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Kpistalloptik und Wellenmechanik
von Gregor Wentzel.

(6. II. 33.)

Einleitung.

Die EwALn-BoRN'sche Theorie eler Fortpflanzung des Lichtes
in Kristallen, welche die klassische Theorie der Wechselwirkung
von elektrischen Elementarteilchen mit dem elektromagnetischen
Fehle zur Grunellage hat unel als Modell eles Kristalls ein Raumgitter

von harmonischen Oszillatoren verwendet, liefert bekanntlich

eine sehr schöne unel vollständige Beschreibung der Optik
durchsichtiger Kristalle1). Es soll hier die Frage untersucht
werden, in welchem Umfange man erwarten elarf, dass eine
quantentheoretische Behandlung kristalloptischer Probleme, unter
Zugrundelegung wellenmechanisch begründeter Kristallmodelle, wieder

auf die Formeln der Ewald-Born'sehen Theorie fuhren wird.
Für die Dispersion des Lichtes in verdünnten Medien hat

sich bekanntlich eine derartige Übereinstimmung eler klassischen
und quantentheoretischen Formeln ganz allgemein herausgestellt:
wenn der Brechungsindex n so wenig von 1 abweicht, dass Terme
der Ordnung (n — l)2 vernachlässigt werden können, so wird elie

quantenmechanische Dispersionsformel (von Kramers und
Heisenberg) genau gleichlautend mit einer klassischen Formel, die
einem bestimmten Oszillatormodell entspricht, dessen Konstanten
(Eigenfrequenzen unel Oszillatorstärken) quantenmechanisch
berechenbar sind (aus den Matrizen der Energie und des elektrischen
Moments der Atome)2). Man wird vermuten, dass Ähnliches
innerhalb gewisser Grenzen auch für dichte Medien gilt, d. h. ohne
die einschränkende Voraussetzung | n — 1 | « 1, und es liegt nahe,
diese Vermutung zunächst einmal für den Fall eines unendlich
ausgedehnten, idealen Kristalls zu prüfen.

Die Antwort auf die hier gestellte Frage ist nicht von
vornherein evident, wie die folgende Überlegung zeigen möge. Denken
wir uns (für elen Augenblick) den Brechungsindex einer Lichtwelle

*) Vgl. etwa die zusammenfassende Darstellung von M. Born: Atonitheorie
des festen Zustandes, Teubner 1923, Ziff. 20—24 und 41—44.

-) Diese Übereinstimmung erstreckt sich auch auf den Einfluss der Slrith-
Inngsdärmpfung (anomale Dispersion, Absorption unel Resonanzstreuung'.

(i:l



90 G. Wentzel.

nach Potenzen der Ladungen (e) der mitschwingenden Teilchen
entwickelt, so folgen auf den Kramers-IIeisenberg'schen Tenn,
eler mit e2 geht, Terme mit e*, e6, die man etwa Schritt für
Schritt elurch eine quantenmechanische Störungsrechnung ermitteln

könnte1). Im Kramers-IIeisenberg'schen Term treten als

Resonanzfrequenzen nur die Absorptionsfrequenzen des Mediums
im Grundzustand auf (el. h. die Energiedifferenzen je eines
angeregten Zustaneles gegen den Grundzustand); dagegen können in
elen höheren Tennen (mit e4, wie man aus dem allgemeinen
Formalismus der Störungsrechnung unmittelbar sieht, neue Reso-

nanzfreepienzen auftreten, die elen Energieelifferenzen angeregter
Zustände untereinander entsprechen. Wenn aber eine klassische

Dispersionsformel gelten soll, so darf das nicht sein, denn der
klassische Brechungsinelex weist in allen Entwie'klungsgliedern die
gleichen Resonanzfrequenzen auf. Zur Bestätigung der oben
ausgesprochenen Vermutung muss also unter anderm gezeigt werelen,
dass die Terme mit falschen Resonanznennern verschwinelen.
Dies wird sich nun für den unenellichen Kristall als zutreffend
erweisen, und zwar ohne dass die Entwicklung nach Potenzen
von e2 explizit ausgeführt zu werden brauchte.

Der modellmässig konsequenten wellenmechanischen Behandlung

schie-ken wir im § 1 eine quantentheoretische Untersuchung des

Ewald'sehen Modells voraus: wir denken uns ein Raumgitter aus
harmonischen Oszillatoren2) aufgebaut, welche elektromagnetisch
gekoppelt sind, und untersuchen elie freien Schwingungen dieses
Modells auf Grund der Quantenmechanik. Das Ergebnis kann
bei diesem Moelell nicht, zweifelhaft, sein: da auch das Strahlungs-
felel einem System von harmonisedien Oszillatoren äquivalent ist,
welche mit den materiellen Oszillatoren linear gekoppelt sind,
muss hier die quantentheoretise-he Lösung eler klassischen quantitativ

entsprechen. Wenn wir im folgenelen trotzdem einen Teil
der betreffenden Rechnung vorführen, so geschieht es nur um
die' Stelle aufzuweisen, an der beim Übergang zu einem
allgemeineren Modell eine Näherung einzusetzen hat. Diese Näherung
besteht- nämlich gerade im Fortlassen der Tenne mit „falschen"
Resonanznennern (s. o.); ihr Sinn unel ihre Berechtigung dürften

1) In der relativistischen Quantentheorie ist diese Entwicklung, wegen de>r

bekannten Selbstenergie-Schwierigkeiten, nicht konsequent durchführbar; doch
dürfte sie bei unrelativistischer Rechnung unbedenklich sein, da man in dieser
Näherung elie Selbstenergiekonstanten immer willkürfrei unterdrücken bzw. in
die „Nullpunktsenergie" aufnehmen kann.

-') Dass wir mit linearen statt mit räumlichen (isotropen oder anisotropen)
Oszillatoren rechnen, ist natürlich nur ein äusserlicher Unterschied.
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durch den Vergleich mit dem Oszillator-Modell klarer zutage
treten.

Die bezüglich ihrer optischen Eigenschaften bestuntersuchten
Kristalle sind fast alle ausgeprägte Ionengitter, unel soweit man
durch die Analyse ihrer Röntgen-Interferenzbileler informiert ist,
handelt es sich in der Regel um solche Ladungsverteilungen, in
ilenen die Elcktronenwolken der einzelnen Ionen relativ eng um
gewisse Ladungsschwerpunkte konzentriert und durch fast leere
Zwischenräume voneinander getrennt sind. Idealisiert man nun
elieses Bild eler Ladungsverteilung dahin, dass elie Laelungswolkcn
verschiedener Ionen überhaupt nicht mehr übereinander greifen,
derart, dass jedes Elektron ständig einem und demselben Ion
zugeordnet werden darf, so erhält man da.s Modell des „idealen
Isolators", welches wir der wellenmechanischen Untersuchung im
§ 2 zugrunele legen. Es zeigt sich, dass die ebenen Wellen, die
sich in diesem Modell ausbilden können, genau dieselben sind
wie in einem Ewalel-Born'schen Modell; jedes Ion ist in dieser
Hinsicht äquivalent einer Serie von linearen harmonischen Ersatz-
Oszillatoren, deren Schwingungsrichtungen, Eigcnfrcepienzcn und
Oszillatorstärken sich wellenmcchanisch bestimmen lassen. Falls
aber ein Kristall schon beträchtlich von jenem Idealbiltl abweicht
(etwa dadurch, dass die Dimensionen einzelner Elektronenbahnen
mit elen Gitterkonstanten vergleichbar werden), sei scheint keine
so einfache Möglichkeit mehr zu bestehen, ein Ersatzoszillator-
Modell derart zu konstruieren, dass es die Optik elieses Kristalls
in allen Feinheiten (z. B. einschliesslich eler optischen Aktivität)
zutreffend wiederzugeben vermöchte (s. den Schlussabsatz).

§ I. Harmonische Oszillatoren.

In einem Kristallgitter, dessen Elementar-Parallelepiped
(„Zelle") von den Vektoren a1, a2, a3 aufgespannt wird, denken
wir uns zunächst lauter gleichartige lineare harmonische Oszillatoren

angeordnet (Masse ro, Eigenfrequenz cu). Die Gitter-
punkte

r, lxüi + l2a2 + l3a3

seien die Ruhelagen der Oszillatoren, unel ihre Schwingungsrichtungen

seien alle parallel. Indem wir die Elongation eles P" Oszillators

aus seiner Ruhelage, noch multipliziert mit (moj)'-, als
generalisierte Koordinate ej, einführen, schreibt sich die Hamilton-
funktion der ungekoppelten Oszillatoren:
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Die Gitterschwingungen sollen einer Zyklizitätsbedingung
unterworfen werden: zwei Zellen, eieren Indizes kongruent moel L
sind, sollen sich gleich verhalten:

<lv qi, Pu pt, wenn l- /,- mod L. (2)

Die' Summe nach / (d. h. nach /-,, l2, 13) in (1) kann elann auf die
Werte

- \ < '¦ * \- «
beschränkt werden. Den gesamten Periodizitätsbereich, eler die
Zellen (8) umfasst, nennen wir G.

Aus eler Schrödingergleichung der ungckoppelten Oszillatoren:

(H°«~ B) u 0, E f. w V /«,-:-
2 j, „, o, 1,. ,i) (4)

erhalten wir zunächst solche Eigenfunktionen //(/qc/2. • ¦), welche
sich als Produkte der (reellen, normierten) Eigenfunktionen der
einzelnen Oszillatoren darstellen:

u (n, n2. II un% (q,). (ö)

Wir wollen aber jeweils die zu einem bestimmten Eigenwert E
(d.h. die zu einem festen Wert von n £nt) gehörigen Eigen-
funktionen u einer ttnitären Transformation unterwerfen, welche
einer Zusammensetzung der einzelnen Oszillatorschwingungen zu
ebenen Wellen entspricht.

Der einzige nicht-entartete Zustand ist der Grundzustand
(n Ent 0). Der nächst höhere Energieeigenwert (n Env =1)
ist bereits //-fach entartet. Nennen wir diejenige Eigenfunktion
u(nxn2 • • ¦), welche zu

n, — 1, alle übrigen nk 0,

gehört, abkürzungshalber tt,. so können wir folgendes lineare
Aggregat aller u, bilden:

Uh L-3/*yjulei(-hti). (6)

Dabei muss eler Vektor th, um der Zyklizitätsbedingung zu
genügen, so gewählt werden, elass die Ersetzung von fj durch
r, + ^(Tiai + T2a2 + T3a3) (w0 Ti> T2> T3 ganze Zahlen) nichts
ändert, nämlich:

!» L-1(Ä1b1 + h1bt + Ä,ba), (7)

*) t) ist das PLANCn'sche Wirkungsquiintum dividiert durch 2 n.



Kristalloptik unel Wellenmechanik. 93

wo b, die (mit 2n multiplizierten) reziproken Vektoren des Gitters

sind:

bx^2n (ai[a2a3]) '

Die Endpunkte der Vektoren fA bilden ein „Gitter im f-Raunie";
dabei sind zwei Vektoren, deren Indizes kongruent mod L sind,
völlig äquivalent. Es gibt also gerade L3 nicht-äquivalente
Vektoren th:

~ 2
< "<^ 2

(8)

(sie erfüllen eine Zelle des reziproken Gitters). Durch die lineare
Transformation (6) werden also gerade L3 neue Eigenfunktionen
Uh konstruiert, unel zwar sinel die letzteren wieder orthogonal
und normiert, wie auf Grund der „Interfcrenzformcl"

Ve'(V-f„*ri) L3.ÖAV (9)

(<W — 1, wenn V hx, hX h2, h3' h3, sonst 0)

unmittelbar zu ersehen ist.
Analog verfahren wir mit den Eigenfunktionen der doppelt

angeregten Zustände (n — Enx 2). Sei uu, die zu

n( nv 1 (l t V), alle übrigen nk 0,

gehörige, und n,n die zu >

nl 2, alle übrigen nk 0

gehörige Eigenfunktion u, so bilelen wir:

Uhh, L"3 { V V Un, et (ffct,+VV) + -ß 2t*H e' (f"+f"" r-H (*' -r Ä)

tiAA A L-8(EE%«i(,4'Ii+ri') + /22«u«2t'({»r,M
v72 l J,+'A * '

(/ t n

(10)

Durchlaufen th unel t*. unabhängig elie Gitterpunkte (7) einer
Zelle des reziproken Gitters (8), so erhält man wieder genau die
richtige Anzahl von Eigenfunktionen Uhh,; elenn un, unel uin
sind identische Funktionen, dasselbe gilt von TJhh, und Uh>%, und
es gibt elenmach L3(Ls — l)j2 unabhängige Funktionen un- mit
ir-M' bzw. Uhh, mit h$h', dazu L3 unabhängige uu bzw. £/AA,

im ganzen L3(L3+l)/2. Die Funktionen (10) sind auch wieder
orthogonal und normiert.

Für beliebige Energiequantenzahlen n verallgemeinert sich
die obige unitäre Transformation wie folgt. Wir betrachten alle
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Eigenfunktionen (der ungekoppelten Oszillatoren) 11(11^1.4 • ¦ ¦), für
welche Lnl einen festen Wert n hat. Die Zahl n werde in irgendeiner

Weise additiv in ganze, nicht negative Zahlen Nh zerlegt,
welche eleu Vektoren lh (7), (8) zugeordnet werden:

MM/¦ (11)

Jeder derartigen Zerlegung ordnen wir dann eine Linearkombina-
tion aller zur Zahl n gehörigen Funktionen !t(n1n2 • • •) zu, nämlich:

U(NXN.,---) L
• V In I,n,! n., ¦)-*«(u[n,n.

Ni\N2\---r
V (;il'l.1»2 I - ¦' (12)

elabei ist elie Phase cp folgendermassen zu bilden:

cp ^t, + tit, + *2t, +-t- t2l(

A^-mal

%-mal

A72-mal

t2eA + • • •

w2-inal

(13)

(das heisst: in den n Summanden von cp kommt jedes fA gerade
AA-mal vor und jedes r, gerade w,-mal); P bedeutet eine Permutation

der n Objekte:

IA•¦•• h ts¦ • • • t2 U'-'-h---
Nj-mal N2-mal ATA-mal

(oder auch eine Permutation der 11 Objekte:

hh. ¦•¦¦ti r8 ¦ • • • t2 r, r, • • •);
nj-mal n2-mal n.-mai

P95 ist eine elurch eine solche Permutation aus <p (13) gewonnene
Phase, und das Zeichen £ bedeutet eine Summenbildung über

aite n! Permutationen P (ohne Rücksicht auf Gleichheit oder
Verschiedenheit der permutierten Objekte; unter den zu
summierenden Ausdrücken eiPr befinden sich also jeweils (NX.N2\ ¦ ¦ ¦)

bzw. (nX.n2\ • ¦ ¦) einander gleiche). Die Anzahl der gemäss (12)
herstellbaren Eigenfunktionen U (NXN2 • ¦ ¦) ist die gleiche wie
die der ursprünglichen Eigenfunktionen u(iiin2- ¦ •); elenn die
Möglichkeiten der Zerlegung von n in Summanden Nh und eler

Zuordnung der Nh zu den L3 verschiedenen Gitterpunkten des
t-Raumes entsprechen genau den Möglichkeiten eler Zerlegung von
n in Summanden n, und der Zuordnung der nt zu den L3 ver-
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schiedenen Gitterpunkten des t-Raumes. Schliesslich sind die
Funktionen U(N1N2 ¦ • ¦) auch wiederum orthogonal und normiert.

Wir berechnen nun tlie Matrizen qt im Schema der Zahlen Nh,
unel zwar beispielshalber zunächst für die niedersten Fälle. Sehr
einfach sinel die Kombinationen des Grunelzustandes (n 0,
Eigenfunktion u U ohne Index) mit den einfach angeregten
Zustänelen (n 1, Eigenfunktionen Uh, definiert durch (6)); die
betreffenden Matrixelemente von q, sinel von der Form:

fdqU*qiUh L-'i'yieH%rl')Jdqu*qlul L- • > (f* r,; •y
(da nämlich elie Summenterme /' + / Null geben unei da

jdqn*q,u, — j/fi/2

ist). Mit den Kombinationen der Zustände n 1 und n 2

verhält es sich wie folgt: Die Matrixelemente JdqU*qiUh,hr, (vgl.
(6) unel (10)) sind nur von Null verschieden, wenn entweder h' h
oeler h" h ist; im letzteren Falle ist

fdqUZqiUhl,=
JyV-2 ¦ .jt(Vri) • j/|, wenn h! + h

L-Vi ¦ e
> <f" r*> * "j/J • */2, wenn h' h.

(14)

Allgemein lässt sich das Aussehen der Matrizen qt im Schema
der Zahlen A7A folgenelermassen beschreiben. Wir definieren
zunächst Matrizen (Qh -+ iPJ) bezüglich der Zahlen Nh, welche
jeweils bezüglich aller übrigen Zahlen ATA/ (h' $ h) Einheitsmatrizen
sinel, durch die Matrixtabelle:

Matrix Qh + il\ (bzw. Qsh + iPsh)-.

° 1 2 3 4 .Y-l N

0 0 V 2t) M" 0 0 0
1 0 0 VT1F2 0 0
2 0 0 0 V/2ty73! 0
3 0 0 0 0 V2B-4
4

•

0 0 0 0 0

:

X-l 0 VlTrN
N

:

:

0 0
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Dabei sinel Qh (reell) und Ph (rein imaginär) als llcnnitischc
Matrizen zu denken; aus eler Matrix Qh -+ iPh erhält man also

durch Vertauschung von Spalten und Zeilen elie Matrix Qh —iPh.
Die Matrizen

und

Qn= l\(Q> + iPX + (Qi,-iP„)}

T\=-„.-\(Qk + iPh)-((h-iPX\2 i
sinel dann kanonisch konjugiert, (sie erfüllen elie Vertauschungs-
regeln). Aus den so definierten Matrizen setzt, sich elie Matrix qt
linear zusammen wie folgt:

<?¦ L~Vi • i2 i(Qn + i Pn) e' «» r<> + (Q„ - i P„) e~! <f» »«>]

" h

L-V.' ^ [Qh cos (tA t.) - Pa «in (!» r,)l (15)
A

Die zu g- kanonisch konjugierte Matrix ist:

Vi =* L~*U ¦ Ji S [Qh + i Ph) J <!*r<> - (Qh - i Pa) e~< «» *«>]

A

- LM • V [QÄ sin (fA tl) + pA cos (th t,)]; (16)
A

in eler Tat ist die Gültigkeit, der Vertauschungsrelationen für die

qt und pt auf Grund der Formel (9) leicht zu verifizieren. Die
Formeln (15), (16) stellen diejenige kanonische Transformation
dar, die auch in der klassischen Theorie dazu dient, die Schwingungen

der einzelnen Oszillatoren zu ebenen Wellen zusammenzufassen.

Es sei hier bereits eine Bemerkung eingeschaltet, welche die
spätere Verallgemeinerung eles Gittermodells betrifft. Falls elie

Zahl L, welche die Grösse eles Periodizitätsbereichs G bestimmt,
sehr gross gegen 1 gewählt wird, und falls man sich auf die
Betrachtung niederer Anregungsstufen beschränkt, nämlich solcher
Zustände, deren Energiequantenzahl n« L3 ist, so begeht man
in sämtlichen obigen Formeln nur Fehler der Ortlnung n/h3,
wenn man in der Transformation (12) rechterhand diejenigen
Summenglieder (nxn2 • • •) weglässt, für welche eine oder mehrere
der Zahlen nx Sä 2 sind. Am Beispiel der Eigenfunktionen n 2

ist dies leicht zu sehen: unterdrücken wir rechterhanel in (10)
die einfachen Summen Znne'--- (d.s. die Summenglieder mit
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Wj==2). so sind die Funktionen Uhh, zwar nicht mehr exakt, aber
doch noch näherungsweise (nämlich bis auf Fehler der Ordnung
L~3) orthogonal und normiert; auch der Umstand, dass sie nicht
mehr linear unabhängig sind (L3 sind von den übrigen L3(L3— l)/2
abhängig), schadet nichts, da die relative Anzahl der abhängigen
Funktionen klein ist (nämlich wieder von der Ordnung L-3)1).
Desgleichen bleiben die Matrixelemente (14) richtig bis auf Fehler
der Ordnung L-3. Entsprechendes sieht man nun aber leicht
auch für höhere n ein, sofern nur L3»n ist. Wenn wir also
bestimmte Energieeigenwerte ins Auge fassen und bei festem n
zur Grenze L —*- ac übergehen, so gehen die Fehler, die man
durch Weglassung der mehr als einfach angeregten Oszillatorzustände

(n, ^ 2) in (12) begeht, gegen Null. Damit wird aber
offenbar der Oszillatorcharakter des Modells unwesentlich: ersetzt
man die Funktionen u(nini • • •) (nt •== 0 oder 1) durch andere
(orthogonale untl normierte) Funktionen, welche die gleiche
Translationsgruppe haben, und transformiert man diese gemäss (12),
so wird diese Transformation im Limes L oc wieder unitär
(s* § 2)'

Die Verallgemeinerung der obigen Formeln für den Fall, dass
mehrere Oszillatorsorten vorhanden sind, macht keine Schwierigkeiten.

Numerieren wir die Oszillatorsorten durch einen Index s

[Masse ms, Eigenfrequenz cus, Ruhelagen rs, rso + t; (s. (1)),
Elongationen (mscjo^)-%qsl (in gewissen Schwingungsrichtungen c,)],
so lautet jetzt die Hamiltonfunktion der ungekoppelten Oszillatoren

:

H°-=|N>.,V(rä+ <?;,) (17)

und die Energieeigenwerte und die Eigenfunktionen sind von der
Form:

E= BVwsV(nsi+ -1), u nus, wo us=nu (qsl). (18)
e l " '

Die zu einem Eigenwert, E gehörigen Funktionen u sind
gekennzeichnet durch gemeinsame Werte der Zahlen ns Ensl. Die

zu einem bestimmten Zahlwert ns gehörenden Funktionen u,
setzen wir nun, gemäss der Transformation (12), linear zu neuen
Funktionen (Us) zusammen, und deren Produkte (17 Us) dienen

uns dann als neue Eigenfunktionen aller Oszillatoren. Wir haben

x) Man könnte die überzähligen Funktionen Vhh' dadurch ausschalten,
dass man die Vektoren fA, fA' anstatt über alle (L3) nur über L3- 1 Gitterpunkte
in der Zelle des reziproken Gitters laufen Hesse.

7
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also jetzt jede Zahl ns in ganze, nicht negative Zahlen Nsh additiv
zu zerlegen und diese Zahlen Nsh den Gitterpunkten h des f-Raumes
(7) zuzuordnen:

nsr=S\nsl ^Nsh. (19)
i h

Indem wir die Produktbildung über die Oszillatorsorten s

ausgeführt denken, können wir die transformierten Eigenfunktionen
(IJUA so schreiben:1)

8

zr^ Vp
(20)

wo:
(ps M.,, + ti^st, H h *2r,- + h * *

A, ^mal As2-mal

r.q!A,+ r»it»,+ •• * * + *,ih + +
??sl-mal «s2-mal

(21)

Ferner bilden wir für jedes Indexpaar s, h eine Matrix Qsh J- iPsh,
deren Matrixtabelle bezüglich der Zahl Nsh mit der oben (S. 95)
angegebenen Tabelle (für Qh ¦+ iPh) übereinstimmt, und die
bezüglich aller übrigen Zahlen Ng,h, (s' ± s oeler h' ± /,) Einheitsmatrix

ist; Qsh — iPsh ist, die transponierte Matrix. Durch diese
Matrizen drücken sich die Matrizen qsl und psl linear aus:

qsl LM • 1 V [(Qah + ipsh) e> («»r.,)+ (Qsh - i Psh) e~< & W] (22)
* h

psl L-3/2 • -^2 [(Qsh + i Psh) ei ^ **i) - (Qsh -iPsX) erühtai]. (23)
L l h

Geht man bei festgehaltenen Zahlen ns zur Grenze L —>- oo
über, so kann man in (20) rechterhand alle Summenglieder, für
welche bezüglich irgendeiner Gitterzelle l

y>nsl dl 2
s

ist, ohne Fehler unterdrücken; diejenigen Zustände, in denen
irgendeine Zelle l mehr als einfach angeregt ist (in einem oder in
mehreren Oszillatoren s), spielen also im Limes L= oo keine Rolle.

l) Die Schreibweise der Funktionsargumente A"sA} bzw. 1

nsl J soll andeuten:
die Funktion U bzw. u hängt von der (lesamllieit der Parameter -VSÄ(Vn, yn,
bzw. nsl(nn, ra12 ab.
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Nach diesen Vorbereitungen können wir dazu übergehen, die
Oszillatoren durch das elektromagnetische Feld zu koppeln. Den
Feldgrössen wird man natürlich die gleiche Zyklizitätsbedingung
auferlegen wie dem Gitter, sodass in ihren Fourierzerlegungen
ebenfalls nur Wellenzahlvektoren t der Art (7) vorkommen (wobei
aber die Indizes h( jetzt nicht auf den Bereich (8) zu beschränken
sind). In bekannter Weise trennen wir das eigentliche
„Strahlungsfeld", das nur aus transversalen Lichtwellen besteht, ab
und quantisieren nur dieses (im Sinne der Dirac'schen Theorie),
während die durch das restliche Feld bewirkte Kopplung der
Oszillatoren durch elektrostatische Dipol-Wechselwirkungen dargestellt

werden soll, deren Anteil an der Hamiltonfunktion von der
Form ist:

flW -5-22«..rt'«,,^. (24)

Bezeichnen wir die Schwingungsrichtung der sten Oszillatorsorte
durch einen Einheitsvektor cs, und nennen wir ihre „Oszillatorstärke":

9

Ist
ms

so ist das elektrische Dipolmoment eines Oszillators (s, l) gleich
cs- es (macos)-y* qsl Cs • (fs/cos)^qsl. In (24) ist jetzt unter
<x*i, it q>i %,'r zu verstehen die potentielle Energie des Dipols (s, l)
im Felde des Dipols (s', V) und der in allen anderen Periodizi-
tätsbereichen zu (s', V) kongruent liegenden Dipole. Wenn also

¥(x) das Potential darstellt, das am Orte r hervorgerufen wird
elurch eine unendliche Schar von Einheitspolen, welche sich in
elen Eckpunkten des „Übergitters'* xx • E<xx -+ r2 ¦ La2 -+ r3 ¦ La3
(T1T2T3 ganze Zahlen) befinden1), so werden die Koeffizienten
oc in (24):

«.,,.',' ß- —-Y/j («. grads) (es, grads,) ¥ (xsl - tV,). (25)

') Damit die Reihe für 1* konvergiert, überlagert man dem übergitter
zweckmässig noch eine homogene Raumladung von der Dichte

A <F 1

-4m ~
//'(^[OjOj])

'

Die Funktion tf'(r) ist dann diejenige Lösung dieser Poisson-Gleichung, welche
im Übergitter periodisch ist und im Nullpunkt unendlich wird wie | r |_1 (vgl.
etwa M. Born, 1. c, S. 723 ff.). — Die unendlichen Selbstpotentiale der
Punktladungen sollen im folgenden immer abgezogen sein, ohne dass dies besonders
vermerkt ist.



100 G. Wentzel.

¦ Die Hamiltonfunktion des Gesamtsystems (Oszillatoren plus
Feld) setzt sich dann folgendermassen zusammen:

H fl0sz + flp°' + flstr + fl' +- fl". (26)

fl092 und flPo1 sind durch (17) und (24) erklärt; HHl bedeutet die
Hamiltonfunktion des Strahlungsfeldes im ladungsfreien Raum,
deren nähere Beschreibung sich hier erübrigt; H' + fl" endlich
stellt die Kopplung zwischen Oszillatoren und Strahlungsfeld dar:
ist 21 (r) das (quellenfreie) Vektorpotential der Lichtwellen am
Orte r, so lauten diese Kopplnngsterme, unter Benutzung der
obigen Bezeichnungen:

A' - 2 (f. «o * s p> < (.e»9i (*.»)) • (27)

H" i2/S2^2l(^))2* (28)
8 l

Der Wert von 21 ist hier jeweils am Ort der Ruhelage eines Oszillators

genommen, in der Annahme, dass die Elongationen sehr
klein gegen die Wellenlängen sind (Vernachlässigung der magnetischen

Lorentz-Kraft).
Denken wir uns nun fl (26) als Matrix dargestellt, und zwar

bezüglich der Oszillator-Variablen im Schema der oben
definierten Zahlen ATsA (mit Hilfe von (22), (23)), und bezüglich der
Variablen des Strahlungsfekles etwa im Schema der „Photonenzahlen"

der DiRAc'schen Strahlungstheorie, so führt die Frage
nach dem Brechungsindex einer ebenen Welle auf das
Hauptachsenproblem dieser Matrix fl. Die kanonische Transformation
(22), (23) bewirkt eine Separation der l'ariablen: eine Oszillatorwelle

fA ist nur mit solchen Strahlungskomponenten („Photonensorten")

gekoppelt, deren \Yellenzahlvektoren t sich von ± th

um axbi -+ a2b2 -+- a3b3 unterscheiden, wo oxa2a3 ganze Zahlen
sind1). Das Hauptachsenproblem reduziert sich damit auf ein
solches, in elem nur noch zwei ebene Gitterwellen (mit tA -f- l
und tn — t) auftreten. Die Lösung dieses reduzierten Problems
lässt sich, da es sich ja formal wiederum um ein System linear
gekoppelter harmonischer Oszillatoren handelt, aus der Lösung
des entsprechenden klassischen Problems (Hauptachsenproblem

1) Im Term //' verifiziert man dies unmittelbar, indem man psl aus (23)
einsetzt und die Summation über die Gitterpunkte / mit Hilfe von (9) ausführt.
Ebenso sieht man, dass durch H" nur Lichtwellen der genannten Art miteinander
gekoppelt werden. Für den Term //Pol erhält man durch Einsetzen von (22)
in (25) und (24) zunächst eine Doppelsumme nach h, V, doch sind die Summenglieder

mit fA4= -r tA' Null, wie man durch Fourieranalyse der periodischen Funktion

V{tsl-t/,') in (25) (vgl. Anm. '), S. 99) leicht" beweist.
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der quadratischen Form fl) unmittelbar konstruieren: die Eigenwerte

der Matrix fl sind (von einer unendlichen „Nullpunktsenergie'*

abgesehen) lineare ganzzahlige Aggregate der klassischen
Normalschwingungsfrequenzen (vk) mal B. Von diesen klassischen
Frequenzen vk interessiert vor allem diejenige (v0), elie im Limes
verschwindender Strahlungskopplung (/s —>¦ 0) in c\t\
übergeht1) ; elie Phasengeschwindigkeit der betreffenden ebenen Welle
definiert nämlich elen klassischen Brechungsindex:

^o c

| l | n
"

Der quantentheoretische Sinn dieser Phasengeschwindigkeit
erhellt daraus, dass die Matrix des Vektorpotentials 21 der
Lichtwellen, in demjenigen Schema, welches fl diagonal macht,
Matrixelemente der Form

const .e±iltt)±i"t
aufweist, wie ja überhaupt alle klassischen Formeln, wenn man
sie als Matrixgleichungen auffasst, ihre Gültigkeit behalten müssen.
Die vorstehende Definitionsgleichung des Brechungsindex n ist
deshalb auch in der Quantentheorie sinnvoll; im Falle des
Oszillatormodells führt sie trivialerweise auf die klassischen Dispersions-
formeln.

§ 2. Idealer Isolator.

Der Kristall sei jetzt aus Kernen und Elektronen aufgebaut,
eieren statische Wechselwirkung Coulomb'scher Art ist. Dabei
soll aber, wie in der Einleitung schon gesagt wurde, in diesem
Abschnitt (§ 2) die einschränkende Annahme gemacht werden,
dass der Kristall aus annähernel abgeschlossenen Einzelsystemen
(„Ionen") zusammengesetzt ist, das soll heissen: die Schrödinger-
schen Ladungsdichten der zu einem Ion gehörigen Teilchen sollen
so stark nach aussen abklingen, elass elie Ladungswolken verschiedener

Ionen nicht, merklich übereinandergreifen2). Ausserdem
soll die lineare Ausdehnung der Ionen so klein gegen ihre Abstände
sein, dass in den statischen Wechselwirkungen verschiedener
Ionen höchstens noch elie Dipolkräfte berücksichtigt zu werden
brauchen.

1) Die übrigen vk gehen in dieser Grenze in tos oder in

c\t + o^! + a2b2 + <T3b3 [

über, c bedeutet die Vakuum-Lichtgeschwindigkeit.
2) Dann kann man bekanntlich die Entartung, die durch die Möglichkeit

des Elektronen-Austausches zwischen verschiedenen Ionen bedingt ist, ausser
Acht lassen.
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Wir betrachten zunächst die Hamiltonfunktion der Materie
allein, wozu wir auch die potentielle Energie der statischen
(Coulomb'schen) Wechselwirkung rechnen, die hier, der Zyklizität«-
forderuDg entsprechend, die Form hat:

i22e*e*'y/(r*-r*')

(die Potentialfunktion W hat dieselbe Bedeutung wie in § 1.
s. S. 99; die Summen nach k, k' sind über alle Elementarteilchen
zu erstrecken, die im Periodizitätsbereich G(3) liegen). Aus der
Hamiltonfunktion der Materie spalten wir weiterhin solche
Anteile ab, die in elen Koordinaten der verschiedenen „Ionen" separiert

sinel:
Ho 2fl/. (29)

./

Zu Hj rechnen wir, ausser der kinetischen und der inneren potentiellen

Energie des Ions J1), das Potential des Ions J im Felde
eines Gitters von elektrischen Polen, die dadurch entstehen, dass

man jedes andere Ion (J') durch seine resultierende Ladung im
elektrischen Schwerpunkt2) (ik, •== v.r) ersetzt:

^=2{-2r'!-M'+i^ (30)
k y k k l; 1

(inj) (inj) (ausserhalb J)

Wir benutzen diese Operatoren Hj zur Konstruktion der Eigenwerte

und Eigenfunktionen der Schrödingergleichungen:

(HJ-EJ)uJ 0,

aus denen sich dann die Eigenwerte und Eigenfunktionen der
Gleichung

(fl» - E„) un - 0 (31)

als Summen bzw. als Produkte zusammensetzen. Zur
Vereinfachung denken wir uns die Eigenfunktionen .<„ reell, sowie
aufeinander orthogonal und normiert. Den tiefsten Eigenwert von
fl° nehmen wir als nicht-entartet an: er sei E, und die zugehörige
Eigenfunktion sei u TJ (ohne Index). Die nächst höheren Eigenwerte

(EX entsprechen Zuständen, in denen ein Ion angeregt ist;
sie sind mindestens L3-fach entartet; tlie zugehörigen Eigenfunktionen

nennen wir usl, wobei der Index / auf die Zelle verweist.

*) Dazu gesellt sich automatisch die statische Wechselwirkung der in
verschiedenen Periodizitätsbereichen kongruent liegenden Ionen (mit

tj'-tj /.(r1ol - T,a, + T3a3)).

2) Gemeint ist der Ladungsschwerpunkt des Ions im Grtmdzustcmd.
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in welcher das angeregte Ion liegt, w'ährend der Index s die
(einfach) angeregten Zustände aller Ionen einer Zelle irgendwie
durchnumeriert1). Indem wir den Ladungsschwerpunkt, (tj) desjenigen
Ions, das im Zustand (s, l) angeregt ist, nunmehr mit ts! bezeichnen
(rs. rs0 + vt, vgl. (1)), bilden wir aus den Eigenfunktionen usl
die folgenden linearen Aggregate:

flsA L-%2>sl • ei<W, (32)
t

wo der Wellenzahlvektor th die Mannigfaltigkeit (7), (8) durchläuft;

die L3 neuen Funktionen Ush sind wieder orthogonal unel
normiert. — Von den Zuständen, in denen mehrere Ionen angeregt

sind, sollen vorerst nur diejenigen in Betracht gezogen werden,
bei welchen die angeregten Ionen in verschiedenen Zellen liegen:
es soll also jede einzelne Zelle höchstens einfach angeregt sein.
Die betreffenden Eigenfunktionen unterscheiden wir wie folgt:
einer Zelle /, die im Zustanel s angeregt ist, ordnen wir die Quantenzahlen

nst 1 nsn — 0 für s' $ s

zu, während für unangeregte Zellen / alle nsl 0 gesetzt werden:
die Angabe aller Quantenzahlen {nsl\2) kennzeichnet uns dann
den Zustand des ganzen Kristalls, und wir können die zugehörige

Eigenfunktion un (Produkt der uj) demgcmäss u ({M}) schreiben.

Der betreffende Eigenwert von fl° lautet:

F ({ns!}) E + X) 2 tosns, ns Y^nsl; (33)
8 /

dabei sind die „Frequenzen" w, durch die Energiedifferenzen der
einfach angeregten Zustände gegen den Grundzustand definiert:

Es -E

Schliesslich kombinieren wir die zum gleichen Eigenwert (33)
gehörigen Eigenfunktionen w({nsJ) linear gemäss den Formeln
(19), (20), (21), wobei aber jetzt definitionsgemäss nur Funktionen

«({M}) mit 2nH^l auftreten. Die so gebildeten Funktionen

f/({AsA}) sind zwar nicht exakt orthogonal und normiert;
wohl aber sind sie es — nach den Ausführungen im § 1 (s. S. 97
und 98) — im Limes L oo, und wir werden sie sogar wie

1) Im kontinuierlichen Energiespektrum eines Ions ist s ein kontinuierlich
variabler Parameter.

2) S. Anm. S. 98.
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ein vollständiges Orthogonalsystem behandeln können, sofern wir
den Grenzfall L oo im Auge behalten. In dieser Grenze spielen
nämlich die übrigen, bisher noch nicht betrachteten Gitterzustände,
d. s. diejenigen, in denen mehrere Ionen in einer Zelle angeregt
sind1), keine Rolle, weil ihre relative Anzahl — verglichen mit den
Zuständen £nsl *^ 1 von gleicher Energie — in eler Grenze

L—?- cc gegen Null geht.
Für das Folgende benötigen wir noch die Darstellung des

elektrischen Dipolmoments eines Tons als Matrix im Schema der
Zahlen A,A. Bedeutet %k die (vektorielle) Elongatiem einer Punkt-
Ia.dung vom Ladungsschwerpunkt tles betreffenden (unangeregten)
Ions (rfc — xk —tu-) so schreiben wir das Dipolmoment des Ions J:

i>j=^ekxk. (35)
(in J)

Betrachten wir zuerst die Kombinationen des Grundzustandes
mit den einfach angeregten Zuständen, deren Eigenfunktionen
durch (32) dargestellt sind, so kommen elie betreffenden
Matrixelemente offenbar auf die Form:

[dq U* bj Ush L-Vi V i,sei (fA t„),
8

(7.11 J)

wo der Index s über die angeregten Zustände eles Ions J läuft
und l dessen Zelle angibt (rs[ tj): bs ist das Matrixelement
von bj (35), das dem Übergang des Ions J aus seinem
Grundzustand in den Zustand s entspricht:

bs f dqubjUH; (36)

dieses Matrixelement ist unabhängig von der Nummer / der Zelle,
in der J liegt. — Für die höheren Kombinationen unterscheiden
sich die Rechnungen nicht, wesentlich von denjenigen, die im § 1

zur Formel (15) bzw. (221 führten. Wir können sogar die Formel
(22) unmittelbar zur Darstellung der Matrix bj im Schema {AsA}
verwenden; es ergibt sich :

^ l/-f--SM.«. (37)

(zu J)

]) Man könnte sie den Oszillator-Zuständen

»s,- **= 1. >h2l 1. \l 1. »si 0 für s4=f!, s2. sg

entsprechen lassen; doch würde dies eine unnötige Komplikation bedeuten. Man
kann zwar allen Eigenwerten von H" (29) solche von H"" (17) zuordnen, aber
nicht umgekehrt: die Oszillator-Zustände mit nsl > 2 haben hier kein Gegenstück.
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wo bs die Beeleutung (36) hat und wo für q3l die Matrix (22)
einzusetzen ist; dabei ist l wieder die Zellennummer von J, und
Qsh + iP*h bedeutet wiederum die Matrix, deren Tabelle bezüglich

der Zahl AsA auf S. 95 angegeben ist und die bezüglich der
übrigen Zahlen Ns,h, (s' ± s oder h' 4: h) Einheitsmatrix ist, wäh-
renel Qsh — iP.,A die transponierte Matrix bedeutet. Die Formel
(37) gilt umso genauer, je grösser L ist, und kann im Limes L =¦= 00
als streng gültig angesehen werelen. Wesentlich ist an diesem
Ergebnis der Umstand, dass in (37) nur die Vektoren bs vorkommen,

d. h. nur diejenigen Matrixelemente des elektrischen
Moments, welche den Übergängen eines Ions aus seinem
Grundzustand in irgendwelche angeregte Zustände entsprechen, während
die Kombinationen der angeregten Zustände eines Ions
untereinander sich in der Grenze L 00 nicht mehr äussern1). Alle
vorkommenden Vektoren bs sind also je einer Absorptionslinie
des betreffenden Ions (im Gitterpotential) zugeordnet; führen wir
noch in üblicher Weise die „Oszillatorstärken" der Absorptionslinien

ein durch die Definitionsgleichungen:

/,. Aw.,|bs|2 (38)
B

(mit (34) und (36)), und bezeichnen wir den Einheitsvektor in
Richtung b, mit cs:

e.=TFr. (39)

so können wir schliesslich an Stelle von (37) auch schreiben:

», 2(^)M.. (40)

(zu J)

Von der Hamiltonfunktion der Materie (s. o.) haben wir nun
noch denjenigen Teil zu berücksichtigen, der nach der Abspaltung

von fl°(29), (30) übrig bleibt; dieser Rest entspricht, offenbar
Dipol- und höheren Multipolkräften zwischen verschiedenen
Ionen:

flMat __ H0 1 V V
J J'

(J -t J')

•22«* ek' {* (t. - «*-) - »" (r* - >v-) - S" (*j - *k)}-
k V

(in J) (in J')

1) Sie sind durch die ,,AuswahIr,egeln" der Oszillatoren (s, h) verboten.
Damit fallen im Limes L >- oo auch die in der Einleitung erwähnten
„falschen Resonanznenner" fort.
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Hiervon berücksichtigen wir, gemäss der am Anfang dieses
Paragraphen formulierten Voraussetzung, nur die Dipolkräfte:

jpiat _ Ho yz #poi const

+ I22(^ g™dj) Q>j> &**r) * (cj - CJ-) • (41)
j j'

Beachtet man nun (33) und (40), und vergleicht mit (18) unel
(24), (25), so ist evident, dass die Hamiltonfunktion der Alaterie

flTMat H0 _j_ flPol (42)

als Matrix im Schema der Zahlen Nsh dargestellt, abgesehen von
einer additiven Konstanten (Einheitsmatrix), die gleiche Gestalt hat
icie im Falle des Oszillatormodells (§ l)1), freilieh nur im Limes
L= oo. Ein nebensächlicher Unterschied liegt lediglich darin,
dass jetzt in flPo1 (24) in der Doppelsumme nach s, s' diejenigen
Indexpaare s, s' wegfallen, in denen s und s' angeregten
Zuständen desselben Ions entsprechen (Beschränkung auf rs( + r,.,.).

Die Kopplung der Alaterie mit dem Strahlungsfelde wird
dargestellt durch die Operatoren:

H^-S^^W-fgrad,), (43)

Wir diskutieren zunächst den Fall, dass alle in Betracht kommenden

Lichtwellenlängen sehr gross gegen die linearen Dimensionen
der Ionen sind, so dass wir für jedes einzelne Ion nur die Operatoren

der „Dipolstrahlung" zu berücksichtigen brauchen; dies
läuft bekanntlich darauf hinan«, elass man den Wert des
Vektorpotentials 2t in (43) und (44) jeweils am Ort des zugehörigen
elektrischen Schwerpunktes (d. h. bei ik tj anstatt bei vk + %X

nehmen kann. Auf Grund der wohlbekannten Relation („Sum-
menregel für die Oszillatorstärken"):

^_» (>.c)(>.0_ («..H«.o
V mk B— (cc) ^" (cc)
(inj) (zu J) (zuJ)

(wo c und c' zwei beliebige konstante Vektoren sind) geht dann

") Dort stand //Osz an Stelle von 11°.
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H" (AA) unmittelbar in den Ausdruck (28) des § 1 über. Beachtet
man ferner, dass der Operator

4Y\^ ek p d

2— -2 • i¦7- mk] y mk 1 dxk
(in J) (in J)

zur a;-Komponente von bj (35) bezw. (40) kanonisch konjugiert ist,
so ist leicht zu sehen (ebenfalls auf Grund der Relation (45)), dass
die Matrix

2 ~ T grad*) 2 (/>»)* c« Vsi
\ k mk I j s

(in J) (zu J)

sein muss, wo psl die zu qsl kanonisch konjugierte Matrix (23)
bedeutet; damit geht aber auch fl' (43) in elen Ausdruck (27)
des § 1 über.

Damit ist gezeigt, elass, bei Beschränkung auf Dipolstrahlungs-
Terme, die Hamiltonfunktion des Gesamtsystems

H fl-™ 4- fl«"- + fl' + fl", (46)

im Schema der Zahlen N,A (und der „Photonenzahlen" des Strah-
lungsfekles) dargestellt, im Limes L 00 mit der Hamiltonfunktion

eines „Ersatzoszillatoren"-Modells (26) identisch wird: man
braucht nur jedes „Ion" durch eine Serie von harmonischen
Oszillatoren am Ort des betreffenden Ladungsschwerpunktes zu
ersetzen, und zwar benötigt man für jede Absorptionslinie des
Ions (vom Grundzustande aus, bei aufgehobenen Entartungen) je
einen linearen Oszillator, dessen Eigenfrequenz cos durch (34),
dessen Schwingungsrichtung cs durch (39) und dessen Oszillatorstärke

fs e2/ms durch (38) bestimmt ist1). Die Lösung des

Eigenwertproblems von fl (46) unterscheidet sich also nicht von
eler im § 1 skizzierten Lösung2): man kann die Formeln der klassischen

Theorie als Matrixgleiclmngen einfach übernehmen;
insbesondere ergibt sich die klassische Formel für den Brechungsindex,
mit den Materialkonstanten (34), (38) und (39).

Dieser Schluss wird aber offenbar hinfällig, wenn die
Beschränkung auf die Dipolstrahlungsterme der einzelnen Ionen
nicht mehr erlaubt ist (wie z. B. wenn die magnetische Lorentz-
Kraft auf tlie bewegten Elektronen eine Rolle spielt). Nimmt man
nämlich in den Kopplungs-Operatoren fl' (43) und fl" (44) das

a) Dem kontinuierlichen Energiespektrum entspricht eine unendliche Schar
von Oszillatoren mit infinitesimalen Oszillatorstärken.

2) Abgesehen von dem oben erwähnten Umstand, dass die Ersatzoszillatoren

eines und desselben Ions nicht miteinander statisch zu koppeln sind.
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Vektorpotential 91 ohne Vernachlässigung an den Orten r;, xk + Xk

(anstatt bei xk), so treten die bekannten „retardierten"* Matrizen
auf, die sich nicht mehr elurch die Er.satzoszillator-Daten (34),
(38), (39) allein darstellen lassen, sofern man nicht einschränkende
Voraussetzungen bezüglich der Ionenmodelle machen will. Ausser-
elem ist dann die Kopplung zwischen materiellen unel Strahlungs-
oszillatoren nicht mehr linear. In diesem Falle ist also das klassische

Biltl für eine quantitative Beschreibung nicht mehr ohne
weiteres brauchbar.

Was speziell die optische Aktivität (Drehung der Polarisationsebene)

anbelangt, so wird derjenige Teil des Effektes, den man
schon bei Beschränkung auf tlie Dipolstrahhmg.sterme eler Ionen
erhält, bei hinreichend langwelligem Licht vollkommen der klassischen

Oszillator-Theorie entsprechen müssen, und zwar wieder
mit den Oszillator-Daten (34), (38) und (39); es ist dies elerjenige
Drehungseffekt, der durch die asymmetrische Anordnung der Ionen
im Gitter hervorgerufen wird. Dagegen ist das Drehvermögen des
einzelnen Ions oder Moleküls1) gerade durch die Matrixelemente
der Quadrupolstrahlung eles Moleküls bestimmt, also nicht aus
dem gleichen Ersatzmodell berechenbar wie der Brechungsindex.
Das Oszillatormodell ist zur korrespondenzmässigen Wiedergabe
der Phasenbeziehungen eben nur für solche Teilchenpaare geeignet,
die verschiedenen Ionen angehören, nicht aber für Teilchenpaare
eines und desselben Ions.

Sehlussbemerkungen.

Ein Teil der oben gewonnenen Aussagen wird zweifellos auch
für solche Kristalle noch Gültigkeit beanspruchen dürfen, die
von dem im § 2 behandelten Idealbild mehr oder minder stark
abweichen. Nötigenfalls wird man dann unter den „Ionen"
grössere Einheiten verstehen müssen; falls Austauschkräfte und
höhere als Dipolkräfte auch über tlie Grenzen der Zellen hinaus
wirksam sind, wird man sogar zweckmässig den Kristall in (parallel-
epipedische) Bereiche (P) aufteilen, die mehrere Zellen umfassen,
diese nach Art der „Ionen" in § 2 behandeln und schliesslich
tlie Gitterperiodizität durch eine Mittelung wiederherstellen. Wenn
es möglich ist, diese Bereiche P so gross zu wählen, dass die
zwischen fremden Bereichen P noch vorhandenen Austausch- und
Quadrupolkräfte nach Art von Oberflächenkräften vernachlässigbar

sind, während P andererseits noch sehr klein gegen den Wellen-

3) Vgl. M. Born und P. Jordan, Elementare Quantenmechanik, Springer
1930, § 47; L. Rosenfeld, Zeitschr. f. Phys. 52, 161, 1928.
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längenkubus bleibt, so wird sich für den Brechungsindex wieder
eine klassische Formel ergeben.

Allerdings bedeutet dann die Beschränkung auf Dipolstrah-
lungsterme (der einzelnen Bereiche P) unter Umständen eine
erheblich stärkere Vernachlässigung als im § 2. Wenn beispielsweise

die Schrödinger'sehe Ladungsdichte einzelner Elektronen
sich über Gebiete von der Grössenordnung einer Gitterzelle
erstreckt, so werden Längen von der Grössenordnung der Gitter-
konstanten, bzw. tlie entsprechenden Phasendifferenzen, in den
Dipolstrahhmgsteriiien nicht zur Geltung kommen; infolgedessen
werden aber die Orte der Ersatzoszillatoren entsprechend
Undefiniert, d. h. eine genauere Festlegung derselben in einer Gitterzelle

würde nicht mehr sinnvoll sein, und damit entfällt offenbar

die Möglichkeit, das Drehvermögen (auch tlen durch die
Gitterstruktur bedingten Teileffekt) aus dem Oszillatormodell
abzuleiten. Dagegen sind die Brechungsindizes (auch für
doppeltbrechende Kristalle) viel weniger empfindlich gegen Verrückungen
der Oszillatoren in einer Zelle, und man darf daher wohl erwarten,
dass die Erscheinungen der einfachen und Doppelbrechung in
durchsichtigen Kristallen, auch wenn diese dem Bilde des „idealen
Isolators" nicht mehr sehr nahekommen, durch ein einfaches
Oszillatormodell noch einigermassen quantitativ wiedergegeben
werden.
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