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Uber die Intensitit der Streustrahlung gebundener Elektronen
von H. Casimir in Ziirich.
(3. VL 33.)

Einleitung:

Es 1st naheliegend anzunehmen, dass die Streuvermogen
gebundener und freier Elektronen asymptotisch gleich werden
in dem Grenzfall, dass sowohl die Energien des einfallenden und
des gestreuten Quants als ihre Energiedifferenz (also die auf
das Elektron tbertragene Energie) gross gegen m ¢? sind. Aus
der vorstehenden Arbeit von Pauvwrr geht aber hervor, dass dies
keineswegs der Fall zu sein braucht. Dort wird ja gezeigt, dass
auch 1n diesem Grenzfall das Streuvermogen von der Anfangs-
geschwindigkeit des Elektrons abhéngt und diese darf fiir ein
gebundenes Elektron nicht einfach gleich null gesetzt werden.
Z. B. hat ein Elektron in der K-Schale eine kugelsymmetrische
Geschwindigkeitsvertellung mit einer mittleren Geschwindigkeit
ac¢ (¢ = Ze?lhe = Z/137); nach den Pauli’schen Rechnungen
wiirde man deshalb Abweichungen von der fir ruhende freie
Elektronen giiltigen Klein-Nishina-Formel erwarten von der
Grossenordnung o2,

Allerdings ist es nicht zulédssig ein Elektron in einem sta-
tiondren Zustand ohne weiteres durch ein ,,Paket’* bewegter
freier Elektronen zu ersetzen: im stationdren Zustand ist die
Energie unabhingig vom Impuls, beim Paket gehort zum Impuls p
die Energie ¢ y/p% + m2e2 Die relativen Energieunterschiede
sind von der Grossenordnung (v/c)2~ «2 und diirfen also mcht
vernachlissigt werden.

Im folgenden werden wir nun die Streuung durch K-Elek-
tron in folgender Weise zu berechnen versuchen: Was den An-
fangszustand betrifft, werden keine Vernachlidssigungen gemacht,
im Zwischenzustand und Endzustand aber wird das Elektron
als frei betrachtet. Weil in diesen Zustinden die Energie des
Elektrons gross ist gegen m ¢? (also a fortiori gegen die Bindungs-
energie) darf man erwarten, dass dieses Verfahren im betrachteten
Grenzfall zu richtigen Ergebnissen fiithren wird.
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§ 1. Die Erhaltungssiitze.
Es seien:
¢ &, p Energie und Impuls des Elektrons im Anfangszustand.
¢ ¢, p Energie und Impuls des Elektrons im Endzustand.
hv . . . .
—n Impuls des einfallenden Lichtquants (Kreisfrequenz).

B o
n' Impuls des gestreuten lLichtquants.

v/ =9 wo » eine Zahl <1 ist.

Der Anfangsimpuls kann dabei noch alle moghchen Werte
haben. Fiir ein Elektron in der K-Schale ist das mittlere |pl ~
ame, fir grossere Werte fillt die Wahrscheinlichkeit steil ab.
Der Erhaltungssatz lautet:

hv hv
fot = ¢ (1a)
prall Wty (ih)

Bildung von (a)?— (b)? liefert:

e2—p?-—m? ¢ — QM-]-L; {1 —(n)} +

b o
{fo n)}— 21 {ea—(pn)}=0.

Wir fithren folgende Abkiirzungen ein:

0o = &£ —p*—m2¢?
111 _— ,.(,“L) 4+ _é(}__ I{H —1 (P n ) . 60 : )
&g 2eghvic £o Qegh /e

Dann folgt:

—a)= el el 1 % :
1 —(nw) h'lc  (hvic) 2 (hv/c) (h v /c) (2)

Schreiben wir (1) in der Form

hv hy'

(a)

=i 4 (b)
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und bilden wieder (a)2—(b)2, so folgt

WF L= ('R

o
in ahnlicher Weise:

W L (57).

')l
Nun 1st
e . o3 . 1 mz (2
~ VP w4y T
Weiter i1st
pr| } (pl ”’r)’
also folgt
.2
111 > q 7’mrv(m 3
hy (3)

wo g eine positive Zahl von der Ordnung 1 ist. Ebenso
]“I >q' ‘i,_ . (31')

Die untere Grenze wird bei vorgegebenem ' tatséchlich erreicht
ey = - ;0 me?

fir n” = n. Es ist dann (p n) = ¢, (1 = ) die Komponente
| n kann dabei noch beliebige Werte (von der Qrossenordnung
m ¢) annehmen.

§ 2. Der Ansatz fiir den Wirkungsquerschnitt.

Wir schreiben die Diracgleichung in der Form:

*ih_%_yf_m.,r ap—%ea +Bme|y el y
(x, B Dirac’sche Matrizen; —e Ladung des Elektrons; A Vektor-
potential, 1" skalares Potential).

Die Wellenfunktionen eines freien Elektrons sind:

— i (k) o 1Ty
w(l.)_w(l‘u)(p)e i (W) et p.r)h.

Der Index k& liduft von 1 bis 4 und numeriert die zu einem Im-
pulsvektor gehorigen Zusténde.

€= L Ypt+mdets et=—1p?+m2c

19



290 H. Casimir.
Die u'® werden so normiert, dass

N o)
Sug(

p)* U)(

p)="9

e

Die Wellenfunktionen des gebundenen Elektrons schreiben wir:

(A)_(th) fl.;l)(p)e—z'(sufft—p.r)h dp:

hier kommen nur zwei Zustinde (k= 1,2) in Betracht, entsprechend
den zwer Moglichkeiten fir die Spinorientierung. Es gilt:

\jz“) )* (n( ,; (5

Den Wirkungsquerschnitt pro Winkelintervall d@ defiieren
wir als den Bruchteil der pro em?® einfallenden Quanten der in
das betreffende Winkelgebiet gestreut wird. (Weil das Wellen-
paket im Raum ruht, braucht dabei zwischen Gesamtstreuung
und Streuung pro Zeiteinheit nicht unterschieden zu werden).
Nach WavrLer!) gibt das p-Gebiet zwischen p und p + dp zu
diesem Wirkungsquerschnitt den Beitrag:

0(hv,p')

0., op=é ']_'l_[ = J ¢ R !I:?-;‘"""Ir'zd;d..().
20, 2 v [0 (OW,p)sw -0 #1502

Hier 1st:

W =ce(p)—ceg—hv+hy
hv = I v’*;)* -

b / > v = \% > >
k'l -2 g 7 l -+ = ak \
e Z_ff;‘_(.” e A G TR+ R GR) e

(o ey
fi ce\p p nj—hr—ce,

hv* hv' =, \* - }n-*) =  hy = \*~-, -
% _ RLLy 0T b L ik sk
*ZN n— n) (a ) (p . 4u (p y n) (@e)rk(p)
5 hoy -
G [ n')+ hy —ceg
e, ¢’ Richtung des elektrischen Vektors fiir das einfallende bzw.
das gestreute Quant.
Zu mitteln 1st dber sémtliche Polarisationsrichtungen de:
einfallenden und gestreuten Strahlung.

1) J. WALLER, ZS. . Phys. 61, 837, 1930.
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IFiir die Funktionaldeterminante findet man:

£ T |

=T T T
¢ —(pn) vog I
also

12 I

W 2 1 sy e o

(t)p. Q= et — — > 'ng k|2 d P d L.
2

2 . K
RN F ¢ 72,

An Stelle der Streuung pro Winkelintervall wollen wir die
Streuung pro dv’-Intervall betrachten. Ist & der Winkel zwischen
n und n', so folgt aus (2) unter Vernachliassigung hoherer Glie-
der in m ¢/h v (der Unterschied zwischen F und /" ist von gleicher
Grossenordnung wie sin &, also ~ )/ F.me?hy):

g l’ 1

r

hv'/e v

d cos & = dv'.

Nach Integration iber den Azimut (es wird sich herausstellen,
dass in der von uns betrachteten Nitherung X/B**/2 nicht vom
Azimut abhingt) kommt also:

3

Qy p= -}{ 2z et " NBVH2Ad pd Y. (1)

h —

§ 3. Summation iiber die Zwischenzustiinde.

Die imn BY* guftretenden Summationen iiber [ lassen sich in ana-
loger Weise wie bet WaLLer ausfithren. Es sei

- } ro=\ ¥ - ) (o
(ot 23 @) 0 G
l / -

(1 - - hi""

o el (p i - 71,) sz 1 gpa £

Dann st

E,{‘ e! (p T on = hv—c¢ 80} ut|lp + ---(v- n)qt = (ae)v™ (p)
l /0 a

/

bn, ] l,’-hv* I E . L*—!hv*‘ g e
oder, well w' (p + ~>-n) die zur Energie ce (pT . n) gehorige

Losung der Dirac-Gleichung ist:

- } 1Y - > \ <Y >~ v - > -
{c (p + 2 nla+ gme:—h V('E‘O}Zul p -+ ik n)qt=(ae)v*(p)
)

7y



292 H. Casimir.

Multiplizieren wir diese Gleichung mit

¢

> .h’])-a—\-u—
¢ (p+--~ ~n)a+Bme+hyv+ ceg,

s0 kommt

\

[~ (hy teeg)2+m2 et 2 p2H(hv)2 +2hv e (E) )N (}Q na h(” ;L) g =

—

~[ep+hyn)a=Bme2+hv+celae) vk (p),
oder

(‘:ol—(-I

“erayahmeeft — BN S 15 g
=[hv(@e)+hvelnxe|+elae){eg-Bme—(pa)}+2c(pe)]er (p)-(5)

Hier ist ¢ der Vektor mit Komponenten o; = a,a; usw. Es
gilt fir zwer beliebige Vektoren a und b:

E > - kil - —-—

(wa) (@v)=0cla xb] +(ab).

Ist weiter 9° = a; @, a3 50 ist @ = ¥ « und deshalb (v, 2, = a; p.)

- -

(wa) (@0) = (ab)y;+ [0x a]a
Unter Benutzung dieser Beziehungen findet man, wenn man noch
die Bezeichnungen
m = [nxe]
A=ceg—pfmec—c (paj

einfiihrt, durch Multiplikation von (5) mut

r
l" - h’p-- h-]} -, -
U (p—l— —Nn——-mn"n (ae')-
c C

/ >
)

hv = hy =, ~=, =  hy~ = hy =\*¥ »>
! AL R B R B ok
)(ae)u (p+ = n)u (p+ p n) (we) vk (p

Bt - 3
Z (1 (p —I*T?L__V—E—’n ;
hv >

! ca‘(%%-—?n)—}zv——ceo

g lh vi(ee ) roe <e lralm=e Tty (em)+{ee) o [exerJ]A+2(EZ)c(;9§ )]1"
2ceghvF
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In dhnlicher Weise wird der zweite Summand in B** berechnet.
Man findet schliesslich:

1 *E =
Mk K% A pk(
B S (p)* Aok (p)
mit
= Ilﬁ [(ee)talmxel +ale xe]+y,(e m)]+
l bl e = > - e > | > |
+ I [(e'e) Falm’ xel+alexel iy, (em )] -
1 1 1 ) N o - 20 s - 20 =, =~
— e Vrale <e'elj Avr—, ( ') — T (pe’)(ea)l.
F (F I'",{(” Yrale xe'el} A+ 2 pe)(e'a) = (pe')(ea)

§ %4 Summation iiber k, k'.

Zar Bestimmung von
5 | B k|2

verwenden wir eine von Diracl) angegebene Methode:

NOBEe N A
K12 dete i
- _1— \1 (I klc B _rl.) (’“‘.’ B- I-L) _
4 2 2 ol L_r_: oo c A Ap 't
=& Mok=1,2
- (N uE*y A (N ok ok A1
4 (;?. (‘7;'; L0 Y )‘ 0a e ) A

(iber zweimal vorkommende griechische Indizes wird summiert).
AT ist die zu A4 konjugiert transponierte Matrix. Man erhilt
sie auch, indem man das Vorzeichen von ¢ und p, umkehrt und
die  Reihenfolge von A und {(2%’) 4 o[’ x ]} verwechselt.
Schreiben wir

A;«——IJ: ) 2‘0’ ’___l‘: [ BT gy
so folgt:
= 1 ]
N BER2 =~ T ;s
| Br 1 9 Sp(UAVAY
— 1 ¢ 4 ,,,,,]j ) —a - -
Q"_h,.‘l 2me 2 ¢ el f(.rﬁp UAVA)dp.

Y P. A. M. Dirac. Proe. Cambr. Phil. Soc. 26, 361, 1930.
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Zu integrieren ist dabei tiber den durch die Bedingung (3) be-
schriebenen Teill des p-Raumes. Die Matrix U lisst sich sofort
bestimmen. Es 1st

| g fir | =1,2 & >0
St 0 fir 1 =384 £,<0.

-
—
T
—

>
-
—
- ey

]. 1 >
9 'é,wa, (P )

> |
.
[E4]

Durch diese Eigenschaft wird U eindeutig bestimmt. Man sieht
aber sofort, dass

ol o ’
U=¢+ap +B8me
diese Eigenschaft hat.

Zur Bestimmung von V' werden wir die expliziten Ausdriicke
fir die »* (p) verwenden.

§ 5. Die Wellenfunktionen im Impulsraum: Bestimmung von V.

Wir wihlen fiir 8, « die folgenden Matrizen:

/10 \ 01

0o 1 10
p= 10 1001
01 1 0

00— 1 0

4 0 01
20— BTV 1 o
i 0 01

Das elektrostatische Potential 1st Z e?/z = he ofr.
Es sei 4 =11—a? a=amch. Die Energic im Grundzustand
ist 2 me?. Die zwei zu dieser Energie gehorigen Losungen lauten
(wie man durch einsetzen in die Gleichungen leicht verifizieren
kann) abgesehen von emem Normierungsfaktor:

Y = ).J.——I e—r P, = 0
’[IJ2 === {) "ljg = )';'—' 1 € ar
—_ z s ,,’l aﬁ A== p—ar — xr-—= 7’7.11 (s A—1 —-ar
L25 ] (& Ya e e
r 1+4 r 1+ 4
x4y ra ‘ 2t L
g B o B s RS e~ 47 Py B2 e e Pt e—ar,

r 1-+2 r 1+ 4
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Die Losungen 1m Impulsraum werden daraus erhalten durch
Berechnung der Integrale

re ()= [po (2)e-iG P

Man findet:

Hy= I vy =0
1.2 == () l‘z == l"
"o P ] . P v
7 e I ‘s m e 4
oy Pet Py g e Pa
Ua m i fa m e L
it
] 1 1
V=NI({+1 SN N . R N....—
(/ ) plomc {(l +iplame)*tt (1 —1iplame)*+l

1 1 1
/= NI -
L Al )(p/cx m ) p/oc m e { (] + zp/ocm()’ (1—1p/ocm()]

A 1 1
CA+1 ['('1“"2?-2'"73/'&33:, L (1 —iplame) } '

Der Normierungsfaktor ist so zu bestimmen, dass

mne
X im 2d4p = (2v ' 2y A7
2 v, 2dp = Ve S5 W2 dp=1.
0 \ m= c
It leichte Kerne ist (bis auf Glieder von der Ordnung «*)

. I .
2W =V =N o (6)

i 4 pPHAmEc®
N l”t/ (1 —»p"/az me ) prdyp —

:3— aradm3 3 (1 + 0 (2?). (6"
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Ifir die Matrix V finden wir:

1. 0 Po oy PeiPuyyy
mc nm e
0 y2o Pt Py P oy
m c m
P pw PetPu gy P -'"'-5 172 0
mce mc m=c
Pe— ! Py Peopyp 0 P~
7n (& m« m=ce

1 r e | p ; ] ] 7 z | ] - > 5 5
= g (l 3 i 64 V’);Ij‘j‘”;’? W z) 1+ 5 (] Ty s 4 2) ﬁ EL—— (]) (1) VW,
Abkiirzend schreiben wir

V=0ad+0b( cxp) -dB.

§ 6. Bestimmung der Spur.

Bei der Berechnung von fd;) Sp (UAVAY) wollen wir
simtliche Glieder, die ber wachsenden hy gegen O gehen ver-
nachlidssigen. KEs ist zweckmissig bei den Fehlerabschidtzungen
den p-Raum in zwel Gebiete zu zerlegen. Im Gebiet 1 sei >y,
wo g eine kleine, von » unabhingige Zahl 1st. In unserer Annihe-
rung ist das identisch mit p, < gy (1 —g) (wir wihlen die 2 Richtung
| n). Im Gebiet IT wollen wir anstatt p,, p,, P... Pas Py, I
als Variablen emnfithren. Mit hinreichender Genauigkeit ist
dp,dp, dp, = —¢eyd I’ dp, dp,. I’ lautt daber von g bis q.
me2fhv. Streng genommen hiangt die Zahl ¢ noch von p,, p, ab,
fir die in Betracht kommenden p,, p, 1st sie aber immer von
der Grossenordnung 1. Wir wihlen weiter g so klein, dass im
Gebiet IT in den Funktionen a (p), b(p), d(p), P: €
setzt werden darf. Wir wollen zunichst zeigen, dass im Limes
hvim¢® —» oo der Fehler, den wir machen, wenn wir in A4
und A" die Terme mit 1/h v weglassen, gleich O (1) me 2®  ist.
Es 1st

o=
¢

M=

Ty
mc?

[exel= (ee)n+0(1) ]/1_

n|~siné~ I/l’

h v

hv

hye s 2
[mxe'] =~ (nze)n»l‘()(])]/]‘ mc*
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Wir kénnen deshalb schreiben:
h v hy' - —
UAVA = RPN (1 +(@n)) 4+ 0(1) VEhvme + Bme| -

2 [ L) s ]+ [ 6 5o 006

n ()(1)| me? +_]__("')]'[(L+b(;;))Fdﬁ]'

hv hv

-,

| [u —ah) {; [ 3] R (v B ) | B

mr"
o ) _
/() /] o hr( )_]‘

Die mit (....) bezeichneten Ausdriicke sind hochstens O (1).
mell’. Man sieht sofort, dass sie im Gebiet I keinen Beitraglzur
Spur geben konnen: die einzigen sie enthaltenden Glieder die
keine 4/» oder » im Nenner haben, verschwinden wegen

-

(1— (E’Tf)) (1 +(xn))=0.

Was das Gebiet II anbetrifft 1st zu beachten, dass Ausdriicke
von der Grossenordnung (man beachte dass F/I'" = O (1))

m c? 1

f(p)———(m )% ___—) und 1 (p) ]/ P M

vorkommen konnen; f (p) 1st dabel irgendeine Kombination von
a (p), b (p), d (p). Bei Integration ergibt das

O (1) (m (-)2[’[7(1]).3 d])yf(p)],,:

€y

Man wird fir das Integral die richtige Grossenordnung finden,
wenn man annimmt, dass f (p) = V2 Unter Benutzung der
Formeln (6) und (6") gelangt man dann zum oben formulierten
Ergebnis.

Es bleibt fir 4 ein Ausdruck von der Form:

A=A +d,a+d,0+ A,y
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mit

1 1N\ ==,
Ay = (417 _F,)((ee )

1

A= x|+ 1«" [’ e
— ] ] ) g e
‘42 i (Fi_ — ...j‘” .’ l(., X e I

] - ] S
g = 7 ¢ (e'm) -+ o (em”).

Spur U AV A' lasst sich nun verhiiltnismissig leicht berechnen,

wenn man beachtet, dass die Spur der Diracmatrizen und ihrer

Produkte verschwindet. Schreiben wir also UAV AT als Li-

nearkombination der Einheitsmatrix und der Diracmatrizen

und ihrer Produkte, so ist die Spur gleich (4 X Koeffizient der

Einheit). Wir finden fiir diesen Koeffizienten:

1 + 2 i - g 2 ’ =

ZSp UAVA' = A2 {ae +bpp-rdme}+ A3{ae'~bpp—dme}+
+ A2 {ae’—bp'pidme} 4 A2 {ae’ +bpp—dm c}+
+2b(pA,) (p’ A2) 2b(p Ay (prd)+

+2 A, {be (pAy) + a(p A} +2A4,{be (p A) +a(p' 4)}+

+b0(—24,4,+ 2 4, 4,) [pxp]+ oA, x A bp—ap}. (7)

§ 7. Mittelung iber die Polarisationen.

Dle Mittelung tiber die Polarisationen liefert (es ist:

dp=p—p,de=¢—e):

e 1 1\ 1
.-, ook R il TR 2 (08 L 12
A (F -+ 1*") 1 (1 4 cos? #),

1 1 | o q 1 -
) {1 —4 (1 -+ cos l‘})J C e cos &

1
TR AT

A= (~ ,) {1 — (Lo d) ),

) (1 + cos® &) — }f,, cos o
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— 1 1\l ., S5y, 158
2(p 4,)2= (———— F‘_) {—5}725111‘5:9—% (pn') (pn) cos&}

s 171 1\t[h
2 (p Ay (dp Ay = "(—l;.'——‘]j;;) [ (fv {(pn)+(pn’)cos 8}

_ {(p n’) + (p n) cos 19}]

e e, 1 1 1 5 ot ol o
2(pA):= (l?‘"’ ]7"_2) { g PPsin?d o+ (pn') (pn)cos 19}

By O i o )

¢

1 1hy (.., ‘ hv - -
C e lf(' {(pn)+(pn)cos 8} {(pn)+ (pn')cos 19‘}]

————— 1/ 1 1 1 .. -,
24, (p A) =9\ — )| T F {(pn)+(pn)cos 9}

' [1{(;) n') +(p n) cos 5‘}}

24; (:57;5:4*25 = (}, ) [ e l’—m 7717- ~1— (14 cos?d) + ;-, cos &
+ "F’ {]] 605 5 — [1,, (1 + cos? a)}

240G A = o (3 + ) |5 LG +G7) cos 0}

I {(P n')-+ (I) n) cos 6},

2 A, ((35 }I_I) =— (L 4 %) { h: {11{ & (1 -+ cos2 &) + Il,, cos 19}

, hv' 1 1 1 5
{"}T" cos & + N —2~1 + cos :9)”
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_9 A, (A,[p x 6_}—)_1) = é (1 - ]; ) cos & \ﬁ} {(pn’ —cos ®pn)}

2 \[2 2

]412 [rvz
+ -}11 {(E) 7&) — (p n’) cos 19’}}
T (e oo [ )0 3

e 'r_ . (P n)- (p N 08 19’}]

— — 1 1 1 L .
2 (p [‘42 X "41]) = (]{1 - ]11.1 ) ’ T 14‘ {(P ”) = (p " )('HH 19}

+ ]],, {(pn’) —(pn)cos ﬁ}l

1 1)('111’ I hy 1\

~2(0p [, x A1) = (]f e o = - sin? &

Bei der Auswertung von (7) diirfen wir folgende Vernach-
lassigungen machen:
a) in den Gliedern ohne d & oder 6 p setzen wir cos & = 1.
Der Fehler wird
me? 1

SO F-—p— gy - mef(p),

verschwindet also sowohl in I als (nach Integration) in II.

h) in den Gliedern mit 6 & oder o p setze n wir in Gliedern
die (1 —cos &) als Faktor enthalten ' =F' % =n', I' = 1 — (pn)/¢,.
Der Fehler ist

he o ome? ] (l . ]) /n:( me
<om-= P g )OO e

Das verschwindet in T und gibt in Il einen Beitrag O (1) me a5
Wir erhalten i dieser Weise:
a) Glieder ohne 6 ¢, 0 p

, 2
a &0{ 'l + f i - A; } a ‘LU( Ar I 19;2)

bpr{A:— A2 — A — A} =dme{A2— AT+ A2 -4} =0

> P \e i i > >y 2 g
2b(p A,)2+2b(p 4)2=b(pn) (pn )(If‘f -+ 1%,3)

f
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@b eo+2a){dy (p A,)+ 4, (p 4)} = — (begra){(pn)+(pn’)} (%_,_ %)

@be—2a) (b [Ty DD = @b =) {5 7)~ G 0} g — )

Zusammen :

F2 P'|I2
Der ber dem letzten Ubergang gemachte Fehler ist

m (:2 1
e so - ] . 7 e

b) Glieder mit d¢, 0p

)[a—h(p n)] { (p " ) +f‘o—_(P n)J kL [(a=bey) + b gy F]. (A)

42 . 42 . 42 . 42 ( 1 ] 1
Q(SF{AG‘:‘AI‘TAE‘I“.45}=2(t(§&(ﬁ+~1—j—2 (l——cosﬁ')ﬁ)

- NN N WA ] —FF
bp Op{di—A2— 42+ A3 =—-2beyde —z— (1 —cos &)

1 1 1\ e -,
2b(p A,)(0p A, = - bés(—F—F) {(pn) +(pn)}
b e 2T o7 1 y 1 1 2 - iy
2b(p 4,) (0p 41)-——,, bés(], + T) {(pn) +(pn)}—

—2b (500 ¢) ],—2 (1 —cos &)
ey 1 1 1 \24~ -,

2a I_E(ﬁ?_];—) =—ade (l —-_"L)z
<13 2 ]'1 1“1'

= S 1 1 \2eey =
2bde A, (pAl):——Q--bée(—---—.— ) {(pn)+(pu")}+

F F’
1—F
+2beyoe e (1 —cos &)
2a A (6p4) aés(l 'l—)2—1—4aé£ (1 —cos &)
: ) F I F2

—2b A, (A, [pxopl) +2b A, (A, [pxop)) =

= +boe () (BR— G}

266 (p [y x Aal) =—~beb( gy — ) (G 1) — G}
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Zusammen :

{2a-—2b go (1 —F) 1—1, 0 e (1 —cos )~

»

~{2a—2be, (1 — )} ;?[:j + L—z}- (B)

Wir finden also schhesslich:

L [s* o Y
I./OpASp(UAVA)M
2 : v iy - %
= |7 (a—bey+beyl) g -+ —T)d1)+() ()ymeas. (8)
§ 8. Diskussion der Endiormel.

Aus (8) ergibt sich fiir den Wirkungsquerschnitt:
Qa et 1 (V' N i')

@ 2me2 ha?

r l",
m*e?

Eo—q

fdp ffdpm {2(“ bg;’) Qbeol'.+()(1)a5

Entwicklung von 1/(1—p./e,) ergibt fir das Integral:

EOﬁQE;::d [v'e)
ne 3 g
f dpszdpxdpy {2{1-1—2((1——55)(1:; + 5 2 1,“%_)}%_
0 0 0
B o
I E: ‘] [)z }'
€

Bei der Berechnung der Terme in der eckigen  Klammer
darf man die Integration auch iiber den ganzen p-Raum erstrecken;
wie man leicht zeigt, macht man dabei einen Fehler ~ o® Das
Integral von 2a ergibt dann 1, denn 2a ist die Dichte im p-Raum.
Die Integrale mit p. und p.® verschwinden, weil ¢ und b nur
von |p| abhéngen. Das Glied p.* gibt einen Beitrag ~ «%, denn
|p2| 1st im Mittel ~ o me und

. s 72 ! p2 / _ﬂ) ) S 2
2a—be)=Ti+ L W22 0 VW~
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Zur Berechnung von

(-4-.:fd§>(w+ S g O T/H)pz

m? ¢ m e &

15t es zweckmissig zum Koordinatenraum zurtick zu gehen. Es ist

fdﬁfﬂp;‘: ~h.2fd5:w;02;jwl
fde W pz___fdlw‘()z%

2
T 4

3

B

s ergibt sich

Es bleibt noch das Integral mit

oy
€ 1— P-

zu untersuchen. Es 1st

m c2
m (‘ =

i - ) o P2 N3 1 ‘ 2
7, fdp /fdp - e (mc) e |(1H0 (D 23).

Es ergibt sich:

/ z ,
J;=1log q 77::2 ; [ f/dp dp, - T ( p7n2(pzy)I 2} + 0 (1) .12] +
P

+ 0 (1) .

> =3 ] 3 T . .
Das Integral ist — meo®. Unsere Endformel wird also (wir
7T
entwickeln auch mefey = 1/)/ 1—«2 nach Potenzen von «3).

2met 1 [V . 25, -t | 7.
Q= gm e hv-(- v )(H g ¥ty @0 Mad+—log. —H{1+0@?))-

Das Glied § «? erhilt man auch aus den Pauli’schen Rechnungen,
wenn man den — durch die Bewegung des Wellenpakets be-
dingten — Faktor D, weglisst. Befremdend ist auf den ersten
Anbhrk das Auftleten des logarithmischen Gliedes, das im Limes
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hov/m ¢® —> oo sogar alle anderen iibertrifft. Es liegt hier eine Art
vanomale Dispersion* vor. Fir F' = 0 1st auch
- hv +) hv

d=e'(p+ n —-e‘u——(_—‘—-=0

.
’

fir p-Werte in der Fliche F = 0 ist deshalb eine Absorption
des eingestrahlten Quants ohne Emission eines »'-Quants moglich,
weil die Erhaltungssatze fiir Energie und Impuls dann gleich-
zeitig erfillt werden konnen?!). Aus den Erhaltungssitzen (§ 1)
folgt, dass das Gebiet der p-Werte, die zur Strenung beitragen
konnen, fiir wachsendes hy immer nidher an die Fliche F = 0
heranriickt. Der in B¥'* auftretende Nenner .1 wird also immer
grosser, und in dieser Weise entsteht das logarithmische Glied,
dessen Auftreten also aufs engste mit der Existenz des Photo-
effektes verkniipft ist.

Es muss schliesslich betont werden, dass es keineswegs be-
wiesen 1st, dass die Verwendung ebener Wellen zur Beschreibung
der Zustinde des kontinuierlichen Spektrums erlaubt ist. So
hat man z. B. zu beachten, dass die strengen Wellenfunktionen
fiir sehr grosse Energien, asymptotisch nicht ~ i@ % sondern
~exp {i (p 7)/h—ialogz (1—cos 6) me/h)}sind, was fiir schwere
Kerne eine erhebliche Korrektion geben konnte. Jedenfalls
mochten wir es aber fiir nicht unplausibel halten, dass ein lo-
garithmisches Glied auch bei einer strengen Rechnung auftreten
wird; an dem Vorkommen fast verschwindender Resonanznenner
wird sich dabei kaum etwas dndern.

Herrn Prof. Dr. W. Pavrnr méchte ich fiir die Anregung zu
dieser Arbeit, sowie fiir viele Ratschlige bei deren Durchfithrung
herzlichst danken.

. Ziirich, Physikalisches Institut der E. T. H.

Anmerkung bei der Korrektur. Es lasst sich leicht zeigen, dass
diejenige Prozesse, bei welchen das Elektron zu emnem Zustand
negativer Energie iibergeht, im betrachteten Grenzfall nur eine
verschwindend kleine Wahrscheinlichkeit besitzen. Man findet
tir diese Prozesse einen Wirkungsquerschnitt

Q< ad(mc?hv)2Q,.

1) Ist F” = O, so kann ein »’-Quantum emittiert werden ohne Absorption
eines r- Quants; das Elektron geht dabei iiber zu einem Zustand negativer Energie.



Die diatonische Tonleiter als gesetzméissiges Tonspektrum
von H. Greinacher.

(16. VI. 33.)

Zusammenfassung. Die natiirliche diatonische Tonleiter lisst sich als gesetz-
missiges Tonspektrum darstellen. Aus der Serienformel geht hervor: 1. die be-
sondere Bedeutung des Grundtons und der Quinte, 2. die Zuordnung konjugierter
Toéne. Diese verlangt, dass die vollstanlige Tonleiter aus 8 Ténen besteht.

Schon die alten Griechen kannten den Aufbau der diatoni-
schen, d.h. 7-stufigen Tonleiter. Pythagoras zeigte, wie man die
Intervallverhiiltnisse der 7 Téne mathematisch unter einziger
Beniitzung des reinen Oktaven- und Quintenintervalls aufbauen
kann. Dieses Pythagordische System, nach dem die Tonleiter
nur aus grossen ganzen Tonen (°/g) und Pythagordischen Halb-
tonen (256/,,,) besteht, ist bis ins 16. Jahrhundert auch das prak-
tisch dominierende gewesen. So bestrickend es durch seinen kon-
sequenten Aufbau und auch durch seine Anlehnung an die Praxis
der reinen Quintenstimmung 1st, so wenig konnte es den Anfor-
derungen der Modulationsfahigkeit der modernen Musik gentigen.
Auch der chromatische Ausbau nach demselben Prinzip des
Quintenzirkels und unter Beniitzung der enharmonischen Ver-
wechslung gewisser Toéne, d. h. der Zusammenlegung ganz benach-
barter Tone, konnte den praktischen Bediirfnissen nicht gerecht
werden. Erst die Erfindung der gleichschwebenden Temperatur
durch Werckmeister und ihre Einfithrung durch J. S. Bacn schuf
das fir die moderne Musik geeignete Ausdrucksmittel. Auch die
reine oder natirliche Stimmung, die 1m 16. Jahrhundert durch
Zarvino eingefiihrt wurde, ist schon liangst durch die temperierte
Stimmung verdringt. Sie wird aber theoretisch immer von grund-
legender Bedeutung bleiben, da sie uns einzig den gesetzmissigen
Aufbau der diatomischen Tonleiter und ihr Verhdltmis zu der
Harmonie und Tonfiithrung in der Musik verstehen lasst.

Die Auswahl der Tone griindet sich hiernach auf die Verwandt-
schaft derselben mit dem gewahlten Grundton, wobei unter dem
Grade der Verwandtschaft zweier Tone das Vorhandensein mehr
oder weniger zahlreicher gemeinsamer harmonischer Obertone
verstanden 1st. So sind in der Durtonleiter mit ¢ als Grundton
d e g und h einfach Obertone von ¢, die durch Division mit 2, 4, 8
in die Oktave ce¢; hinunterversetzt sind. Auch f und a besitzen

20



	Über die Intensität der Streustrahlung gebundener Elektronen

