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Über die Intensität der Streustrahlung gebundener Elektronen

von H. Casimir in Zürich.

(3. VI. 33.)

I'.iiileitunü:

Es ist naheliegend anzunehmen, dass tlie Streuvermögen
gebundener untl freier Elektronen asymptotisch gleich werden
in dem Grenzfall, dass sowohl tue Energien des einfallenden und
des gestreuten Quants als ihre Energietlifferenz (also die auf
tlas Elektron übertragene Energie) gross gegen m c2 sintl. Aus
tier vorstehenden Arbeit von Pauli geht aber hervor, dass dies
keineswegs tier Fall zu sein braucht. Dort wird ja gezeigt, dass
auch in diesem Grenzfall das Streuvermögen von der
Anfangsgeschwindigkeit des Elektrons abhängt und diese darf für ein
gebundenes Elektron nicht einfach gleich null gesetzt werden.
Z. B. hat ein Elektron in der if-Schale eine kugelsymmetrische
Geschwindigkeitsverteilung mit einer mittleren Geschwindigkeit
ac (a Ze2/hc — Z/137); nach den Pauli'sehen Rechnungen
würde man deshalb Abweichungen von der für ruhende freie
Elektronen gültigen Klein-Nishina-PYirmel erwarten von der
Grössenordnung a2.

Allerdings ist es nicht zulässig ein Elektron in einem
stationären Zustand ohne weiteres durch ein „Paket" bewegter
freier Elektronen zu ersetzen: im stationären Zustand ist die
Energie unabhängig vom Impuls, beim Paket gehört zum Impuls p
die Energie c j/p2 + m2 c2. Die relativen Energieunterschiede
sind von der Grössenordnung (vjc)2 ~ ol2 und dürfen also nicht
vernachlässigt werden.

Im folgenden werden wir nun tlie Streuung durch K-Elek-
tron in folgender Weise zu berechnen versuchen: Was den
Anfangszustand betrifft, werden keine Vernachlässigungen gemacht,
im Zwischenzustand untl Endzustand aber wird das Elektron
als frei betrachtet. Weil in diesen Zuständen die Energie des
Elektrons gross ist gegen m c2 (also a fortiori gegen die Bindungsenergie)

darf man erwarten, dass dieses Verfahren im betrachteten
Grenzfall zu richtigen Ergebnissen führen wird.
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§ 1. Die Erhaltungssätze.
Es seien:

c eQ, p Energie untl Impuls des Elektrons im Anfangszustand.
c e p Energie und Impuls des Elektrons im Endzustand.

hv+
n Impuls des einfallenden Lichtquants (Kreisfrequenz).

n Impuls tles gestreuten Lichtquants.

vfv' y wo y eine Zahl < 1 ist.

Der Anfangsimpuls kann dabei nocb alle möglichen Werte
haben. Für ein Elektron in der K-Schale ist das mittlere \p\ ~
ame, für grössere Werte fällt tlie Wahrscheinlichkeit steil ab.
Der Erhaltungssatz lautet:

hv hv'
£0 + — — e (la)

- h v -, h v - / »,
p + n n =p- (lb)

c c

Bildung von (a)2—(fc)2 liefert:

e2 — p2--m2 c2— 2——¦ {l— (ran')} +

+ 2-^{£o-(pn)}-2-^{£o-(pV)} 0.

Wir führen folgende Abkürzungen ein:

d0 e* —- p2 — m2 c2

F - 1 - -
(j> n) ö0 F, _ l (p n)

e0 210 7t v/c eQ

ä0

2e0 h »•'/(•

Dann folgt:

l-(nn)= £oF £"/<V 1 *» ™V ; fev'/c (fcv/c) 2 (hrlc){h*lc) K)

Schreiben wir (1) in der Form

hv hv'M — « + — (&)

- » 7tv *, », fee'
p + n - - p + n —— (b)



Streustrahlung gebundener Elektronen. 289

und bilden wieder (a)2 — (b)2, so folgt

e0F — e' — (p' n'):

in ähnlicher Weise:

e0F' — £* — (p n) ¦

Nun ist
/.—, ,-rrrr .,-„ 1 Wl2C2

e — y\p - + ra- ~ p + _ ,-,-,-•2 |p i

\\ eiter ist

|p'| > (p' n),
also folgt

F>g-4^-, (3)
ll V

wo g eine positive Zahl von der Ordnung 1 ist. Ebenso

m c2

F'>q'A^. (3')
hv

Die untere Grenze wird bei vorgegebenem v' tatsächlich erreicht

für n' n. Es ist dann (p n) e0 (l ~l'' i—)' f'ie Komponente
1 n kann tlabei noch beliebige Werte (von der Grössenordnung

m c) annehmen.

§ 2. Der Ansatz für den Wirkiinasquersehnilt.

Wir schreiben die Diracgleichung in tier Form:

' " —rr - [cap 4- ea A + ß mc2] rp - -e V tp

(a, ß Dirac'sche Matrizen; —e Ladung des Elektrons; A
Vektorpotential, V skalares Potential).

Die Wellenfunktionen eines freien Elektrons sind:

y,f u(ek)(p)e-i(*a)et-I'*)lh.

Der Index 7c läuft von 1 bis 4 und numeriert die zu einem
Impulsvektor gehörigen Zustände.

ei,2 ¦=¦ j/p'-i + m1 c2 ; e3'4 - ]/p2 + m2 c2-
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Die u^ werden so normiert, tlass

^X'(p)* »?> (?)' ««¦
0

Die Wellenfunktionen tles gebundenen Elektrons schreiben wir

V(/' (2 n h) iftf Xp) e-'<f»'-( M> > d
»

hier kommen nur zwei Zustände (/¦; 1,2) in Betracht, entsprechen!
den zwei Möglichkeiten für die Spinorientierung. Es gilt:

2/"<*(p)* ^(p)dp <5*

Den Wirkungsquerschnitt pro Winkelintervall dQ definieren
wir als tlen Bruchteil der pro cm2 einfallenden Quanten der in
das betreffende Winkelgebiet gestreut wird. (Weil das Wellenpaket

im Raum ruht, braucht dabei zwischen Gesamtstreuung
und Streuung pro Zeiteinheit nicht unterschieden zu werden).
Nach Waller1) gibt das p-Gebiet zwischen ^> und p + dp zu
diesem Wirkungsquerschnitt den Beitrag:

Vjji ll — e
d {h v p)

¦ V \Bk't\2dpdQ.
ÖW 0 k.lc' 1,2d(6W,p)

Hier ist:

ö W ce(p')—ce0 — hv+ h v'

iJ(p+—-n— ¦ n\ (ace )ul\p + --n\ul\p+ ^
n\ («e)jl(p)£ßt'k

/.1« -
p + 'rV n) — h v — ce0

StJ'ip +— n rc'l (ae)n'(p — - n'juAp n'\ (<te')vk(p)

l- kv' — i\,1i c e' I p n 1 + h v —¦ c e0

*~e, V Richtung des elektrischen Vektors für das einfallende bzw.
das gestreute Quant.

Zu mittein ist über sämtliche Polarisationsrichtungen tle:
einfallenden untl gestreuten Strahlung.

*) .1. Waller, ZS. f. Phys. 61, 837, 1930.
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Für die Funktionaldeterminante findet man:

E V E 1

er-(pn) " ^^o F'
also

Qp o e4 V'2 - ^r 2 I B^l2 d P d Q
" ^ ^ A.i' 1.2

An Stelle der Streuung pro Winkelintervall wollen wir die
.Streuung pro dv'-Intervall betrachten. Ist & der Winkel zwischen
7t untl n', so folgt aus (2) unter Vernachlässigung höherer Glieder

in m c2/h v (der Unterschied zwischen F und F' ist von gleicher
Grössenordnung wie sin t?, also -~ ]/F. mc2fhv):

e0F 1

d cos i7 — rp+ r a r/iv /c i'

Nach Integration über tlen Azimut (es wird sich herausstellen,
tlass in der von uns betrachteten Näherung EjBk'kj2 nicht vom
Azimut abhängt) kommt also:

Q/, P \2n e* ''" 2 [»*'"I'd p d '•'. (4)

§ 3. Summation über die Zwischenzustände.

Die in Bkk auftretenden Summationen über l lassen sich in
analoger Weise wie bei Waller ausführen. Es sei

ul{p+hyn\*(Ve)v(k)Cp)
'X -Hl 1 ^T—

c el ip + "
- n } — hv — c p,

Dann ist

2 |c ßl (P H — n — b v — c e0\ ul[ p + - /., I 5( (a e) t*(A) (p)

)lf*\ „ /«¦ /. !•

oder, weil ./' Ip-i nl die zur Energie ce1 Ip -f- ,- n\ gehörige

Lösung tier Dirac-Gleichung ist:

c I p H——n J a + ßmc2-h v—ce0 |SWMP + — w |gJ (ae) -.¦*•'(?)•
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Multiplizieren wir diese Gleichung mit

c [p + njtx t- ß mc2 + hv + ce0.

so kommt

|— (h v \-ce0)2 + 7n2 iA +c2 p2 + (hv)2 + 2 h v c (p n)]_ ul(p + -' - njq'- hv-,

[(c p -f h v n)x + ß mc2 + h v — c e0] (tue) vk (p),

oder

c2 d3 —2h vc£0|l - (p n) ' ul \p -¦ njq1

[hv (xe) + h va[n Xe] H c (ct.e){e0-ßmc-(px)}- 2 c (pe)]vk (p). (5)

Hier ist a der Vektor mit Komponenten c1 a2 a3 usw. Es

gilt für zwei beliebige Vektoren a und b:

(ao) (a Ö) o[a X ö] + (aä) •

Ist weiter y5 ax a2 a3 so ist 5 yb a und deshalb (yb o.L at- y3)

(ao) (ff"ö) (afe)y5 -- [o X a]a-

Unter Benutzung dieser Beziehungen findet man, wenn man noch
die Bezeichnungen

m [n X e]

/l c e0 — ßmc2 — c (pa)

einführt, durch Multiplikation von (5) mit

i.' I- h v *- hv' *¦ ,\ ,¦>-¦-,\u Ip + n n (ae),

z «*"' (p + — n n 1 (a e') m! I p +— n\ ul lp + —n) (cte)vk(p)

c el(p + — n] — hv — c £0

,_[/t v{(ee')+o-[e'xe]-Xa.[mye']+y5(e'm)|+{(ee')+a[exe']}/l+2(ae')c(pe) ^
2ce0hvF
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In ähnlicher Weise wird tier zweite Summand in Bk'k berechnet.
Man findet schliesslich:

1

mit

h v

ßk'k
2 e0 c

ik'(l,')*Avk(p)

A= [(ee') + a[mxe'] l- a \e' X e] + y8 (e' ra)] +

+ ,-,, [(ee) I"* bn' x e] + a \e x e] I y5 (e ;«')] (-

/<*" -~pr)\(('e')\a\e xe'e]}.4-t- -A (pe)(e'a) - ~(Ape')(ett)

§ i. Summation über fc, Jt'.

Zur Bestimmung von

.*2i\Bk'k\2
k'k

verwenden wir eine von Dirac1) angegebene Methode:

V \Bk'k\2 =-t-^-,t- V \uk"Avk\2Zj ¦
i 4 c2 fä — ' '

k'.k 1,2 * O j-', A- 1, 2

1

o k',k=l,
S «,ßeo^)K^,^)

(über zweimal vorkommende griechische Indizes wird summiert).
Ä* ist die zu A konjugiert transponierte Matrix. Man erhält
sie auch, indem man das Vorzeichen von a und yh umkehrt und
tlie Reihenfolge von A und {(ee') + aV~e' X X]} verwechselt.
Schreiben wir

N tt ut
k' l.

—-TJ, > C'v pfc^= ra /* j

so folgt:

21 B*T T7M~ 2V" 'Sp (i/yl Ki4t)

l) P. A. M. Dirac. Proc. Cambr. Phil. Soc. 26, 361, 1930.
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Zu integrieren ist dabei über den durch die Bedingung (3)
beschriebenen Teil des p-Raumes. Die Matrix U lässt sich sofort
bestimmen. Es ist

1 -. -c-i I iii für 7 1,2 £;>0
2c, t/i* \p ^Zj^a | 0 für j =34 f(<()

Durch diese Eigenschaft wird U eindeutig bestimmt. Man sieht
aber sofort, tlass

£/= e +tx p -\ ß m c

tliese Eigenschaft hat.
Zur Bestimmung von V werden wir die expliziten Ausdrücke

für die i>* (p) verwenden.

§ •"*>. Die Wellenfunktionen im Impulsraum: Bestimmung von V.

Wir wählen für ß. a die folgenden Matrizen:

1 0

0 1

1 0

0 1

O-i
i 0

- I

I ü

0 1

1 (1

0 ] :

1 0

1 0

0- -1
1 0
0 -1

Das elektrostatische Potential ist Z e2\z hc ct.fr.

Es sei A t/1—a2, a a m cfh. Die Energie im Grundzustand
ist X mc2. Die zwei zu dieser Energie gehörigen Lösungen lauten
(wie man durch einsetzen in die Gleichungen leicht verifizieren
kann) abgesehen von einem Normierungsfaktor:

y-, r'-1 e~ "'' y>1 — 0

y>2 0 Va '"i'_l e~"'

¦?**-,¦¦ x—iy iet
V3= r7TT^le"w Vs" ' '"""*'

r 1 + A ,3 r IM
a* + i y i et z iet
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Die Lösungen im Impulsraum werden daraus erhalten durch
Berechnung der Integrale

¦,(p)-ff,(
Man findet:

vt V

v2 0

**-,=
Pz

x) e-i(-''-r)h dx

v, - 0

'-2=1'

TPjlJJXAXPi w3 m c

nt c

Pz

mit

V-N-F(), -, 1)
1 1

p/ct 7ti c 1(1 I- p/a m e);-f L (1 — .' p/a m r); +'

H'-w-rw,
1 i

(p/a m r)2 p/a m r

1

(\ + iplctmc)'- (l—ip/ctmc)'

X_
X + 1

1 1

(1 + ipjet mc)'-+' (1 — ip/amc)AH ' j
1!.

Der Normierungsfaktor ist so zu bestimmen, dass

Für leichte Kerne ist (bis auf Glieder von der Ordnung a2)

I

2W= V N'
(1 -f p2/y.2m2c2X

(ti)

N'--i 4^ /•
1 -i p2/4 TO2 c2/¦ i -i />-/•* wr f-

71J (1 + p2/a2 m2 c2)4
P" i;

.- n2 a3 m3 c3 (1+0 (a2)) (6')
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Für die Matrix V finden wir:

V2

0

0 p,
mc

VW Pa -11>;

m c

r- Ps + i Pll | av Pz rW
m c

in c
V 11'

Px — Ipy
m c

Px *r Pu i- ii' P ir/2
m2 c2

VW (I

in c

Pz
ni c m2 c2

V2 -

2 \ mä c "^4(FI -X2,2 ¦¦ r ¦> r ,„¦-•,.¦! n'2Mh - - Ga)Fir.
Abkürzend schreiben wir

V-u \-b(Vp) +dß.

§ (i. Ueslimiiuiiiji der Spur.

Bei der Berechnung von J dp Sp (UAVA) wollen wir
sämtliche Glieder, die bei wachsenden 7/r gegen 0 gehen
vernachlässigen. Es ist zweckmässig bei den Fehlerabschätzungen
den p-Raum in zwei Gebiete zu zerlegen. Im Gebiet 1 sei F>g,
wo g eine kleine, von v unabhängige Zahl ist. In unserer Annäherung

ist das identisch mit pz< e0 (1 —g) (wir wählen die z Richtung
|| Tt). Im Gebiet II wollen wir anstatt px,pv, pz,,px, p,,, F
als Variablen einführen. Mit hinreichender Genauigkeit ist
dpxdp,, äpz= —s0dF dpx dp,,. F läuft dabei von g bis q.
m.tJ/hv. Streng genommen hängt die Zahl q noch von px, py ab,
für die in Betracht kommenden px, p „ ist sie aber immer von
tier Grössenordnung 1. Wir wählen weiter g so klein, tlass im
Geluef II in den Funktionen a (p), b Cp), d (p), pz ¦•¦„

gesetzt werden darf. Wir wollen zunächst zeigen, dass im Limes
h v/m c2

und -4*1

Es ist

— r> co der Fehler, den wir machen, wenn wir in A
die Terme mit 1/7., v weglassen, gleich 0(l)mca5 ist.

n- n sin ö 'F-
h v

[exe'] -(ee')n+0(l) F m (¦¦

[mx e J- -(me')»+0(l) ]/F
in tr
"7t7
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Wir können deshalb schreiben:

297

UA VA<
hv h v (l -I- (an)) + 0 (1) j/Fhvmc2 f ßmc

(1— an)lp-[Ce'e') + y5Ce'm)]+-^r [(ee')-l ybCemj] +

+ 0(1)1 i m c2 1 / x+(•••)h v h v
*[a + 6(ap) +dß]~

A — etn) \-p [(ee')-y5(e'm)] + -^ [(ee')- yb(e m')]\ +

+<<<'>l/Mf hv

Die mit bezeichneten Austlrückc sind höchstens 0 (1).
mijF. Man sieht sofort, tlass sie im Gebiet I keinen BeitragJzur
Spur geben können: tlie einzigen sie enthaltenden Glieder die
keine \7v oder v im Nenner haben, verschwinden wegen

(1 -(a«))(l +(an)) 0.

Was das Gebiet II anbetrifft ist zu beachten, tlass Ausdrücke
von der Grössenordnung (man beachte dass FjF' 0 (1))

(' 1 / 7H 1

/(p)__(mc)2_ und /(p)y_^...TOC__

vorkommen können; / (p) ist dabei irgendeine Kombination von
a (p), b (p), d (p). Bei Integration ergibt das

0
uu

(l)(mc)2[JJdpxdPvf(p)]Ps

Man wird für tlas Integral tlie richtige Grössenordnung finden,
wenn man annimmt, dass / (p) ¦= F2. Unter Benutzung der
Formeln (6) untl (6') gelangt man tlann zum oben formulierten
Ergebnis.

Es bleibt für A ein Ausdruck von der Form:

A A0 + A1a + A2a + A3yb
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mit

An-f^p--pryX'e7)

A1 |m x e'l + ,,,- \m x e J

-p,,)[Vx;i
1 r,~\ ]

pM m)+-p,.13 -=r-(e'm) + -h^-(em')-

Spur U A VA' lässt sich nun verhältnismässig leicht berechnen,
wenn man beachtet, dass die Spur der Diracmatrizen und ihrer
Produkte vcrschwintlet. Schreiben wir also UAVA* als

Linearkombination der Einlieitsmatrix und der Diracmatrizen
und ihrer Produkte, so ist tlie Spur gleich (4 X Koeffizient der
Einheit). Wir finden für diesen Koeffizienten:

^-Sp UAVAf Af, {ae' + bp'p+dmc} + A\{a e'- bp'p—dmc} +

¦f A\{ae' — bp'p + dmc] H Aij [ae + bp'p - dm c\ +

+ 2 b (p A2) (p'A2) + 2 b Cp AA (p'AX) +

+ 2A3{b e' (p A2) + a(p' A2)} + 2A0{b e' Cp AJ + a(p' Ä,)} h

+ b (- 2 A0 A2 + 2 A3 AX) [p X p'] + 2 [A2 x ÄJ {j bp-ap'}- (7)

§ 7. Mitlelniiji über die Polarisationen.

Die Mittelung über die Polarisationen liefert (es ist:
dp — p' — p, <5 e e' — s0):

r. / 1 1 Y2 1 i,A- ~-[-jyA -pr) T(1 + cos2 &)

^ (pr-r)2{l-~(l + cos2^)},

-4l (^r + 7^)-l (l+cos'^-^cos»
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2 (p A 2)2 \-p - Tprj (— p2 sin'3 & + (p n') (p n) cos #

2(p^2) (<5p^2) 1/1 1 \2
2 \F F'

h v
\(p n) + (p n) cos #}

— - {(p n') + (p n) cos &}

1 1 \ (1
2 (p M2 l^p, + ~J | i p2 sin2 0 + (p n) (p Ai) cos *

2
+ ppr(pn)(pn

1/1 1 \ \ h
2 (p /,) Up ^) - - ^ ^ -I 7;#2 [

'"• {(p 7t) + (p n') cos #}

7t i/
{(p tt') h (p w) cos &}

FF'
hr hv' r,_+ {(p n') +(pn) cos i?} {(p n) + (p n')cos #}

F =.- _
1 / 1 1

2^3(p ^2)-^/+- f> -p~{(p n) + (p n') cos &}

J7 {(p n') -T-(p n) cos &}

2 ^3(^p^2)

7t v' I 1

1 1

F F'
ll V

c ¦

1 1

| -p "2-(l H cos2,?)+ ^-, cos#

jp, oos^-/y„ 2(1+cos2^)j

1 / 1 1
2A0(-pA1) - 2[p + p,

1

1

p {(p ti) I (p tt') cos #}

pv {(p •«') + (p n) cos d}

2A0(dp AX -(^ + A.) [^ j-pr | (1 4- cos2 *) -t -^ cos #}

TlV' f 1 „ 1 1 „. |
—— j -y cos &+ p, 2"

1 + cos2 -3) J
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1/1 1
-2A0(A2[p X dp]) - -g (^ - ^ ci is &

-\ {(p n) — (p n) cos &}

hv f,- »,{(p //' —cos t9-i'p /<)}

1 / 1 1

2 A3(AA\p xöp}) - g
(/7!2 - p^j cos & — {(p »') - cos & (p *)}

ll V
+ - {(pn)— (p tt') cos &}

*Cp[A2xAX)
1 1

F " /'"
{(p n) — (p n) cos #}

+ rv {(? ^ **- (P n) ('IIS ^}

Bei der Auswertung von (7) dürfen wir folgende
Vernachlässigungen machen:

a) in tlen Gliedern ohne S s oder dp setzen wir cos & ¦¦= 1.

Der Fehler wird
m c2 1

<()(l)-F--hr ¦ p2-mcf(p).

verschwindet also sowohl in I als (nach Integration) in II.
b) in den Gliedern mit ö e oder d p setzen wir in Gliedern

die (l-cost?) als Faktor enthalten F F', 7/ n, F= 1 — (pn)/e0.
Der Fehler ist

<on)l,:.//lf! L(JL_J^'MU e
J

Ti* F \F F' 0(1)
wt c w c

7t r ""F'T

Das verschwindet in I und gibt in II einen Beitrag 0 (1) mc a5.

Wir erhalten in tlieser Weise:

a) Gliedev ohne de, dp

a e0 {A; + A\+ Af+ ÄT} a e0 (-^ + p,2j

bp2{A\-A\-Al-T$ dmc{Al-A\ + A*-A$ 0

2 b (p A2Y + 2b(} AÄ)2 b Cp n) (p n) |j + 7y!,
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(2&£o+2 a){A3(pÄ2)+A0(pAA)} -(be0+a){(pn)+(pn)}{^-2+^)

(2be0-2a) (p \A2 X Jj) (e0b-a) {(p n)- Cp n)}(-^-~
Zusammen:

2 [a — b (p «.)] fo— (p n') f0—(pw)
fi* ' ~" + ^"2 ~~°[(a-be0) + bE0F]. (A)

Der bei dem letzten Übergang gemachte Fehler ist

1 1

1
Im c2 1

TM0 F1"°\F F'.
b) Glieder mit de, dp

a öe{A~l + A\ + A\ + A$ 2« ö e (^ + -^--(1 -cos &)—)

bpöp{Al-Al-Al + Al} -2be06. 1-F
F2 (1-cos &)

2b(pA2)(dVA2)= 2 y£(i-i)!{$;) r(p7t')}

2 6(p21)(c^:l1)= | 6dr(j, ,-~)2{(p7t)^(p7t')}-

-26(tok)-^-(! ,-„s#)
P'2

1

2
2 b d e As Cp A2) ---böe (-=- — -=-) {Cp n) + (p n')}

2 a -43 (dp .J2) — a 6 e f-p- —^
1 1

2b Öe A0 (p Ax) - i-6 <5e (i + -L)2{(p7t) + (p7t')} +
1— F

+ 26f0-3e L,2 (1— cos#)F2

2 a .-!(, (ö p A-A - a ö f (-rr + -rr-j + 4 a ö e -^ (1 — cos t?)

- 2 b A0 (A2[fxfp]) + 2 b A^CÄ^pxdp})

+bö £ {jk ~ IM Üp ")- (p »'))

2 <5 £ b Cp [A2 X AA) •= - <5eb M —-p-r) {(p n) — (p 7t')}
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Zusammen:

H. Casimir.

{2a-2 6e0(l-F)}-A- <5e(l-cos#)-

~{2a-26£o(l-F)}-^-M-l
Wir finden also schliesslich:

-^J dpSp(UAVAJ

-2

J -p(a-be0 + bs0 F) £0

(B)

(7p + 0(l)w?ea5. (8)

§ 8. Diskussion der l-'ndl'ormel.

Aus (8) ergibt sich für den Wirkungsquerschnitt:

2 ti e4 J_ lv_ v
'

2 mc2 Ii v2 \ v v
Q,'

h v

mc f -, XX-, (2(a — b sA n
I ^dpz dpxdpy\-j—--~0' + 2b eA + 0 (!)«.*

Eo J J J I 1 7Vfo ]

Entwicklung von l/(l—p2/«0) ergibt für das Integral:

PI PlI dpz 7 dpxdpu 2a + 2(a — b e0)

+4-

Pl

Bei der Berechnung der Terme in der eckigen Klammer
darf man die Integration auch über den ganzen p-Raum erstrecken;
wie man leicht zeigt, macht man dabei einen Fehler ~ a5. Das
Integral von 2a ergibt dann 1, denn 2a ist tlie Dichte im p-Raum.
Die Integrale mit pz und p,3 verschwinden, weil a und b nur
von |p| abhängen. Das Glied pA gibt einen Beitrag ~ a6, denn
|pz| ist im Mittel ~ a mc untl

2(a-bs0)^V2 + ^-2W2-2-^-VW~oc2.
m2 cl m c
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Zur Berechnung von

c4 fdp(v2 + -Af W2 -2 f° Vw)4-
J \ mi ci m c I e\

ist es zweckmässig zum Koordinatenraum zurück zu gehen. Es ist

J dpV2 pl - h2 Jd x rp\ j-s Wx

Es ergibt sich

^- 3

Es bleibt noch das Integral mit

d'p V W p\= ^J dx xpi jjtp^

^ -tt a*.

V.

/ i -
zu untersuchen. Es ist

•H TT)

fdpzfjdpxdpy 4 H<iri [mrl J /( w/(.
— X — X

Es ergibt sich:

1 P1 W V (1+0 (l)a2).

i
fev

•7
¦; lOg fl TT

4 0(1) a5.

+

Das Intesrral ist — /»c x5. Unsere Endformel wird also (wir

entwickeln auch mcfe0 1/]/ 1 —a2 nach Potenzen von a2).

2.-re4 1 tv 1 25 // r
G'-S^fc^ 7 + 7 1+

2 ^-^^'^^Jr^—Al+iXa2)}

Das Glied | a2 erhält man auch aus den Pauli'sehen Rechnungen,
wenn man den — durch die Bewegung des Wellenpakets
bedingten — Faktor D0 weglässt. Befremdend ist auf den ersten
Anblick das Auftreten des logarithmischen Gliedes, das im Limes
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hvjmc2—¦»- »sogar alle anderen übertrifft. Es liegt hier eine Art
„anomale Dispersion" vor. Für F 0 ist auch

i iT hv ~. hv
A s1(p -\ n)—r0 0 ;

c c

für p-Werte in der Fläche F 0 ist deshalb eine Absorption
des eingestrahlten Quants ohne Emission eines v'-Quants möglich,
weil die Erhaltungssätze für Energie untl Impuls dann gleichzeitig

erfüllt werden können1). Aus tlen Erhaltungssätzen (§ 1)

folgt, tlass das Gebiet tier p-Werte, die zur Streuung beitragen
können, für wachsendes hv immer näher an die Fläche F 0

heranrückt. Der in Bkk auftretende Nenner .1 wird also immer
grösser, und in dieser Weise entsteht das logarithmische Glied,
dessen Auftreten also aufs engste mit der Existenz des
Photoeffektes verknüpft ist.

Es muss schliesslich betont werden, tlass es keineswegs
bewiesen ist, dass die Verwendung ebener Wellen zur Beschreibung
der Zustände des kontinuierlichen Spektrums erlaubt ist. So

hat man z. B. zu beachten, dass die strengen Wellenfunktionen
für sehr grosse Energien, asymptotisch nicht — e'{l'x) '', sondern
~ exp {i (p *x)/h—i et log z (1 —cos ö) m c/h)} sintl, was für schwere
Kerne eine erhebliche Korrektion geben könnte. Jedenfalls
möchten wir es aber für nicht unplausibel balten, dass ein
logarithmisches Glied auch bei einer strengen Rechnung auftreten
wird; an dem Vorkommen fast verschwindender Resonanznenner
wird sich dabei kaum etwas ändern.

Herrn Prof. Dr. W. Pauli möchte ich für die Anregung zu
dieser Arbeit, sowie für viele Ratschläge bei deren Durchführung-
herzlichst danken.

Zürich, Physikalisches Institut der E. T. II.
Anmerkung bei der Korrektur. Es lässt sich leicht zeigen, dass

diejenige Prozesse, bei welchen tlas Elektron zu einem Zustand
negativer Energie übergeht, im betrachteten Grenzfall nur eine
verschwindend kleine Wahrscheinlichkeit besitzen. Man findet
für diese Prozesse einen Wirkungsquerschnitt

Qv,< a5 (mc2/hv)3Qv,.

') Ist F' 0, so kann ein v'- Quantum emittiert werden ohne Absorption
eines r-Quants; das Elektron geht dabei über zu einem Zustand negativer Energie.



Die diatonische Tonleiter als gesetzmässig-es Tonspektrum
von H. Greinacher.

(16. VI. 33.)

Zusammenfassung. Die natürliche diatonische Tonleiter lässt sich als gesetz-
mässiges Tonspektrum darstellen. Aus der Serienfonnel geht hervor: 1. die
besondere Bedeutung des Grundtons und der Quinte, 2. die Zuordnung konjugierter
Töne. Diese verlangt, dass die vollstän lige Tonleiter aus 8 Tönen besteht.

Schon die alten Griechen kannten den Aufbau der diatonischen,

d. h. 7-stufigen Tonleiter. Pythagoras zeigte, wie man die
IntervallVerhältnisse der 7 Töne mathematisch unter einziger
Benützung des reinen Oktaven- und Quintenintervalls aufbauen
kann. Dieses Pythagoräische System, nach dem die Tonleiter
nur aus grossen ganzen Tönen (9/8) und Pythagoräischen
Halbtönen (256/243) besteht, ist bis ins 16. Jahrhundert auch das praktisch

dominierende gewesen. So bestrickend es durch seinen
konsequenten Aufbau und auch durch seine Anlehnung an die Praxis
der reinen Quintenstimmung ist, so wenig konnte es den
Anforderungen der Modulationsfähigkeit der modernen Musik genügen.
Auch der chromatische Ausbau nach demselben Prinzip des

Quintenzirkels und unter Benützung der enharmonischen
Verwechslung gewisser Töne, d. h. der Zusammenlegung ganz benachbarter

Töne, konnte tlen praktischen Bedürfnissen nicht gerecht
werden. Erst tlie Erfindung der gleichschwebenden Temperatur
durch Werckmeister und ihre Einführung durch J. S. Bach schuf
das für die moderne Musik geeignete Ausdrucksmittel. Auch die
reine oder natürliche Stimmung, die im 16. Jahrhundert durch
Zarlino eingeführt wurtle, ist schon längst durch die temperierte
Stimmung verdrängt. Sie wird aber theoretisch immer von
grundlegender Bedeutung bleiben, da sie uns einzig den gesetzmässigen
Aufbau der diatonischen Tonleiter und ihr Verhältnis zu der
Harmonie und Tonführung in der Musik verstehen lässt.

Die Auswahl der Töne gründet sich hiernach auf die Verwandtschaft

derselben mit dem gewählten Grundton, wobei unter dem
Grade der Verwandtschaft zweier Töne das Vorhandensein mehr
oder weniger zahlreicher gemeinsamer harmonischer Obertöne
verstanden ist. So sind in der Durtonleiter mit c als Grundton
d e g und h einfach Obertöne von c, die durch Division mit 2, 4, 8

in die Oktave ccx hinunterversetzt sind. Auch / und a besitzen
20
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