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Über selbsterregte nichtlineare Röhrenschwingaingen
von Hans Straub.

(24. V. 33)

A. Einleitung.

Das Problem der Schwingungserzeugung hat seine klassische
Behandlung durch Barkhausen erfahren. Darnach können in
einem System, das nur konstante elektromotorische Kräfte besitzt,
nur dann dauernd Wechselströme bestehen, wenn entweder Widerstand,

Induktion oder Kapazität im Laufe der Zeit ihre Grösse
ändern. Im Falle der Verwendung von Elektronenröhren
übernimmt bei geeigneten Schaltungen der variable Witlerstand der
Röhren diese stromerzeugende Rolle. Nach Form und Entstehungsweise

der Schwingungen bilden die harmonischen Schwingungen
und die von Friedländer6) *) untersuchten Kippschwingungen,
resp. die damit übereinstimmenden, von van der Pol und
Appleton1)-5) zuerst genauer erforschten Relaxationsschwingungen die
beiden Grenzfälle, zwischen die sich alle vorkommenden
Schwingungstypen einordnen lassen. Rein harmonische Schwingungen
sind nur in einem widerstandsfreien, aus Kapazitäten und
Selbstinduktionen aufgebauten Kreis möglich, in dem also die
Schwingungsenergie ohne Energieabgabe an das Gesamtsystem zwischen
mindestens zwei Energiespeichern hin und her pendelt. Reine
Relaxationsschwingungen liegen vor, wenn die gesamte in einem
Energiespeicher pulsierende Energie während jeder Periode
irreversibel nach aussen, z. B. in Form von Wärme abgegeben wird.
Mit dem einfachsten Fall hat man es zu tun, wenn nur ein in
energetischer Hinsicht wesentlicher Speicher vorkommt und die
gesamte darin fliessende Energie während jeder Periode in Wärme
verwandelt wird. Dieser Fall ist aber nur angenähert realisierbar,
da zur Schwingungserzeugung immer ein zweiter Speicher gleicher
oder anderer Art notwendig ist, der zwar für die Energiebilanz
beliebig wenig in Betracht kommen kann, aber unvermeidbar ist.
Letzteres geht schon daraus hervor, dass die Schwingungsgleichung

*) Die hochgestellten Ziffern beziehen sich auf die Nummern des
Literaturverzeichnisses.
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von höherer als der ersten Ordnung sein muss, was das Vorhandensein

von mindestens zwei nichtohmischen Widerständen voraussetzt.

Zur Verdeutlichung der obigen Ausführungen werde tlie
Schwingungsgleichung in ibrer einfachsten Form

d2 x d x
dt2 r W (X) dt

- M X °

herbeigezogen. Für w 0 liegt die Differentialgleichung der
harmonischen Schwingungen vor, für w const. > 0 (positiver ohm-
scher Widerstand) diejenige der gedämpften Sinusschwingungen.
Ist aber w — const. < 0 (Widerstand negativ), so erkennt man
den Fall eines angefachten Systems mit einer über alle Grenzen
ansteigenden Amplitude. Da eine solche Schwingung physikalisch
unmöglich ist, so kann diese Differentialgleichung nicht für alle
Zeiten gültig sein, sondern es muss notwendig der Moment
eintreten, wo der Widerstand positiv wird, w (x) muss also eine
zwischen positiven untl negativen Werten schwankende Funktion
sein. Es habe w(x) der Einfachheit halber die Form einer
Potenzreihe :

w (x) — — p, (1 + öj x + b2 x2 + ¦¦¦) mit p > 0.

Ist u «1, so können selbsterregte dauernde Schwingungen
von nahezu harmonischem Charakter bestehen, die eine um so
reinere Sinusform aufweisen, je kleiner u ist. Wird p,»1, so
ist das Auftreten von eigentlichen Kippschwingungen zu erwarten.

Der Beweis für die Existenz periodischer Lösungen solcher
nichtlinearen Differentialgleichungen und die Methode zu deren
näherungsweisen Berechnung im Falle kleiner Parameter p ist von
Poincare8) angegeben worden. Ist in einem Fall die formale
Möglichkeit solcher periodischer Lösungen dargetan, so ist noch
der Nachweis von deren Stabilität zu erbringen.

Wir hatten vor längerer Zeit Gelegenheit zur oszillographischen
Untersuchung von Schwingungen verschiedener Elektroncnröhren-
schaltungen; dabei wurde das Schwergewicht auf die Untersuchung
solcher Systeme gelegt, die im wesentlichen nur Speicher einer
Sorte enthalten. Natürlich lassen sich die Speicher der antlern
Art nie ganz vermeiden und es ergab sich die weitere Aufgabe,
den Einfluss dieser oftmals unerwünschten und überflüssigen
Schaltelemente zu ermitteln. Im folgenden werden die Ergebnisse

der experimentellen und theoretischen Untersuchungen an
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zwei zu Relaxationsschwingungen befähigten Schaltungen (s. Fig. 1

und 2) mitgeteilt, von denen die erste, von van der Pol1)
angegebene, im wesentlichen nur aus Kapazitäten und Ohm'schen
Widerständen, die zweite nur aus Selbstinduktionen und
Widerständen aufgebaut ist. Während die erste Schaltung bei
Vernachlässigung der leicht vermeidbaren Selbstinduktionen auf eine
nichtlineare Gleichung zweiter Ordnung führt, verlangt die zweite
Anordnung mit Rücksicht auf die unumgänglichen Röhrenkapazitäten

die Behandlung einer Gleichung vierter Ordnung, hat also
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Kapazitätsschaltungen — Tetrodenschaltung
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Fig. la.
Kapazitätsschaltungen — Zweitriodenschaltung

(Multivibrator von Abraham und Bloch')

unter Umständen das Auftreten zweier gekoppelter Schwingungen
und damit von Schwebungen zur Folge. Aus der Theorie geht
ohne Schwierigkeit hervor, warum unter gewöhnlichen
Bedingungen nur eine einzige Schwingung auftritt.

Der Gegenstand der vorliegenden Arbeit war ursprünglich
nur als Einleitung zu einer Untersuchung der erzwungenen
Kippschwingungen geplant. Diese Absicht musste aber aus beruflichen
Gründen aufgegeben werden, dafür wurde das Schwergewicht auf
die Behandlung der Differentialgleichung vierter Ordnung für die
selbsterregte Schwingung gelegt.
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B. Theoretischer Teil.

1. Qualitative Erklärung der Wirkungsweise der benutzten Sehaltungen.

Die Röhrenkapazitäten der beitlen Schaltungen (Fig. 1 u. 2)
können zur qualitativen Erklärung der Schwingungsvorgänge ohne
weiteres beiseite gelassen werden, da sie auf die Schwingungserregung

im allgemeinen keinen bestimmenden Einfluss haben.
Dann reduzieren sich die Systeme der Fig. 1 und 2 auf die durch
kräftigere Linienführung hervorgehobenen einfachem Schaltungen.

c,JT

1

E

TZ

TfTc, f\ f
Fig. 2.

Selbstinduktionsschaltungen — Tetrodenschaltung

M-,

WI m—
-c,

w
Rii

tr, t
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Selbstinduktionsschaltungen — Triodenschaltung

a) Kapazitätsschaltung.

Denken wir uns für einen Moment B oo, tlann stellt sich
ein stationärer Gleichstromzustand ein: Das äussere Gitter ladet
sich soweit auf, bis der Gitterstrom vollständig verschwunden ist,
und der Emissionsstrom verteilt sich nach Massgabe der
Anodenspannung und des Widerstandes W in einer aus den
Tetrodencharakteristiken (s. Fig. 3a u. 3b) ersichtlichen Weise auf Anodenplatte

und positiv geladenes inneres Gitter, das also die Rolle eines

Raumladegitters übernimmt, während das äussere Gitter zum
Steuergitter wird. Schalten wir jetzt den Gitterableitungswiderstand

B ein, so entladet sich das negativ geladene Steuergitter
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und dessen Spannung steigt. Mit Rücksicht auf die Gestalt der
(3r, (^-Charakteristiken sinkt der Raumladungsgitterstrom, was

wegen des abnehmenden Spannungsabfalls- im Widerstand ein
Steigen tier Raumladungsgitterspannung zur Folge hat. Dieser
Spannungsanstieg wird durch die Kapazität C wenigstens
teilweise auf das Steuergitter übertragen und verstärkt so die
Abnahme des Raumladegitterstroms. Dieser Prozess gebt so lange
vor sich, bis eine (bezgl. 3r) untere Gleichgewichtslage des Systems
erreicht ist. Wegen des Gitterableitungswiderstandes B kann
aber das Svstern nicht in diesem Zustand verharren, tlas unter-

try - const(O. tS,)-Charakteristike,i
EA 35 Volt

SO, Charakteristiken CJ,. IS,)

N. £=.15 Volt

MACharakteristiken C3<- t-V
'JJ

li;
e. 5 Von

«ISj-l..//

MA

l!. -'i

e.=M r0>

K.-/0

-•(?.-=

Ir», (Voll)
FigFig. 3a.

dessen positiv gewordene Steuergitter entlädt sich und dessen

Spannung sinkt, so dass das System wieder in das labile Gebiet
tier fallenden Charakteristik gelangt. Hier bewirkt, jetzt die
Verringerung der Steuerspannung eine Zunahme des Raumladungsstromes

und damit eine Abnahme tier Raumladegitterspannung,
was ein weiteres Fallen der Steuergitterspannung zur I^olge hat,
d. h. das System springt in tlie obere Gleichgewichtslage, in dem
ihm aber wegen des Ableitungswiderstandes B auch kein Bleiben
vergönnt ist. So kippt also das System von Gleichgewichtslage



342 Hans Straub.

zu Gleichgewichtslage, untl zwar erfolgt tlieser Sprung um so
jäher, je kleiner die Kapazitäten C1C2C3 sind, um bei verschwindenden

Kapazitäten momentan zu erfolgen.

b) Selbstinduktionsschaltung.

Das auf die notwendigen Elemente reduzierte System besteht
aus den beiden Selbstinduktionen L untl F und dem Gitterableitwiderstand.

Im weitern sei L klein gegen F. Entspricht zu Beginn
der Strömungszustand des Systems einem Punkte im Gebiete
des fallenden Teiles tier Charakteristik und tritt im ersten Moment
am Steuergitter eine Spannungszunahme auf, tlann erfährt der
Raumladungsstrom eine Abnahme und damit die Spannung des

Raumladegitters eine Erhöhung. Diese wird durch die kleine
Selbstinduktion L auf das Steuergitter übertragen und bewirkt
ein weiteres Sinken des Raumladungsstroms, bis das System in
die obere Gleichgewichtslage gelangt ist. In diesem Moment
weist die Spannung am Steuergitter und damit die Stromänderung
in der Selbstinduktion F ein Maximum auf. Durch diese
Stromänderimg wird das System aus der Gleichgewichtslage in das labile
Gebiet gezogen, von wo der Sprung in tlie untere Gleichgewichtslage

erfolgt. Aber auch dieser Strömungszustand ist wegen der
Stromänderungen in F nicht von Dauer. Mit wachsendem L
entsteht zwischen den beiden Gitterspannungen eine zunehmende
Phasenverschiebung, die bei genügender Grösse das Auftreten
von Schwingungen verunmöglichen muss. Dagegen sind auch für
verschwindendes L im allgemeinen wegen der Unvermeidbarkeit
der Röhrenkapazitäten Schwingungen möglich.

2. Die Differentialgleichungen der Tetrodenschaltungen.

a) Kapazitätsschaltung.

Wir werden im folgenden die Momentanwerte des Stromes

resp. der Spannung mit den grossen gotischen Buchstaben 3
resp. S, die Mittelwerte mit den lateinischen Grossbuchstaben
J und E und tlie Momentanwerte tles übergelagerten Wechselanteils

mit den römischen Kleinbuchstaben i resp. e bezeichnen,
und zwar sei

Jh Heizstrom der Röhre
3_4 JA + iÄ Anodenstrom
3,. Jr -+ ir Raumladungsgitterstrom
3«- Jir J- iw der im Widerstand W fliessende Strom
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3-7 dg -+ ia Steuergitterstrom
3/; JR +- in der im Widerstand B fliessende Strom
5C ?'r der Strom in der Kapazität C
3Ci ic> resp. 3r, ic,, resp. 3c, ir, die Ströme in den Ka¬

pazitäten Cj. C2, Gg.

In analoger Weise bedeutet

E EA Batteriespannung Anodengitterspannung
Qcr £",. + er Raumladegitterspannung
£3 ¦= Ea -j-- e,j — Steuergitterspannung.

Die Einführung einer Selbstinduktion F in den IC-Kreis erlaubt
den Einfluss eines allfälligen Lautsprechers angenähert zu
berücksichtigen.

Nacb Fig. 1 gelten dann folgende Beziehungen für die Wechsel-
grössen:

ir+ 'M '<-, - i,r (1)

(2)

(3)

(4a)

(4b)

(5a)

h >/¦-MM *r= '- ><-,

<¦¦., 'ä B

'c, - Cs e ' — Cya ~ °2
dea

~df

^ ^3 e/

-er TrA- dt

TC + j7
diu
dt

Aus 2), 3) und 4) folgt

ie -' td 1 ea y 2 't/3) '" 'ff'

aus 5) und 6)

M -c1 M c j CT? + C~

(ob)

iijB— I ic dt ¦ (5c)

(6)

(7)
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und aus 1), 5), 6) und 7)

M^MF e; [Ca + C2 + C3 +
<7L

{Ci + C3)) + ^ (l + *§-

iX 1 + M
c -cAl +

C* + C*
c ~C~R e„ dt

c'dtt' (8)

Dann wird mit Rücksicht auf 1) untl nach einmaliger Differentiation

die erste Schwingungsgleichung für eg:

A3 e'g" +- A2 e,j -+ A! e'tJ+- A 0ea -+ B2 ig' + B, i'g

F „+ Bnt» + \ + ir 0,
iv

(I)

wo die konstanten Koeffizienten mit den Grössen tier Schaltelemente

durch die Beziehungen

E i C1

A3 TiT Ci '^ C2 -'- C3 + -r^ (C2 + C3)

- c
A2 Cj -r C2 — t3 + -rp (C2 + C3) -F-(l-^CA

BW \ C

4 -1-(*¦.+.£Al ' BY ' c w V c

iA° CBW
F I

B2^WV "' r
7\

B1 l+-C,
C

Bn
CW

(Ia)

verknüpft sind.

Da L und i„ Funktionen von e„ und er sind:

"r — /1 (er- e») > h ~ 12 Vr> ea) (Ib)
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so benötigt man zur vollständigen Bestimmung des Problems
noch eine zweite Differentialgleichung in er und eg. Als solche
bietet sich nach 5) und 6)

er e, (l -t ^L+^l) + j-Aj>- dt + ^Jigdt (II)

dar. Um eine allzu komplizierte Gestalt der Schwingungsgleichungen

zu vermeiden, führt man zweckmässigerweise einige
Vereinfachungen ein. Die wirksamste wird durch die Vernachlässigung

der Gitterrückwirkung erreicht. Dann sind nämlich ir und
ig nur Funktionen von ea, also iT fi(eg), ig f2(eg). Diese
Annahme tut zwar tlen experimentellen Tatsachen einige Gewalt an,
fälscht sie aber nicht, so weit, dass der Charakter der Schwingungen
dadurch prinzipiell verändert würde. Der entscheidende Vorteil
besteht darin, tlass tlann die Gleichung I nur noch die eine
abhängige Variable e„ aufweist. Nach deren Lösung ergibt II ohne
weiteres auch er. Man kann aber tlie Raumladegitterrückwirkung
in erster Näherung in Rechnung ziehen, ohne die Schwingungsgleichung

allzu unübersichtlich zu machen, indem man

ir ¦*' er + fr (e„)

setzt, wo r gleich dem reziproken Wert des innern Widerstandes
Bi im Gebiete zwischen Kathode und Raumladegitter bedeutet:
r=l/Bt. Lassen sich /,. und ig in eine Potenzreihe von eg entwickeln,
haben also die Form:

¦V '' <-V i $i £,, H s2eg i •

h 9i e,j + g2 4 + .93 4 +
(9)

tlann erhält man durch Kombination der Gleichungen I, Ia, Ib
und II die Schwingungsgleichung für die Steuergitterspannung:

- d3 e d2 d - - -
A3 -~- + -jr-2 (cx eg + Co e\ + ¦ •) + -^ (br eg -!¦ b2 e\ + b3eg+ ¦¦ ¦)

+ (c\ eg + ä2 ej +...)== 0 (III)
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mit den Bezeichnungen

'¦l- M: ','r*(l+ ^^ M .'/M ,V *.
rF F

IC

c„ ß2 §•„ + -rjr- s„ für n > 1

6^4 + r 1
C2 + C3

c
Fr r9lF

WCB + WC 3i^i + Si

6» 9n [Bi -r ^c) - sn für n > 1

äi i0+ CR+'Jl\C' + B°

ün ^ 9n\~Q + B0) für n>\.

(lila.)

?;j Selbstinduktionsschaltung.

Werden alle vorkommenden, auch die nicht notwendigen,
aber unvermeidbaren Speicher und Widerstände berücksichtigt,
so sind ausser den bei tier Kapazitätsschaltung vorkommenden
Grössen noch tlie Selbstinduktion L und tlie Widerstände wr und
wL und damit die Ströme

3i •¦Ly 'jl OF — "J fy

einzuführen. In tier Folge soll m>£ C s CL 0 und damit
icL 0 gesetzt werden, weil unter dieser Voraussetzung ohne
Aufgabe wesentlicher Eigenschaften namhafte Vereinfachungen
eintreten.

Aus den Beziehungen

'r + ii. ic, + *i? + "'«.

ii ig + iR + h, + l'c,

eg iR B

C2 dC
»'«. C:

de,,

-er iwW-iFWF + F^f -Q-J iCldt =-iRB — L diL
dt I

(10
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und den daraus resultierenden Ausdrücken:

Il ig + iit + (C, + C3) R i'R

1 diL
iw -w[iRB-rL^--

347

1

- *W [B.*ä t I (tfl -f ."/; -r (G2 -r Ca) R l'fl)]

V, " Cj, r, diu T
d2 iL

H df~L~dt2~
Cj[Bi'n-T-L(h^i';t-(C2,-C3)Bi';t')}

iF - jj. ; ißB-f i'/e(^L-i
FRF + W >i: LB (C2 + C3)

+ FR(Cj + C2 + C3) +

B

LF
W

(11)

+ %X FL [Cj + -ff ((\ + C3) j -r F(\ L (('., ¦; C3) R r;x

+ iXL-r(L-TF)i,X-.-^: JJ- FCjLi'A

folgt in ähnlicher Weise wie oben:

Ai M + A3 e'A' r -121>; + Äj etJ + 20 e„ 4- B3 i,7 + B, i'7 + B-. i'.,

+ WF(ig + ir) + FiX 0,
mit den Koeffizienten

Äi FClL(C2. C3)

Cj
r

62 + C3 \

(1)

A3-FL, I{ M^.-iiMMCMM)
— FT IP T T

A2 L(C21C3) \-F{( \ i f \ \( 3)+ ££ +TT>(^ + 7(C2-\ C3

L+F F L
Aj- -g~ + -^ *r II,.^d-r Ca + C, ^
-*i

o
1

B3 F(\L
B2 (\LWF

1 1

B '

IC

FL

Bj F + L[l+ }],

R

(Ia)
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der sich als zweite Schwingungsgleichung anschliesst:

er BiR + LiL' e„ + L (i/ + iR + (C2 + C3) Bin)

eg + -g- eX -i* L (C2 t C3) e; - L ij (JJ)

Die Substitution der speziellen Potenzreihen (9) für i, und i„ in I
ergibt die vereinfachte Differentialgleichung für tlie Steuergitterspannung

:

^4g ^3
A 4 j ,4

— -ttj- («i eg ~ d2eg — d3e ,j + ¦ ¦ ¦)

d2 d
+ -jj2(cjeg+c2eigtc3e*g+...) i ^-(6, e„+62 e£+63 e? I ---)

+ (üj e„ + a2 e\ + «3 4 -i •••) ü

mit den Koeffizienten:

tf1=i3 + FLr(C2-l-r,)-l-g1ßa
rfn t/„ B3 für n > 1

(DD

''. --'•' r'/i/C Z''^' iß-^ffl WFLr(C2 + C3)

WFL' (lila)
cn Sfn(B2+FLr) fürn>l
Fj Jx -*- Sl (Bi - LUV r) + r (F - -^-) /<X

6» ^„(ßi + MVLt) ff»,, fürn>l
«l -?o + ^f («i + 9i + r)

d„ UV (s„ + t/„) für w > 1

während sich er nach Ermittlung der Lösung von III ohne weiteres
aus:

d \( 1
L dt\\B i!hlr'"

d2 e

- L (C2 - C3) --^jt-

9z <7g

6J_t

dt2

(In «»

(IV)

errechnet.
Bei Vernachlässigung von i„ vereinfacht sich die Schwingungsgleichung

III in

-.- (AL (Act T" t* ^-m i (AL (j,t tt' rr- -r g)

A* -df+A> -dt*- 'A>lli?~+ -dt ^ e<+b>e«' ¦ • •>

+ (aj eg + a2 e; - • • •) 0, (III')
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die aus III durch Nullsetzen aller g entsteht. Ist auch
WFverschwindend klein, so fallen die nichtlinearen Glieder der von
Ableitungen freien Terme weg: a2 a3 a4 • • • an 0. Können
auch Cj oder gleichzeitig C2 und C3 vernachlässigt werden', dann
ist Aa, 0 und die Ordnung der Differentialgleichung sinkt auf 3.
Können aber alle drei Kapazitäten CjC2C3 unberücksichtigt
bleiben, so erniedrigt sich die Ordnung sogar auf 2; wir haben
den Fall der reinen Selbstinduktionsschaltung vor uns, der also

unter geeigneten Bedingungen zu Schwingungen befähigt sein
kann. Verschwindet aber die Selbstinduktion L, so kann das

Auftreten von Schwingungen, wie schon erwähnt, nur durch die
Existenz der Röhrenkapazitäten CjC2C3 erklärt werden.

:1. Qualitative Integration der Differentialgleichung zweiter Ordnung.

Eine quantitative Lösung der Differentialgleichung ist nur
unter bestimmten Bedingungen und in bestimmten Koeffizientenbereichen

möglich. Im allgemeinen aber hat man sich mit einer
Art qualitativer Integration, welche die Null- und
Unendlichkeitsstellen, die Maxima und Minima, den oszillatorischen
Charakter, die Asymptoten usw. vornehmlich im reellen Feld liefert,
zu begnügen.

Im folgenden benützen wir zur Skizzierung einiger Ergebnisse

dieser qualitativen Integrationsmethoden vorwiegend die

Schwingungsgleichung in der für die reine Kapazitätsschaltung
(bei Vernachlässigung des Steuergitterstroms und nach Vornahme
einiger einfachen Transformationen) gültigen Form

d2 t d t~- + /*(- 1 I 2ß2x + Sß3x2+...)^ + x 0, p>0. (1)

Diese Gleichung zweiter Ordnung ist äquivalent dem System
der beiden Gleichungen erster Ordnung

dX
-V, ^AL -x + p(l~2ß2x-Sß3x*+...);j, (U)dt "' dt

gehört also zu der Gruppe der Differentialgleichungen der Gestalt

dx dy
-jr X(x,y) Jt Y(x,y).

Den Verlauf der reellen Integralkurven für Gleichungen dieser
Form, wo X(x,y) und Y (x,y) Polynome in x, y sind, hat zuerst
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Poincare8) eingehend diskutiert. Weitere Untersuchungen über
das Verhalten der Lösungen in der Umgebung tier singulären
Stellen für allgemeinere Formen von X und Y (Potenzreihen,
stetige Funktionen) haben ausser Poincare z. B. Bendixson9),
Picard10), Dulac11), 12), 13), Perron14) beigesteuert.

Nehmen wir an, tlass

^| Xj (x, y) + X2 (x, y). dJ>t ^ Y1 (x, y) + Y2 (x, y) (2)

ist, wo

Xj (x, y) ax + by Yx (x y) cx + dy

untl X2 und Y2 Potenzreihen von x, y sind, tlie mit Gliedern von
mindestens zweiter Dimension beginnen, dann ist x y 0

sicher eine singulare Stelle. Das Verhalten der Lösung in der
Umgebung des Nullpunktes hängt dann im allgemeinen nur von
den linearen Gliedern der rechten Seite, und zwar von der
charakteristischen Gleichung

a-X b

c d — X X2-X(a + d) + (ad — bc) '3 (3)

ab. In unserm speziellen Fall der Gleichung (1') wird dieser
Ausdruck

X2 — pX 4-1=0 (3a)

untl deren Wurzeln sind

M+1/'M M-1/M1- <3»'>

Fall 1: Sind beide Wurzeln reell untl von gleichem Vorzeichen
(für die Gleichung (1') kann dieses nach (3a') nur tlas positive
sein und dies trifft ein für u > 2), so ist tier Nullpunkt ein
sogenannter Knotenpunkt (noeutl). Durch jeden Punkt in der
Umgebung der singulären Stelle geht nur eine Integralkurve und
fliese mündet in einer bestimmten Richtung in den Nullpunkt.
Ist xYj — yXj nicht identisch Null, so münden alle Lösungen
in den beiden der Gleichung xYj — yXj 0 genügenden
Richtungen in den Nullpunkt; für die Gleichung (V) haben die
Richtungstangenten die Beträge Xj, X2. Ist aber xYj— xYj 0, so

trifft jede Integralkurve in einer bestimmten Richtung im
Nullpunkt ein, und zu jeder Richtung gehört eine Lösung.
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Fall 2: Sind die Wurzeln konjugiert komplex, aber nicht
rein imaginär (dies findet bei unserm Beispiel für p < 2, /t + 0

statt), so nähern sich sämtliche in der Umgebung des singulären
Punktes verlaufenden Integralkurven in Spiralen diesem Punkt;
es liegt ein Brenn- oder Strudelpunkt, nach Poincare „foyer" vor.

Fall 3: Sinti aber die Wurzeln X rein imaginär, so kann die

singulare Stelle entweder ein Brennpunkt oder ein Wirbelpunkt
(centre), tl. h. ein von geschlossenen Integralkurven umgebener
Punkt sein. Im allgemeinen verlangt tlie Entscheidung zwischen
diesen beiden Möglichkeiten umfassende Untersuchungen. Bei der
vorliegenden speziellen Differentialgleichung (1') werden aber die
Wurzeln X( nur für p 0 rein imaginär, und zwar X1>2 ± i.
Dann entsprechen aber, wie leicht ersichtlich, allen Lösungen
Kreise um den Nullpunkt; dieser ist also ein Zentrum.

Fall 4: Der vierte mögliche Fall ist durch zwei reelle Wurzeln
entgegengesetzten Vorzeichens charakterisiert. Es gibt in der
Umgebung des Nullpunktes nur vier Lösungen, die in zwei bestimmten
Tangentenrichtungen von entgegengesetzten Seiten in diesen
einmünden. Dieser Fall eines Sattelpunktes (col) kommt bei der
vorliegenden speziellen Differentialgleichung nicht vor.

Natürlich existieren ausser dem Nullpunkt noch andere
Singularitäten, z. B. im Unendlichen, deren Diskussion würde aber
an dieser Stelle zu weit führen, weshalb auf die oben angegebene
Literatur hingewiesen sei.

Deuten wir diese für die spezielle Differentialgleichung
gewonnenen Ergebnisse physikalisch. Wir haben schon erwähnt,
tlass im Fall (3) alle Kreise um den Nullpunkt Lösungen
darstellen. Diesen entsprechen als Integrale der Ausgangsgleichung (1)
einfache Sinusfunktionen; wir haben es also mit harmonischen
Schwingungen zu tun. Sobald p einen noch so geringen endlichen
Wert annimmt, so wird der Charakter der Lösungen tiefgreifend
verändert. Die Integralkurven schlingen sich in Spiralen um
tlen Nullpunkt, die für geeignet gewählte Koeffizienten der Diffe-
rentialgleichungsglieder asymptotisch in eine geschlossene Kurve
übergehen (Grenzzykel, cercle limite), d. h. das entsprechende
elektrische System strebt oszillierend, je nach den Anfangsbedingungen

mit wachsender oder abnehmender Amplitude einem
stationären Schwingungszustand zu. Ähnliches gilt für den Fall
reeller Wurzeln X, mit dem Unterschied, dass sich die Integralkurven

sofort von der singulären Stelle entfernen und für p > 10

praktisch schon nach einem Umlauf mit dem Grenzzykel
zusammenfallen. Die Anzahl dieser möglichen Grenzzykel wird mit
dem Grad des Polynoms (— 1 -f- 2 ß2x + • • •) ansteigen, und
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zwar ist die maximale Anzahl für den Grad 2 n gleich n und kann
für eine unendliche Potenzreihe selbst unbegrenzt wachsen. Die
spezielle Differentialgleichung

M =-X + py(l-x2) (la')

hat entweder einen oder keinen Grenzzykel, im letzteren Fall ist
eine stabile Schwingung unmöglich, im ersteren Fall nähern sich
die Integralkurven von der Aussen- und Innenseite asymptotisch
dieser geschlossenen Kurve; es gibt eine und nur eine stabile
Schwingung. Der Nachweis mit Hilfe der Poincare'schen
Methoden wird wegen der mehrfachen Singularität im Unendlichen
(die beiden Kurven X y 0 und Y — x -+ p y (1 — x2) 0

haben dort eine mehrfache Berührungsstelle) ziemlich umständlich

und wir begnügen uns deshalb mit einem Verweis auf die
Arbeiten der oben genannten Autoren, insbesondere von Dulac.
Die Ableitung der Bedingungen für die Existenz von Grenzkurven
und deren Anzahl für Differentialgleichungen mit kleinem
Parameter p erfolgt im Kapitel 4.

Von Poincare und Picard sind allgemeine, in der
Umgebung des Nullpunktes gültige Lösungen des Systems (2)
angegeben worden, insofern folgende drei Bedingungen erfüllt sind:
1. Alle Wurzeln X, der charakteristischen Gleichung müssen auf
derselben Seite einer durch den Nullpunkt der Gauss'schen Zahlenebene

gehenden Geraden liegen. Dieser Bedingung genügt das
spezielle System (1'). 2. Es muss eine lineare Variablen transformation

geben, so dass das System die Gestalt

-Jl )-isiJr Siisj.-.sJ)

annimmt, wobei die Funktion St nur Glieder höhern als ersten
Grades enthält. 3. Es existiert keine Beziehung der Form
Xt qjXj +¦¦¦¦+¦ qnXn, wo die qt ganze positive Zahlen bedeuten,
deren Summe grösser als 1 ist.

Das spezielle Gleichungssystem (1') geht durch die
Transformation

x_hlz±2L MiL (4)
A2— Aj 7.2 7.j

resp.

| x — Xj y rj x-X2y (4')
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in die gewünschte Form 2, nämlich in

^ Xj £ + a [XI S3 - X\ r,3 + £ rf (2 + X\) - r, £2 (2 + XI)] 5

^- X2 r) + b [XI £3-X\^ + £ rf (2 + X\) - v £2 (2 + AI)] H

mit
pXj p X2

a
(X2-Xj)3 (K~7j)3

über. Sind dann zx, z2 die Lösungen der partiellen Differentialgleichungen

- d Zj dzj
alT+H~d^~XlZl °

Edz^ üdp__x q
dt; dl] 2 2

d.h.

Z\ M a3o f3 + «2i I2 >/ + «121 '/2 **¦ «03 »/3 + 04'

^ »? + ^03>/3 + Wi v2 £ + b2i f2 n + ^30 £3 + °r
wo

aA22
_

(2 + XI) (2 +XI) aX\
«30 - 2 ^ «21 - fl^q^ > «i2 -- a

2 IT' °03 ~ 3 X2-Xj

ft -_M 6 - fr(2 + *i) 6 „ftyMiD ö ___M_
"03 — 0 3 ' 12" 2 _l 3 > 21 _ O : > "30~ qi 1

(5)

(6)

und die 04', 04" mit Gliedern vierter Dimension beginnen, dann
verwandelt sich das ursprüngliche System in

3?-*«*«, («-1,2). (7)

Deren Integration ergibt

Zi C, eV (8)

oder

C. (8')
z%

2, '

Sind A^, X2 positiv reelle Grössen und drückt man die zt
durch £, 7] und weiterhin durch x, y aus, so erhält man die von

2:1
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Poincare angegebene Form der Integrale in reeller Gestalt. Löst
man die Gleichung (5) nach den Variablen £, n auf:

£ Zj- [o30^ + a21z\z2 + a12 zxz\ + a03 «*] + ••¦)
i] z2- [b30z* + b21z\z2 -f b12 zj z\ + &w 4] H j

und ersetzt die Zi durch CfeV, so fintlet man tlie Picard'sche
Lösungsform und daraus ohne weiteres x und y als Funktionen
der Zeit t.

Sind aber die X, komplex: Xj Vj-\- iv2, A, r j — ir2,
so setze man zx rx + iv2 z2 (^ — ir2. (10)

Dann gilt

dt

dv2

IT

v, r, — v,

Vo i1, + v-, r1 ' 2

mit den Lösungen

A e"'1 cos v2t — Be"'' sin v2t 1

^4e"|(sin v2t +- Be"'1 cos v2t |
(11)

Zerlegt man in (9) die z{, aik, bik in ihre Real- untl Imaginärteile,
dann lassen sich diejenigen von £ ^ -+ i £2 untl r\ £-, — t c2

und damit

x — v-
— MM2 y —Aul

"2
'

V2

tlurch i*! und t*2, d. h. durch die Zeit £ ausdrücken.
Die praktische Gültigkeit dieser Lösungen, welche einen

Ausdruck für die AnlaufVorgänge tier zugrunde liegenden elektrischen
Systeme darstellen, ist natürlich auf die Umgebung des
Nullpunktes, d. h. des Gleichstromzustandes beschränkt.

-5. Die Parameterentwicklung der Sehwingungsgleichiing,
vierter Ordnung.

a) Die allgemeine Schwebungslösung.

Die allgemeine Integration der Schwingungsgleichung für
beliebige Koeffizientenwerte stösst auf sehr grosse Schwierigkeiten.

Dagegen führt im Falle kleiner Koeffizienten eine
Parameterentwicklung dann zu einem praktisch auswertbaren Ergebnis,
wenn wir uns auf die Ermittlung einfach oder mehrfach
periodischer Lösungen beschränken untl die Anlaufvorgänge unberück-
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sichtigt lassen. Zwar lassen sich diese mittels der im vorigen
Abschnitt erwähnten Reihenentwicklungen wenigstens im Bereich
kleiner Amplituden übersehen, sobald sie aber von der Grössenordnung

der stationären Schwingungsamplituden werden, genügt
tlie Konvergenz der Reihen nicht mehr, und erst die stationären
Vorgänge sind, wenigstens für geringe Parameterwerte, einer
mathematischen Behandlung leicht zugänglich. Der Parameter
ist so zu wählen, dass bei dessen Verschwinden eine periodische
oder eine Schwebungslösung herauskommt, also alle nichtlinearen
Glieder und alle ungeraden Ableitungen verschwinden. Dann
erhält man eine lineare Schwingungsgleichung ohne Dämpfungsglieder,

deren allgemeines Integral aus der Summe zweier
ungedämpfter Sinusschwingungen mit den im allgemeinen inkommensurablen

Kreisfrequenzen coj und ca2 besteht. Die folgenden
Näherungslösungen sind in mehrfache Fourier'sche Reihen entwickelbar,

deren Argumente aus den ganzzahligen Vielfachen der
Argumente cojt und co2t gebildet sind. Unter normalen Bedingungen
bleibt übrigens nur die Schwingung mit der grösseren Periodendauer

übrig, der Vorgang ist periodisch.
Führen wir vorerst die für die Zwecke der näherungsweisen

Auflösung dienlichen Umformungen der Ausgangsgleichung

d4x d3

~dti + dt3 (dj x + d2 x2 dH xn + ¦¦¦)

d
dt

d

j (Cj X + Co X2 + ¦ ¦ ¦ + Cn Xn -r • • ¦)

(bj x l-box2+ + b„ x" + ¦ ¦ ¦)dt

-r (äj x + ä2 x2 + ¦.. än x" + ¦ ¦ ¦) 0

aus. Dazu dividiere man diese durch äj und setze

(1)

Me3:
dj Aa

> c4 - eX (1 + pcpj+ u2 cp2 + pn ¥„ + ¦¦¦)

e2 -A- --- e2' (1 + pfj + p2xp2 + + pnfn +

dj
Yn

bi

bj
^n

i r iIbj I «i
bi

(2)
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wo tlie cpi und y, noch nachträglich zu bestimmende Konstanten
bedeuten, dann erhält man die Schwingungsgleichung in der
Gestalt

d*x d3D(x)
«4 (1 +pcpj+ ¦¦¦) -jtt- + pe3dt* dt3

d2 dB (x)
¦\e2'(l+py>j+p2y,2+...) — (x+pC(x))ip—j^-lx-rpA(x)=-0,

wobei von den abkürzenden Bezeichnungen

D (x) — x 62 x2 -f d3 x3 + ¦ ¦ ¦, C (x) y2 x2 + y3 x3 -\ ¦ ¦

B (x) ßj x + ß2 x2 + ß3 x3 + ¦ ¦ ¦, A (x) oc2 x2- r a3 x3 i

(V)

(3)

Gebrauch gemacht wurtle. Wir verwenden tlen Lösungsansatz

X — jCq —\~ LI u% ~\~ IA Xo P x„ (1)

und entwickeln dementsprechend auch A(x), B(x), C(x), D(x)
nach p. So lautet z. B.

B(x) B0 -+ pBj + p2B2 + • • • + PnBn

¦ - + ßnx"0 +

mit

"o ~ ßl X0 "+" ßi X0 *C P3 Xo

*.-**'. fa"^' e:-^-flf» d £',',

b2 x2 b0; + -tj- b;

Bn x„B0' + B;yi^rL^^—i vaA vaA

+ bm y(xa,r---K)X ^

(5)

Dabei bedeutet

z
die Summe aller Ausdrücke, die entstehen, wenn man unter dem
Summenzeichen für alfa2, • • • ar und va, J'a, • • • va alle Kombinationen

derjenigen ganzzahligen nicht negativen Werte einsetzt,
welcbe den Bedingungen va> + vÄi+ * * ' v — r und oq ra|-j~ a2vas-|-
-\- • • • -\- acr v — n genügen. Entsprechende Ausdrücke gelten
für A(x),C(x),D(x).
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Infolge der Substitution des Lösungsansatzes (4) in (1')
und Nullsetzen der Ausdrücke gleicher Potenzen von u zerfällt
die Schwingungsgleichung in die unbegrenzte Folge linearer (mit
Ausnahme der ersten) inhomogener Differentialgleichungen vierter
Ordnung ohne Dämpfungsglieder:

f Ui "An \XL "Ln —

di4 dt2

E^^X^ + Xj + Xj(xo) 0

t ^^ TX t ^^ Tl ~\F / \ /*\
Ea ~^tt~ + £o —TTT- + X„ + Xn (x0,Xj..-, Xn-j) 0

dt* dt2

(6)

mit den Inhomogenitätsgliedern

Xj (x0) f4' 9?!
a.4x0 d3D0 d2

dt* dt3 df- (Vi xo+ C'0)

dB*- + Ao 0
dt ' °

d4
X2 (x0, Xj) eX -jp (cpj Xj + cp2 x0) + e3

d3Dj
dt3

+ £2' -jiy (V. xo + Vi (xi + C0) + Cj) + -jA + Aj 0

d*
Xn (X0 ,XV.. Xn_j) - £4' -jT-T- (cpj Xn_j + tp2 X„„2 + + CpnX0)

d3 D d2"~~1 ' "' Y(y>lXn-l+--XoV,n +Cn_1+--iy>n-.jC0)+ e - + Bo3~~dt3 ^ 2 dt2

G)

Die Lösung der Differentialgleichung nullter Annäherung lautet
für £4' > 0, e2'>0:

x0 Mj sin (cojt — cp) + M2 sin (co2 t — tp)

-mx(e i(a>,t f)_ '' ¦>i) + '3n2lei^t-i'>-e- i{<utt— yl) (8)

mit den 4 Integrationskonstanten, nämlich den beiden Amplituden

Mj, M2 resp. SJl-i, 9212 und den Phasenkonstanten cp, y>, und
tlen aus der charakteristischen Gleichung

£4'n4 + £2'n2+ 1 0

gewonnenen Kreisfrequenzen

wi^l^W)' <9)
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Die Integrationskonstanten lassen sich erst aus der
Differentialgleichung erster Näherung

Qi Xi Ci Xi tt- / -, n
4 -jjt + eA -Jsf- + Xl + Xi (xo) 0

bestimmen. Die Phasenkonstanten könnte man zwar im Inkom-
mensurabilitätsfall ohne weiteres gleich Null setzen, da
unabhängig von allen Anfangsbedingungen immer einmal der Moment
beliebig nahe verschwindender Phasendifferenz eintreten muss.
Wir wollen dies aber, um die Freiheit in der Wahl der
Anfangsbedingungen für die weiteren Näherungen nicht zu verlieren,
unterlassen, resp. nur scheinbar tun, indem wir der Einfachheit
der Darstellung halber die Argumente cojt — cp und co2t — xp durch
cojt und w2t ersetzen, uns aber bewusst bleiben, dass dies im
allgemeinen nur eine abkürzende Schreibweise bedeutet.

An dieser Stelle wird auch ersichtlich, aus welchen Gründen
£4 und £2 nach Potenzen des Parameters p entwickelt wurden.
Im allgemeinen werden nämlich die Frequenzen nicht durch die
Grössen e4 und £2 allein bestimmt, sondern auch von den übrigen
in der Schwingungsgleichung vorkommenden Koeffizienten
beeinflusst sein. Bezeichnen wir mit £4' und £2' die Werte der
Konstanten, deren Substitution an Stelle von £4 und e2 in der
charakteristischen Gleichung die wahren Frequenzen ergibt, so werden
sich diese ebenfalls nach Potenzen von p entwickeln lassen, sich
also aus der Umkehrung der Formeln für £4 und £2, d. h. aus

e4' £4 [1 — pcpj ¦+ p2(cpj2 — cp2) -I ] |
£2' e2 [1 — py>j -+ p2(y>j2 — %) + •••] 1

berechnen lassen, so dass dann auch die Ausdrücke (9) für die
Frequenzen in nach Potenzen von p fortschreitenden Reihen
entwickelt erscheinen.

Für das Weitere denken wir uns die A0, B0, C0, D0 in eine
zweifache Fourierreihe entwickelt, wobei die Darstellung von B0
als Beispiel auch für die übrigen Funktionen gelten mag, also

B0= 2 2 bm -+»-. e^^n^7 (11)
m — ccn
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Dabei sollen tlie bmWi+nm% die Bedeutung der folgenden
Ausdrücke haben:

^o S(-l)n(2n)!/32n
m-n sflf-1- m2

nTnT +
(n —l)l(n —1)!1!1!

9n?9R|2(n—1)

+
sr2"

l!l!(n—l)!(n —1)! n\n\
(M\ ^M\M\ ^M\\

2
'ß22(APi+AIl),Sßi{-^ + 1Ui2- + ^)+--

S (-1)"-1 (2 n-1)! )?,„_!
snf—1 32J2 »-3 SR2

SR*9R2'

n!(n-l)! (n-l)!(n-2)!l!
SR, SR2"-2

2!1! (n —1)! (ti — 2)!
'

1! (ra-lj! (n-1)!
Mj

'X 2 t

:m\ nM\M\ 3

Ai2 M2
/M3/UM-+ 2

&mt= V(2ti-1)!(-1)»-1/92„_

9R2SRM*

SRI2n—l 9R'M3SR2
+,—M—7tAtt-.+---

7i!(n-l)! (ra-l)!(re-2)!l!
SR2SR2w*-2

2! 1!(»-!)! (n-2)!
M2
2i" ßj + 3ß3

Ml
l!(n-l)|(n-l)!
M

-fc.

+ 5/S:
M4 3 M? M.;

+ Af.0

bta» 2j(-l)n-H2n)\ß2n
n l

m2j SR2""2 SR2

SRfSR2"-
(n +l)!(n-l)! '

7i!(7i-2)!l! l!
in — 2SR2 SR2

1! 3! (n-2)! (n-2)! 2! (n-1)! (n-1)!
ffc-2<o,

n=l
9R4SR2"-4

SR2" 9R2""2SR2

(ti4 1)! (ti-1)!
+ n!(n-2)!l!l!

SR* SR?«-2

-

1!3!(n-1)!(ti-2)!
'

2!(«-!)!(n-1)! + 6. 2 ^i

(12a)
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&¦.,-»,-= 2 (-1) "-1 (2 »)!/J2»

Hans Straub.

9R2n~1SR2 9R2n-39R*

n l

¦• +
SR3SR2""3

n!(n-l)!l! (n-l)!(n-2)!2Ü!
SRjSR2""1

+l!2!(n —l)!(n —2)! l!n!(n — 1)!

M\ M2 Mj, M\
4 4

%-MjM2 + 3ßA"'

(12a)

und allgemein für p +¦ q 2 s:

(p+v)

W*«,= S (-1)
bl + lsl

** (2 «)!/?,„

3Ij2«-2-|«|3Jjto + 2

SR2"-« SR.?1

«+^)!(n-^)!M!

(„_1 +JLJiL)j(B_i_ J±M)I(|g|+1)!i,
'

t-JJJ2(H-m)- ?| JJj|«| + 2m

(n-"m + ?Mri)!(n-7n-^iM)!(|g|^m)!m!
SR^SR2"-"1

\p\\{n~^)\(n-^)\
und für p + g 2s — 1:

co p-rq + 1

^+,.,= 2(-l)"~~2~(2n--l)!^2„_1 X

t(_ bl + kl + i

9JJ2 n-l-|« gjjl,!
1 ~

(n-^^)!(n-M^-)l|?|!
+

0/ßiln-m)-l-\q gj*j|«| + 2i

(n-m- M+21~p)! (n-m-i^^)! (|g| +m)\m\
gRWgR| —W-i

+
|p|,(w_J^±L)!(n_i^±L)r

Dann wird
CO 00

n =- — co m - — oo

00 CO

(12b)

,i Im to.-f-rt oj.) t

V "V TV ' (aHm •»¦ + " ">») I i »-"("» <u, + n o>2)t\
¦ Zj Zj L (»<", + « cu2l6 ¦ e /•

« -= 0 m -= 0

V ' loHm m, t« <¦>!> t _-i 0» eu,-rn <u,) t\]I-(»i«, + »(».)r e /J>
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dabei sind die Koeffizienten X' resp. Y' durch die Ausdrücke:

(14a)

(14b)

xo a0

x'± «., ± £4' <Pi Mi SRi — i e3 col do,, T £2' <ol (fj SRX - cw)
+ i cajbm,±_am,

X'± o>, ± £4' <*fi «; 9R2 — i £3 a>* d„2 =F £2' col (vi SR2 + c„,t)

+ i «2 &«>, rfc a<",

und allgemein

¦A m o>, + n cu,
— 1 £3 (TM Cßj + n C02) dm oj, -r « ui,

-£2' (mcoj+nco2f cma>l+na,,+i (mcoj + nco2) bmWl+nail + amMl+na,t

resp. bei Verwendung der Bezeichnungen

Yr -.ri-mcii.-t-it-ai, + -A—(moir-r-noi,)
mui, -fnui, q >

Y' Vy _ -^-moii +noi3 r^v._(mu,i -f.no>2)
-*¦ — (moi. + noi,) ö

durch

Y'm. - i £3 wj -ioi, + t «! 6,,,,

Yl«,, £4' 95t ai4 SRj — £2' co2 (v»! SRj + cm) + a„„
Y'ai, - l £3 Wj d»,, + ia,, b^
YLm, £4' cpj co\ SR2 — e2' co2 (^! SR2 + Ca,,) + am, usw.

bestimmt. Wenn X0' a0 + 0, so wird die allfällig auftretende
Schwingung unsymmetrisch; damit die Lösung quasiperiodisch ist,
müssen die Bedingungen

Y'm, Y'm, 0 (16a) und y:^=y:^«o (i6b)

erfüllt sein. Aus der Doppelgleichung (16a), d. h. bei Verwendung

der expliziten Schreibweise aus

Mj £3 co Ml +...a (Ml Ml\ rs (Mi 3 „_ __ 3
1 + 3 Ö3 (-^¦r-f) + 5 ö5 [-f+T Ml Ml + -g-

.1

ßi-. 3/?3(--?- ->) + •••4 + 2

M« A + 3j8,, 2

M2 M!
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errechnen sich die Amplituden Mt und M2. Aus den beiden
andern Bedingungsgleichungen (16 b) folgen die Werte für die
Koeffizienten Cpj, fj'.

_
e2' col w\ M ®_h ~ c'"> ^2) + a"'< w2 3^2 *- «o,, cj2 SR-t

Cpj —

Vi

£4' Cü\ CO] SRlSR2(Cü\— Wi)

e2' 0)1 oi2 (Cn, col^Rj-Ca,, a)2SR2) + am, co4 SR2 4- 0«,, w^SR-!

£2' co2 a>:;SR13R2 (ci2 —w'j)

Begnügen wir uns in den Gleichungen (16a) mit tlen beiden ersten
Näherungsgliedern und setzen speziell A(x) C(x) =¦ 0 und
D(x) x, dann erhält man für die Amplitutlengrössen die vier
möglichen Lösungen:

l.Af1-M2 0 ¦

2 M2- 4e3 (2^-^-4 fft M2 4£3(2w2-w|)-4/31
9/J, ' 2 9 0 3

(18)
3. M2= -i_(esß>J-^), M2 0

3p3

4. M^^Ms^-Mi), M1 0
3p3

während cpj und ^ verschwinden.
Vor Weiterführung der Rechnung sind diese so errechneten

Amplitudenwerte auf ihre Realität, und, wenn diese Bedingung
erfüllt ist, die entsprechenden Schwingungen auf ihre Stabilität
zu untersuchen. Nur wenn mindestens eine mögliche stabile
Schwingung existiert, ist die Rechnung weiterzuführen.

An dieser Stelle wollen wir annehmen, dass sogar zwei solche
Amplitudenwerte vorhanden sind, so dass Schwebungen auftreten,
und auf die Diskussion der Realitäts- und Stabilitätsfragen erst
weiter unten eingehen. Dann nimmt die weitere Näherung der
allgemeinen Schwebungslösung die Gestalt

00 00

xi 2 2 4.,H»,ei(™"'+M"" (19)
m - -co n -—co

an, wo x' x'_u>, x'm, x'_m aus der Differentialgleichung zweiter

Näherung bestimmbare Integrationskonstanten sind, während tlie
übrigen x durch den Ausdruck

r' _ Xmg,^„gll 0
*mm,+nm, eX (niCOj - nco2)* — S2' (niCOj + HO)2)2 + 1

gegeben sind.
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Wir machen für das Folgende durchgehend die Annahme
C(x) — 0, D(x) x, welche ohne wesentliche Änderung der
Ergebnisse eine beträchtliche Vereinfachung in den Ausdrücken für
XX ,„ resp. Y' und im weiteren für die Differential-
gleichungen der höhern Näherungen zur Folge hat. Unter dieser
vereinfachenden Annahme wird die Differentialgleichung der
zweiten Näherung

- - - '

a-2 + X2(:r0, Xj) 0
dt2 dt*

mit

-v,o\ d x0 d x0 d Xjxu -e* ** ^M + f2 W2 ~dT*- ^£" ^ ^M
T £s dt3 ' dt +Al'

E2 fj
d2Xj
dt2

Setzt man für Xj den Ausdruck (19) untl für

00 00

A T. AA — > > 7) pi (lBU!i + MO>|) t

m — oo n-^—co

dB-, df^Bo')
ri/

wo

di
00 00

i 2 2 (mWi + n ^ ?»'""* »<•¦-e' (""ü,j""<U5>

m — oo n =-* — co

GO CO

Pma>,+ noij — 2^1 sLJ re».-'-.«««-; a(m—r) w, f(n-

und

j/maj, + ncoa x i ,/ | "^rw, + äo)j (m—r) «>,-^ (/!—*) <ut

r - —oo s-=—oo

CO CO

r — — co s^- - co

(21)

ist und die a',b' aus a und 6 durch die Substitution der an resp.
0„ durch (n + l)«n+1 resp. (n + l)/Sn+i hervorgehen, dann gelten
für die Koeffizienten der Fourierreihe von

Y — V V Y<'-> „< («o»i+n«>0^2 — Zj Z Am»,+»i«1 e ' (13')
m — oo n — oo
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wenn man noch die Bedingungsgleichungen (15 a) bedenkt, die
Formeln vmX02) Po

x<o7,'= 9Ri (EX w4 f2 — e2' cu' Vg)

SRi
a:«., ~ i £3 w'i Xo,, + 1 ")j qm, +- pa>,

X2_a, SR, -£4' co\ cp2 -t £2' co] y>2)

a,„,
SRi

X l £3 0)1 X-a>, — l 0)jq„ „,, -r p - „,

(22a)

und entsprechende Ausdrücke für X'®, X(2)m die aus den obigen
durch Ersatz von w1,SR1 durch w2, SR2 hervorgehen; allgemein
gilt
Jv^ — c ' lim*'* A- v* t,\ W m 1 c_ itm ii\^ -I- M/i»_ W

— e2' y-( (mwj + tu»,)2 + t (mcoj + nco2) gfflOl+tlI0l + pm„„ Hn<0l.

Aus den Bedingungsgleichungen

Y«2»... (Ci' to2 cpo-eX Wo) wl 9»i •- (—-~—"-"") (:gr+ao'-0'«-.)

'<2mQM\ /pol-P-o,,

(22b)

-„,= (£4 0)1cp2-e2 tp2)co

+ a'a,^a,t(X-0u—xX) + i 0)j ') +

y-*i.= (8.,<i.;9',-«,>,)«»;ai,+(*:'* 2X~~)(~mr*°'-aiX)

-7- Öt<o,-f o», \*C-co, XWJ T" 1 OJ2 1 ~

(23)

WO

00 CO

Vw, — 2j Z_l ^rwj + swj ^(H-r) tu, — «cl>2 *?tu, \*^o>, Öq r X_(üi OouiJ
r -co s -00

~T 0(f)] 4. Wg xX<y2 " X-oyJ
CO 00

V-w, 1 ^ i •^Vü>,-i-#u>i "-(1-f-r) o*, — jBa>i 3-<üi \*^o>i ^2oj, - X_WiÖo J

r -05 s- -00

¦fe'tu. + tü. (xL — x'_.

CO CO

V1' V
r — co 8 ~<o

"1 "ott -f <u, \X(o2 35 - (Ul)

00 CO

p __ V "V' ' ' _ t ' ' ' '\¦*—a), ^j ^j «*-rcü|+*ti>a "-(1+r) a>,— «tu8 ~~ V~°>\ \*^a>i ^2u>, < X_W]ttQ
r^-co « -00

Xo,.— X-

(24)

die Q^jQ-a,,, Pm,, P-m, aus den obigen Formeln (24) durch
Vertauschung von coj und w2 hervorgehen und die Beistriche an den



Selbsterregte nichtlineare Röhrenschwingungen. 305

Summenzeichen das Fehlen der Glieder mit den Indexkombinationen

\r\ + |*| 1 anzeigen, folgen die beiden Werte von cp2

und y>2:

cp 2 e,' tu2 ai2 SR, SR2 (co2 — w2)

SRi
+ a0'-a2o,. ft)jSR2-2oL1+(.,1cü*5Ri

Xa,, X-a
2

t ft), a>2

«29R2

SR,
a„ + a> 'J2OT1-2fl<;ii„,sfti2SR2

-)-WlSR1(^±^)co2SR2(^+0<g-"-)-ct>1SR1^ +^
,*SRX( Po„-P-

2

ip2 e2' a>l col SR, SR2 (a>l— c//J

x0,i X-
2

Xin,, dj —

2

+ i coj o)2

+ et)4 SR2

SR,
' + aj — a2m, ft)43R2-2M»MiSR,

SR,
'*- — a0' + a,«,, a.4 SR, — 2 <+,„,ftj4 SR2

^SR2
Qo„ + <?.

»'SR,
Qa,, + Q-m,

D4, SR,
p — p

(25)

Die beiden andern Bedingungen

y^ ' Mi (V — b2u>, + e3 to2)
x„., — x_

-1-1 co, b'
-1»2 ^-w, ^OJ

Qo.-<3-

y£>=^2(V-Mo,, + £3

-i-1 ft)2 b' x_.

2

'-' \ 2~~

Vw2 V-ü
4-oj2 \<*'—Co( "'tu,,

P + P-1 tu, r J- —<*
(»

(26)

ergeben zwei Beziehungen für die Integrationskonstanten x'm>,

x'-m,, x'a,., x'_m Die Ermittlung der restlichen Konstanten hängt
von den für die Phasenkonstanten cp und tp angenommenen Werten
ab. Wird cp tp 0 gesetzt, so haben wir zur vollständigen
Bestimmung der Integrationskonstanten noch zwei Anfangsbedingungen

festzulegen, als solche können z. B.

xl(0) ^)=0
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dienen (die erste Ableitung ist schon durch die übrigen Bedingungen
fixiert). Werden die Werte von cp und y> noch offen gelassen, so
erhalten wir die noch unbestimmten Konstanten durch Nullsetzen
von x,(o) und seinen drei ersten Ableitungen.

Die erste Methode ergibt folgende Resultate. Aus (26) folgt
unter Verwendung der Bezeichnungen

1 ft), ,,,_,, 7 £3 a>x
A —

2
' ° -"¦•' 2

B' — t co, b'Wl+u,t

C-Q—'i P.. + P-».(M^)C" i co - \ 2 I

.4 -tft).,o,„i+(U,, B
7 £3 w2 • / "0 — "2oi,

MT,W2lM—
b«' — bX

„ ¦
1 io2 I

<?<-.,-<?-c

für tlie beiden Differenzen

Xm, X_(,

P-. + P-

B'C"-C'B" _» ™ - ui

(28)

"^(tj-, «t—rf.
A'C"-C'A" Do

(29)

^"B'-.4'B"
und aus den Anfangsbedingungen

X, (U) (X'a,l + X-atJ + (Xm, + X-ai,) + Z Zj Xnu0, +n<o, "

d2x,(0)

00 CO

m — co n —oo

dt2
col (x'<», + M) + w2 (x,'„, + xl„J

+ Zj' 2' (mwl + 7lft)2)2 z'moi. + Koi, 0

für deren Summen

f-' +T' ' Z?3ZIül^ol - S

/_' i y SAjJ_ltri_§o^ o
to, —ft)-

wo

^g' 2' Zj' (mwl + ww2)2 ^moi. + no

bedeutet, also für die einzelnen Konstanten

_ Dj+Sj _ Sj-Dj
Xoj, x_IUi

D2+S2r —- —- r S2-D2

(80)

(30a)

(31)
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In analoger Weise werden die folgenden Näherungslösungen
errechnet. So lautet z. B. die zweite Zusatzlösung:

00 CO

™ —
*¦***¦¦ V* ™(2) „i tm<u,-rnoi,) t

a'2 Z Z "Snai. + noi, e

m^ — on n^ — oo

mit

.!¦¦
Y(2)

(2) m<Ot+na>,
mo>.-fHiu,

£4' (mcoj + nco2)* — ej (moj, + nco2)2 + 1

Zur Bestimmung tier Integrationskonstanten x<2>, xi2^, x(X\ x(}J,

benötigt man die Kenntnis der Differentialgleichung dritter
Näherung

«4 ~^y4 - + «2 -jjr + Xa + X3 (x0, xj, x2) ¦-= 0

Aus den Betlingungsgleichungen X{3) X™ X(3) Xi3J 0

erhält man die Werte von cp3, tp3 und zwei Beziehungen zwischen
tlen vier Integrationskonstanten x\3\ xi3', x{3), x(JJ, Die beiden
andern Beziehungen werden durch passend gewählte
Anfangsbedingungen für x2(0) und eine Ableitung

dn x,<°>2

df»
geliefert.

(wo n < 4)

b) Periodische Lösung.*)

Wesentlich einfacher gestaltet sich die Behandlung der
Differentialgleichung, wenn nur die Schwingung mit einer
Grundfrequenz (für Röhrenschwingungen «),) stabil ist, d. h. die Lösung
eine periotlische Funktion der Zeit darstellt (SR2 0). Dann
lässt sich die vorerst unbestimmte Kreisfrequenz (nennen wir
sie to) durch die Substitution r cot aus dem Exponenten
entfernen, womit die im Schwebungsfall auftretenden Schwierigkeiten

betr. die Koeffizienten £4 und £2 dahinfallen.

*) Die in diesem Abschnitt verwendete Methode wurde von Appleton
und Greaves5) an einer Gleichung zweiter Ordnung auseinandergesetzt. Da
diese Arbeit in den die Kippschwingungen betreffenden in der Zeitschrift f. drahtl.
Telegr. u. Teleph. erschienenen Publikationen von van der Pol und Appleton
nirgends erwähnt ist, kam sie uns erst nachträglich zu Gesicht, nachdem wir im
Anschluss an die Veröffentlichungen von Hörn16) und Poincare dieses Verfahren
schon verwendet hatten. Noch später wurden wir auf die Mitteilung von An-
dronow19) aufmerksam. Einen Konvergenzbeweis für diese Parameterentwicklung
hat Greaves18) angegeben.
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Um die Differentialgleichung (1) in der gewünschten Form
zu erhalten, dividiere man wiederum durch d, und setze

ft)2 «1
i /" CO,

bi
j T ft) t

Cl "i
A4 A4äj d, "l£4- -s~a>„ ~

cl
' t'3

«1 b\
wo

<5„ -
d„
*-**-> Vi __ Ä __

1 £n_|fll] »

dj «1 «i 1« lCl "i
1 ö„

p äj

(32s

l&i fll
dann erhält man, wenn man wie früher von den abkürzenden
Bezeichnungen der Formeln (3) Verwendung macht:

to* d

co3 d3D(x) co2 d2 „,
r •

+ "^ WT -3?- + ^ d^ (* * + •" C {X))

f*

Entwickelt man —
von p:

dr3

co dB(x
dr + x + p A (x) 0

(32)

x und .4 (x), B(x), C(x), D(x) nach Potenzen

0)n
1 + PQj+ p2

X X0 +- p Xj +¦ p2x2 -+
A(x) A0 -+ pAj +- p2A2 -
B{x) B0 + pBj + p2B2-
C(x) C0 + pCj+ p2C2 +
D(x) D0 + pDj + p2D2-

+ pnQn+ *¦•
* + P"xn + • * •

* * + PnAn -+ ¦

¦¦ + PnBn+ ¦

¦ + pnCn +- ¦ ¦

• ¦ + pnDn -+ ¦

(33)

und setzt die Koeffizienten gleicher Potenzen von p gleich Null,
so erhält man die unendliche Folge von Differentialgleichungen:

Cl Xn Qj Xq

b)

und allgemein

c)

C4 dr4

d*a
dr'

+ ¦

d* Xj
£4 j_4

IT'
d2 Xj
It2

d2 x.

+ x0 0

Xj + Xj (x0)

+ —j-r- -t xn + Xn (x0. • • x„_,) 0

(34)

4 dr*
'

dr2

mit den leicht berechenbaren Inhomogenitätsgliedern X„.

Da, nach Annahme, die Lösung periodisch sein soll, so wird
in nullter Näherung

x0 SR (eimT — e-'«"), (35)
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wobei für Röhrenschaltungen im allgem. nur die Wurzel

m- -== \\ - y t —4 ti) (35a)>2 =2^(l-l/i-"4e4)
der charakteristischen Gleichung stabilen Schwingungen entspricht.
In der Differentialgleichung der ersten Näherung wird X, durch
den Ausdruck

v a d xn d JJ0 (x0) d in \ o vA, 4 £4 Qj -J--T- + £3 j~^ + -j-^ (C0 (X0) + 2Qj x0)dr* ' 3 dx3

dB0(x0)
dr + 40(x0) 0

(36)

(36)

dargestellt. Denken wir uns darin A0,B0,C0,D0 in Fourierreihen
entwickelt:
Ar, 9R [a0 +- al(ei",T— e*-'"") + a2(elimT +- e*-2''"") -+ ¦ ¦ ¦

-f- an(enimx + (—l)ne-.nimr) ¦+¦¦¦]
B0 <m [b0 +- 6,(e''WT - e-'"") + 62(e2''" + e~2imx) + ¦ ¦ -

+ bn (ef»-* + (-1)««-«»"*) -\ J

C0 9R [c0 4- c, (eimt — e~imx) +¦ c2(e2U,,T + e~2i'"r) -+
-+ c„ (eina'T + (— l)ne-!'"'"T) + .]

D0 <2R [d0 + dj(eimT — e-imx) + d2(e2imr + e-'2imr) +
+ dn (einmT + (— l)«e-inu,T) + ...],

wo beispielsweise
co OJ}2« ft Q ft

3Rbo 2(-l)"(2n)!^T^2„ fM2+^AM4+...
«=i

'4(^-1*4"-)
3R62 E(-l)"-1w2 — Zj'n=l

3R62s_, ^(-l)»-*-1

1)! V 4 4 /

(2n —1)!
(n+l)! (n-1)!

(n + .-? — (n — s)!

(2n)!

ßin-l^l2"'

(37)

und wo die an, 6„, c„ gleichgebaute Funktionen der entsprechenden
Konstanten a„, ßn, yn bedeuten, so wird

X, '?R^X;ie<'""r
n -co

CO

3R 2 [Y'n(einmz + e-inmr) + Y'_„ (eu,mx — e-inaz)]
n 0

(36a)

24
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X0 — a0

X'±j Az 4 £4 Qj ft)4 — i £3 ft)3 dj^Jco2 (cj + 2 Qj) — i fo, ojj-^a

X'±(2n-i) -'i£3(2n^-l)3ai8d2„_iT (2 tt —l)2 wMn-i
+ (2 n — 1) i tob-2n-i Azd-ln-l

X'± 2 n — -F 81 £3 n3 co3 do n — 4 n2 cu2 r-,,. -j-: 2 rc i cj fo2« + «2»

(37)

resp.

?i xx + xi,

Y'rrrrrr
Y ' v'

— ie3cosdj -j- t!),(')

4 ^i£4c,j4 — ((,2(ri + ^ Qj) +¦ cij usw.
(37 a)

Damit die Lösung periodisch ist, müssen die Bedingungen

9RX,' 3RX'_, 0 (38 a)

resp.

d.h.

und

9RY,'= SRYlj 0,

9R(-t£3o)2d, + ibjco) 0

r7R[4£4ß,ft)4- to2(cj-r2Qj) + a,] 0

(38 b)

(38'a)

(38'b)

erfüllt sein. 9R berechnet sich also bei Verwendung der expliziten

Schreibweise aus der Gleichung (38'a):

M [- e3co2(öj + d3M2 + I <55M4 + ...)]
+ (ßj + |/?3M2 + t /S5M4 +¦•¦)] 0

und £>, aus (38'b):
?,ft)2(4 £4co2 -2) to2(f y3M2 + •••)- (f a3 Af2+ • ¦ •). (40)

Die Lösung der ersten Näherung hat die Gestalt der Fourierreihe

(39)

m xj + (xX e'"

wo für n 11

x'_ie-la,r) +V (x'n ei

XI

(41)

x„ —
ein*co*— n2ft)2 -f-1

ist, und x,' und xXj vorläufig noch unbestimmte Integrationskonstanten

bedeuten, die sich erst aus der Differentialgleichung
zweiter Näherung ergeben. Diese lautet

d* x2
"dM

d2x2
+ X2 1 -A.2 (Xq, Xj) U, (34c)
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wobei X2 die Bedeutung des Ausdrucks

d* d,3

M £t jj^i [4 t?i xi + (4 <?2 + 6 qj) x0] + £3-^3-(x,D0'+3eiZ)0)

371

d2

di

0"i (C0' - 2 o,) -r (2 o2 - gj) x0 + 2 Qj C0]

(xj B'0 + o, B0) + x, 4;

(42)

besitzt. Führen wir die Rechnung in der Folge unter den
Voraussetzungen 4 (x) C(x) 0, D x durch, so verschwindet
Qj, X2 reduziert sich auf

X2 4£4£?2-dT4
d4x0 d3 Xj d2x0 d

+ 2 oo + -

3 dr3 *2 dr2 dr

9R V (Xf) X»"" + X% e~in°")
n=l

und xj wird allgemein

i n w bn

:*i ßi)
(42')

£4n4w4 — n2co2 + l
Die Entwicklung von B0' in eine Fourierreihe

X

Bo' V + Sön(eintUT+ — l)»-ie--fB"

(41a)

(43)

geht aus derjenigen von B0 durch Ersatz aller in den Ausdrücken
von bn enthaltenen Koeffizienten ßn durch (n + l)/?n+, hervor.
Es ist also

K /Si+E(-i)n(4Srf!^«+i^2" ^+l ßsM2+^-ß5M*+...
n 1 ffc ¦ / fc >

V S (-1)- * ^TTTTT, ft » W1 "-1 *?- (ß- + % ßi 77" -I-

n! (n—1)!

fo,; |(_i)-i^"^, ftm+13R^-M2(^3+^5M2-,...;

bX,-i ^L(-i)"-
n -m

CO

(2*1)!
(n + 7W, — 1)! (n —?«)!

(2n + l)! ftn+ l^R2"
(n + m)\ (n — m)\

und b'n_j +¦ &;+1 nb„

(44)

(44a)
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(37')

Dann nehmen die Koeffizienten von X, die einfachere
Gestalt an:

X'±, ± 4 eiQ1to* ¦+ ie3co3 *-**--- 2 Qjco2 + icobj •,

x'in-i Xl(2„_i) (2 n — l)icob2n^j
X'ln —Xl2n 2nio)b2n
Y] — 7 £3 ft)3 -f- 7 0) fo,

Yl, 4 £4g, co4 — 2 (?,ft)2 usw.

und diejenigen von X2 werden

X<2) 4 £AQ2to* — 7£3ft)3X,' — 2 £2&)2 + iwg,
X(i\ —4£4g2ft)4 + 7£3ftJ3x!_i -f- 2 £>2ft)2 + 7ftjq_,
X<fi_1 — i(2n —l)3£3ft)3x;„_, + 7ft>g2n_,

X%n_1}= i(2n-l)3e3co3x'_v,n-U + io)qH2n_X)

xfl — 8-i£3n3ft)3x2n + icoq2n

resp.

XlXln 8 7£3n3ft)3xl2n + icon q_2n

Y?=ie3to3(-A±^) + l0)(AKA^

Y^=4etQ2to*-ie3to3(^--7)-2Q2to2 + ito(^^)
usw., wobei die Bezeichnungen

GC

Ii xi b0' + x'-j b2' + 2 (—1)"_1 xj (b'„-j + b'n+1)

cc

x,' fo0' + xl, fo2' + 2 (— D*-1 n xn' fo„
2
oo

g._, - [xl, fo0' + x,' fo2' + V} (-1)"-1 x„' (&;_, + fo;+])]
2

OD

- [(x[b0' + xj'b2' + 2 -1)""1 xn' foj]

/?2m-i ¦= (2 m — 1) fx,' 62^-2+ ^-1 b-2m
CD

+2 — 1)"_1 ^n' (b'n-im + l + foom + „_l)]
n=2

rZ-(2m-l) - (2 TO —1) [X'_! foo„,_2 + X,' foom
CO

+ S( —l)M""1^'(^n-2m+ l +foom + „_i)]
n=i

00

g2m 2m[x,'foom_1+x'_1fo2m + i + 2(-l)'*a*n' (K-im-bim+n)]
n 2

oo

g-2m -2TO[xl1foom_1 + X1'fo2m + i + 2j_(-l)"V(&n-2m-b2m + n)]

Verwendung fanden.

(45)

n=2

(45a)
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Damit auch x2 eine periodische Lösung ist, muss

ym ym 0 (46)

sein. Aus

Y?=ie3 i co
(xj'-x'_j)(b0'-b2') 0 (46a)

2 / 2

folgt, wenn man bedenkt, dass i e3a>3 icobj (s. Formel (38)) ist,

x,' xl, (47 a)

(47b)
und damit

Ii' -9-i
und aus Y<2) 0 ergibt sich für

ico
o.,

4 £4 w4 - 2 co2

1

V(-l)»-inx„'fon
n2co2b2

*y,(-Dn
4 £4 co* - 2 co2 r-V ' £4 n4 cu4 - n2 w2 + 1

(48)

Bestimmen wir endlich noch die Integrationskonstante x,' so,
tlass für t 0 auch x, 0 ist, so findet man

X_i Z xin-l " Zl
X2n_i

^2 £4 n4 ft)4 — n2 tu2 -r 1

^ V (2n —l)ft>&2B-,
>f~2 £4 ti4 ft)4 — n2 co2 + 1

und die Lösung der ersten Näherung wird

x, M i Zj x2,, + i cos wt + Z x'-m sin 2 n cot
n 1 n 1

00

— i Z ^2»+i cos (2 n-|-1) wt
n=l

Diejenige der folgenden Näherung lautet

OD

x2 331 a^2-e''"'T + x'X\e-imr + Y (xi2)einmr+ x(j'ne_ina,t)

vv'obei allgemein

(49)

(41')

.(2). x(2)

£4 n4co4 — n2 co2 -[-1

bt. Zur Bestimmung der Integrationskonstanten xf\ x(2\ be-
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nötigt man wieder die Differentialgleichung der nächsten, also
der dritten Näherung

(L X o 'h ,L 3 *\ ** / \ s\
£4 -rr - -| - + X3 -r A3 (X0 X, X2) U

insbesondere die Ausdrücke für Xf\ X®\ ¦ Bei deren Nullsetzung
ergibt sich q3 und eine Bedingungsgleichung für die beiden Inte-
grationskonstanten; eine weitere erhält man aus der
Anfangsbedingung x2 0 für den Zeitmoment x 0. In dieser Weise
fortfahrend lassen sich beliebig viele Ergänzungslösungen x,„
berechnen.

c) Ableitung der Periodizitäts- und Stabilitätsbedingungen.

Im Anschluss an die im vorigen angegebenen Schwingungslösungen

sei dieser Abschnitt, neben einer nochmaligen Ableitung
der Periodizitätsbedingungen, im wesentlichen der
Stabilitätsuntersuchung dieser möglichen Schwingungen gewidmet; und
zwar werde die Aufgabe zuerst für ein System mit einem
Freiheitsgrad (Differentialgleichung zweiter Ordnung) und darauf für
ein solches mit zwei Freiheitsgraden (Differentialgleichung vierter
Ordnung) auf einem etwas andern als dem von vax der Pol4)
angegebenem Wege gelöst.

Die Differentialgleichung zweiter Ordnung

d2 x dB(x) A
p —~—- + x + p A (x) 0 (o0)

dr2 r dx

bildet, wie schon erwähnt, einen Spezialfall des Systems

dx ,/ -, dy
-j—= y + pf(x,y, i<), ~y- -x + v9(x< V'Mdx dx

(/ und g Potenzreihen von x, y und p), in dem / 0 und

g -(-dT + Ä

ist. Bedenkt man, dass

d fx2 -f y2) dz2 rI M *-T- L'\-y9(x>y>f) + x f(x,y,p)\dx dx

und dass für einen periodischen Vorgang die Änderung Az nach
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einem Umlauf verschwinden muss, so lautet die Stationäritäts-
bedingung

2n

zAz p J[yg(x, y,p) + xf(x, y, p)] dx 0.
o

Diese Formel geht, wenn man bedenkt, dass für p 0

x x0 AI sin t y y0 AI cos r z — M

wird, in erster Näherung in
¦j .-i

A M f[g(M sin x, AI cos x, 0) cos x

-+ f(AI sin-r, Mcost, 0) sin t] dx 0 (51)

oder in unserm speziellen Fall in
2 ¦** " n / A 171 \ \

g (AI sinx, AI cos t,0) cos Tdr - f I—- —— + A(x0)) cosrdr 0
o « \ dT I (Sla)
über. Die Wurzeln dieser Potenzreihe entsprechen möglichen
stationären Schwingungen.

Ebenso einfach lässt sich die Stabilitätsbedingung formulieren.

Aus
2.-7

6 AIA AI -AI Ad AI pd j [yg + xf] dx
o

folgt mit dem gleichen Grade der Annäherung

AÖM:

2 n

pöM I cos t sin T
dg(x0,yf),0) dg(x0, y0,Q)

df
d Xr,

d x„

+ sin t cos T

+ COS-* T
dy0

df
dy0

dx

und dieser Ausdruck nimmt bei Verwendung der Beziehungen
•> IT 2 I
/ / t df dx„ df dy0\

/(x0,7/0,0)smTdT -/cosr/+ycosM --^---Ur
0 0 0^

AI / (cosTsinr ^——cos •.

/ \ <>x0 dy0

in 2rr

y 3 (x0, ?/0, 0) cos t d r - M iL

ni^-)dT o

sin t cos x
£&. _ sin2 T^ d T -.
dx0 d?y0
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die einfache Gestalt

AdM
SM

-f(dg(x0 y0,0) + df(x y0,0)\dr<0
J \ dy0 dx0 I

an. In expliziter Schreibweise lautet für die Schwingungsgleichung

(50) die Periodizitätsbedingung (im Falle positiver p):

1

,—J 3(x0,7/0>0)cosTdi2
ö

MinI-

r-rr— / (eix+e~ix)2 \b0'+bj' (eix-e-iT)+b2' (e2ix + e-2")+-¦ -1 dx
O 71 J

und die Stabilitätsbedingung

2.-r

(51b)

2
o

1_ f dff(x0,7/0,0) dr=
1 /•dB(x0) ^>7t J d y0 2nJ dx0

in
2^/[V + V(e,T-e-'T)+***]dT fo0'

o

^ßj + ~ß3'M2 + ^-ß5AI*+...>0.

(52b)

Beschränkt man sich auf die beiden ersten Terme, so ergeben
sich die beiden möglichen Amplitudenwerte

M0 0, M; -AA. (51c)
ö Pz

Zieht man die Stabilitätsbedingungen heran, so zeigt sich, dass
dio der ersten Lösung entsprechende stationäre Strömung nur
für positives ßj verwirklicht werden kann, während für den
Eintritt einer Schwingung mit endlicher Amplitude AI, die beiden
Bedingungen

ßj< 0 und ß3 > 0 (52c)
erfüllt sein müssen.

Interessantere Verhältnisse treten bei Hinzunahme eines
weiteren Dämpfungsfaktors ß5 ein. Wie schon Appleton und van
der Pol3) gezeigt, stellen dann die Lösungen

M0 0, M2i=-P + ]/p2ZZQ! Ml=-P-]/P2^-Q, (51 d)
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WO

p _ _3_ ß3 n _
8 jS^

s>; vm ß5

bedeutet, mögliche Amplitudenwerte dar. Die Stabilitätsbedingungen

lauten für
M0: ßj >0 ]

M,: /?5M;>0 (52d)
M2: /J5MJ<0.

Eine vollständige Tabelle aller Möglichkeiten findet sich an der
genannten Stelle der van der Pol'sehen Arbeit. Darnach
entsprechen nur folgende Kombinationen möglichen und zugleich
stabilen stationären Strömlings- resp. Schwingungsvorgängen:

M0 0 für ßj > 0

M\ > 0 ß5 > 0 (abgesehen von der Kombination
ßl>0,ßt>0,ßt>0)

AI;>0 „ ß6<0, ß3>0, ßx<0.

Das stärkste Interesse beansprucht der Fall ßb > 0, ß3 < 0,
ßj > 0, wo die beiden Amplitudenwerte Af0 und M, zugleich
möglich und stabil sind. Unter diesen Umständen kann wegen
der positiven Anfangsteilheit /?, > 0 die Schwingung nicht
automatisch auftreten. Erst wenn das System durch einen äussern
Anstoss in das Gebiet negativen Widerstandes gebracht worden
ist, setzen Schwingungen ein, die dann ohne weiteres Zutun
erhalten bleiben.

Ähnliche Betrachtungen lassen sich auch auf ein System mit
2 Freiheitsgraden ausdehnen. Die notwendige Bedingung für das
Bestehen stationärer Schwingungen im Falle der Gültigkeit der
Kreisgleichung vierter Ordnung

d* x d3x d2 x dB „ ,ro.
ei-t~i- + pe3-dr3+e2 -d-+^dr- + x+pA=0 (53)

lässt sich aber einfacher auf die folgende, von Appleton und
van der Pol3) auf die Gleichung zweiter Ordnung angewendete
Weise ableiten. Man mache den Lösungsansatz:

x Mj sin cojt -f- ili2 sin co2t,

wo Mj und il/2 Funktionen von t bedeuten, und beschränke sich
in den sukzessiven Ableitungen von x jeweilen auf die erste Ab-
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leitung von M, und M2; die nichtlinearen Glieder tier Differentialgleichung

denke man sich in eine mehrfache Fourierreihe
entwickelt, wobei nur die ersten Glieder Berücksichtigung finden
mögen:

T

g(t) —- + A -- sin cj, t j g(t) sin tojtdt
o

T T
2 r 2 r

-) cos toj t / g(t) cos Wjtdt J- -r, sin o>21 / gf(t) sin co2tdt
I) o

2 r+ — cos co2t / g(t) cos co2tdt
o

und T die Dauer einer Quasiperiode der bedingt periodischen
Funktion (gt) sei. Nach tier Substitution dieser Ausdrücke in die
Schwingungsgleichung müssen tlie vier mit tlen Faktoren sin cojt,
cos cojt resp. sin co2t, cos co2t multiplizierten Tenne für sich
verschwinden.

¦# / 4 • ,x o -äMj 2 }(dB ,\M1(e4ft>;-e2oj; + l)-3,«£3ft); --A + _^ / _ + 4 j sin o^idt^ 0

7'

M2(£4ftj'-£2o); + l)-3^t£3ft); - 2- /t // —- + A J sin cj2 tdt 0
o ^ '
T

-—^(-4£4ft)-, + 2£2ftj,)-jtte3ft); i\/,+ « /( ' -+A jeos coxtdt= 0

0 '
T

2 (—4 £4ft)i|-l-2£2ft)2)-1M£3ft)'i\/2 X Ap \-j- +4 cos co2tdt—. 0
dt - I J \dt

Berücksichtigt man, tlass bei der über eine Quasiperiode erstreckten

Integration alle trigonometrischen Funktionen verschwinden
und jeweilcn nur das Glied a(Ui resp. a,„,, fo,,,,, fo,„. übrig bleibt,
vernachlässigt in den beiden ersten Gleichungen dMj/dt resp. dAIo/dt
untl multipliziert die beiden letzten Gleichungen mit M, resp. AI2,
dann ergibt das erste Gleichungspaar die Frequenzbedingungen

Mj(eicoii—e2or + 1) + 2ipal0t
M,[£4ft/ - £2 cd; + 1 f | p x3(M'l + 2 MJ) + •¦•] 0

M2(e4co* — £2c<);; + 1) + 2ipaWi
M2[e4ft)^-£2ft); + 1+| /aa3(M;+2M') + •••]-= 0.

(54)
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und das zweite die Periodizitätsbedingungen

dM
~dt

-i (— 2£4or+ £2)

¦ M\ p (- £3 co] + ßj + £ ß, (M; + 2 MJ) + ¦ • •)
- (55)

-rf-(~ 2fi4ft)5 + e2)

- MJ « (- £3 ft); + /3, + } 0, (3/* + 2 MJ) + ...)=¦ 0.

Zur Ableitung der Stabilitätsbedingungen erteile man4) AI]
und M * tlie kleinen Änderungen 6 AI[ und d Ali,; tlann erhält
man die Gleichungen

n 1

dt {6M]) PliM\ + QldM\ -dt(dM^ PodAr: + Q2öM'l,

/' (£1 — £3 K) — I /' ßa (Ml **¦ MJ)
wo

A — 2 f4 ft)J + f2

^(|8i-£3a)J)-f/M/S3(MJ+MJ

Qi

— 2 £4 0)1 + £2

I ft ßa MJ :i

(56a)

2 e4 ftij + £2
02 /. ggM[+ ¦¦¦

— 2 e4 twj + f2

Deren Lösungen haben die Form <5 M2 M0ekt, wobei A' der
charakteristischen Gleichung

fc2 - fe (P, + p2) + (P, p2 - g,g2) - 0

genügt. Damit die Schwingungen stabil sind, müssen die k negativ,
d. h. es muss

-(p, + p2)>o, p1p2-Q,g2>o (56)

sein. Begnügen wir uns mit den beiden explizit hingeschriebenen
Gliedern von bUH und bm., setzen also nur /?, £ 0, ß3^D, dann
werden die Bedingungen für einen stationären Vorgang:

dM2
dt

dMJ
dt

K,M;(M;(-M;-2M;) 0

K2MJ(MJ0-MJ-2MJ) 0,

wo
3/ift 3/«A

K,= -2£l tf2
2e4

(55a')
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und
4 4

M\0=-^-(e3col-ßj), Ml0 -^-(e3col-ßj) (55b')

Ist weiterhin ami am% amo,i+na>t 0, dann genügen coj und
o)J derselben Gleichung £4ft)4 — £2co2+l 0 mit den beiden
Wurzeln

Xkhf1 4 -*- oX < cor.

(57)

1,2 rt2 £4 \ y £2

und es wird

dt 6Ml Kj{[MJ, -2 (MJ + MJ)] ö MJ- 2 MJ «5 MJ}

~ <5 MJ E2 {[MJ. - 2 (MJ + MJ)] ö MJ - 2 MJ ö All]
und

Ki f-M-^Sv' *2 * <^ßa
*\ " K»- <55a"-

4£4(cO^-ft);) *£4(ft)J-ft)*;)

Aus (55) geht hervor, dass stationäre Zustände in den folgenden

vier Fällen möglich sind:

1) MJ MJ 0

2) MJ £ (2 MI„ - MJo), All 3 (2 MJ0- M|o)
3) MJ MJ„, M| 0

4) MJ Mi0, MJ 0.

Die Stabilitätsbedingungen (56) mit den Faktoren

P, Kj[M\0 - 2 (MJ + MJ)], CM - 2 K, MJ 1

P2 K2 [MJ0- 2 (MJ + MJ)], Q2 - 2 X, MJ j (oba }

entscheiden dann über den tatsächlichen Eintritt des einen oder
andern Schwingungsfalles.

Fall 1: Mj M!=r 0.
Hier ist P, i£, MJ0, P2 E.2 MJ0, Q, Q2 — 0 und die

Ungleichungen lauten einfach

- (Kj MJ0 + K2 MJ0) > 0 K, K2 MJ0 MJ0 > 0.

Aus der zweiten Bedingung folgt, dass der Gleichstromzustand
stabil ist, wenn Kx M\0 und K2 Ml0 dasselbe Vorzeichen
besitzen, und aus der ersten Ungleichung, dass dieses das negative
sein muss; d. h. es muss gleichzeitig

£o ft)J — ß, - - Eotol — ß-.
—*H It- < ° und / i *\ < °

£4 (ft)2 - ft)J) £4 (ft>J - toi)
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sein, woraus sich für ßj die Ungleichung £3 coj > ßj > £3 co\ > 0

ergibt, während das Vorzeichen von ß3 ohne Einfluss auf die
Stabilität bleibt.

Fall 2: MJ $ (2 MJ0 - MJ0), MJ $ (2 MJ0 - MJ0)
Die einzigen möglichen Werte von M,0 und M20, welche positive
Beträge von MJ und MJ zur Folge haben, genügen den
Ungleichungen

M2 Mä
2 MJ0> MJ0> AAho., resp. 2 MJ0 > MJ0 > ii».

Bei der Aufstellung der Stabilitätsbedingungen sind die beiden
Unterfälle K,> 0, d. h. ß3 J 0 zu unterscheiden:

a) Kj > 0, ß3 > 0:
Stabilitätsbedingungen 2 Mj0 > Mjo > MJ0 resP-

M2
M8 > M2 > 2I)
-u20 10 O '

oder damit gleichbedeutend ß3 > 0, />, < £3(2 coj — coj).

b) Kj<0, ß3<0:
Stabilitätsbedingungen

MJ0 > Mf0 > -*°- resp. 2 MI„ > MJ0 > MJ«,

woraus folgt ßz < 0, /?i < £3(2 <*>* — wi)-

Fall 3: MJ 0, MJ MJ0 --- (e3 coj - /?,) >0.
op3

Daraus ergeben sich die möglichen Fälle

a) Kj>0, ß3>0, ßj<e3co\
b) Kj < 0, ß3 < 0, ßj > £3coJ

Davon ist nur der Fall K, > 0, ß3 > 0 in dem durch die
Ungleichung

M|0 > 2 M?„ > 0, resp. ß3 > 0, £3ftj; > /9, > £3(2 co\ - coj)

beschränkten Gebiet stabil.

Fall 4: MJ 0, M; M20 s -i- (£3ft>; - ßj) > 0.
3 As

Mögliche Fälle:
a) Kj > 0, ß3> 0, /S, < £3eo2

b) Kj < 0, £3 < 0, ßj > £3coJ

Stabil ist der durch die Ungleichungen K, < 0, ß3< 0, MJ„ > 2 M|0
charakterisierte Fall im Bereich

MJ0 > 2 Mfo > 0, d. h. £3coJ < ßj < £3(2 col - co2).
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Die beiden Fälle ß3 ~J 0 entsprechen zwei verschiedenen
Klassen von schwingenden Organen, wobei die erste z. B. durch
passend geschaltete Elektronenröhren und die zweite durch den
Lichtbogen repräsentiert wird 20) 21). Da bei der von uns
untersuchten Anordnung ß3 > 0 ist, wollen wir uns vorwiegend auf
die Diskussion dieses Falles beschränken. Die genauere Prüfung
tier obigen Resultate ergibt, tlass tlie Stabilitätsbedingungen der
niederfrequenten co,-Schwingung tlie für Röhrenschwingungen typische

Form zeigen, während diejenigen der hochfrequenten, durch
tlie Kreisfrequenz co2 charakterisierten Schwingung A'ielmehr einer
Lichtbogenschaltung zuzugehören scheinen. Dies geht besonders
deutlich aus der Vergleichung der Periodizitätsfälle (3) und (4)
hervor. Darnach ist für ß3 > 0 (Röhre) nur die co,-Schwingung
stabil, während für ß3 < 0 (Lichtbogen) nur die co2-Schwingung
dauernd existieren kann. Dasselbe entgegengesetzte Verhalten der
beiden Schwingungen wird auch im Gleichstrom-Fall 1 deutlich,
wo die Ungleichung /?, > e3co\ > 0 die für Röhrenschwingungen
charakteristische Form aufweist, die für £3 —r>- 0 besagt, dass der
Gesamtwiderstand der äussern Schaltung kleiner als der negative
Widerstantl des für den Schwingungsvorgang massgebenden
Röhrenabschnittes sein muss, während der zweite Teil der
Ungleichung, nämlich £3 co| > ßx die für Lichtbogenschwingungen
zu erwartende Gestalt besitzt. Allerdings zeigt ein Blick auf
den Schwebungsfall 2, dass auch für /?, > e3co\ keine Schwingungen

möglich sind, da unter diesen Bedingungen B7 und S2,

und damit B2 und S2 imaginär werden. Ein anschauliches Bild
der Lage und Ausdehnung der verschiedenen Schwingungsgebiete
in Abhängigkeit vom Koeffizienten /?, geben die folgenden beiden
Figuren, von denen tlie erste für positives und die zweite für
negatives ß3 gilt.

ß3 > 0 (Röhrenschwingungen)

ß2>0, 6->0 S=0, B2>0 R=S=0 ß2<0, .S2<0

Schwebungslösung | Period. Lösung | Gleichstromlösung i Imag. Amplituden

ßi H (2 cof - tof) f3 o>\ £3 °>l

ß3 < 0 (Lichtbogenschwingungen)

ß2<0, S"2<0 K=S 0 ß=0, S'2>0 7i2>0, ,S2>0

Imag. Amplituden | Gleichstromlösung Period. Lösung | Schwebungslösung
1

i ~
ßi= c3V)\ c3 coj f3(2(o|—cyj)

(Fortsetzung im nächsten Heft.)
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