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Kristalloptik und Wellenmechanik
von Gregor Wentzel.
(6. 11. 33.)

Einleitung.

e Ewarp-Borx’sche Theorie der Fortpflanzung des Lichtes
in Kristallen, welche die klassische Theorie der Wechselwirkung
von elektrischen Elementarteilchen mit dem elektromagnetischen
Felde zur Grundlage hat und als Modell des Kristalls ein Raum-
gitter von harmonischen Oszillatoren verwendet, liefert bekannt-
lich eme sehr schone und vollstindige Beschreibung der Optik
durchsichtiger Kristalle!). Es soll hier die Frage untersucht
werden, in welchem Umfange man erwarten darf, dass eine quanten-
theoretische Behandlung kristalloptischer Probleme, unter Zu-
grundelegung wellenmechanisch begriindeter Kristallmodelle, wie-
der auf die Formeln der Ewald-Born’schen Theorie fithren wird.

Fiir die Dispersion des lLichtes in wverdiinnten Medien hat
sich bekanntlich eine derartige Ubereinstimmung der klassischen
und quantentheoretischen Formeln ganz allgemein herausgestellt:
wenn der Brechungsindex m so wenig von 1 abweicht, dass Terme
der Ordnung (n — 1)? vernachléssigt werden konnen, so wird die
quantenmechanische Dispersionstormel (von Kramgers und Hger-
SENBERG) genau gleichlautend mit einer klassischen Formel, die
einem bestimmten Oszillatormodell entspricht, dessen Konstanten
(Eigenfrequenzen und Oszillatorstarken) quantenmechanisch be-
rechenbar sind (aus den Matrizen der Energie und des elektrischen
Moments der Atome)?). Man wird vermuten, dass Ahnliches
mnerhalb gewisser Grenzen auch fir dichte Medien gilt, d. h. ohne
die einschréinkende Voraussetzung | n — 1| 1, und es liegt nahe,
diese Vermutung zunichst einmal fiir den Fall eines wunendlich
ausgedehnten, idealen Kristalls zu priifen.

Die Antwort auf die hier gestellte Frage ist nicht von vorn-
herein evident, wie die folgende Uberlegung zeigen moge. Denken
wir uns (fiir den Augenblick) den Brechungsindex einer Lichtwelle

1) Vgl. etwa die zusammenfassende Darstellung von M. Bor~: Atomtheorie
des festen Zustandes, Teubner 1923, Ziff. 20—24 und 41—44.
%) Diese Ubereinstimmung erstreckt sich auch auf den Einfluss der Strah-

lungsdimpfung (anomale Dispersion, Absorption und Resonanzstreuung).
Ga
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nach Potenzen der Ladungen (e) der mitschwingenden Teilehen
entwickelt, so folgen auf den Kramers-Ileisenberg’schen Term,
der mit e? geht, Terme mut e, b, ..., die man etwa Schritt fiir
Schritt durch eine quantenmechanische Storungsrechnung ermit-
teln konntel!). Im Kramers-Heisenberg’schen Term treten als
Resonanzfrequenzen nur die Absorptionsfrequenzen des Mediums
im Grundzustand auf (d.h. die Energiedifferenzen je eines ange-
regten Zustandes gegen den Grundzustand); dagegen konnen in
den hoheren Termen (mit e?, ...), wie man aus dem allgemeinen
Formalismus der Storungsrechnung unmittelbar sieht, neue Reso-
nanzfrequenzen auftreten, die den Energiedifferenzen angeregter
Zustinde untereinander entsprechen. Wenn aber eine klassische
Dispersionsformel gelten soll, so darf das nicht sein, denn der
klassische Brechungsindex weist in allen Entwicklungsgliedern die
gleichen Resonanzfrequenzen auf. Zur Bestidtigung der oben aus-
gesprochenen Vermutung muss also unter anderm gezeigt werden,
dass die Terme mit falschen Resonanznennern verschwinden.
Dies wird sich nun fir den unendlichen Kristall als zutreffend
erweisen, und zwar ohne dass die Entwicklung nach Potenzen
von e? explizit ausgetithrt zu werden brauchte.

Der modellmissig konsequenten wellenmechanischen Behand-
lung schicken wir im § 1 eine quanteﬂtheoretwthe Untersuchung des
Ewald’schen Modells voraus: wir denken uns ein Raumgitter aus
harmonischen Oszillatoren2) aufgebaut, welche elektromagnetisch
gekoppelt sind, und untersuchen die freilen Schwingungen dieses
Modells auf Grund der Quantenmechanik. Das Ergebnis kann
bei diesem Modell nicht zweifelhaft sein: da auch das Strahlungs-
feld einem System von harmonischen Oszillatoren dquivalent ist,
welche mit den materiellen Oszillatoren linear gekoppelt sind,
muss hier die quantentheoretische Losung der klassischen quanti-
tativ entsprechen. Wenn wir 1im folgenden trotzdem einen Teil
der betreffenden Rechnung vorfithren, so geschieht es nur um
die Stelle aufzuweisen, an der heim Ubergang zu einem allge-
meineren Modell eine Niherung einzusetzen hat. Diese Niherung
besteht niimlich gerade 1m Fortlassen der Terme mit |, falschen®
Resonanznennern (s, 0.); thr Sinn und ihre Berechtigung diirften

1) In der relativistischen Quantentheorie ist diese Entwicklung, wegen der
bekannten Selbstenergie-Schwierigkeiten, nicht konsequent durchfithrbar; doch
diirfte sie bei unrelativistischer Rechnung unbedenklich sein, da man in dieser
Niherung die Selbstenergiekonstanten immer willkiirfrei unterdriicken bzw. in
die ,,Nullpunktsenergie** aufnehmen kann.

) Dass wir mit linearen statt mit raumlichen (isotropen oder anisotropen)
Oszillatoren rechnen, ist natiirlich nur ein édusserlicher Unterschied.
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durch den Vergleich mit dem Oszillator-Modell klarer zutage
treten.

Die beziiglich 1hrer optischen Eigenschaften bestuntersuchten
Kristalle sind fast alle ausgeprigte Ionengitter, und soweit man
durch die Analyse ihrer Rontgen-Interferenzbilder informiert ist,
handelt es sich 1n der Regel um solche Ladungsverteilungen, in
denen die Elektronenwolken der einzelnen Ionen relativ eng um
gewisse Ladungsschwerpunkte konzentriert und durch fast leere
Zwischenrdume vonemnander getrennt sind. Idealisiert man nun
dieses Bild der Ladungsverteilung dahin, dass die Ladungswolken
verschiedener Ionen {iberhaupt nicht mehr ibereinander greifen,
derart, dass jedes Elektron stidndig einem und demselben ITon
zugeordnet werden darf, so erhilt man das Modell des ,jidealen
[solators”, welches wir der wellenmechamschen Untersuchung im
§ 2 zugrunde legen. KEs zeigt sich, dass die ebenen Wellen, die
sich in diesem Modell ausbilden konnen, genau dieselben sind
wie in einem Ewald-Born’schen Modell; jedes Ion ist in dieser
ITinsicht dquivalent einer Serie von linearen harmonischen Ersatz-
Oszillatoren, deren Schwingungsrichtungen, Eigenfrequenzen und
Oszillatorstdrken sich wellenmechanisch bestimmen lassen. Falls
aber ein Kristall schon betriachtlich von jenem Idealbild abweicht
(etwa dadurch, dass die Dimensionen einzelner Elektronenbahnen
mit den Gitterkonstanten vergleichbar werden), so scheint keine
so einfache Moglichkeit mehr zu bestehen, ein Ersatzoszillator-
Modell derart zu konstruieren, dass es die Optik dieses Kristalls
in allen Feinheiten (z. B. emnschliesslich der optischen Aktivitit)
zutreffend wiederzugeben vermochte (s. den Schlussabsatz).

§ 1. Harmonische Oszillatoren.

In  emem Kristallgitter, dessen Elementar-Parallelepiped
(,,Zelle") von den Vektoren ag, a,, a; aufgespannt wird, denken
wir uns zundchst lauter gleichartige lineare harmonische Oszilla-
toren angeordnet (Masse = m, Eigenfrequenz = w). Die Gitter-
punkte

v, = lia; + La, + l;a,
seien die Ruhelagen der Oszillatoren, und ihre Schwingungsrich-
tungen seien alle parallel. Indem wir die Elongation des [t Oszil-
lators aus seiner Ruhelage, noch multipliziert mit (mw)’, als
generalisierte Koordinate g, einfithren, schreibt sich die IHamilton-
funktion der wungekoppelten Oszillatoren:

HOsz — _(_ E (pl2 - ql2). (1)
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Die Gitterschwingungen sollen einer Zyhklizititsbedingung unter-
worfen werden: zwel Zellen, deren Indizes kongruent mod L
sind, sollen sich gleich verhalten:

G =

Die Summe nach [ (d. h. nach [}, l,, l5) m (1) kenn dann auf die
Werte

q:, P = Pi, wenn I, =1, mod L. (2)

L _ | L (3)
o o e :
2 ' 2
beschriinkt werden. Den gesamten Periodizititsbereich, der die
Zellen (3) umfasst, nennen wir (7.
Aus der Schrodingergleichung der ungekoppelten Oszillatoren :
053 ' ! A - !} 1
(HO%:—- Y u =0, K=Do >\t 5, n,=0,1,...,1) 4)
- 2

erhalten wir zunichst solche Eigenfunktionen w(nyn, .. .), welche
sich als Produkte der (reellen, normierten) Eigenfunktionen der
cinzelnen Oszillatoren darstellen:

un, n,...)= {/ U, (1) - (5)

Wir wollen aber jeweils die zu einem bestimmten Eigenwert I
(d. h. die zu einem festen Wert von n = ?rz,) gehorigen Eigen-
funktionen % einer unitiren Transformation unterwerfen, welche
einer Zusammensetzung der einzelnen Oszillatorschwingungen zu
ebenen Wellen entspricht. '

Der einzige nicht-entartete Zustand ist der Grundzustand
(n = %‘nl = 0). Der niachst hohere Energieeigenwert (n = %'n-; =)
ist bereits L3-fach entartet. Nennen wir diejenige Eigenfunktion
u(nyny -+ +), welche zu

n, — 1, alle tibrigen n, = 0,

gehort, abkiirzungshalber w,, so konnen wir folgendes lineare

Aggregat aller «, bilden: ‘
v 3/ A (F 4
L =L te _\_J u, - e (tpro) (6)

7

Daber muss der Vektor £, um der Zykhzitatsbedingung zu ge-

niigen, so gewdhlt werden, dass die Ersetzung von r; durch

t, + L(ty0;, + 1,0, + 1305) (Wo 14, 75, T3 = ganze Zahlen) nichts

andert, namlich:

R by = L7t (hyby + hyby + Rgby), (7)

HDh ist das PLaNck’sche Wirkungsquantum dividiert durch 2 a.
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wo b, die (mit 2z multiplizierten) reziproken Vektoren des Git-
ters sind:
E e T ) . .
(ay [a; a3])
Die Endpunkte der Vektoren §, bilden ecin ,,Gitter im -Raume™;
dabei sind zwei Vektoren, deren Indizes kongruent mod L sind,
vollig dquivalent. Es gibt also gerade L3 nicht-dquivalente Vek-
toren §,:

bl - 2 o [‘12 03]

* g

L opg L

2 -2
(sie erfiillen cine Zelle des reziproken Gitters). Durch die lineare
Transformation (6) werden also gerade L3 neue Eigenfunktionen
U, konstruiert, und zwar sind die letzteren wieder orthogonal
und normiert, wie auf Grund der ,,Interferenzformel®

(8)

>_‘1 gl—hm_ps. Onn’ (9)
Z
(Opnr = 1, wenn hy" = hy, hy’ = hy, h3' = hg, sonst 0)

unmittelbar zu ersehen 1st.
Analog verfahren wir mit den Eigenfunktionen der doppelt
angeregten Zustédnde (n = %Tn.l = 2). Se1i u;, die zu
n,=mn, =1 (I +1'), alle ibrigen n, = 0,
gehorige, und wu,;; die zu
n, = 2, alle dbrigen n, = 0
gehorige Eigenfunktion u, so bilden wir:
Uppr = L3 { }:' : wyy €t T ey) o ]/§ E”‘u e ity rl)} (h" + h)
T 7 7 I

¢+

i 17]2 o { M Nupet @ ut) /o Ny o 2i r*)'} l v
P 7
((E )

Durchlaufen ¢, und §#,, unabhingig die Gitterpunkte (7) einer
Zelle des reziproken Gitters (8), so erhidlt man wieder genau die
richtige Anzahl von Eigenfunktionen Uy, ; denn u,, und wu,,
sind identische Funktionen, dasselbe gilt von U,, und Uy, und
es gibt demnach L3(L®—1)/2 unabhingige Funktionen wu,, mit
L+£1" bzw. Uy mit h+ k', dazu L3 unabhingige wu, bzw. U,
im ganzen L3(L3+1)/2. Die Funktionen (10) sind auch wieder
orthogonal und normiert.

Fiir beliebige Energiequantenzahlen m verallgemeinert sich
die obige unitdre Transformation wie folgt. Wir betrachten alle
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Eigenfunktionen (der ungekoppelten Oszillatoren) w(nyn, - - ), fiir

welche 2'n; einen festen Wert n hat. Die Zahl n werde in irgend-
{

einer Weise additiv in ganze, nicht negative Zahlen N, zerlegt,
welche den Vektoren ¢, (7), (8) zugeordnet werden:

n::nl::N}l' (1])
l h

Jeder derartigen Zerlegung ordnen wir dann eme Linearkombina-
tion aller zur Zahl n gehorigen Funktionen w(nyn, - - +) zu, ndmlich:

3n
TIN N = = 5 . -1
L("\I‘NZ) — L 2 (‘h\'l!l 2})
! :1 ('N;l!’n:‘. w s ')- Ve U ("1”»-2 a5 ) E eil"i,»; (12)
%‘nz =N . Iz

dabel ist die Phase ¢ folgendermassen zu bilden:

‘P:lflrt,"”"fltti“‘""“i"fzrl'i'""+"' |

N,-mal N,-mal (13)
1 TR o Y T SRR o 2 A R e J
ny-mal ny-mal

(das heisst: in den » Summanden von ¢ kommt jedes E, gerade
N,-mal vor und jedes r, gerade n,-mal); P bedeutet eine Permu-
tation der n Objekte:

S AT S NP I RTr

— et

N;-mal N,-mal N,-mal

(oder auch eine Permutation der n Objekte:

rlrl....rl rz....tz “e e e r{....rt...);

n,-mal n,-mal n,-mal

P ¢ ist eine durch eine solche Permutation aus ¢(13) gewonnenc
Phase, und das Zeichen }2: bedeutet eine Summenbildung tiber

alle n! Permutationen P (ohne Riicksicht auf Gleichheit oder
Verschiedenheit der permutierten Objekte; unter den zu sum-
mierenden Ausdriicken e¥¢ befinden sich also jeweils (N;!N,!---)
bzw. (ny!my! - - -) einander gleiche). Die Anzahl der geméss (12)
herstellbaren Eigenfunktionen U(N;N,---) 1st die gleiche wie
die der urspriinglichen Eigenfunktionen u(nym,---); denn die
Moglichkeiten der Zerlegung von m» in Summanden N, und der
Zuordnung der N, zu den L2 verschiedenen Gitterpunkten des
£-Raumes entsprechen genau den Moglichkeiten der Zerlegung von
n 1n Summanden n, und der Zuordnung der n; zu den L3 ver-
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schiedenen Gitterpunkten des r-Raumes. Schliesshich sind  die
Funktionen U (NN, - - -) auch wiederum orthogonal und normiert.
Wir berechnen nun die Matrizen ¢, 1m Schema der Zahlen N,,
und zwar beispielshalber zunichst fiir die niedersten Falle. Sehr
einfach sind die Kombinationen des Grundzustandes (n = 0,
Eigenfunktion v = U ohne Index) mit den einfach angeregten
Zustianden (n = 1, Eigenfunktionen U,, definiert durch (6)); die
betreffenden Matrixelemente von ¢, sind von der Form:

. T s b
qul/-*qz U,=1L ?_\Fle'(fhrt )fdQTL* Qi = L= g? (ta Tz)']/.%

(da namlich die Summenterme !"+ ! Null geben und da

qun.*qm, = /b2
1st). Mit den Kombinationen der Zustinde n =1 und n = 2
verhilt es sich wie folgt: Die Matrixelemente qu Ukq, Upoprr (vgl.
(6) und (10)) sind nur von Null verschieden, wenn entweder h' = h
oder h"" = h 1st; 1m letzteren Falle 1st

L=l ot (1)) - _él , wenn h' + h,

L2 gt (tat) - V‘? V2 wenn k' =h.

Allgemein lasst sich das Aussehen der Matrizen ¢, im Schema
der Zahlen N, folgendermassen beschreiben. Wir definieren zu-
ndchst Matrizen (@, + 1 P,) beziliglich der Zahlen N,, welche je-
weills beziiglich aller iibrigen Zahlen N,. (h' +h) Einheitsmatrizen
sind, durch die Matrixtabelle:

[dqUiq U= (14)

Matriz Q, + i Py (baw. @ + i Py,):

0o 1 2 3 | 4 - No1l N
: : —_— T ’ % e e e
0 0 vV2b1 0 0 | 0
10 0 V2DH-2 [
2 o0 | 0 |V2B3 0
3 O 0 0 0 W2h4
4 0o 0 0 0O 0
. | |
: | | '\ ' N
N-1|| | | | 0 | vV2Dh-N
N | 4 f 0 0
. |
. i E
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Dabei sind ), (reell) und P, (rein imaginar) als Hermitische
Matrizen zu denken; aus der Matrix ), + ¢ P, erhdlt man also
durch Vertauschung von Spalten und Zeilen die Matrix @, — ¢ P,.
IDie Matrizen

1. :
=5 [(Qn + P + (Qu—iPy)]

und

1
Py = 9 [((R)h ~+ 1 P,) — (() '_']nl|
1
sind dann kanonisch konjugiert (sie erfiillen die Vertauschungs-
regeln). Aus den so definierten Matrizen setzt sich die Matrix g,
linear zusammen wie folgt:

A _ : : (v
qr=L7% g 2@+ Pa) o B¥ 4 (Qy —i Py e ()
= L'l N Qs cos (&, t,) — Py sin (B, t)] . (15)
T
Die zu q, kanonisch konjugierte Matrix ist:

1 .
P = » P Yy - bzmz [Qh & o P ? (tnry) (Qh — Ph) o—! (£, 1’;)1
= L—"/-’ 2 [Qusin (b 1) + Py cos (8 t.)]; (16)

in der Tat 1st die Giiltigkeit der Vertauschungsrelationen fiir die
q; und p, auf Grund der Formel (9) leicht zu verifizieren. Die
Formeln (15), (16) stellen diejenige kanonische Transformation
dar, die auch in der klassischen Theorie dazu dient, die Schwin-
gungen der einzelnen Oszillatoren zu ebenen Wellen zusammen-
zufassen.

Es sei hier bereits eine Bemerkung eingeschaltet, welche die
spatere Verallgemeinerung des Gittermodells betnifft. Falls die
Zahl L, welche die Grosse des Periodizitatsbereichs G bestimmt,
sehr gross gegen 1 gew#hlt wird, und falls man sich auf die Be-
trachtung niederer Anregungsstufen beschrankt, ndmlich solcher
Zustinde, deren Energiequantenzahl n < L3 i1st, so begeht man
in sdmtlichen obigen Formeln nur Fehler der Ordnung n/L3,
wenn man in der Transformation (12) rechterhand diejenigen
Summenglieder (n;n, - - -) weglédsst, fiir welche eine oder mehrere
der Zahlen n, = 2 sind. Am Beispiel der Eigentunktionen n = 2
1st dies leicht zu sehen: unterdriicken wir rechterhand in (10)
die einfachen Summen %‘fu”e"--- (d.s. die Summenglieder mit
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n, = 2), so sind die Funktionen U,,, zwar nicht mehr exakt, aber
doch noch ndherungsweise (néamlich bis auf Fehler der Ordnung
L-3) orthogonal und normiert; auch der Umstand, dass sie nicht
mehr linear unabhangig sind (L2 sind von den iibrigen L3(L3— 1)/2
abhéngig), schadet nichts, da die relative Anzahl der abh&ngigen
Funktionen klein ist (ndmlich wieder von der Ordnung L-3)1).
Desgleichen bleiben die Matrixelemente (14) richtig bis auf Fehler
der Ordnung L-3. Entsprechendes sieht man nun aber leicht
auch fiir héhere n ein, sofern nur I3>»n 1st. Wenn wir also
bestimmte Energieeigenwerte ins Auge fassen und bei festem n
zur Grenze L — oo iibergehen, so gehen die Iehler, die man
durch Weglassung der mehr als einfach angeregten Oszillator-
zustdnde (n, = 2) in (12) begeht, gegen Null. Damit wird aber
offenbar der Oszillatorcharakter des Modells unwesentlich: ersetzt
man die Funktionen w(nyn,---) (n, = 0 oder 1) durch andere
(orthogonale und normierte) Funktionen, welche die gleiche Trans-
lationsgruppe haben, und transformiert man diese gemiss (12),
so wird diese Transformatien im Limes L = oc wieder unitér
(s. § 2). '

Die Verallgemeinerung der obigen Formeln fiir den Fall, dass
mehrere Oszillatorsorten vorhanden sind, macht keine Schwierig-
keiten. Numerieren wir die Oszillatorsorten durch einen Index s
[Masse m,, Eigenfrequenz o,, Ruhelagen t,, = t,, + t; (s. (1)),
Elongationen (m;w,)~"q,; (in gewissen Schwingungsrichtungen e.)],
so lautet jetzt die Hamiltonfunktion der ungekoppelten Oszilla-
toren:

How = Mo, 3 (35 + ) a7

8

und die Energieeigenwerte und die Eigenfunktionen sind von der
Form:

E=D§0Js2(nsz+%)a ’ll:fzﬂ-s, WO U, —]Iu (\,) (18)
Die zu einem Eigenwert FE gehorigen Funktionen w sind gekenn-
zeichnet durch gemeinsame Werte der Zahlen n, = Zns, Die

zu einem bestimmten Zahlwert n, gehoérenden Funktlonen U,

setzen wir nun, geméss der Transformation (12), linear zu neuen

Funktionen (U,) zusammen, und deren Produkte (//U,) dienen
8

uns dann als neue Eigenfunktionen aller Oszillatoren. Wir haben

1) Man konnte die iiberzahligen Funktionen U, dadurch ausschalten,
dass man die Vektoren E,, t,- anstatt iiber alle (L3®) nur iber L?-1 Gitterpunkte
in der Zelle des reziproken Gitters laufen liesse.

-
[
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also jetzt jede Zahl n, in ganze, nicht negative Zahlen N additiv
zu zerlegen und diese Zahlen N, den Gitterpunkten h des §-Raumes
(7) zuzuordnen:

My = N Mgy == > Noy. (19)
7 7

Indem wir die Produktbildung iiber die Oszillatorsorten s aus-

gefithrt denken, kénnen wir die transformierten Eigenfunktionen
(IT1U,) so schreiben:?)
8

UL NS (0 ) () TS

%’-}lez-ns 20)
WwO!
P =Bty + Bty 4 Bl o e
N,y-mal N ,-mal l Q1)
erlfhl_i_tslfhg_l— R N A J
Ny 1-mal N, ,-mal

Ferner bilden wir fiir jedes Indexpaar s, h eine Matrix Qg + 1 P,,,
deren Matrixtabelle beziiglich der Zahl Ng mit der oben (8. 95)
angegebenen Tabelle (fiir @, + 1 P,) tbereinstimmt, und die be-
ziiglich aller iibrigen Zahlen N, (s' +s oder A’ +h) Einheits-
matrix ist; Qg — @ Pg 1st die transponierte Matrix. Durch diese
Matrizen driicken sich die Matrizen gq,, und p,, linear aus:

1 .
qs1 = L /2 "2_ [(Qsh + ILP ) 8? (fn r‘l (Qsh —1 Psh) e’ (t r“)] (22)

1 . )
P = Lt =S [(Qun + i Pa) ¢ 1) — (@ — i Py e-itat)]. (23)
L

Geht man be1 festgehaltenen Zahlen n, zur Grenze L —» oo
iber, so kann man in (20) rechterhand alle Summenglieder, fiir
welche beziiglich irgendeiner Gitterzelle I

\‘ Ding =2

1st, ohne Fehler unterdriicken; diejemigen Zustinde, 1 denen
irgendeine Zelle I mehr als einfach angeregt 1st (in eimem oder in
mehrel en Oszillatoren s), spielen also im Limes L= o keine Rolle.

1) Die SChI‘E‘lb“ eise der Funktionsargumente {A sh} bzw. { n sz} soll andeuten :

die Funktion U bzw. w hangt von der (fesamtheit der Parameter N (N, Ny, .. .)
bzw. ng (N, 1y, .. .) ab.
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Nach diesen Vorbereitungen kénnen wir dazu tibergehen, die
Oszillatoren durch das elektromagnetische Feld zu koppeln. Den
Feldgréssen wird man natirlich die gleiche Zyklizititsbedingung
auferlegen wie dem Gitter, sodass in ihren Fourierzerlegungen
ebenfalls nur Wellenzahlvektoren ¢ der Art (7) vorkommen (wobel
aber die Indizes h; jetzt nicht auf den Bereich (8) zu beschrinken
sind). In bekannter Weise trennen wir das eigentliche ,,Strah-
lungsfeld**, das nur aus transversalen Lichtwellen besteht, ab
und quantisieren nur dieses (im Sinne der Dirac’schen Theorie),
wihrend die durch das restliche Feld bewirkte Kopplung der
Oszillatoren durch elektrostatische Dipol-Wechselwirkungen darge-
stellt werden soll, deren Anteil an der Hamiltonfunktion von der
Form 1st: '

HPO] - '}_Z:; \’_':;’ %sp 71 Qs Qs (24)
Bezeichnen wir die Schwingungsrichtung der st® Oszillatorsorte
durch einen Einheitsvektor ¢,, und nennen wir ihre ,,Oszillator-

stiarke‘:
2

€
G~
m’.‘l‘

so 1st das elektrische Dipolmoment eines Oszillators (s, !) gleich
e, e (memy)~" qq = e (f/wy)%q,. In  (24) ist jetzt unter
%y, s 4s1 @y 20 Verstehen die potentielle Energie des Dipols (s, )
im Felde des Dipols (s, !) und der in allen anderen Periodizi-
tatsbereichen zu (s’, l’) kongruent liegenden Dipole. Wenn also
¥ (r) das Potential darstellt, das am Orte r hervorgerufen wird
durch eine unendliche Schar von Einheitspolen, welche sich in
den Eckpunkten des ,,Ubergitters 7, La, + 7, La, + 75 - La,
(117,73 = ganze Zahlen) befinden?!), so werden die Koeffizienten
% in (24):

l'l_.
ByiaPp = (Iﬁ_ f“"—) (e, grady) (e grady) W (v, —vyyp).  (25)
’ MWy W,

1) Damit die Reihe fiir ¥ konvergiert, iiberlagert man dem Ubergitter
zweckmadssig noch eine homogene Raumladung von der Dichte

AW 1

—4n L (ay [a; a;))

Die Funktion ¥(r) ist dann diejenige Loésung dieser Poisson-Gleichung, welche
im Ubergitter periodisch ist und im Nullpunkt unendlich wird wie |t |1 (vgl.
etwa M. Borvy, l. c., S. 723 ff.). — Die unendlichen Selbstpotentiale der Punkt-
ladungen sollen im folgenden immer abgezogen sein, ohne dass dies besonders
vermerkt ist.
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. Die Hamaltonfunktion des Gesamtsystems (Oszillatoren plus
Feld) setzt sich dann folgendermassen zusammen:

H = HO% + HPl - Hs 4 H' 4 H". (26)

HO%z und HP°! sind durch (17) und (24) erklirt; H" bedeutet die
Hamiltonfunktion des Strahlungsfeldes im ladungsfreien Raum,
deren niéhere Beschreibung sich hier eribrigt; H' + H' endlich
stellt die Kopplung zwischen Oszillatoren und Strahlungsfeld dar:
1st A(r) das (quellenfreie) Vektorpotential der Lichtwellen am
Orte t, so lauten diese Kopplungsterme, unter Benutzung der
obigen Bezeichnungen:

| 2 - Z (f, q) ¥ > o (e, A (ry), (27)
§ l
H =3 S 4Y (,2 (1) (28)
8 l

Der Wert von 2 1st hier jeweils am Ort der Ruhelage eines Oszilla-
tors genommen, In der Annahme, dass die Elongationen sehr
klein gegen die Wellenléngen sind (Vernachldassigung der magne-
tischen Lorentz-Kraft).

Denken wir uns nun H (26) als Matrix dargestellt, und zwar
beziglich der Oszillator-Variablen im Schema der oben defi-
nierten Zahlen N (mit Hilfe von (22), (23)), und beziiglich der
Variablen des Strahlungsfeldes etwa im Schema der ,,Photonen-
zahlen der Dirac’schen Strahlungstheorie, so fithrt die Frage
nach dem Brechungsindex einer ebenen Welle auf das Haupt-
achsenproblem dieser Matrix H. Die kanonische Transformation
(22), (23) bewirkt eine Separation der Variablen: eine Oszillator-
welle §, 1st nur mit solchen Strahlungskomponenten (,,Photonen-
sorten’’) gekoppelt, deren Wellenzahlvektoren ¢ sich von 4+ §,
um o,b;, + o,b, + o3b; unterscheiden, wo o,0,0;, ganze Zahlen
sind!). Das Hauptachsenproblem reduziert sich damit auf ein
solches, in dem nur noch zwer ebene Gitterwellen (mit ¢, = -+ ¢
und §, = — ) auftreten. Die Losung dieses reduzierten Problems
lasst sich, da es sich ja formal wiederum um ein System linear
gekoppelter harmonischer Oszillatoren handelt, aus der Losung
des entsprechenden Fklassischen Problems (Hauptachsenproblem

1) Im Term H’ verifiziert man dies unmittelbar, indem man p, aus (23)
einsetzt und die Summation iiber die Gitterpunkte ! mit Hilfe von (9) ausfiihrt.
Ebenso sieht man, dass durch H”” nur Lichtwellen der genannten Art miteinander
gekoppelt werden. Fiir den Term HPol erhilt man durch Einsetzen von (22)
in (25) und (24) zunichst eine Doppelsumme nach &, &', doch sind die Summen-
glieder mit £,+ - £, Null, wie man durch Fourieranalyse der periodischen Funk-
tion ¥(r,—ty,’) in (25) (vgl. Anm. 1), S. 99) leicht beweist.
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der quadratischen Form H) unmittelbar konstruieren: die Eigen-
werte der Matrix H sind (von einer unendlichen ,,Nullpunkts-
energie’’ abgesehen) lineare ganzzahlige Aggregate der klassischen
Normalschwingungsfrequenzen (»,) mal H. Von diesen klassischen
Frequenzen »; interessiert vor allem diejenige (v,), die 1im Limes
verschwindender Strahlungskopplung (fi—> 0) in ¢|#| iiber-
geht!); die Phasengeschwindigkeit der betreffenden ebenen Welle
definiert némlich den klassischen Brechungsindex:

Yo c

Te[ ~n’
Der quantentheoretische Sinn dieser Phasengeschwindigkeit er-
hellt daraus, dass die Matrix des Vektorpotentials 2 der Licht-
wellen, in demjenigen Schema, welches H diagonal macht, Matrix-

elemente der Form

47 L v
e = g Mk Bk

aufwelist, wie ja iiberhaupt alle klassischen Formeln, wenn man
sie als Matrixgleichungen auffasst, ihre Giiltigkeit behalten miissen.
Die vorstehende Definitionsgleichung des Brechungsindex n ist
deshalb auch in der Quantentheorie sinnvoll; im Falle des Oszilla-
tormodells fiihrt sie trivialerweise auf die klassischen Dispersions-
formeln.

§ 2. Idealer Isolator.

Der Kiristall sei jetzt aus Kernen und Elektronen aufgebaut,
deren statische Wechselwirkung Coulomb’scher Art ist. Dabel
soll aber, wie in der Einleitung schon gesagt wurde, in diesem
Abschnitt (§ 2) die einschrinkende Annahme gemacht werden,
dass der Kristall aus anniahernd abgeschlossenen Einzelsystemen
(,,Jonen*‘) zusammengesetzt ist, das soll heissen: die Schrodinger-
schen Ladungsdichten der zu einem Ion gehorigen Teilchen sollen
so stark nach aussen abklingen, dass die Ladungswolken verschie-
dener Ionen nicht merklich iibereinandergreifen?). Ausserdem
soll die lineare Ausdehnung der Ionen so klein gegen ihre Abstéinde
sein, dass in den statischen Wechselwirkungen verschiedener
Ionen hochstens noch die Dipolkriafte beriicksichtigt zu werden
brauchen.

1) Die iibrigen »; gehen in dieser Grenze in w, oder in
¢|t+ o015 + 050, + 03by |
iiber. ¢ bedeutet die Vakuum-Lichtgeschwindigkeit.
) Dann kann man bekanntlich die Entartung, die durch die Moglichkeit

des Elektronen-Austausches zwischen verschiedenen Ionen bedingt ist, ausser
Acht lassen.
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Wir betrachten zunichst die Hamaltonjunktion der Materie
allein, wozu wir auch die potentielle Energie der statischen (Cou-
lomb’schen) Wechselwirkung rechnen, die hier, der Zyklizitats-
forderung entsprechend, die Form hat:

b Z Zeke’f’ (t, — 1)
kK

(die Potentialfunktion ¥ hat dieselbe Bedeutung wie in § 1,
8. 5. 99; die Summen nach k, k" sind iiber alle Elementarteilchen
zu erstrecken, die im Periodizititsbereich /(3) liegen). Aus der
Hamiltonfunktion der Materie spalten wir weiterhin solche An-
teile ab, die in den Koordinaten der verschiedenen ,,Ionen‘ sepa-
riert sind:

HY == }; H,. (29)

Zu H, rechnen wir, ausser der kinetischen und der inneren poten-
tiellen Energie des Ions J?1), das Potential des Ions J im Felde
eines Gitters von elektrischen Polen, die dadurch entstehen, dass
man jedes andere Ion (J') durch seine resultierende Ladung im
elektrischen Schwerpunkt?) (r,, = t,,) ersetzt:

b : . 1 B : A =
Hy=1-5 &+ 5 e e P o1 + e e P(t-t)|. (30)
k k I g
(inJ) (in J) (ausserhalb J)

Wir benutzen diese Operatoren H; zur Konstruktion der Eigen-
werte und Eigenfunktionen der Schridingergleichungen:

(H, — E,)u, =0,

aus denen sich dann die Eigenwerte und Eigenfunktionen der
Gleichung
(H*— E,)u, =0 (31)

als Summen bzw. als Produkte zusammensetzen. Zur Verein-
tachung denken wir uns die Eigenfunktionen u, reell, sowie auf-
einander orthogonal und normiert. Den tiefsten Eigenwert von
H?° nehmen wir als nicht-entartet an; er sei1 F/, und die zugehorige
Eigenfunktion se1 w = U (ohne Index). Die néchst hoheren Eigen-
werte (E,) entsprechen Zusténden, in denen ein Ion angeregt ist:
sie sind mindestens L3-fach entartet; die zugehorigen Eigenfunk-
tionen nennen wir u,,, wober der Index [ auf die Zelle verweist,

1) Dazu gesellt sich automatisch die statische Wechselwirkung der in ver-
schiedenen Periodizitiatsbereichen kongruent liegenden Ionen (mit

rJ'—l'J = L(Tlal s 1o 7202 “%_ Taas)).

2) Gemeint ist der Ladungsschwerpunkt des Ions im Grundzustand.
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in welcher das angeregte Ion liegt, wihrend der Index s die (ein-
fach) angeregten Zusténde aller Ionen einer Zelle irgendwie durch-
numeriert!). Indem wir den Ladungsschwerpunkt (r;) desjenigen
Tons, das 1m Zustand (s, I) angeregt 1st, nunmehr mit t,; bezeichnen
(tg; =ty + vy, vgl. (1)), bilden wir aus den Eigenfunktionen wu,,
die folgenden linearen Aggregate:

Ug = LD uy, - ¢ htad, (82)
]

wo der Wellenzahlvektor ¢, die Mannigfaltigkeit (7)., (8) durch-
lauft; die I3 neuen IFunktionen U, sind wieder orthogonal und
normiert. — Von den Zustinden, in denen mehrere Ionen ange-
regt sind, sollen vorerst nur diejenigen in Betracht gezogen werden,
bel1 welchen die angeregten Iomen in verschiedenen Zellen liegen;
es soll also jede einzelne Zelle hochstens einfach angeregt sein.
Die betretfenden Eigenfunktionen unterscheiden wir wie folgt:
einer Zelle [, die im Zustand s angeregt ist, ordnen wir die Quanten-
zahlen

g = 1y flgn, = TF § 28

zu, withrend fiir unangeregte Zellen [ alle n,, = 0 gesetzt werden:
dle Angabe aller Quantenzahlen {nsl} kennzelc‘lmet uns dann
den Zustand des ganzen Kristalls, und wir konnen die zugeho-
rige Eigenfunktion u, (Produkt der u,) demgemiss u ({n,,}) schrei-
ben. Der betreffende Eigenwert von H® lautet:
Bl [
E ({nsl}) E + f) 5 W;Ngy, MNg = Zn‘sl; (33)
7
dabel sind die ,,Frequenzen* w, durch die Energiedifferenzen der
einfach angeregten Zustinde gegen den Grundzustand definiert:

K, —E
o I Sy 34
=2 B4
Schliesslich kombinieren wir die zum gleichen Eigenwert (33)
gehorigen Eigenfunktionen u({ny}) linear gemiss den Formeln
(19), (20), (21), wobei aber jetzt definitionsgeméss nur Funk-
tionen u({ny}) mit Enal =1 auftreten. Die so gebildeten Funk-

tionen L({Nsh}) sind zwar nicht exakt orthogonal und normiert;
wohl aber sind sie es — nach den Auufuhrunoen m § 1 (s. S. 97
und 98) — 1m limes I. = oo, und wir werden sie sogar wie

1) Im kontmulerhchen Energiespektrum eines Ions ist s ein kontinuierlich
variabler Parameter.
%) S. Anm. 1), S. 98.
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ein pollstindiges Orthogonalsystem behandeln kénnen, sofern wir
den Grenzfall L = oo im Auge behalten. In dieser Grenze spielen
néamlich die Gbrigen, bisher noch nicht betrachteten Gitterzustande,
d. s. diejenigen, in denen mehrere lonen in einer Zelle angeregt
sind?), keine Rolle, weil ithre relative Anzahl — verglichen mit den
Zustinden %‘nsl =1 von gleicher Energie — in der Grenze
L —> oo gegen Null geht.

Fiir das Folgende bendtigen wir noch die Darstellung des
elektrischen Dipolmoments eines lons als Matrix 1m Schema der
Zahlen N, . Bedeutet r, die (vektorielle) Elongation einer Punkt-
ladung vom Ladungsschwerpunkt des betreffenden (unangeregten)
Tons (r, =1, — ;) so schreiben wir das Dipolmoment des Ions .J:

by = D e Ii. (35)
(in J)
Betrachten wir zuerst die Kombinationen des Grundzustandes
mit den einfach angeregten Zusténden, deren Eigenfunktionen
durch (32) dargestellt sind, so kommen die betreffenden Matrix-
elemente offenbar auf die Form:

[dqU*d,U, = LN b,ei it
(z;: J)

wo der Index s iiber die angeregten Zustdande des Ions .J lauft
und ! dessen Zelle angibt (v, = t;); b, 1st das Matrixelement
von D, (35), das dem Ubergang des Ions .J aus seinem Grund-
zustand in den Zustand s entspricht:

D, == [dq wdyug; ' (36)
dieses Matrixelement i1st unabhéngig von der Nummer ! der Zelle,
in der J liegt. — Fiir die hoheren Kombinationen unterscheiden

sich die Rechnungen nicht wesentlich von denjenigen, die im § 1
zur Formel (15) bzw. (22) fithrten. Wir konnen sogar die Formel
(22) unmittelbar zur Darstellung der Matrix d, im Schema {N}
verwenden; es ergibt sich:

2 -
b, = ]/r, SN N (37)

]
(zu J) 7

1) Man koénnte sie den Oszillator-Zustinden
ngy=1, ngy=1, ..., Ng | = 1, ng =0 fiir s+5,8,...5,

entsprechen lassen; doch wiirde dies eine unnétige Komplikation bedeuten. Man
kann zwar allen Eigenwerten von H° (29) solche von H“* (17) zuordnen, aber
nicht umgekehrt: die Oszillator-Zustande mit ny > 2 haben hier kein Gegenstiick.
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wo D, die Bedeutung (36) hat und wo fiir g,, die Matrix (22) ein-
zusetzen 1st; dabe1l 1st [ wieder die Zellennummer von J, und
Q. + 1 Py bedeutet wiederum die Matrix, deren Tabelle beziig-
lich der Zahl N, auf S. 95 angegeben ist und die beziiglich der
tibrigen Zahlen N, (s" £s oder b’ + h) Einheitsmatrix 1st, wih-
rend Qg — 1P, die transponierte Matrix bedeutet. Die Formel
(37) gilt umso genauer, je grosser L 1st, und kann im Limes L = oo
als streng giiltig angesehen werden. Wesentlich 1st an diesem
Ergebnis der Umstand, dass in (37) nur die Vektoren d, vorkom-
men, d.h. nur diejenigen Matrixelemente des elektrischen Mo-
ments, welche den Ubergiingen eines Ions aus seinem Grund-
zustand 1n irgendwelche angeregte Zustéande entsprechen, wihrend
die Kombinationen der angeregten Zustinde eines lons wunter-
etnander sich in der Grenze L = oo nicht mehr dussern?). Alle
vorkommenden Vektoren b, sind also je einer Absorptionslinie
des betreffenden Ions (im Gitterpotential) zugeordnet; fithren wir
noch in dblicher Weise die ,,Oszillatorstarken der Absorptions-
linten ein durch die Definitionsgleichungen:

2
f.\' = -T)-(Ds | bs I2 (38)

(mit (34) und (36)), und bezeichnen wir den Einheitsvektor in
Richtung b, mit e,:

D, |
e T 39
so konnen wir schliesslich an Stelle von (37) auch schreiben:
fs \'/2
bJ:Z((u) esqsl. (40)
(Z:J) ’

Von der Hamiltonfunktion der Materie (s. 0.) haben wir nun
noch denjenigen Teil zu beriicksichtigen, der nach der Abspal-
tung von H°(29), (30) ibrig bleibt; dieser Rest entspricht offenbar
Dipol- und hoheren Multipolkraften zwischen verschiedenen
Ionen:

P _\ X
HMat __ o — % l >_1

S S e {P (e —1p) — Pt — 1) — ¥ (1t — )}
k

(in }) (iﬁ J’)
1) Sie sind durch die ,,Auswahlregeln’* der Oszillatoren (s, h) verboten.
Damit fallen im Limes L —» <« auch die in der Einleitung erwahnten ,,fal-
schen Resonanznenner‘’ fort.



106 G. Wentzel.

Hiervon beriicksichtigen wir, geméss der am Anfang dieses Para-
graphen formulierten Voraussetzung, nur die Dipolkrdfte:

HMat _ HO «n HPol — const

+ 31D E (b, grad,) (b, grad,) ¥ (t;,—t,). (41)
v+
Beachtet man nun (33) und (40), und vergleicht mit (18) und

(24), (25), so ist evident, dass die Hamiltonfunktion der Materie
HMat — [0 1 Pol (42)

als Matrix im Schema der Zahlen N, dargestellt, abgesehen von
einer additiven Konstanten (Einheitsmatrix), die gleiche Gestalt hat
wie vm Falle des Oszillatormodells (§ 1)1), freilich nur 1im Limes
L = . FEin nebensichlicher Unterschied liegt lediglich darin,
dass jetzt in H®! (24) in der Doppelsumme nach s, s’ diejenigen
Indexpaare s, s’ wegfallen, in denen s und s’ angeregten Zu-
standen desselben Ions entsprechen (Beschrinkung auf tg + t.,).

Die Kopplung der Materie mit dem Strahlungsfelde wird dar-
gestellt durch die Operatoren:

~ & b

H = —L—An (Ql (ty) - '.) gra.(lk), (43)
= My, |

TR TR 14

= QT”{,}J;%(%H : (44)

Wir diskutieren zunichst den Fall, dass alle in Betracht kommen-
den Lachtwellenldngen sehr gross gegen die linearen Dimensionen
der Ionen sind, so dass wir fiir jedes einzelne Ion nur die Opera-
toren der ,,Dipolstrahlung zu Dberiicksichtigen brauchen; dies
liuft bekanntlich darauf hinaus, dass man den Wert des Vektor-
potentials A in (43) und (44) jeweils am Ort des zugehorigen
elektrischen Schwerpunktes (d. h. bei v, = v, anstatt bei r, + 1)
nehmen kann. Auf Grund der wohlbekannten Relation (,,Sum-
menregel fiir die Oszillatorstirken™):

G2, BB w9 (ee)
< m < (e < (ec)
(in J) (zu J) (zu J)

(45)

(wo ¢ und ¢’ zweir beliebige konstante Vektoren sind) geht dann

1) Dort stand HOsz an Stelle von HO.
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H'' (44) unmittelbar in den Ausdruck (28) des § 1 iiber. Beachtet
man ferner, dass der Operator

A IS T
T m] T m v 0xy
(in J) (in J)

zur r-Komponente von d; (35) bezw. (40) kanonisch konjugiert ist,
so 1st leicht zu sehen (ebenfalls auf Grund der Relation (45)), dass
die Matrix

€;. D

N 1

N grade ) = S (fo00) % ¢, pu
k my 1 8

(in J) (zu J)

seln muss, wo P, die zu ¢, kanonisch konjugierte Matrix (23)
bedeutet; damit geht aber auch H' (43) in den Ausdruck (27)
des § 1 uber.

Damit 1st gezeigt, dass, be1 Beschrinkung auf Dipolstrahlungs-
Terme, die Hamiltonfunktion des (Gesamisystems

H = HMst + Hstt + H' + H", (46)

im Schema der Zahlen N, (und der ,,Photonenzahlen** des Strah-
lungsfeldes) dargestellt, im Limes L = oo mit der Hamiltonfunk-
tion eimes ., Krsatzoszillatoren'‘- Modells (26) identisch wird: man
braucht nur jedes ,,Ion* durch eine Serie von harmonischen
Oszillatoren am Ort des betreffenden Ladungsschwerpunktes zu
ersetzen, und zwar benotigt man fiir jede Absorptionslinie des
Ions (vom Grundzustande aus, bei aufgehobenen Entartungen) je
einen linearen Oszillator, dessen Eigenfrequenz o, durch (34),
dessen Schwingungsrichtung ¢, durch (39) und dessen Oszillator-
stairke f, = e,2/m; durch (88) bestimmt 1st!). Die Losung des
Eigenwertproblems von H (46) unterscheidet sich also nicht von
der 1m § 1 skizzierten Lidsung?): man kann die Formeln der klassi-
schen Theorie als Matrixgleichungen einfach iibernehmen; insbe-
sondere ergibt sich die klassische FFormel fiir den Brechungsinder,
mit den Materialkonstanten (34), (38) und (39).

Dieser Schluss wird aber offenbar hinfillig, wenn die Be-
schrankung auf die Dipolstrahlungsterme der einzelnen Tonen
nicht mehr erlaubt ist (wie z. B. wenn die magnetische Lorentz-
Kraft aut die bewegten Elektronen eine Rolle spielt). Nimmt man
ndmlich in den Kopplungs-Operatoren H' (43) und H" (44) das

1) Dem kontinuierlichen Energiespektrum entspricht eine unendliche Schar
von Oszillatoren mit infinitesimalen Oszillatorstirken.

2) Abgesehen von dem oben erwihnten Umstand, dass die Ersatzoszilla-
toren eines und desselben Ions nicht miteinander statisch zu koppeln sind.
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Vektorpotential 20 ohne Vernachldssigung an den Orten t;, = t, + 1y
(anstatt bei t;), so treten die bekannten ,retardierten’ Matrizen
auf, die sich nmicht mehr durch die Ersatzoszillator-Daten (34),
(38), (39) allein darstellen lassen, sofern man nicht emschrinkende
Voraussetzungen beziiglich der Ionenmodelle machen will. Ausser-
dem 1st dann die Kopplung zwischen materiellen und Strahlungs-
oszillatoren nicht mehr linear. In diesem Falle i1st also das klassi-
sche Bild fiir eine quantitative Beschreibung nicht mehr ohne
weilteres brauchbar.

Was speziell die optische Aktuntit (Drehung der Polarisations-
ebene) anbelangt, so wird derjenige Teil des Effektes, den man
schon ber Beschriinkung auf die Dipolstrahlungsterme der Ionen
erhilt, bei hinreichend langwelllgem Licht vollkommen der klassi-
schen Oszillator-Theorie entsprechen miissen, und zwar wieder
mit den Oszillator-Daten (34), (38) und (39); es 1st dies derjenige
Drehung.seffekt der durch die asymmetrische Anordnung der Ionen
im Gitter hervorgerufen wird. Dagegen 1st das Drehvermogen des
einzelnen Ions oder Molekiilst) gerade durch die Matrixelemente
der Quadrupolstrahlung des \Iolekuls bestimmt, also nicht aus
dem gleichen Ersatzmodell berechenbar wie der Brechungsindex.
Das Oszillatormodell ist zur korrespondenzmissigen Wiedergabe
der Phasenbeziehungen eben nur tiir solche Teilchenpaare geeignet,
die verschiedenen Ionen angehoren, nicht aber fir Teilchenpaare
eines und desselben Ions.

Schlusshemerkungen.

Ein Teil der oben gewonnenen Aussagen wird zweifellos auch
fir solche Kristalle noch Giiltigkeit beanspruchen diirfen, die
von dem im § 2 behandelten Idealbild mehr oder minder stark
abweichen. Notigenfalls wird man dann unter den ,,Jonen*
orissere Finheiten verstehen miissen: falls Austauschkrifte und
hohere als Dipolkriafte auch iiber die Grenzen der Zellen hinaus
wirksam sind, wird man sogar zweckmiissig den Kristall in (parallel-
epipedische) Bereiche (") aufteilen, die mehrere Zellen umfassen,
diese -nach Art der ,,Jonen‘" in § 2 behandeln und schliesslich
die Gitterperiodizitat durch eine Mittelung wiederherstellen. Wenn
es moglich 1st, diese Bereiche I' so gross zu wihlen, dass die
zwischen fremden Bereichen I' noch vorhandenen Austausch- und
Quadrupolkrifte nach Art von ©berflichenkriaften vernachlassig-
bar sind, wihrend I" andererseits noch sehr klein gegen den Wellen-

%) Vgl. M. Bory und P. JornaN, Elementare Quantenmechanik, Springer
1930, § 47; L. RoseNFELD, Zeitschr. f. Phys. 52, 161, 1928.
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langenkubus bleibt, so wird sich fiir den Brechungsindex wieder
eine klassische Formel ergeben. _

Allerdings bedeutet dann die Beschrankung auf Daipolstrah-
lungsterme (der einzelnen Bereiche [I') unter Umstdnden eine
erheblich stirkere Vernachliassigung als im § 2. Wenn beispiels-
weise die Schrodinger’sche Ladungsdichte einzelner Elektronen
sich tber Gebiete von der Grossenordnung einer Gitterzelle er-
streckt, so werden Lingen von der Grossenordnung der Gitter-
konstanten, bzw. die entsprechenden Phasendifferenzen, in den
Dipolstrahlungstermen nicht zur Geltung kommen; infolgedessen
werden aber die Orte der Ersatzoszillatoren entsprechend un-
definiert, d. h. eine genauere IFestlegung derselben in einer Gitter-
zelle wiirde nicht mehr sinnvoll sein, und damit entfillt offen-
bar die Moglichkeit, das Drehvermiogen (auch den durch die Gitter-
struktur bedingten Teileffekt) aus dem Oszillatormodell abzu-
leiten. Dagegen sind die DBrechungsindizes fauch fiir doppelt-
brechende Kristalle) viel weniger empfindlich gegen Verriickungen
der Oszillatoren in einer Zelle, und man darf daher wohl erwarten,
dass die Erscheinungen der einfachen und Doppelbrechung in
durchsichtigen Kristallen, auch wenn diese dem Bilde des ,,idealen
Isolators* nicht mehr sehr nahekommen, durch ein einfaches
Oszillatormodell noch einigermassen quantitativ wiedergegeben
werden.
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