) 4+ W €L L(Cy + Cy)
_ woe o . FL __ (C,L L )
Ay = L(CorC) HI"(( 11 Oyt Cg)+ RWHI 1.-( R ”-(Cz*"fa’
= L+F F __ /(. L
4 - .;”,rup(mfmgf(yr?m.)

. ] (Ia)
‘%*IL””(R‘ n)
Es == Fﬂ (‘1 L
_ | 7L
B,=(,LWp+ 5"




348 Hans Straub.
der sich als zweite Schwingungsgleichung anschliesst:
e,= Rig+ Liy =e,+ L1, +15 +(Cy+ Cy) Riy)
=e, + % e, + L(Cy+ C5) ey +Li, . (I1)

Die Substitution der speziellen Potenzreihen (9) fiir 7, und 1, in I
ergibt die vereinfachte Differentialgleichung fiir die Steuergitter-
spannung :

die, d3

-'-]4 dt4 T ms_ (El ey "" dé egmd3 ejT "')
2 .

ke 3t2 (CyegtCaeytcget...) + i (bye,tbyegtbg eyt .. .) (L11)

+ (aye, + ay €5 +ageg+--)=0
mit den Koeffizienten:
dy = Ay + FL1 (G + () + 91 By |
d,=g, B3 fir n > 1
cy=Ay,+¢g;By+~-FLr (T?T % gl) + Wp Lr (Cy+ ()
¢a=¢n(By+FLr) fiirn>1

9: (B ) (I1a)

(SS9

_ / Vo
by=A4,+ ¢, (By+~LWgr)+r (F . IEE) +Fs,
by =g, (By+~ WpLr) - Fs, firn>1

ay=Adg+Wp(s+ g1 +7)

Ap=Wpg(s,+ g,) firm>1,

wihrend sich e, nach Ermittlung der Losung von III ohne weiteres
aus:

. d 1 ; ‘ 2 , n o,
Cr '697Ldt R C )€ G2Cy e YuCy e

d?e,

PG %) g (V)
errechnet.
Bei Vernachlédssigung von i, vereinfacht sich die Schwingungs-
gleichung III in
die,
1an

dde, = d3e, d = =
3 —d—t;‘ T 442~at7 -+ *d*t* (b1 eg‘ BN b2 efl +ow )

+(are, +age5+ --) =0, (ITT')

A o A,
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die aus III durch Nullsetzen aller g entsteht. Ist auch W, ver-
schwindend klein, so fallen die mchtlmearen Glieder der von Ab-
leitungen freien 'lerme weg: G = a3 = a4 ** = a, = 0. Konnen
auch C; oder gleichzeitig C und C, \elnachlasmgt werden, dann

ist 4, = 0 und die Ordnung der Differentialgleichung sinkt auf 3.
Konnen aber alle drei Kapazititen C,C,C; unberiicksichtigt
bleiben, so erniedrigt sich die Ordnung sogar auf 2; wir haben
den Fall der reinen Selbstinduktionsschaltung vor uns, der also
unter geeigneten Bedingungen zu Schwingungen befihigt sein
kann. Verschwindet aber die Selbstinduktion I., so kann das
Auftreten von Schwingungen, wie schon erwihnt, nur durch die
Existenz der Rohrenkapazitaten C,C,Cy3 erkliart werden.

3. Qualitative Integration der Dificrentialgleichung zweiter Ordnung.

Eine quantitative Losung der Differentialgleichung ist nur
unter bestimmten Bedingungen und in bestimmten Koeffizienten-
bereichen moglich. Im allgemeinen aber hat man sich mit einer
Art qualitativer Integration, welche die Null- und Unendlich-
keitsstellen, die Maxima und Minima, den oszillatorischen Cha-
rakter, die Asymptoten usw. vornehmlich im reellen I'eld liefert,
zu begniigen.

Im folgenden beniitzen wir zur Skizzierung einiger Ergeb-
nisse dieser qualitativen Integrationsmethoden vorwiegend die
Schwingungsgleichung in der fiir die reine Kapazitatsschaltung
(ber Vernachlédssigung des Steuergitterstroms und nach Vornahme
einiger einfachen Transformationen) giiltigen Form

et (=14 28,2+ 88322+ ..) —+x=0, u>0. (1)

Diese Gleichung zweiter Ordnung ist i#iquivalent dem Sy stem
der beiden Gleichungen erster Ordnung
dz 7 dy . 5 s :
=y, e r i p 282 —8f .y, (1)
gehort also zu der Gruppe der Differentialgleichungen der Gestalt

dr dy _

Den Verlauf der reellen Integralkurven fiir Gleichungen dieser
Form, wo X (z,y) und Y (x,y) Polynome in z,y sind, hat zuerst
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Poixcarg®) eingehend diskutiert. Weitere Untersuchungen iiber
das Verhalten der Loésungen in der Umgebung der singuldren
Stellen fir allgemeinere IFormen von X und Y (Potenzreihen,
stetige’ Flunktionen) haben ausser Poixcare z. B. Bexbpixson?),
Prcarn?), Duractl), 12), 1), Perrox'?) beigesteuert.

Nehmen wir an, dass

dr dy

—at :}\1(1‘5 y)+‘\2 (‘T’ y)‘ at = 1'1(;']', y)-l'— }"2('7"5 y) (2)

15t, wWo
Xl (!Ty y) =ar _‘f‘ b !_l, ):vl (Jf y) = 0. ,%“ (jy

und X, und Y, Potenzreithen von =z, y sind, die mit Gliedern von
mindestens zweiter Dimension beginnen, dann 1t 2 =y =0
sicher eine singuldre Stelle. Das Verhalten der Losung in der
Umgebung des Nullpunktes héangt dann im allgemeinen nur von
den linearen Gliedern der rechten Seite, und zwar von der charak-
teristischen Gleichung

a—Ai b | _ N _
e d—3 =A2—Aa+d)+(ad—be)=10 (3)

ab. In unserm speziellen Fall der Gleichung (1") wird dieser Aus-
druck

P—uld+1=0 (3a)
und deren Wurzeln sind
¥ ___“_+ /l‘_z__;“ J e /Z_; (3a)
1T T g LI R R a

Fall 1: Sind beide Wurzeln reell und von gleichem Vorzeichen
(fir die Gleichung (1) kann dieses nach (3a’) nur das positive
sein und dies trifft emn fur x> 2), so 1st der Nullpunkt ein soge-
nannter Knotenpunkt (noeud). Durch jeden Punkt in der Um-
gebung der singuldren Stelle geht nur eine Integralkurve und
diese miindet in einer bestimmten Richtung in den Nullpunkt.
Ist Y, — y X, nicht identisch Null, so miinden alle Ldsungen
iIn den beiden der Gleichung zY, — y X, = 0 geniigenden Rich-
tungen i den Nullpunkt; fiir die Gleichung (1) haben die Rich-
tungstangenten die Betrage 4, 4,. Ist aber Y, —2Y,=0, so
trifft jede Integralkurve in einer bestimmten Richtung im Null-
punkt ein, und zu jeder Richtung gehort eine Lésung.
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Fall 2: Sind die Wurzeln konjugiert komplex, aber nicht
rein imaginédr (dies findet bei unserm Beispiel fir u < 2, ¢ +0
statt), so ndahern sich simtliche in der Umgebung des singuldren
Punktes verlaufenden Integralkurven in Spiralen diesem Punkt;
es liegt ein Brenn- oder Strudelpunkt, nach PoiNcarg | foyer” vor.

Fall 3: Sind aber die Wurzeln A rein imaginér, so kann die
singuliare Stelle entweder ein Brennpunkt oder ein Wirbelpunkt
(centre), d.h. ein von geschlossenen Integralkurven umgebener
Punkt sein. Im allgemeinen verlangt die Entscheidung zwischen
diesen beiden Moglichkeiten umfassende Untersuchungen. Bei der
vorliegenden speziellen Differentialgleichung {1') werden aber die
Wurzeln 4; nur fiir ¢ = 0 rein imaginir, und zwar 4,,, = =+ 1.
Dann entsprechen aber, wie leicht ersichtlich, allen Lésungen
Kreise um den Nullpunkt; dieser i1st also ein Zentrum.

Fall 4: Der vierte mogliche Fall ist durch zwei reelle Wurzeln
entgegengesetzten Vorzeichens charakterisiert. Es gibt in der Um-
gebung des Nullpunktes nur vier Losungen, die in zwei bestimmten
Tangentenrichtungen von entgegengesetzten Seiten in diesen ein-
miinden. Dieser Fall eines Sattelpunktes (col) kommt bei der
vorliegenden speziellen Differentialgleichung nicht vor.

Natiirlich existieren ausser dem Nullpunkt noch andere Singu-
larititen, z. B. im Unendlichen, deren Diskussion wiirde aber
an dieser Stelle zu weit fithren, weshalb auf die oben angegebene
Literatur hingewiesen sei.

Deuten wir diese fiir die spezielle Differentialgleichung ge-
wonnenen KErgebnisse physikalisch. Wir haben schon erwihnt,
dass 1im Fall (3) alle Kreise um den Nullpunkt Losungen dar-
stellen. Diesen entsprechen als Integrale der Ausgangsgleichung (1)
einfache Sinusfunktionen; wir haben es also mit harmonischen
Schwingungen zu tun. Sobald x einen noch so geringen endlichen
Wert annimmt, so wird der Charakter der Loésungen tiefgreifend
veriandert. Die Integralkurven schlingen sich in Spiralen um
den Nullpunkt, die fiir geeignet gewiahlte Koeffizienten der Diffe-
rentialgleichungsglieder asymptotisch in eine geschlossene Kurve
tibergehen (Grenzzykel, cercle limite), d.h. das entsprechende
elektrische System strebt oszillierend, je nach den Anfangsbe-
dingungen mit wachsender oder abnehmender Amplitude einem
stationdren Schwingungszustand zu. Ahnliches gilt fiir den Fall
reeller Wurzeln 4, mit dem Unterschied, dass sich die Integral-
kurven sofort von der singuldren Stelle entfernen und fir x > 10
praktisch schon nach einem Umlauf mit dem Grenzzykel zusam-
menfallen. Die Anzahl dieser moglichen Grenzzykel wird mit
dem Grad des Polynoms (—1 -+ 28,z + ---) ansteigen, und
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zwar 1st die maximale Anzahl fiir den Grad 2 n gleich » und kann
fir eine unendliche Potenzreihe selbst unbegrenzt wachsen. Die
spezielle Differentialgleichung

%%=ﬁm+uyﬂﬁw% (1a’)

hat entweder einen oder keinen Grenzzykel, im letzteren Fall ist
eine stabile Schwingung unmdglich, im ersteren Fall nahern sich
die Integralkurven von der Aussen- und Innenseite asymptotisch
dieser geschlossenen Kurve; es gibt eine und nur eine stabile
Schwingung. Der Nachweis mit Hilfe der Poincaré’schen Me-
thoden wird wegen der mehrfachen Singularitét im Unendlichen
(die beiden Kurven X=y=0 und Y=—z+ py (1 —2% =0
haben dort eine mehrfache Beriihrungsstelle) ziemlich umstidnd-
lich und wir begniigen uns deshalb mit einem Verweis auf die
Arbeiten der oben genannten Autoren, insbesondere von Durac.
Die Ableitung der Bedingungen fiir die Existenz von Grenzkurven
und deren Anzahl fiir Differentialgleichungen mit kleinem Para-
meter pu erfolgt 1m Kapitel 4.

Von Poincart und Picarp sind allgemeine, in der Um-
gebung des Nullpunktes giiltige Losungen des Systems (2) ange-
geben worden, insofern folgende drei Bedingungen erfiillt sind:
1. Alle Wurzeln ; der charakteristischen Gleichung miussen auf
derselben Seite einer durch den Nullpunkt der Gauss’schen Zahlen-
ebene gehenden Geraden liegen. Dieser Bedingung gentigt das
spezielle System (17). 2. Es muss eine lineare Variablentransfor-
mation geben, so dass das System die Gestalt

annmimmt, wobei die Funktion S; nur Glieder hohern als ersten
Grades enthiilt. 8. Es existiert keine Beziehung der Form
Av = @121 + -+ - 4+ @4, wo die g; ganze positive Zahlen bedeuten,
deren Summe grosser als 1 ist.

Das spezielle Gleichungssystem (1) geht durch die Trans-
formation

_ e é—Mn yzéiﬁ_ (4)
resp.
E ==y n=z—2y (+)
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m die gewiinschte Form 2, namlich in

d = o
O M a SR P @) — 2@t I)] = 5
G dam 4 DSR4 E @4 A)— 9 88 (2 4 2] =
mit
! f A
YIS . SR T W
(22 —2,)° (g —4)?

iiber. Sind dann 2z, z, die Losungen der partiellen Differential-
gleichungen

~dzy | 4 dy B
Y- .H—d?7 Az =0
= a2, dz, B
dEjLHd: —Ay2,=0,
d. h.
2y=E+ a5 83 + g 8y + age E NP Aoy 4 04’= (5)
2y = ) + bog 1> 4 byy 1% & + byy &% 1 + by 3+ OF
WO
alg (2-& 12) L (2 + Z;) B a i
a,30__——2). ’ a’l Zl“]l“}b ;a2__ a 21* ,a()3'—322_~]~1] 6
; b2y @42 - b(zuﬁ) Y J ©)
B 21, 12— M+ i’ 22 0 84,

- und die 0,', 0, mit Gliedern vierter Dimension beginnen, dann
verwandelt sich das urspriingliche System in

dz; :
= ~1,9). 7
Hetin, =19 ™
Deren Integration ergibt
2y = C‘i ezit (8)
oder
&t o (8")
g

Sind 4,, 4, positiv reelle Grossen und drickt man die 2;
durch &, # und weiterhin durch z, y aus, so erhdlt man die von
23



354 Hans Straub.

Poixcarg angegebene Form der Integrale in reeller Gestalt. Lost
man die Gleichung (5) nach den Variablen &, # auf:
- 3 2 2 3
§ == 21 - Lagoz] + a~212122 “:— (112 3122 + (‘503 Z2J + e
3 2 2 3
1= &g — [b30z1 =} b212122 + by e bos &)

(9)

und ersetzt die z; durch C,e*!, so findet man die Picard’sche
Losungsform und daraus ohne weiteres z und y als Funktionen
der Zeit t.

Sind aber die A; komplex: 2; = v, + 1v,, 4, = v; — 1y,
so setze man 2y = vy + 10, 2y == Dy — 10,. (10)

Dann gilt

dry _

di VU — Ve Uy
d vy

*dt anl'l }'112

mit den Losungen
vy = Ae"tcos vyt — Be"tsin vyt
v, = Aentsin vyt + Be"tcos vyt |

(11)

Zerlegt, man in (9) die z;, a;;, b;r In 1hre Real- und Imaginirteile,
dann lassen sich diejenigen von & = 4+ 18, und =, —1 4,
und damit

durch v; und v,, d. h. durch die Zeit { ausdriicken.

Die praktische Giiltigkeit dieser Losungen, welche einen Aus-
druck fiir die Anlaufvorginge der zugrunde liegenden elektrischen
Systeme darstellen, i1st natiirlich auf die Umgebung des Null-
punktes, d. h. des Gleichstromzustandes beschrankt.

4. Die Parameterentwicklung der Schwingungsgleichung,
vierter Ordnung.

a) Die allgemeine Schwebungslosung.

Die allgemeine Integration der Schwingungsgleichung fiir
beliebige Koeffizientenwerte stiosst auf sehr grosse Schwierig-
keiten. Dagegen fiihrt im Falle kleiner Koeffizienten eine Para-
meterentwicklung dann zu einem praktisch auswertbaren Ergebnis,
wenn wir uns auf die Ermittlung einfach oder mehrfach perio-
discher Losungen beschranken und die Anlaufvorginge unbertick-
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sichtigt lassen. Zwar lassen sich diese mittels der im vorigen
Abschnitt erwiihnten Reihenentwicklungen wenigstens im Bereich
kleiner Amplituden iibersehen, sobald sie aber von der Grogssen-
ordnung der stationéren Schwingungsamplituden werden, geniigt
die Konvergenz der Reihen nicht mehr, und erst die stationéren
Vorgénge sind, wenigstens fir geringe Parameterwerte, einer
mathematischen Behandlung leicht zugénglich. Der Parameter
1st so zu wihlen, dass bel dessen Verschwinden eine periodische
oder eine Schwebungslésung herauskommt, also alle nichtlinearen
Glieder und alle ungeraden Ableitungen verschwinden. Dann
erhélt man eine lineare Schwingungsgleichung ohne Démpfungs-
glieder, deren allgemeines Integral aus der Summe zweler unge-
dampfter Sinusschwingungen mit den 1m allgemeinen inkommen-
surablen Kreisfrequenzen w; und w, besteht. Die folgenden Nahe-
rungslosungen sind in mehrfache Fourier’sche Reihen entwickel-
bar, deren Argumente aus den ganzzahligen Vielfachen der Argu-
mente w;t und w,t gebildet sind. Unter normalen Bedingungen
bleibt tibrigens nur die Schwingung mit der grosseren Perioden-
dauer tbrig, der Vorgang ist periodisch.

Fiihren wir vorerst die fiir die Zwecke der naherungsweisen
Auflosung dienlichen Umformungen der Ausgangsgleichung

- diz a3 e
A4 dt4 - dts(dlx‘}"d IBz —rd,,:v"—}—---)
dz
g I (Crx+cox®+ ... +C x4 ..0)
' )
. d h L h 2 1k n
»T(blx--]-bgm + byt 4o.l)
+ (@ + aQGx®+ ... a2+ ...)=0 ]
aus. Dazu dividiere man diese durch @ und setze
d. A , _ N
#esx—al, 84:5—4:84 (1+ppr+ p i e ™y + )
1 1
(a
gg =t =& (Ltuy + @yt ptypt -
1
611:——"" Vn= =" |5 ﬁnz - T
d, ‘1 | by b @
an=& el =L
(11 bl (11
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wo die @; und y; noch nachtriglich zu bestimmende Konstanten
bedeuten, dann erhdlt man die Schwingungsgleichung in der
Gestalt

, dix d3 D (x)
& (1‘1'#‘P1+"')“'”&?[T/153T l !
, 9 1 B (2) &)
vey (Ut et ) @ruC @) a0 g ) =
wobel von den abkiirzenden Bezeichnungen
D(@)=x+ 6822+ 0323+ ..., C(2)=7p,2%+y; 2% ] 3)
B(z)=8,2+Bpx*+ Bga®+ ..., A(x)=102% + 05323+ ...

Gebrauch gemacht wurde. Wir verwenden den Lisungsansatz
T= o+ py + piay+ -+ ptzx, + - (4)

und entwickeln dementsprechend auch A (z), B(z), C(x), D(x)
nach u. So lautet z. B.

n' /

B(z) = By + pB, + u*B C 4 pt B, +
mit
Bo= By xog+ By xg® + By x> + -+ Byt )
L dB - dzBo (n) .- "~ d"B
Bl == .’Bl (B d 0 BO = 7(17.’177627 130 d.’l?ﬂ )
’ 1 ’
omMTe o
B, =1z,By + By ()" (@) "™ |
0 MEN |
B Z (@) (@) B -~
0 fpa‘! i e vaT!

Dabei bedeutet

PR )’?a-. | (ra;)“ar

die Summe aller Ausdriicke, die entstehen, wenn man unter dem
Summenzeichen fir oy, a,, -+ * o, und vy, v v, alle Kombina-

tionen derjenigen ganzzahhgen nicht negativen Werte einsetzt,
welche den Bedingungen », - v, + - v, == r und oy v, + v, +
+ 4 a, v, = n geniigen. Entspmchende Ausdriicke gelten

fir 4 (x), C(x), D(2).
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Infolge der Substitution des Losungsansatzes (4) in (1)
und Nullsetzen der Ausdriicke gleicher Potenzen von u zerfallt
die Schwingungsgleichung in die unbegrenzte Folge linearer (mit
Ausnahme der ersten) inhomogener Differentialgleichungen vierter
Ordnung ohne Dampfungsglieder:

, Bz , %%
o g e g o0
ey o, diwm
€, dt41 + By dt21 + 2+ X;(z9) =0 (6)
d4,1‘n _______ | dzg;n _____________________________
4 —dt4 + 2 dt? + Ty ‘\n(IO,Il :In—l)_o

mit den Inhomogenititsgliedern

., d‘z,  d*D, @ | ‘
X (Tg) = &4 ¢4 _Zi'—tTO— + 33“33?0 T €y FIT) (1 Ty + Cy)

B
+ "C_i‘c'l_ti “" An == 0
o ds 3D
X; (g, 71) = €, ai (1 21+ @2 Zg) + &5 *3?3’1* 7
, d? dB , 4
+ & die (s 2o + 9y (21 + C) + Cy) + "‘d_i_l‘ +4,=0
, dt
X (Tg, Tyr+-Tny) = &4 dis (@1 Ty + Qo Ty_g+ +++ + @p Tp)
d® D, _ , d® '
T3 s =+ & e (1 Lpat- LoPptOp st 49u_1Co)

J

Die Losung der Differentialgleichung nullter Anngherung lautet
tir ¢ > 0, &' > 0:
Ty = M, sin (w, t — @) + M, sin (wy t — )
. gz‘tl (ei(w, t q)__e “t(w, L q‘)) + m’t2 (ei(wzl‘— (") e t(wy t— 'P)) (8)

mit den 4 Integrationskonstanten, namlich den beiden Ampli-
tuden M,;, M, resp. M;, M, und den Phasenkonstanten ¢, y, und
den aus der charakteristischen Gleichung

g/t -+ en?24+1=0

gewonnenen Kreisfrequenzen
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Die Integrationskonstanten lassen sich erst aus der Diffe-
rentialgleichung erster Néherung

' d4wl

rey BILg 4 X, (2 =0
€y dil &y Ly 1\Zp) =

dt?

bestimmen. Die Phasenkonstanten kénnte man zwar im Inkom-
mensurabilitatsfall ohne weiteres gleich Null setzen, da unab-
hiangig von allen Anfangsbedingungen immer einmal der Moment
beliebig nahe verschwindender Phasendifferenz eintreten muss.
Wir wollen dies aber, um die Freiheit in der Wahl der Anfangs-
bedingungen fiir die weiteren Niherungen nicht zu verlieren,
unterlassen, resp. nur scheinbar tun, indem wir der Einfachheit
der Darstellung halber die Argumente w;t — ¢ und w,t — v durch
w;t und w,t ersetzen, uns aber bewusst bleiben, dass dies 1m
allgemeinen nur eine abkiirzende Schreibweise bedeutet.

An dieser Stelle wird auch ersichtlich, aus welchen Griinden
g, und & nach Potenzen des Parameters u entwickelt wurden.
Im allgemeinen werden néamlich die Frequenzen nicht durch die
Grossen &, und &, allein bestimmt, sondern auch von den iibrigen
in der Schwingungsgleichung vorkommenden Koeffizienten be-
einflusst sein. Bezeichnen wir mit ¢, und &," die Werte der Kon-
stanten, deren Substitution an Stelle von ¢, und ¢, in der charakte-
ristischen Gleichung die wahren Frequenzen ergibt, so werden
sich diese ebenfalls nach Potenzen von u entwickeln lassen, sich
also aus der Umkehrung der Formeln fiir ¢, und &,, d. h. aus

&y = & {1 — Uy + 4“2(‘?12 — @) + ] ] (10)
& = &5 [1— pyy + pu2(w > —wy) + -] | |

berechnen lassen, so dass dann auch die Ausdriicke (9) fir die
Frequenzen in nach Potenzen von u fortschreitenden Reihen ent-
wickelt erscheinen.

Fir das Weitere denken wir uns die A, By, Cy, Dy In eine
zweifache Fourierreihe entwickelt, wobei die Darstellung von B,
als Beispiel auch fiir die tibrigen Funktionen gelten mag, also

[0 o] (0 4]
BO-; Z _‘I bmw,+nw, eilm o +nw)t (11)

M=—00 N=—0D
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Dabei sollen die b, ;,.,, die Bedeutung der folgenden Aus-
driicke haben:

QR.Zn QR’(R I)Qn-
bo= " (_ =
gn gzz)(n l) an"
F 1|1I(n—1)'(n-—1)‘ nln'}

ﬁ2 M“ M2 M | M
=P8l Ty T )

QRT’ n—1 ‘ QR.IZ n—73 gné
nl(n-1)! " (n—1)1(n—2)11!
gnignln —4 gn ?n’n —2 }

bwl = B (— l)ﬂ_l (2 n_l)! ﬁ2 n—1

n-1

2l1l(n——1)1(fn—2)1 1Itn—1)!(n-1)
M M;
~ b= g 38T+ )

=
LY E] 2 2 .
+ 555(J/é‘~+ 31‘414M2 +§M;) + ]

Q‘y\&n -1 Qn.’.n—SQR_
[n—D)1' (- 1)1 (n-2) 1T

o= 3 @n DI [

o e )
T2 ()2t T Tl e—DI(n—1)1] 7
M M" - M
A RLTACT (122)

M 2 Mz
+5 )85 ( 8-,_ . ﬁﬁmm]j_ = %M;) + .. }

o e} %21? 9}2211—"0122
= \ n—1 = o= _,4 . 2l
. B 92}492}2:&——4 C)R gn’n~’
ST 1181 (n=2)! (n— 2)| 21 (n—1)1(n—1)! J:*b“z""

M3 3
Bt (S )

% gn2n Qn)n_ngn
= N\ ~1)n-1(2 | n 2 1
%( i EnD by [(ml)l(n 51 i
gn«ig)‘z’n 4 Qnognvﬂ —9
1B DI 91 20Tyl (n)1] T o2
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b 99‘ 1 - 2 ' 92‘2211-—1% Qn:%n—:} gng
w0, = ._1(_ ) ( n) 5211 n'(n iﬁi]+(n 1)'(7?; 2)!2!1—!
9713 9732" 3 M, Nz n—1
B 1l2|(n-—1)1(n~—2)| 1lnl(n-—1)ll (12a)
= bﬁ(w|+w2) = _b(“ﬁ_ wy) ™ b —(w; — w,)
3 AT g3
= — ~‘822~ 1“1 M, + 3 8, (M J/I + J‘Ili}-l—")—) + ]
und allgemein fir p + ¢ = 2 s:
(p+yq) 9
- n— o :Yn n—\q :)n(ﬂ
bpons gy =2 (—1) % (2n)!B2a = .
T lal (n+75 )!(n )1lgl
) N2 n—2-lal Qulal + 2
4 : . . T, Y-
(n 1+ __7?_‘:2_.*_.‘!5_-)! ('n —1 - 1.’.?';}“?[) L(lq] +1)111
Qn‘f (n—m)—|q| % lg| +2m
(:n__ 4 2=ldl Iq[)!(n—m p+q|)|(|q‘_m)|m"
B m ilpl gmé n—p|
und fir p +q=2s—1: ' (12b)
_pra+l
bpasgo= (=1 2 @n—-1)lfany X
g 1O FL
| %‘.lln—l—lfl: gmzﬂ L
(n — .‘I%l:ﬂ) I (n — 1?L+§1_f_£’_) q| !
gn?{n—m)“l— | gm[qt'@ m
N (n—m—i"”—+;_—”-)! (n—m E"'Hlﬁp)'(|q| + m)! ml
lepl t;mi n—|p—1
pl 1 (n— )1 (n— )y
Dann wird
Xl = EJ \1 Xm w, + n w, 6% W8 e ) &
= D[ Vimwtnal6@OTred by gmilmminwil

n=0m=0
(ei(m w, +n w,)t_eéi(m w,+n w,)t)];

+ Yﬁ(m W, +n w,)
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dabei sind die Koeffizienten X’ resp. Y’ durch die Ausdriicke:

Xo =,
b4 : 3 ! L
Xiw==28 o1y —ieod, T & o (1 My + cu)
+1 wy by, +a,, (14a)
’ - ’ 4 : 3 g2 |
X, = & 0 My—1 &5 wydo, F & w0 (p; My +c0,)
+ 1wy by, 4- G,

und allgemein

., ;
Xmotnw,=—16 M 01+ 1 09)% dm o, 0w,

(14b)

! i
— &y (m w;+n (1)2)2 Cmao,+nwy,+1 (m w1 N wz) bmw,+nw, + Qo+ no,
resp. ber Verwendung der Bezeichnungen

T/ . ’ )
’ ‘\-mm,iﬂw, T X-(mmlis nwsy)

Ym w,+nwy, —° 2 y

o -,
}7’ = me' J"”“’:_X—(mw,+n(u9)
—(me,+nw,) = 5 L

durch
, ) . X
Yo=—tgw d,+1w b,
i ! 4 ’ 2
Y.,=¢ ¢ o 9?21 83 o? (p; MWy + €u,) + o,
Yo, =—1g w, d Ve, Do,
I'4
Y u, =& @) w,y 9?12 gy s (p; My + €o,) - Ay, USW.

bestimmt. Wenn X" = a, + 0, so wird die allfillig auftretende
Schwingung unsymmetrisch; damit die Losung quasiperiodisch 1st,
miissen die Bedingungen ’

Y, =Y, =0 (l6a) und Yia =Y 0=0 (16b)

erfillt sein. Aus der Doppelgleichung (16a), d.h. ber Verwen-
dung der expliziten Schreibweise aus

Mz M: M 8 3
Mleaw,[haa (4 = )+5a ( Shobe I MY 5 w) }
M: M
H;M1|:ﬂ1‘g 3ﬁ3( '{""‘Q*) F'--]

2 2 2
M, e 0 [1 + 3 dg (M M2)+'565(§—M4 3 M2M2~L~I-‘LI-—)+---J

2 4 g ! 8
M [m Fapy (Ma 25 ]




362 Hans Straub.

errechnen sich die Amplituden M; und M,. Aus den beiden an-
dern Bedingungsgleichungen (16b) folgen die Werte fiir die Ko-
effizienten ¢, y,:

& Wi 0 (Co, My —Co, My) + a0, 0 My —a, 0] M,
& o w; MW My, (w; — o)
2 |
o & G100, R I—cu, 0}y) + 0,03 My AT,
1= e a 2 2 T
& of w; M; M, (0] — of)

I

P1

Begniigen wir uns in den Gleichungen (16a) mit den beiden ersten

Naherungsgliedern und setzen speziell A4(x) = C(x) =0 und

D(x) = x, dann erhélt man fiir die Amplitudengrossen die vier

moglichen Losungen:

1. M;=M,=0 -

e Qo —w))—4p 4 de62oi—0)—4p
9 53 ’ 2 9 ﬁ:}

. M= oy at— ), My=0
3

9. M:=

4 M2 — _3-4-‘8; (g 2 —B), My=0

wihrend ¢; und %, verschwinden.

Vor Weiterfiihrung der Rechnung sind diese so errechneten
Amplitudenwerte auf ihre Realitdt, und, wenn diese Bedingung
erfiillt i1st, die entsprechenden Schwingungen auf ihre Stabilitat
zu untersuchen. Nur wenn mindestens eine mdogliche stabile
Schwingung existiert, ist die Rechnung weiterzufiihren.

An dieser Stelle wollen wir annehmen, dass sogar zwei solche
Amplitudenwerte vorhanden sind, so dass Schwebungen auftreten,
und auf die Diskussion der Realitits- und Stabilitdtsfragen erst
weiter unten eingehen. Dann nimmt die weitere Naherung der
allgemeinen Schwebungslésung die Gestalt

(o o] @
AR ; ;
= 2 2 Tt € motret (19)
m—-a0 N —=—00
an, wo z,,, «,, «,, r_, aus der Differentialgleichung zweiter

Naherung bestimmbare Integrationskonstanten sind, wihrend die

tibrigen T+ n, dUrCh den Ausdruck
/’
mr . X-mw.—#rm:, (20)
moctnos T g (Mg nwe)t — & (Mwy - Nwy)? + 1

gegeben sind.
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Wir machen fir das Folgende durchgehend die Annahme
C(z) = 0, D(z) = =, welche ohne wesentliche Anderung der Er-
gebnisse eine betrachtliche Vereinfachung in den Ausdriicken fiir
Xooino, Tesp. Y, . und im weiteren fir die Differential-
gleichungen der héhern Niherungen zur Folge hat. Unter dieser
vereinfachenden Annahme wird die Differentialgleichung der

zweiten Niherung

B . 0

34 _(z?_ T 82 ‘Eir + .I‘.;_ '%‘ X (.To, 'Tl) ()

mit
o &tz , A , Az, ., &
X HE! Po 74 dtq '82 Yo — dt2 84 "% B oy dt4 '62 1 dt2
dx, dB
g g T

Setzt man fiir z; den Ausdruck (19) und fiir

ao a0
i .
A= 2 Ay =3 S, Py 6 et
’
dB, _ d(x,By)
dt dt
a0 e a}
N R R : A it
& Z/ Zl (m wy + 7 03) G, + no, €4 AT L,
m=—m Nn=—ab
W0 (21)
o ao ,
N W ’
pﬂ'm),-i- nw, = Z _f\‘_l 'T'rwli_-sw, a(m—-r) UJ;"‘-(H—R) wy
r—=— §—=—m
und
Qmo, + no, = Z 24 ﬂui*swz (m r) w+ (n—8) w,
r—=—aw §= -

1st und die a’,b" aus @ und b durch die Substitution der «, resp.
f. durch (n + 1)e,,; resp. (n + 1)8,,; hervorgehen, dann gelten
fir die Koeffizienten der Fourierreihe von

[ o] @

2 2 Xng;Zerzw, %(mwl-i-??mz)t, (13’)

m=—® n=—aP®
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wenn man noch die Bedingungsgleichungen (15a) bedenkt, die

Formeln X® = p,
XQ =M, (e 0} 2 —e; 0 y)
B,

. gt g8 L
w,-—'T’ &3 0)1 xw, b " q:.ul N pw,
9n1
’ 4 Lo ! 2 :
Y—w,_‘ My (—&y 0] @y + &3 O] Py)
a(’)l ’ , . 3 7 '- i
C——. J/‘—--WIT’L 83 (l)l .I._wl”“l O)Iq -, =T p_w‘
M

und entsprechende Ausdriicke fiir X‘ui), X‘f’mz, die aus den

(22a)

obigen

durch Ersatz von w;, M, durch w,, M, hervorgehen; allgemein

gilt
2) . ’ | ) . I 3
Xiﬂw. +nwy 84 ('"'LCO]_ h n(02)4 ¢l —1 £3 (7”0)1 R 71-(1)2)
—& 1 (Mw; + Nwy)? + 1 (MW + NWy) G, + nw, T Pmw, + na, -

Aus den Bedingungsgleichungen

Y2, = (&) o] gs—ey v3) 0] Eml"( - )( : +a0’_a2w')
2 Eml

(Qw, -5-2@’_,,,1;) un ; P..m,

I'd ’
X, —I_ —a
2) . ’ 2 ’ 2 i [ W, w, f__ ’
Y(—.uz— (64 0 Pa—&y Wy) w, :mz "( D) )( Mm, t+4a, azwg)

(030%) Lol

’

; ’ ’ .
T Ay, + w,(m—w.l_ "I:wf_.) 1 Wy

+

’ ; ’ - .
+ O 4 ooy (Boy, — B,) + V05

WO

@ @

Ny Ny 7 ’ ’ ’ ’ ’
le =4 L mr“h"‘swz b(1+r) wy— 8wy q“’l — ('I:U)l bO + m_wl bgwl)
F=—00 §==0

f ’ ’ ’
T Um, + w, (xmz_'x-w._.)
oo}
"\ Al ’ ’ ’ 7 ’
Q—w, L ] -Efw,+sw, b—(1+r) W, — 8w, q-m, h_'(mw, b2wl 5 m-wlbo,)

yo=—0o §==-00
’

s b;Jl+w2 (.'Ew2 = .’Eiwi)
(@ a]

w
. \"1! Vi ] 7 . ’ F . 7 i
Pw] = #Z L Irtu.%-ﬁ(ug a(l—-r) w,—8w, pm, — (J.'-u,l a() "*' I—w, a?,w)
F 4 ’ ’
-+ a’m, F oy (mm,_ —T- wﬂ)

P_wl \"f S"f ’

’ ’ ’ ’ ‘
rw, + 8w, a_ -(1+7r)oy,—sw, ™ p—w, - (mwl a’2wl + m—-—wla'{) )
f_-—UD 8#-00

’

ra '
" a’r.ul + w,y ('rwz — ‘T—f.ug) 3

] (22b)
L (23)
\

(24)

die Q,,,Q_.,, P, , P, aus den obigen Formeln (24) durch Ver-

tauschung von w; und w, hervorgehen und die Beistriche

an den
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Summenzeichen das Fehlen der Glieder mit den Indexkombina-
tionen |r| 4 |s| =1 anzeigen, folgen die beiden Werte von ¢,
und vy, :

P28y @) oy MWy M, (0; — o))
Q}';,l — X ’—wl - am, 9 ’ 2 -
= 2 [( 9)}1“ + a() a2w1) a)ggn2_2aw|+wgw19nl
'I:(’u — 'T:(u a,,, ' ’ ’ 9 q
e — 2"'0* s[(én —dy + aiw,) U)fgnl - Zaw.-i-we )y gnﬂ
~ 2
5 5/
Pml - I)—(u, P I)—mz
op (T ) gy (P P ) )
Yy &0 @) wy Wy My, (03 — wf) | 2]
[- 5
$(u - r~ru A ’ ’ ’
= : 2 = (_.‘ 5]}7;: + a() — a20,|>(1);gn22a0,1+ Wy (U‘:Ev)nl-J
, - ’—w [ am ’ ’ 1
+ ey 5 s (—CJ—R’ —ay + ang)w: M —2 ap 40,03 My
L 2 J
tenofutm (10 agm, (959
Pm, P—m, ow. -y
“"C‘m( E )_"“ml(_'z )
Die beiden andern Bedingungen
: m;), - x—m,
quz.) =1 wy (by' — D2a, + &5 @3) (_T)
. ’ ’ ’ w,~ Y-w Pw =% P—m
Fi oyl B, (a— i) + 22| | Pat P
1 2 1 ] 2 2
Ty, — Tl f i
Y= i 0y (b b, + 1 0 ()
| . ’ ’ ’ (Jw A (g)—wz PwE e ] -y
1 wz[bwﬁwg (Bm, == B, F ~-2__-J " 5 = () J

elgeben zwei Beziehungen fiir die Integrationskonstanten ,, ,
x, , &,, T ,. Die Ermittlung der restlichen Konstanten hingt
von den fiir die Phasenkonstanten @ und y angenommenen Werten
ab. Wird ¢ = y = 0 gesetzt, so haben wir zur vollstindigen
Bestimmung der Integrationskonstanten noch zwei Anfangsbhe-
dingungen festzulegen, als solche koénnen z. B.
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dienen (die erste Ableitung ist schon durch die iibrigen Bedingungen
fixiert). Werden die Werte von ¢ und y noch offen gelassen, so
erhalten wir die noch unbestimmten Konstanten durch Nullsetzen
von z;(0) und seinen drei ersten Ableitungen.

Die erste Methode ergibt folgende Resultate. Aus (26) folgt
unter Verwendung der Bezeichnungen

) l w ’ ’ 'L E wi . . ,
A = 21 (by — baw,) — 32 , B'=—1w;,by+a,
’ 5 T, T Y—w, Pml -+ P_wl
C“"""l(Q QQ )T 9 -
- . , ., Vg e . by — b3,
o Qw,— Q—m,) sz + -P—(u2
C" =1 w, ( 5 + 9 J
fir die beiden Differenzen
, , BI le _ C! Bi’
Ly, — x-(u, '— A Bn An B.v - Dl (29)
m’ —T’ B C’f - Cf AI’ B D
Wy —wy T An B’—‘."it Bn - 2
und aus den Anfangsbedingungen
'I.l (O) = ('len + 'r ) + (w‘,‘-’z - x:wz) ri_ 2’ 2’ m;nw,i—nw, = 0
2
L0 _ o (20, + 20) + 0} (a6, + 2L
+ Z, Z' (mwl e 5 nw2)2 x’mw,+nw, =1
fir deren Summen
o, , Sy — 2 S,
(mwl+$-u11): = 2 20 281\
W, — 0] (80)
(m;)z =} SC:%) = 82 ;fgif_gL = Sg,l
w; — W,
WO
S ! > N maw, — N w;nw no
e ....:l,( 1 2) 1T 2 l (30&)
S g ‘_, Z; x;mu,+nw, ]
bedeutet, also fiir die einzelnen Konstanten
_Dy+585; S;—Dy _Dy+8S, _ S;—D,
To, = =g s Tw, = ——2—— D T, =g B, = (31)
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In analoger Weise werden die folgenden Niaherungslosungen
errechnet. So lautet z. B. die zweite Zusatzlosung:

[es)
.\
Ny @
P mw;+nw,
m=—w N=—0®

ei (mw,+nw,) t

mit

X@

.CL‘( 2) _ mw,+nwo
mw,+n ) ; *
w il &y (Mw; +nw,)t —e&, (mo; + nw,)? + 1

Zur Bestimmung der Integrationskonstanten z(®, 2®  z®, 2

benotigt man die Kenntnis der leferentlalglelchung dritter
Niherung
d*x , d?x -
54 dt43 "{"’ 82 _“d—t?:t "1I" .’L'3 + 4X3 (',1:0’ .’E]_, .1)2) == 0 .

Aus den Bedingungsgleichungen X® = X® — X® — X® — 0

—W,
erhilt man die Werte von ¢, y; und zwel Bemehungen zwischen
den vier Integrationskonstanten z{¥, &, a2, % . Die beiden

andern Beziehungen werden durch passend gewahlte Anfangs-
bedingungen fiir ,(0) und eine Ableitung

dn (0)
—d—:f:— (wo m < 4)

geliefert.

b) Periodische Losung.*)

Wesentlich einfacher gestaltet sich die Behandlung der Daffe-
rentialgleichung, wenn nur die Schwingung mit ewner Grund-
flequenz (fir Rohrenschwingungen w,) stabil ist, d. h. die Lésung
eine periodische Funktion der Zeit darstellt (92?2—0). Dann
lisst sich die vorerst unbestimmte Kreisfrequenz (nennen wir
sie w) durch die Substitution T = wt aus dem Exponenten ent-
fernen, womit die 1m Schwebungsfall auftretenden Schwierig-
kezten betI die Koeffizienten ¢, und &, dahinfallen.

*3 D1e in diesem Abschnitt verwendete Methode wurde von APPLETON
und GREAVES®) an einer Gleichung zweiter Ordnung auseinandergesetzt. Da
diese Arbeit in den die Kippschwingungen betreffenden in der Zeitschrift f. drahtl.
Telegr. u. Teleph. erschienenen Publikationen von vaAN DER PoL und APPLETON
nirgends erwihnt ist, kam sie uns erst nachtriglich zu Gesicht, nachdem wir im
Anschluss an die Versffentlichungen von Horx1¢) und PoiNcaRE dieses Verfahren
schon verwendet hatten. Noch spiter wurden wir auf die Mitteilung von AN-
DRONOW!?) aufmerksam. Einen Konvergenzbeweis fiir diese Parameterentwicklung
hat GrEavEs!®) angegeben.
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Um die Differentialgleichung (1) in der gewiinschten Form
zu erhalten, dividiere man wiederum durch a; und setze

a ‘b
2 1 1
oy = =1 =wy|—|» T=wowl
0 c M Ola]_
A A, a dy|a
4 4 AgU L T U
&y = —L:l'— w, == =) Eg = —|=1 @, (323
1 (1 al bl
5 — d, a | ¢ 1 ¢, |al by || 1 a,
iy = Tl Yn= —7=7 = > ﬂn s Uy =— ———
d, Ci %y e @ ]b ay uoay

dann erhilt man, wenn man wie frither von den abkiirzenden
Bezeichnungen der Formeln (3) Verwendung macht:

0t ddr w3 d*D(z) o 42 -
& —4 o drt +1~‘3# F -+ & i (yrx+ puC(x)) N
& dB(a:) (32)

+r+ud(x)=0.

T wy  dr

Entwickelt man ——,  und 4 (z), B(z), C(x), D(x) nach Potenzen

(0%
VOII/J-:

co :1+H91+Mzez+'--+#“en+' ]

0

T= Ty + Uy + p2T + 0+ WL, A
A() = Ayt idy 1 p3 g+ 4 prda b oo b (33)
B(x) B-|—,J,Bl+IuQBJ...+Han_|____
C(z) = Co + uCy+ p2Cy + -+ - + uC, +
D(x) = Do+ pDy 4 p2Dy + -+ - 4 D, +

und setzt die Koeffizienten gleicher Potenzen von u gleich Null,
so erhilt man die unendliche Folge von Differentialgleichungen:
dixzy d*my
ae ae
dtz,  d*z,

84 d‘[4 T dt2 ‘i‘ i’pl _|L 1\’1 (:1'0) = O

a) 84 +$0=O

b) (34)

und allgemein

dz, duw, .
£ - + x, + Xy (Zye o Tuq) =10
4 dT4 dT n n( 0 n 1)

mit den leicht berechenbaren Inhomogenititsgliedern X,.

c)

Da, nach Annahme, die Losung periodisch sein soll, so wird
in nullter Niaherung

m{) - gn (eimr_ e—im‘r) ; (85)
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wobeil fiir Rohrenschaltungen im allgem. nur die Wurzel

5 (1—y1—4¢,) (35a)

der charakteristischen Gleichung stabilen Schwingungen entspricht.

In der Differentialgleichung der ersten Naherung wird X, durch

den Ausdruck

4 3 2
Xy=4¢0 ddrﬁn + €3d 2{;;(310) T ddt2 (Co (zo) + 201 Tp) l
d By () J t5R)
dr

dargestellt. Denken wir uns darin A4, B,,C,, D, in Fourierreihen

entwickelt :

AO o Qn {ao + al(eiwr_e—iwr) + az(e‘liwr _+__ 6—21':»7) _]L 5
+ @, (6o (—1)remeien 4 - ]

B0 — gn [bO _I_ bl(eiwr_e—iwr) _+_ b2(e‘2iwr + e—2iwt) + $5 3
+ bn (ei.nwt + (____ l)ne—inmt) + .. J 36

CO — % [CO + (’1 (eiwr . e—iwr) + c2(e?.imr + 6—2]'(01) + . ( )
+ B (eiﬂwl' + (_ 1)ne—inmr) + . ]

DO — g)n [dO + dl(eiwt . e—iwr) + d2(62iqu + e—:’.iwr) + L.
+ dn (einwr _|_ (___ 1)n6—-inwr) + . .]’ J

wo beispielsweise

w? =

+ + 440 (.To) =O

5 Mzn B 3B
Q??bo=2,l(f—1)"(2 n'n'ﬂ2n 2M2 8*M4+...

® 2n 5
gnbl—?(—l)”‘lf,gt_(n——_ﬂ“%n 1

n:_

37)
3 (2n Bon g (B pgo, [
M b, =n%’l(_1)n_l(n+l)!(nil)!gR- ( : M2+ 2L M+ )
A (2n—1)1 .
Mbzomy = 2 (=1 s — (it P2t
o (2n)! )
9nb28=2‘(_1)"—8(%+3)!(n—s)!ﬁ2n9n-" J

n=s
und wo die a,, b,, ¢, gleichgebaute Funktionen der entsprechenden
Konstanten «,, 8,, 7, bedeuten, so wird

Xlsz‘,X;einwr
n=-e (36a)
=M 2 [Y’;1 (einwr o e—inwt) o Y,—n (einwr __e—inwr)]
n=0
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mit
7 !
X =+4eg 0,0 —teg03dFo?(c; +20,) +1byw+a,

4”:‘: @n—1) = — 1 €3 (2 n— 1)3 w? d2 n—1T (2 R == 1)2 w? Cap—1 (37)
+(2n“1)ia)b2n—lia2n-—l J
";211 = :F 87;837%3&)3(12”—4 .n2w?(.2" IZIEQ ni (,f)bg,, T A2y
resp.
! —I_ ) ’
Y, :ux —regmid; +ibyo l
2 a7
XX (37a)
Y_ = __1_5__’_1 =4 p,e,0% — 02 (e; + 2 0)) + @ usw. I
Damit die Losung periodisch ist, miissen die Bedingungen
[ =W\, =1 (38a)
resp.
MY = MY, =10, (38b)
d. h.
M(—iegwid, + 1byw) =0 (38'a)
und
M[4e00t— (e, +20) +0,] =0 (38"D)

erfiillt sein. M berechnet sich also bel Verwendung der expli;
ziten Schreibweise aus der Gleichung (38'a):

M [—e30%(0y + § 0, M2+ § 0, My + .. )|
+ (B + 4B ME+ BB+ )] =0 |
und o, aus (38'b):
orw?(de 0 —2) = 0 (Fya M2+ -+ ) — (T og M2+ - - +). (40)
Die Losung der ersten Niaherung hat die Gestalt der Fourierreihe

(39)

o
i ’ L P —iuw R 4 in o ] f -inm
iy = Q‘R Ly o (;L_It eiwr 4 x_qe un) _}_‘\_](I” pinot e I__ne 0 'r) ’ (41)
n—=2
wo fir n =1
Yl

n

W, == —

. gntot—nio? +1

ist, und z," und z’, vorldufig noch unbestimmte Integrations-
konstanten bedeuten, die sich erst aus der Differentialgleichung
zwelter Naherung ergeben. Diese lautet

dtx d*x ,
g e T o+ X (g, 1) =0, (34c)
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wober X, die Bedeutung des Ausdrucks

d? a3 7 g
Ny =1¢,- e [4913"1 + (4 0, -+ 6 9) T] + 83d 3(x1D()_'L391D0)
d2 , . .
“;“ — [ (Cy' =2 01) + (2 05+ 07) Tp+ 2 0, Cy] (42)
i (Z ’ ¥ ’
ke d‘; (Il B Ql BO) i Il :'10

besitzt. Iihren wir die Rechnung in der Folge unter den Vor-
aussetzungen A(x) = C(x) = 0, D = x durch, so verschwindet
01, X, reduziert sich auf

dtz d® 2y A%, d
b Y PPy VR SPW, ... . O P ]
drt dt dr? dr (42')
=z 'O E (ng)) eiuwr ) ‘\(:)n e—anwt) ]
n=1
und z,” wird allgemein
- 1mwb, ‘
R B i s e B (41a)
Die Entwicklung von B, in eine Fourierreihe
B, = bol s -\:lb; (einor 4 (—1)n=1 g=inor) (43)

n=1

ceht aus derjemigen von By durch Ersatz aller in den Ausdriicken
von b, enthaltenen Koeffizienten g, durch (n + 1)8,., hervor.
Es 1st also

by = 1+ﬂ>jl( 1)n (QH""'” Bo w1 M2 = i3 By M2+ B M2+

by = S Ay gy gy Bon T = (Bad By M)
b;—-_:;‘lu -1 (n(f;ﬁl Bonir M= M Byt B M3 )| (44)
bé"_l::im(—l)"hm(n+mi21?)1)(n—m Pon M

b= Bt g B e

und b,_, + b, = nb,. (44a)
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Dann nehmen die Koeffizienten von X, die einfachere Ge-

stalt an:
X;:1 = 1+ 4 0,0 + 16503 F 20,02 + iwb,
X;n—l = X’—(Zn—-]) = (2 n— l)iwankl I
Xon=—X ,,=2niwb,
Y = —tegod+ 1wb J
Y., =4¢0,0*—2p, 0% usw.

und diejenigen von X, werden

(2) L. g 2 g
XP =4dep0,0t— 16501 —2 0,0+ 104q,

X® = —detpot+iggoiz. | + 20,0+ tog,
X _=—12n— 13egade,, , +10qy,
X(E)g p=12n—1)3e w32 5, + 1Wq _2pn-1)
S—=2n—-1) ' , .
XP=—8Bigndwcs,, + 1wg,,
X3 =8igndwir ,, + tw, ¢ .,
resp.
: 2l — . +q_

Yi=iget ( 12 l)_:h@w(gi 2q 1)

2 . T+ T2, : —q_
Y® =4¢,0, ' —ieg w"( 5 —)—2 05 w2+tw(q——1 qu)

usw., wobei die Bezeichnungen
@
qr=a' by’ +ali by + 2 (=1t @ (b + bs)

(o o}
=2, by + x_1 b, + ,\;, (—1)lncx, b,
@

q-1=— [xl—i be + 2y by + >2_‘| (—1p—1g,’ (by—y + brt1)]
= —[(x}by + 2" by + ; (—1)"1z,’ b,)]
qem—1 = (2 m"‘“l) [1'1' b:"!m—-2 -+ w-’—l bé m
+2| (—1)r 1z, (bp—2m+1 + b2min—1)]
Q-e2m—1)=— (2 m —"1) [w’—l b:’!m—2 =} .’L‘]_’ b.’lm

T E ( ﬁ l)n-—l "Ln’ (b;z—2 m+1 A b:'l m+n—1)]

n=2

@
‘ 1y’ ’ ’ \ ’ ’ ’
Qem = 2m {ah bs m—1+2_1 b2 w+1 T _>__|2(_ 1)" Ty (bn—2m_b2 m+n)]
n=
a

q—-2m = —2m [-'1;’—1 bém—l""ml’ bém+1 T Z(_l)nxn’ (b;l—2m_b’2m+ﬂ)]

n=2
Verwendung fanden.

(37)




Selbsterregte nichtlineare Rohrenschwingungen. 373
Damit auch z, eine periodische Losung ist, muss
@ _ y@ —
Y® = Y% =0 (46)

sein. Aus

Y= bigym® (m-l y ) + Lo (2" —z_,)(by’ — b)) = 0 (46a)

folgt, wenn man bedenkt, dass 7 e;0® = 1wb; (s. Formel (38)) ist,

1;1' — g;'_l (47&)

@ =—q°, (47D)
und aus Y = 0 ergibt sich fiir

und damt

o o]

—1)-1ng,b,

1 i n2 w?b,? - J

(48)

Bestimmen wir endlich noch die Integrationskonstante z," so,
dass fir v =0 auch z; = 0 1st, so findet man

und die Losung der ersten Nédherung wird

@ o] o o]
e g
=M ['L >_J Ts,+1COS WT + E To, SIn 27 o1

n;l n=1 (411)
—-iz Topsr1c08 (2n+1) ot J
n=1

Diejenige der folgenden Néherung lautet

’

®
P ) piwt 1 w2 p—ior L (2) inot (2) ,—inwr
Ty :m[;gl et % 4 i) g B O () Y ) )J
9

wobel allgemein
7(2)
'Xﬂ

ggniot—n? w?+1

2) —
‘T'n -

ist.  Zur Bestimmung der Integrationskonstanten z®, z®, be-
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notigt man wieder die Differentialgleichung der néchsten, also
der dritten Naherung

a* my

d® xy
£
1 d+3

dz2 + X3 -+ ‘X3 ('TO: £y, m2) :03

+.

insbesondere die Ausdriicke fir X, X . Bei deren Nullsetzung
ergibt sich g3 und eine Bedingungsgleichung fiir die beiden Inte-
grationskonstanten; eine weitere erhilt man aus der Anfangs-
bedingung z, = 0 fiir den Zeitmoment 7 = 0. In dieser Weise
fortfahrend lassen sich beliebig viele Erganzungsléosungen x,
berechnen.

¢) Ableitung der Periodizitits- und Stabilititsbedingungen.

Im Anschluss an die im vorigen angegebenen Schwingungs-
losungen sei dieser Abschnitt, neben einer nochmaligen Ableitung
der Periodizititsbedingungen, im wesentlichen der Stabilitéits-
untersuchung dieser moglichen Schwingungen gewidmet; und
zwar werde die Aufgabe zuerst fiir ein System mit einem Frei-
heitsgrad (Differentialgleichung zweiter Ordnung) und darauf fiir
ein solches mit zwei Freiheitsgraden (Differentialgleichung vierter
Ordnung) auf einem etwas andern als dem von vax pER Powrd)
angegebenem Wege gelost.

Die Differentialgleichung zweiter Ordnung

d? x dB(z) , -
W + M _—(TT— T U A (.CE) =() (i.)O)
bildet, wie schon erwihnt, einen Spezialfall des Systems

dx dy

——=y+pflzy, 0, ——=—a+pg@y p)

(f und g Potenzreihen von x,y und ), in dem f = 0 und

iB
9“‘(@?*”9

1st. Bedenkt man, dass

d(x* + y? d2® .
P AT 3 O uygla, ) + 2 £ (2, )

und dass fiir einen periodischen Vorgang die Anderung 4z nach
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einem Umlauf verschwinden muss, so lautet die Stationéritéts-
bedingung

Az = [[yg(x, y, ) + xf (2, y, )] dr = 0.
0

Diese Formel geht, wenn man bedenkt, dass fiir g = 0
T=1=oy=Msinr, y=y,=Mecost, z=DM
wird, in erster Nidherung in

2n

AM = f[g(M sint, Mcos7,0)cost
’ + f(Msint, Mcosz,0)sint]de =0 (51)

oder 1 unserm speziellen Fall in

= | | 7 (dB(x,)
fg (Msint, Mcost,0)costdr= —f — — 4 A(x,) ) costdr=0
dt 5

0 0 (51a)
tiber. Die Wurzeln dieser Potenzreihe entsprechen moglichen
stationdren Schwingungen.

Ebenso einfach lidsst sich die Stabilititsbedingung formu-
lieren. Aus

OMAM ~MASM = pé [ |yg + 2f] dv
0

folgt mit dem gleichen Grade der Anniiherung

2n

A6 M = u(Sﬂ"I/ cos tsin 7 240 Y0 O 0, 09 (T %, 0)
: 0 x, 0 Y,

0

. 0 g
+ sin?t + SIN T COS T / dt,

0 &y 0 Yo

und dieser Ausdruck nimmt bei Verwendung der Beziehungen

2 n 2 4 2 0 d : 0 d
Uff(:n[,,yo,())sinrdr :fvfcosr()/r%fcob*.t(oa{odiﬂ+0§f[;d!¢’)dt
0

2

= Mf (cos TsinT Ot _ cos?t »—o—i‘»’—) dr =0

J 0 x, 0 Y,
2n 2 5 ()
fg (To, Yo, 0) Cosrdrz—Mf sint cos7 2% _sin?z go)drzO
’ i 0.1y 0 Yo
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die einfache Gestalt

AOM . 09 wO’yO! ) of(-fo,yt):o)) <0 r2
Gl pf( gi¥o: D)y Ot D )ge <0 (52)

an. In expliziter Schreibweise lautet fiir die Schwingungsglei:
chung (50) die Periodizitidtsbedingung (im Falle positiver u):

1 f W
I ™ g(xOsy090)COStdr
2%0

2n
- Efu /(ei?+g‘it)2 (b +by (€T—eit)+b,’ (€27t e2i7)t...] dr (51b)

_M M, M, 3Bsy,m 5By, .. =
= g (bo'+by) = - by = G (Byk Mgt M4 ) = 0)
und die Stabilititsbedingung
2n
1 fég(mo,yo,()) dv — 1 ;dB(z,y) v W
2750 Oyo 2n dmo
1 2n :
=gf[bo’+b1’ (65— e=i1) + +++ Jd7 = by’ - (52b)
03 _
::ﬂ1+—2—,83'i\42+—181ﬁ5M“+--o>0.
Y,

Beschrinkt man sich auf die beiden ersten Terme, so ergeben
sich die beiden moglichen Amplitudenwerte

_ LV L 4 ﬁl 5
My=0, M= B (51c)

Zieht man die Stabilitiitsbedingungen heran, so zeigt sich, dass
die der ersten Losung entsprechende stationiire Stromung nur
fiir positives f; verwirklicht werden kann, wihrend fiir den Ein-
tritt einer Schwingung mit endlicher Amplitude M; die beiden
Bedingungen

fr<0 und p3>0 (52c)
erfillt sein miissen.

Interessantere Verhiltnisse treten bel Hinzunahme eines wei-
teren Dampfungsfaktors f; ein. Wie schon AppLETON und van
DER PoL3) gezeigt, stellen dann die Losungen

My=0, M}=—P+yYP>—Q, M:=—P—yP2—Q, (51d)
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wOo

bedeutet, mogliche Amplitudenwerte dar. Die Stabilitdtsbedin-
gungen lauten fiir

My: By >0 ]
M,: B M:>0 - (524)
My: BsM:<0. |

Eine vollstindige Tabelle aller Moglichkeiten findet sich an der
genannten Stelle der van der Pol’schen Arbeit. Darnach ent-
sprechen nur folgende Kombinationen moglichen und zugleich
stabilen stationdren Stromungs- resp. Schwingungsvorgingen:

My=0 fir B, >0

M:>0 , B;>0 (abgeschen von der Kombination
f1>0,8;>0,8;>0)

M;>0 ., B5<0,8;>0, B <O.

Das stiarkste Interesse beansprucht der Fall g, > 0, 83 < 0,
f1 > 0, wo die beiden Amplitudenwerte M, und M, zugleich
moglich und stabil sind. Unter diesen Umstédnden kann wegen
der positiven Anfangsteilheit 8, > 0 die Schwingung nicht auto-
matisch auftreten. Erst wenn das System durch einen #dussern
Anstoss in das Gebiet negativen Widerstandes gebracht worden
1st, setzen Schwingungen ein, die dann ohne weiteres Zutun
erhalten bleiben.

Ahnliche Betrachtungen lassen sich auch auf ein System mit
2 Freiheitsgraden ausdehnen. Die notwendige Bedingung fiir das
Bestehen stationdrer Schwingungen im Falle der Giiltigkeit der
Kreisgleichung vierter Ordnung

dt z d3 x d® dB
€y ALt + ME s - Eg ey o P +x+pud=0 (53)

lisst sich aber einfacher auf die folgende, von ApprLETON und
vaN DER Powr3) auf die Gleichung zweiter Ordnung angewendete
Weise ableiten. Man mache den Losungsansatz:

wo M, und M, Funktionen von ¢ bedeuten, und beschrinke sich
mn den sukzessiven Ableitungen von z jeweilen auf die erste Ab-
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leitung von M, und M,; die nichtlinearen Glieder der Differential-
gleichung denke man sich in eine mehrfache Fourierreihe ent-
wickelt, wobei nur die ersten Glieder Beriicksichtigung finden
mogen:

2 . ,
g(t) = éﬁ, + A== o S0 oy tfg(t) sin @, tdt
0
9 - 2 ;
4 o COs W, tj g(t) cos oy tdt + p sin w, t / g(t) sin wytdt
0

+ %cos wgtfg(f) cos m,tdt

und T die Dauer einer Quasiperiode der bedingt periodischen
Funktion (gt) sei. Nach der Substitution dieser Ausdriicke in die
Schwingungsgleichung miissen die vier mit den FFaktoren sin o,t,
cos wyt resp. sin w,t, cos wyt multiplizierten Terme fiir sich ver-
schwinden.

iM, 2
M, (eq0}—e30°+1) -3 ey ‘___,_ T ;tj ( - 4) sin wytdt==0
(
i» ‘ )7
My(egor,— e +1) -3 pegm? - d t + ,,/1 ( —}—4) sin wy tdt =10
U {
My g ey ) — pregw® M+ ”y + —1 cos wtdt=10
dt : ! 1
] 9
%%3(——4 £4w2-§-2£2w2)-—y83w21\[2+T,u, ( -f—A)(oswztdt:OJ

Beriicksichtigt man, dass bei der iiber eine Quasiperiode erstreck-
ten Integration alle trigonometrischen Funktionen verschwinden
und jeweilon nur das Glied a,, resp. a,_, b, ,b,, tibrig bleibt, ver-
nachldssigt in den beiden ersten Glel(hunoen d M,/dt vesp. d M,/dt
und mu1t1p117lert die beiden letzten Gleichungen mit M, resp. M,,

dann ergibt das erste Gleichungspaar die Frequenzbedingungen

M,(ey0} — e’ + 1) + 21ua,,
= Mgt — ey " + 1+ § pog(M? + 220) -] =0

— o, + 1) +21ua,,
M,le,0) —¢eyw) +1 4 § poag(M:+2M?) -+ ]=0.

M,y(ey )

MS
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und das zweite die Periodizititsbedingungen

dé\{ (—2e4w7 + &) =

—i‘fl‘lt (_‘83@1 =T ﬁl —%" ‘}‘ﬁS(:‘II’ + 231_:) + v ) = 0 (,._-)
. ) 59
—cl}( 2eq w, 4 ogy) =

— M: u(——83m +ﬁl‘f‘xﬁ3(‘1 + 2 U)‘I‘ ) = 0.

Zur Ableitung der Stabilitiitsbedingungen erteile man4) M;
und M? die kleinen Anderungen ¢ M7 und 6 M3; dann erhilt
man die Gleichungen

d d
o (M) = Pro M+ Q0 M, gy (0D = Pyo M: +Q, 0,

WO

Plz--"--(ﬁl eg ) —$ Py (MI+ Mj) + ...

—)84wl+e,

P, = e (ﬁl €3 (')2 2 /1083 11 T 112) T _ (563)
2 — 2 &4 Wi + &, I
3 u By M2 . J 2y
Q; = _ Tt ﬁ32‘1 - Q, = .‘ ﬁs

Deren Losungen haben die Form ¢ M2 = Mye*!, wobei k der
charakteristischen Gleichung

k2—k (P, + Py) + (PyP,—Q,Q,) = 0

geniigt. Damit die Schwingungen stabil sind, miissen die k negativ,
d. h. es muss

—(Py+ Pp) >0, PPy =@y > 0 (56)

sein. Begniigen wir uns mit den beiden explizit hingeschriebenen
Gliedern von bm_. und b, , setzen also nur g,+0, B340, dann
werden die Bedingungen fiir einen stationdren Vorgang:

%%_ K, M* (M2, — M’ —2 M?) = 0 l
d M (559
o M2 (M2, —M:—2 M?) =0, ]
WO
3upy 31,
K, - 4 K, = 4 (55a’)

'_"284 (Ui"{‘*f?
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und

2 A2 __ 4 2._ - ’
JJ/I 3ﬂ3 1_ﬂ1)! J‘lgo_ 3ﬁ3 (63 w, ﬁl) . (O5b)

Ist weiterhin a,, = a, = @y, n,, = 0, dann geniligen o} und
»? derselben Gleichung e,w? — w2 + 1 =0 mit den beiden

Wurzeln

W = 2 = (1 = Vl —4 —ij) ; n? < w;
2

und es wird

d
a1 oM=K, {[,Mfo —2 (M + M) oM;—2M26 ﬂ-ﬁ}
_d%_ o M; = Kz{[Jﬁo — 2 (M} + M3)]oM;—2 M6 ﬂ/]f}
und
( — Hﬁa Jltﬁ3___=_ 4 4 X3
K= _}84 (0f — @)’ K= % (0} — }) By (05’& )

Aus (55) geht hervor, dass stationdre Zusténde in den folgen-
den vier Fillen moglich sind:

1) M= M:=0
5 (2 -Mgo - 31%0) ) M§ =} (2 J'I‘?o— M in)

2) M; = (57)
3) lw? = M?Os Mg =0 '
4) M; = M;, M; = 0.

Die Stabilitatsbedingungen (56) mit den Faktoren
Py = Ky [ My —2 (M + M|, Q= —2K, L}
P, =K, [Mgo_ 2 (M7 + M3)], Q= —2 K, M;

entscheiden dann iiber den tatsiichlichen Eintritt des einen oder
andern Schwingungsfalles.

Fall 1: M} = M; == 0.
Hiee st Pyp= K, M5, Py =K, Mi, @, =0.= {1 und die
Ungleichungen lauten einfach

— (K, M2, + K, DM2) > 0 K, K, M2, M2, > 0.

(56a’)

Aus der zweiten Bedingung folgt, dass der Gleichstromzustand
stabil 1st, wenn K, M3, und K, M3, dasselbe Vorzeichen be-
sitzen, und aus der ersten Ungleichung, dass dieses das negative
sein muss; d. h. es muss gleichzeitig

€3 W

2_
e —h o una S
1

&4 (05 — w?) By (w“ — o)
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sein, woraus sich fiir g; die Ungleichung & w} > f; > g3 0] > 0
erglbt wihrend das Vorzeichen von f; ohne Einfluss auf die
Stabilitdt bleibt.

Fall 2: Mj=1(2 M3 — M3,), M; = 4 (2 M3, — M;3,) .
Die einzigen mdoglichen Werte von M;, und M,,, welche positive
Betrige von M7 und M: zur Folge haben, geniigen den Un-
gleichungen

2 M2, > Mz, > 0 vesp. 2 M, > M, > %

Bei der Aufstellung der Stabilitdtsbedingungen sind die beiden
Unterfélle K,= 0, d.h. 3 = 0 zu unterscheiden:

a) K, >0, f, > 0:

Stabilitdtsbedingungen 2 Mj, > M3, > Mj, resp.

M2, > M2, > f’%@"—,

oder damit gleichbedeutend B; > 0, 8, < &(2 w? — w}).
b) K, <0, 85 <0:

Stabilitatsbedingungen

9

Mi, > M}, > M‘)- , resp. 2 M3y > M3y > M,

-l

woraus folgt B3 < 0, B; < &(2 0] — ).
Fall 3: M:=0, M = M,= - (50}—8)>0.

Daraus ergeben sich die méglichen Fille

a’) Kl & 0: 183 > O’ ﬁl < 8360%

b) K; <0, B3 <0, 8, > goj .
Davon ist nur der Fall K; > 0, 8; > 0 in dem durch die Un-
gleichung

M2 > 2 M2, > 0, resp. B3 > 0, ez0f > By > &(2 0f — o)
beschrankten Gebiet stabil.

Fall 4: M} =0, M:= M = 3‘; (g3} — B;) > 0.

3
Mogliche Fille:
a) K; >0, >0, B <ego;
b) K, <0, B,<0, B> ¢emi.
Stabil ist der durch die Ungleichungen K; < 0, g3 < 0, M3, > 2 M3,
charakterisierte Fall im Bereich

M, >2M, >0, dh egol<p,<eol—od).



382 Hans Straub.

Die beiden Falle B3 =0 entsprechen zwei verschiedenen
Klassen von schwingenden Organen, wobei die erste z. B. durch
passend geschaltete Elektronenréhren und die zweite durch den
Lichtbogen reprasentiert wird 29 21). Da bei der von uns unter-
suchten Anordnung B; > 0 1st, wollen wir uns vorwiegend auf
die Diskussion dieses Falles beschrinken. Die genauere Priifung
der obigen Resultate ergibt, dass die Stabilitdatsbedingungen der
niederfrequenten o,-Schwingung die fiir Rohrenschwingungen typi-
sche Form zeigen, withrend diejenigen der hochfrequenten, durch
die Krewisfrequenz w, charakterisierten Schwingung vielmehr einer
Lichtbogenschaltung zuzugehoren scheinen. Dies geht besonders
deutlich aus der Vergleichung der Periodizitéitsfille (3) und (4)
hervor. Darnach ist fir g3 > 0 (Rohre) nur die w;-Schwingung
stabil, wihrend fir g, < 0 (Lichtbogen) nur die w,-Schwingung
dauernd existieren kann. Dasselbe entgegengesetzte Verhalten der
beiden Schwingungen wird auch 1im Gleichstrom-Iall 1 deutlich,
wo die Ungleichung f; > eg; 0] > 0 die fir Rohrenschwingungen
charakteristische Form aufweist, die fiir ¢ — 0 besagt, dass der
Gesamtwiderstand der dussern Schaltung kleiner als der negative
Widerstand des fiir den Schwingungsvorgang massgebenden
Rohrenabschnittes sein muss, wahrend der zweite Teil der Un-
gleichung, nidmlich & w2 > f; die fir Lichtbogenschwingungen
zu erwartende Gestalt besitzt. Allerdings zeigt ein Blick auf
den Schwebungsfall 2, dass auch fir g, > ¢ wi keine Schwin-
gungen moglich sind, da unter diesen Bedingungen R*® und Sj
und damit R? und S? imaginidr werden. Ein anschauliches Bild
der Lage und Ausdehnung der verschiedenen Schwingungsgebiete
m Abhiangigkeit vom Koeffizienten 8, geben die folgenden beiden
Iiguren, von denen die erste fiir positives und die zweite fiir
negatives f; gilt.

B; > 0 (Rohrenschwingungen)

R2>0, 82>0 S=0, K*>0 R=S=0 R2{0, 520
th\ieb_u_r_]g_s!ﬁsqn_gm | Period. Lésung | Gleichstromlosung | Imag. Amplituden
' I ] o - . - - '7’1’ - I -
= & (2 i — w3) £ WY £ W3

Bs <0 (Lichtbogenschwingungen)

R0, S2¢0 RB=8=0 R=0, S230 R*>0, S250
Imag. Amplituden | Gleichstromlosung | Period. Losung | Schwebungslésung
| |
pr= £ 0F £y W3 & (2 w3 — wi)

(Fortsetzung im néchsten Heft.)
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