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Über Streuprozesse höherer Ordnung-
von P. Güttinger.

(3. VI. 32.)

§ 1. Einleitung.

Es ist bekanntlich möglich, mit Hilfe der Dirac'schen1) Strah-
lungstheorie, deren Kennzeichen die Lichtquantenhypothese ist,
Aufschluss zu erhalten über alle vorkommenden Emissions-,
Absorptions- und Streuprozesse. So lassen sich damit z. B. Fragen
behandeln, die mit eler natürlichen Linienbreite, mit Dispersionsund

Ramaneffekten zusammenhängen.
Im folgenden soll nun eine kurze Übersicht über neuere Arbeiten

auf dem Gebiet der Strahlungstheorie gegeben werden. Fragen,
elie mit der Resonanzstrahlung zusammenhängen, sind von Weisskopf2)

und Wigner3) eingehend behandelt worden.
Von Maria Göppert4) sind zwei Prozesse untersucht worden,

deren Wahrscheinlichkeit man ohne weiteres aus der zweiten
Näherung erhält, und zwar Doppelabsorption und Doppelemission.
Letzterer Prozess spielt praktisch kaum eine Rolle, wohl ist aber
der erstgenannte Prozess, die Doppelabsorption, von Bedeutung.
Ist nämlich die Summe zweier Frequenzen des einfallenden Lichtes
gleich einer Anregungsfrcquenz, so kann Doppelabsorption
stattfinden, wobei tlas Atom angeregt wird. Dieser Prozess wird besonders

dann häufig auftreten, wenn die Intensität des eingestrahlten
Lichtes gross ist, da die Häufigkeit dieser Prozesse dem Produkt
eler Strahlungsdichten proportional ist. Auf Grund einer
einfachen wellenmechanischen Störnngsrechnung wurde von Blaton5)
die Frage untersucht, ob ein Atom bei Bestrahlung mit der
Frequenz v nicht auch Streustrahlung der doppelten Frequenz
aussenden kann. Eine solche tritt theoretisch tatsächlich auf;
es zeigt sich aber, dass das mit 2 v schwingende Dipolmoment
in der Fortpflanzungsrichtimg tles einfallenden Lichtes liegt, elass

sich also in einem Medium dieses Streulicht nicht zu einer ebenen
Welle zusammensetzt. Klassisch lässt sich das Auftreten der

P. A. M. Dirac, Proc. Roy. Soc. A 114, 1927.
V. Weisskoff, Ann. d. Phys. 5. Folge, Bd. 9, 1931, S. 23.
V. Weisskoff und E. Wigner, Z. S. f. Phys. 63, S. 54, 1930.
Maria Göfpert-Mayer, Ann. d. Phys. Bd. 9, 1931, S. 273.
J. Blaton, ZS. f. Phys. 69, S. 835, 1931.
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Frequenz in folgender Weise erklären: ein Elektron, das einem
elektrischen Wechselfeld von der Frequenz v ausgesetzt ist,
schwingt mit dieser Frequenz v. Führt man nun die Lorentzkraft

— [trSj] des Lichtfeldes als Störungsglied in die Bewegungsglei-

chungen ein, so tritt ein Dipolmoment auf, das mit der Frequenz
2 v schwingt und in der Fortpflanzungsrichtung der einfallenden
Strahlung liegt. Der von Blaton diskutierte Prozess ist aber
nur ein Spezialfall einer allgemeineren Art von Streuprozessen,
nämlich derjenigen, bei denen ein Lichtquant von der Frequenz v,
und eines mit der Frequenz v2 verschwinden und ein solches von
der Frequenz v, -f v2 entsteht, wobei das Atom seinen Energiezustand

nicht ändert. Nun können Streuprozesse auftreten, die
mit dem eben erwähnten in einem analogen Zusammenhang
stehen, wie Dispersion und Ramanetfekt: es ist anzunehmen,
dass in der gestreuten Strahlung auch Licht von der Frequenz
vi + v2 Az vmk auftreten kann, wo vmk einer Atomfrequenz
entspricht. Auf die Bedeutung solcher Prozesse „höherer Ordnung"
hat schon früher Pauli1) hingewiesen. Die Intensität aller dieser
Streuprozesse ist dem Produkt der Strahlungsdichten proportional;
es scheint also möglich zu sein, bei Benützung grosser Intensitäten
solche Prozesse beobachten zu können.

In engem Zusammenhang damit steht ein Versuch von
Füchtbauer2) : Bestrahlt man nämlich mit Licht der Frequenz
v, vm g, wo g der Grundzustand des Atoms sein soll, ferner
mit v2 v„ m, so wird auch die letztere Strahlung absorbiert,
da durch Absorption von vm g

das Atom bereits in den angeregten
Zustand m gehoben wurde. Die Untersuchung des emittierten
Lichtes ergab, dass alle Linien in Emission auftreten, die durch
Übergänge vom Zustand m aus entstehen können; diese Erscheinung

tritt aber nur dann auf, wenn auch die Anregungsfrequenz
vmg eingesandt wird.

Die vorliegende Arbeit setzt sich nun zum Ziel, solche Prozesse
zu untersuchen, bei denen zwei Lichtquanten mit den Frequenzen
v, und v2 verschwinden und ein gestreutes Lichtquant hv3 neu
entstanden ist. Es zeigt sich, dass in der überwiegenden Mehrzahl
nur solche Prozesse auftreten, bei denen v3 v, + v2 -±- vml.
ist, wo vm k einer Atomfrequenz entspricht.

Eine Abschätzung der Grössenordnung zeigt, dass die hier
betrachteten Prozesse beobachtbar sein müssen, wenn man starke

q Siehe Handbuch der Physik, Bd. XXIII, S. 26 u. 95.
2) C. Fuchtbauer, Phys. ZS. Bd. 21, S. 635, 1920. ferner R. W. Wood,

Troc. Roy. Soc. A. 106, 1924, S. 679.
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Lichtquellen zur Verfügung hat. Ein Vergleich mit der
Wahrscheinlichkeit eines Ramaneffektes zeigt, dass sich die
Wahrscheinlichkeiten verhalten wie:

W _ IO18
6

H'kamax (Jr)2

wo A v die Grössenordnung eines Resonanznenners haben soll,
und 0 die Strahlungsdichte bedeutet (von v, oder v2).

Wie zu erwarten ist, zeigt sich, dass dann Resonanz eintritt,
wenn:
1. eine der einfallenden Frequenzen mit einer Atomfrequenz vVk

übereinstimmt, wo k eler Grundzustand ist;
2. die Summe v, -\- v2 vt k ist;
3. sowohl v, wie v2 mit vr k bzw. vlv identisch ist, wo l und V

angeregte Atomzustände sind.
Es sei hier noch erwähnt, dass auch Prozesse auftreten können,

bei denen die Frequenz der Streustrahlung — v, -+ v2 + vm k

ist. Bedingung dabei ist, dass vm n > v, -""p v2. Dabei treten noch
Doppellichtquanten 2 x v, eventuell 2 x v2 auf, ganz analog zu
dem von Kramers und Heisenberg1) hervorgehobenen Fall,
wo ausser der Streustrahlung v -f- vmk auch noch eine solche
mit der Frequenz vlllk — v auftreten kann.

Die Wahrscheinlichkeit für das Auftreten derartiger Prozesse
ist von derselben Grössenordnung, obschon die Gesamtzahl der
beteiligten Lichtquanten mehr als drei beträgt.

§ 2. Lösiini) der Slöruiijisijlfiehiiiiy bis zur drillen Xülicrunu.

Im folgenden soll versucht werden, auf Grund der Dirac'schen
Strahlungstheorie die Wahrscheinlichkeit solcher Prozesse zu
berechnen, bei denen die Gesamtzahl der verschwindenden und
der entstehenden Lichtquanten drei beträgt. Es ist klar, dass

man in diesem Falle mit der zweiten Näherung nicht durchkommt,
sondern dass erst die dritte Näherung die gewünschten Prozesse
liefert.

Als Wechselwirkungsenergie zwischen Atom und Strahlungsfeld
wählen wie diejenige, die sich aus der Dirac'schen Theorie

des Elektrons ergibt, also:

77 — e v a, 21, — e (x 21); a (zt, %2 a3) (1)

H. A. Kramers und W. Heisenberg, ZS. f. Phys. 31, 1925.
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Wir wollen nun 21 aufbauen aus den Eigenschwingungen des

Hohlraumes, so dass:

21 221*, (2)
*•

wobei man in bekannter Weise:

htA^-A-^)+bte-**«(-^-)\ (8)*-*Vä^M
setzt. Dabei ist ct ein Einheitsvektor ,J°, nk ist ein Vektor

/ nk 1

in der Fortpflanzungsrichtung der Welle, steht also senkrecht
auf tk.

Die Grössen bk und b+ sind komplexe q-Zahlen, welche folgende
bekannte Vertauschungsrelationen erfüllen:

bih-b, bt dl>k\

6MMM0 \ (4)

Führt man neue kanonische Variable Nk und 0k ein, so lässt
sich bk unel b+k auch so schreiben:

K^YNle'^^ (5)

und
Z ni 2 ri i _

&k lässt sich als eler zu Nk konjugierte Tmpnls deuten und kann
als Differentialoperator

h d

2ni d Nk

geschrieben werden. So gilt für irgend eine Funktion / der
Variablen N

bk f (N„ Nk, yM / (N„ ...Nk-1,...)
ferner

bXf (N,,..Nk....) jMM (M ...Nk + 1,...). (6)

Wir wollen nun die Nk als Besetzungszahl für die Frequenz vk
auffassen, ferner soll (N,,.. .Nk,...) den Zustand des gesamten
Strahhmgsfeitles charakterisieren; wenn m nnd n die stationären
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Zustände des Atoms nummerieren, so müssen die
Wahrscheinlichkeitsamplituden

y"»(N,....Nk,...Nn)
folgendes System von Differentialgleichungen erfüllen:

h
V« (Nr) - y ^-7= j A '¦;¦" W (Nr -l)i/rVrrTi"'''2ni

+ A?-" l/;"(V,-l)i/MTr2,i,>'}e-""»-'»'. (7)

Dabei haben y,, A"J" und A'J" folgende Bedeutung:

h e2
1 / "L

y }-27Xv

A»>-"=c[lI'm(*er) UM' <= '"""r/r

(8)

-"'•.»,«

j;"-"=c/u;„(7.e,.) u„e
-.rii1+ " r- (nr r) <7U

wobei Un die Eigenfunktion des ungestörten Atoms sein soll.

Im folgenden soll nun die Gleichung (7) integriert werden.
Diese lässt sich stets auf folgende allgemeine Form bringen:

h ,_ AjJ \p»> _ tr» l

r^>=2Xf/,W *
'

<J/> V)J *?*) 0)2."T!

(M) soll dabei ein Symbol sein für den Endzustand des Strahlungsfeldes,

E'" ist die Gesamtenergie des Atoms -f- Strahlungsfeld im
Endzustand. Wir wollen annehmen, die Integration von (9) sei

ausgeführt. Dann lässt sich ¥/"'U) stets entwickeln nach den W"y)(o)
(zur Zeit t= 0); also erhält man:

^(%W SwwV)^w(0). (10)
« (V)

Man erkennt sofort, dass die Grössen

die Übergangswahrscheinlichkeiten aus dem Zustand n nach
m sind.

Zur Berechnung der ersten Näherung nimmt man an, die
Grössen W' seien zeitlich langsam veränderlich. So erhält man
für IT7™ folgendes:

ll/m lt\ »i.l- i ,.»./•¦r (.1/) V/1 ~~ "(.!/) (Ä) "T *(¦!/) (Ä

e h lM/> Ä(iO.I_-1
(11)

16

B(j/rE(«
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wobei die Anfangsbedingung W™V)(o) <5('"/A-. berücksichtigt ist.
(o*("i'/A-) nur o, wenn m k und ferner, wenn (AI) (Ti).)

Diese erste Näherung ist vollkommen ausreichend für die
Berechnung der einfachen Emission und Absorption. Für
Streuprozesse benötigt man bekanntlich schon die zweite Näherung.

L'm diese zu erhalten, setze man tlie erste Näherung von
XP"\I) (f) auf der rechten Seite von (9) ein. So erhalten wir:

h - v—¦ AfL_ rEm -T-" 1

Ulm _X m,n h ^(.)/, ß,.V)
Uni y(-m--/ i~(-»»-v>e

"('V), 2Äi( Ta» f* 1

| e~i L-Bw~-e,(Ä)J_1
£..,/•¦ 4»«, *

I MtMa")
(12)

X-V) -^(ä)

Die Integration ergibt folgendes Resultat:

XUm im.k I -m.k ,_ \ Ä (.V)(-V) XA"), (Ä
r(M)—0(Af)(A") i IX-u-HA-)-!- / —p„ „t.' -

I p» pA- I pm ffk
n (.V) <-v> (¦'•¦') ' (*) ij(A)

-'M;'UMm.n ,».!¦ I, y(U) l'(K)\

•Init

Z,m,n
„n.k h \.a(M) ß(-V)J -.

X.vma*) x.v).(A-) _e — i (ig)
„,.v) E(»V)-EfA,

'

ßS/)-EGV,
"

Diese zweite Näherung würde genügen, um Streuprozesse
erster Ordnung, d. h. Dispersion, Ramaneffekt, Doppelemission
und Doppelabsorption zu diskutieren. Für Streuprozesse, wie
sie hier betrachtet worden sollen, brauchen wir auch noch die
dritte Näherung:

Dazu setze man elie zweite Näherung in (9) ein; dann findet
man:

h ¦ V^" 2nit \fm _ f» if_U/m _ X ~m,n r h [a(M) rj(N) I A't.k
\7li <M> / M)(.V)e I °(N),

"<* \f" -F.k 1

c'(.V),(A-) +
n,(N)

¦2r,it

ucX¦T y,t. Ji yjl. K

¦ (V), (A-) + 2_i -p-p Sf
"•'* e " l v -1

— "V1 ^(..v),(.v-)'xvx<a-) e — n (14)
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Die Integration liefert folgendes:

\pm AM. k
1 (.1/)" "(J/),(K) '

Zyiit.n
7ii,k -r—l5,m,n „. „

X-l/), (.V)~ (V), (A) _ X 4(M).(X) ¦"(.Y'.tA") a{X'),{K)
E" —Ek ' Z-j\E".-Ek' Hb"' -js* 1

«.(.vi (V) ß(Ä) Xa - uV) ('OJ
'

<-v'» (K)J

'(J

,n, »' - n', k

»'.(-V)

rr i t tpm _ ,.-k
A LJX-W) XA)J

e — 1

77"" —Ek1J(M) JXA)

_ X | "(¦-»), (.V) ' ~(V).(A-) X •(.»). (.V>* (.V),(.V)
* Z{\')(K)

¦ | \ U ii 17 /••

tJxX (-v> <A'>

n',(A")

Z-,
'/'. " tt, tt ytt^h-(.u).(.v>* (.v),(.v)

* x.v.(A-)
fß" - E* 1 \K"' -Ek 1

«-.(.vi
1 <-v> cxJ iyx'i (Air

irrit r,,m _ l
A

~ L'X-1/) ^(AlJ -.
e — 1

^/>-M"a-,

> ODtXY ~(.V)(A--) XA-)(A-,
X i \Fn' _ yk 1 frii' _ /.•« 1

(-VXA-)

2"' t r /¦•'» _;.'»' 1 --*"'( rFm r.« 1

"
a Mm ß(V)J t ä Xx.vMxa-)J

e — 1 e

Jj(.V) ij(.V) ^(M) -^(.V)

Man sieht, elass folgende Zeitfaktoren auftreten:

-•-"' fr.m ,.•/,• 1 Unit [,,,„ p« ]

A L-'(-V) ß(A') _. h -<•'•'> ,Jt.X)\
e —le —1

(15)

/.''" u; ¦*¦ K i» R «
^(.U) ''(Ä) IjtU) DuV)

- --r i t \,,,,, _ ,-/(' 1

A PX.*/) ''(A")J
e

L? ffl CI «
'X.U) -X-V)

Dabei ist m der End-, fc eler Anfangszustand des Atoms,
n und n' sintl Zwischenzustände. Es werden nun in der
überwiegenden Mehrzahl Prozesse auftreten, bei denen E™ — Ek ~ 0
ist. Sieht man vorläufig vom Resonanzfall ab (er soll in einem
spätem Paragraphen behandelt werden), so sinel die Glieder in
der zweiten und dritten Zeile von (15) zu vernachlässigen. Man
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erhält also für diesen „Nicht-Resonanzfall" folgendes vereinfachte
Resultat:

U/m Xm.k jMM)- °(M),(K) •

-t—¦» ~m,n y",k —^ ytn.n _»,"' yii'.k
ytn.k X *(M)(N) *m<,K) X X.lf).(V) ^(A'),(V') ^(A"),(A)+ \ZIM)AK) ¦ ^ En _Ek + 2-iTK» -Ek HM -AM

2 n l

e

}Jm — Fkrj(M) lj(K)
(15')

Es tritt also eine Summe auf, in der zwei Zwischenzustände
n und n' vorkommen. Resonanz ist dann zu erwarten, wenn
E"UW) — EkK) 0 oder wenn 7^',} — B*Z) o wird. (Vgl. mit den

Ergebnissen des Füchtbauer'sehen Versuches, § 1.)
In dieser dritten Näherung kann man nun folgende Prozesse

betrachten:
A) Dreifachabsorption; d. h. es verschwinden drei Lichtquanten,

welche das Atom anregen.
B) Doppelabsorption-Einzelemission. Es handelt sich hier um

den wichtigsten Streuprozess höherer Ordnung, der im
folgenden Paragraphen ausführlich behandelt werden soll.
Er ist wohl der einzige, der noch beobachtbar ist.

C) Einzelabsorption-Doppelemission. Dieser Vorgang liefert ein
kontinuierliches Streuspektrum, ist aber kaum beobachtbar.

D) Dreifachemission.
Für den unter B) betrachteten Prozess sollen nun in (15')

die Werte für 2"j"¥| eingeführt werden, wie sich diese aus Gleichung
(7) ergeben.

§ :i. Diskussion bestimmter Streuprozesse.

Man sieht ohne weiteres, dass die ersten zwei Glieder in
(15') keinen Beitrag liefern, da in dieser Theorie Z"\J y) nur
Übergängen entsprechen, die in einem erlaubten Schritt erfolgen
können. In der Summe über zwei Zwischenzustände ist n und m
auch über Zustände negativer Energie zu erstrecken. Zur Berechnung

dieser Summe ist es zweckmässig, diese in vier Summen zu
zerlegen, und zwar in folgender Weise:

oc) En positiv, EJ pos.
ß) En negativ, EJ pos.
y) En positiv, EJ neg.
ö) En negativ, EJ neg.
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Für die Summe a finden wir:

/at \t / AT ,1\ 1 v—il im.» iH,n' An',k 4 ,m n An.n' tn',/N,No(N3+l)
_

y3 y| .l(ij Av>) -4(3; + A'm M) A{2]
k

("g-Vn'.*) («V-^-"«'.!-)

-Titi.n ~~7n.it Jn'.k -[in. n An.n' -Tn'.k
1(2) 1(1) -1(;j) .-l,o, -n(3) _rl(1)

M-'V.A-) (^-"S-"«, A-) (|,1-''„-,a) (''l->'3-»'„-,A-)

J».,tt T»,n' Tn'A' J'».» -Jmri -Jn'.k 1 „2nift 1

-^O) 1(1) 1(2) -"'(3) --i(i) -1(1) | K A

(''2-'X.A-) (»'l+"2-l-n,*) (''l-'V.A-) (V,+ V2-Vntk) f

r.T * /= >"1 + "2 — v3 — "m, Ar •

(16)

y
3 g 3

/i3 (2nh V)~

Bei der Berechnung der Summe ß kann man im Falle, wo

vi> v2> ^3« xr M (''c Nenner v2 — )»3 — r„x. durch + 2 m,c2

erersetzen.

Fasst man je zwei Glieder zusammen, so erhält man Summen
von der Form:

i \1(2) 1(1) I 1(1) -1(2) /1(:l) • l1' J

Nach Waller1) findet man hiefür:

-X ,' * ———(n,ir,-n. i,,, r)
2^A';:,kJV:,e

< Un.dV. (17)

Wenn man die einschränkende Annahme macht, dass die
Wellenlängen gross sind gegenüber den Atomdimensionen, so wird:

r ^
*"""

(«¦>•, ¦ n. i',,t)
JKe r ' ün.dV=Ö (18)

Wir erhalten also in diesem Falle folgendes Resultat:

_
A_ Zi-| MMM'aM

_
M'M

mc2 h3 1/
"i ' V2 ' "3 /

Mos a12 Äßfc
"3 ~ ''¦», *•) (v2 — ''<... A-) (>'l — ''ffl, A-)

MV cos y.,o
_

,j ,",;/• cos q13 .4 ,",';
*' cos x,31

_ (1^
cos a12=(e1, e2),

q I. Waller, ZS. f. Phys. 61, 1930, S. 843.
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Ebenso finden wir für die Summe y : (EJ negativ)

h y*-,/N,-N2-(N3 + l)
_

M''M
m c2 h3 y v, • v.2 • v3 f

^^;*COSa12 Z<2/'cosa13 Z™'*COSa2,
X<

I Vj - r2 v, — vs v2 — v3 |

Bei der Betrachtung der Summe b, wo beide Zwischenzustände
negative Energie besitzen, treten Glieder von folgender Form auf:

V A.'^-k e>,„,,,- (in Endzustand)
n'

Da Anfangszustand fc und Enelzustand m einem positiven Energiewert

entsprechen, verschwindet der Anteil, der von der Summe d

herrührt.
Die hier erhaltenen Resultate sintl ohne jede \7ernachlässigung

von Spineffekten abgeleitet worden. Um aber tlie folgenden
Rechnungen nicht zu komplizieren, wollen wir die Ausdrücke
Ä"lX', ¦ ¦ ¦ etwas umformen. Man findet nämlich unter Beiziehung
der Dirac'schen Kontinuitätsgleichung:

AZA-' -~fe~~''" {n'X)\lX„ (PO Uk + ~rot (tx>U,)}t/U

Bei Weglassung des Spingliedes

-— rot (TJm o Uk)
4 71

und für den Fall langer Wellen

2 r, i ,;
,— (n, r)

ergibt sich:

a m.k Hml **.nA- I„ l,m,k\
•id» — — »m w0 °(D — \*i *

gesetzt ist. Zu beachten ist also hier, dass diejenigen Glieder,
bei denen beide Zwischenzustände negative Energie besitzen,
nichts beitragen.

Die Diskussion der Resonanzstellen soll auf einen späteren
Paragraphen verschoben werden.

Wir wollen uns nun weiter fragen, ob es möglich ist, die Glieder,
die den einzelnen Näherungen entsprechen, zusammenzufassen,
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wie das für den Fall eler Dispersion und des Ramaneffektes von
Dirac1) ausgeführt wurde. Dies gelingt tatsächlich, und man
bekommt folgendes:

(fc Anfangs-, m Endzustand)

,2w^a VN, v, • N2 v2 ¦ (N3 + 1) v3 e^iHv,^- -,-v*)-l
K ' (2.TfcTT=

'

(v,rv2-r3 -r„,,,)
- tt » :; *(1) »Ci) «-(2)xV-^-Hl(-''3_,V,Jl-) (>¦¦>- »a— '•»».*-) (^-"n'.A-) (''2-1'3-r,,^.)

.». n' —n'. I: vm, ll -,H, n' «,«'. A'

•(I) *(3) *(2) *(3) *(1)

(-''3 -''»'. A-) (-'•3+',l-''«,*) ("l-"»',*) ('i-1'3 -''n.A

t* '"¦ I' -M "¦ "X «• "'. A' f.1,1. n yv• n' • Y n'• *
r(:l) C(I) r(2) *(3) *(2) r "» (18)

('¦¦>->¦„'.k) {ryt-ro-r.j.)
'

(i;-v,rk) (v, + v2-v„ik) J

Das Quadrat dieses Ausdruckes gibt also die Wahrscheinlichkeit

dafür, dass zwei Lichtquanten hv, und hv2 absorbiert und
hv3 emittiert worden, wobei tlas Atom aus dem Zustand fc nach ra
übergeht. Dabei werden natürlich die meisten Frequenzen r3
die Energiegleichung v3 — v, -j- v2 — vmk erfüllen. Ebenso
erkennt man aus Gleichung (18) folgende Tatsache:

Wenn v, oder v2 mit einer Atomfrequenz ly k übereinstimmt,
hat man Resonanz, wie sie ja auch zu erwarten ist. Was hier
aber besonders bemerkenswert ist, ist der Umstand, dass eine
solche Resonanz auch dann eintritt, wenn

v, X- v2 vn> k

wird. Besonders starke Resonanz hat man dann, wenn sowohl

v, wie auch r2 einer Atomfrequenz gleich ist. Dieser Fall
entspricht demjenigen, der beim Füchtbauer'schen Versuch vorliegt.
Dann wird natürlich die Frequenz v3 des Streulichtes mit einer
Atomfrequenz zusammenfallen.

Wir wollen nun im folgenden die Intensität der Strahlung
berechnen und im Anschluss daran die Grösse des Dipolmomentes
bestimmen, elas klassisch die hier betrachtete Streustrahlung
erzeugen würde. Wir wollen dabei annehmen, dass eine Linie v,
von der Breite J v, und eine solche (r2) von der Breite A v2

eingesandt werde. Dabei sollen, wie schon gesagt, v, oder r2 nicht
mit einer Anregungsfrequenz des Atoms identisch sein.

q P. A. M. Dirap, Proc. Roy. Soc. A. 114, S. 724.
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Wir wollen uns nun fragen, wie gross die Wahrscheinlichkeit
sei, damit irgend ein Lichtquant h v3 ausgestrahlt werde. Man
hat also den Ausdruck:

rv
1

r:w/2dv3 (19)
A v3

o

zu bilden. Dabei müssen wir das Integral

OD

I* /e2n!«0'i + >'.>-r'3->VA.)_1/2
/ ; ,ö—- - d )',

J (''l + "2 — v3 ~ vm, A-)

ei

berechnen. Dieses hat den Wert -ln2t, wie a. a. 0. gefunden wurde.
Man sieht, dass der Integrand für v3 — v, -\- v2 — vm k eine scharfe
Resonanzstelle besitzt, so dass im folgenden v3 stets v, + v2 —

.'„,,<• zu setzen ist, da ja im wesentlichen nur die Umgebung dieses
Wertes etwas zur Intensität der Streustrahlung beiträgt.

Für die Lichtenergie, welche pro Sekunde aus dem Strahlenbündel

(A v, A Vo) (A co,- A coo) ins Bündel A co3 fällt, erhält man
dann folgende Grösse:

(2 7i)b e6
2 =- €,, (v,) ¦ <S3 (v2) ' '

9 v\ • v2 • v\ (Av, ¦ Avo) (A ot, ¦ Ao>2 - AcoA

(20)

l~~Z ""
| ylll, ll t. ''• n' • Yn'i k Yw-n't*n-R't,n',^/ > I *(1) l(2) l(3) *:(1) *(3) *(2)

77*1 (-"3-"»',*) (v2-v3-vn<k) (v2-v„:k) (v2-v3-vn,k)

+ *<!) *(3) *(21 *(:•!> *(1>

"3-"«',A-) ("l-V3-1'„>t) (l'i-l'n'.t) ("i-l'g-l-,,^
« '11, n yll, ll' Y "', & Ym- n • Y "• "'• -m "', A-

C(:J) r(l) r(2) *"(3) r(2) c(l)
("2-V,t) ("l + Vz-Vn.*) (>'!-»V. A-) (r,+ v2-vnJ.) )/

Dabei bedeuten <£>, (v,) und <S2 (r2) die Strahlungsenergien
N,hv, bzw. N2h-v2 der einfallenden Strahlung.

Wir wollen uns nun fragen, welchem Dipolmoment (in
klassischer Ausdruckweise) diese Strahlung zuzuschreiben ist. Die
von einem Dipol 3R in der Sekunde in den Kegel A co3 gestreute
Energie ist nun:

_8^Kjmiicos2{m>i3h (21)
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Vergleicht man dies mit obigem Resultat, so entspricht dieser
Strahlung folgendes Moment:

m 4^~ ¦ VNi ¦ N2 ¦ h2 v\ jif (Av, ¦ Av2) (Aco, ¦ Aco2)

¦ r r r,,, r * r,„;
(22)s *» wi, n w ". «' «• n'. k y m< n y n, n' Yn', ^*

'<!> r(2) f ^(1) s ^(2)

_
ri (-"s-V.t) (i'2-i'3-rH>/. (r.,-)'„-,*.) ()'2-i'3- )•„.,.)

Nun ist die zum Strahlenbündel Av,- A co, gehörige
Feldstärke gegeben durch:

M _ <gj M^i j j 0 (23)

ebenso:

M gj JV^_4v j^. (24)
4 tz er

Setzt man dies ein, so erhält man für das Moment 92U

/«i/-/«a/3»
fc*

*,»'.»*.". ii' *,n', A- vm, n v» /.' «»'. A-

(1) *• *(2)
4-J\(-V3->'»,.X ("2-'3-''«, A")

'

(,,2->V,A-) ("2-"3-"«,*)
(24)

Man sieht sofort die Analogie zum Resultat, das man beim
Ramaneffekt erhält, wo man für das entsprechende Moment:

Tr> *- pt > ' *"> " v *'"
-"»Raman — i < X i

bekommt

ß* / X "
1 t*m- " • **"' * *m* n **"• *

Es soll hier ein kurzer Abschnitt folgen über elie Auswahlregeln

bei dem hier betrachteten Prozess. Aus Formel (18) lassen
sich eliese ohne weiteres ableiten. Man übersieht leicht, dass man
dabei die Matrixelemente eler Matrix X3 zu suchen hat, die nicht
verschwinden. I). h. man sucht nach denjenigen Übergängen,
die in drei erlaubten Schritten erfolgen können. Da für X'"-k
die Auswahlregeln:

\l= ± 1 und Aj 0, ± 1

gelten, erhält man für (X2)"1'1':

A l 0, ± 2
und für i

Aj 0, ±1, ±2
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Ferner ergibt sich für (X3)"1-1-

Al ± 1, ± 3 ebenso für j: (25)

Aj 0, ±L ±2, ±3.)

Grössenordnung.

Es ist nun möglich, an Hand von Gl. (18) eine Abschätzung
der Grössenordnung auszuführen. Dabei ist es vielleicht am
einfachsten, die Wahrscheinlichkeit unseres Prozesses etwa zu
vergleichen mit derjenigen eines Ramaneffektes. Für diese erhält
man bekanntlich den Ausdruck:

2 7rF "i-^-'V.,
r(2) r(l) r(l) *(2)

Für das Verhältnis der Wahrscheinlichkeiten erhält man dann
folgendes Grössenordnungsverhältnis:

W___N,.h-v^ _g, /W,/'. (26)
I^Raman 7 fc2 / dl'/ ^°j

Dabei soll [t] die Grössenordnung des Atomradius (~ IO-8 cm)

und A v diejenige eines Resonanznenners sein. Ferner ist - *
,->---

die Strahlungsdichte <5 (vA für die Frequenz v,. Setzt man dies
ein, so ergibt sich :

T1' - 01WlO^. (27)
TFteanian (A v)2

Nimmt man ferner für einen günstigen Fall A v 102 cm-1 an,
so wird:

W
__

IO6

" Raman <Si ("'i)

Es scheint demnach wohl möglich zu sein, unter günstigen
Bedingungen (grosse Intensität der einfallenden Strahlung und in der
Nähe der Resonanz) den hier diskutierten Prozess nachzuweisen,
und zwar um so eher, als man den Ramaneffekt schon bei
verhältnismässig geringen Intensitäten des einfallenden Lichtes
beobachten kann.
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Diskussion der Resonanzstellen.

Wir haben bisher nur den Fall betrachtet, wo keinerlei Resonanz

vorkam. Nun weihen wir in diesem Paragraphen die Resonanz-
steilen genauer diskutieren. Prinzipiell hat man hier drei Fälle
zu unterscheiden, und zwar folgende:

1. Eine der einfallenden Frequenzen stimmt mit einer
Atomfrequenz 17- j. überein.

2. Die Summe v, -f- r2 ist 17 k.
3. Sowohl r, wie v2 entsprechen je einer Atom-Kombinationsschwingung

(Füchtbauer'scher Versuch).
Zunächst sei der erste Fall betrachtet, der wohl auch

experimentell leicht zu realisieren ist. Wir wollen hier annehmen, dass

v, ganz in eler Nähe einer Atomfrequenz vv k liege. Dann darf man
in Gleichung (15) elie letzten Glieder nicht mehr vernachlässigen.
Allerdings werden wir nur diejenigen Glieder mitnehmen, für die
n' V ist. Wir ersehen aus (18), dass hier zwei Glieder den Reso-

nanznenner (v, — v„._ k) besitzen. Wir werden daher alle Glieder,
bei denen n' — /' ist, aus (18) herausnehmen. Setzt man zugleich
die Werte für Z"'J')IX) usw. ein, so ergibt sich folgendes Resultat:

vi'.i- x—1 y'"-" r"-1'
f» =B -= \ r''-> r'3>

(i/i

(«) + ß

(«>

e27iit(r,+ v.- i-3- >•„,.,..)_ ] p-27t il(v.,- i;„.,,) _ j j

(i'i-t-r2- r3- )'„,,,,) (i'2-r,„.„) 1

Yr- k X 1 V'"- " !•"•''*(1) X l0.) *(2)

(v,-Vv.X) ^ (r.,-r3-)¦„,.)

,2 Tt it (I-, — r2- v3 - r,„,k) j e1nit {- v3 - v,„. „)___ j|
(>'l+ r2^ ''3-''»'/.-) (-''3-l'ffl,,,) |

l'i Ä" -c ^ **'".H ** »M

(ß)

ß r(D \ r(2) *(:))

(j'i-'V-.a) ^-J i-i'3-"'»,r

e2.m*- (r2- m- l ¦

-ß-

(v2-v3~vm,f)

'(-> \ r(3) r(2)

MM 4^ M2-''«.'-)
(«)

¦vmil')_i e-2 7tit(-vs
(28)

i_,vN,v,-N2-v2(N3+l)v3
m, (AI) Endzustand; ß (2 7t 1')3 p3 /r

(2 rr 1 -
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Zunächst wollen wir die Wahrscheinlichkeit bestimmen, dass
ein festes Lichtquant hv3 emittiert wird, wobei man über ein
Frequenzintervall J v, summiere, für welches v, in der Nähe der
Resonanzfrequenz vv k liegt. Wir wollen also das Integral:

hrJiw* (29)

berechnen; el. h. wir wollen annehmen, dass eine Linie v, mit
der Linienbreite J v2 eingestrahlt werde. Um keine divergenten
Integrale zu bekommen, müssen wir die Glieder in (28) etwas
anelers ordnen. So werden wir z. B. ein Glied aus (28a) mit einem
aus (28/9) kombinieren, z. B.

ß
*(1) I X ^ C(2) C(3) 6 > - 3 "»••*"' — t

¦>'*',k) \Z-iV,— v3—rnk »1+v2—va—vm>k
(»)

v^X *"i? e^ " »< (»»- »-»- "«, i') — 11

(— v3— v",r) v2—vz—vm]V '•

(30)

Da wir uns in der Nähe v, ~ vv k befinden, können wir v, ~ v3 — vn k

durch —r3—vnV ersetzen und vereinfachen:

Y Hl. n Y "¦ V
* (2) ** (3)

l(— "3—"nX')
(n)

ß M V-' (vi-vv.k) Zj(
Oi)

e2 nit(v,+ „,- v3- vm,k) __ -j e-l7iit(v.2- v3- ,¦„, r) _ j |

Vj+i-2—r3—)',„,/. ^-»s"»«,? I

Dann reduziert sich Gleichung (28) auf folgenden Ausdruck:

mm o *Xl) X K(2) *(3) l(3) *<2)

("1— n-,k) Z-jI(—v3—v„,r) (v2—vnJ>)
(II)

I f2 rr j < (>-!+ r,- ,'3- rma.) _ j e2 n ' t v.- r3- r,„, r) __ 1)

x • l^-1
I ''i+''2—r3—r,H,A- r2—i'3—)'„,_,¦ J

Wir müssen nun folgendes Integral näher untersuchen:

M'q-'7-.A-)2
(¦! »,)

•/ — *-_i / (33)
/ "l+ v2— v3—vm,k V2—V3—Vm<V I

Man sieht, dass dessen Integrand für v, — vr k ein starkes Maximum
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besitzt, ohne jedoch divergent zu sein. Man kann nun für dieses

Integral näherungsweise die Integration von 0 bis oo ausführen.
So erhält man dafür folgendes:

J 4 n

Also erhält man für

/ y1'- * /2 r. - «•"'•" y"-1'

Tit (v2—va—vm.r)—sin 2 Tit (v2—v3—vmJ-)

1

(>'¦>-r3->;,,./¦)

f '
X1JM dv ¦

I ' (M) " ' 1 •

(33)

OD

in. n *,»,/'
(2) * (3)

'3-Xr!¦ll'l L^—j(»'2— ,'«,/')
(«)

2n/ (r2—1'3->•„,.,•
4.T

-sin 2 ti f (i'2—i'g—r,

"2—"ü—* m. ru (34)

Um nun die Gesamtwahrscheinlichkeit zu erhalten, dass ein
beliebiges Lichtquant // i-g in einer festen Richtung gestreut wird,
integrieren wir über )'3, wobei jetzt zu beachten ist, dass v3 ~
v2 + vm r wird. Wir erhalten in diesem Falle folgendes:

J'.k ,2 ffl. n y". 7~~

<o\

Av,- A i'g L^j(''2-i7,,r,
(«)

Y un, 71 y "• 7
¦X2) *(3)

(v2—V»)
(35)

Dieses Resultat ist so zu (lernten: Nach elen Einstein'schen
Strahllingsgesetzen ist die Wahrscheinlichkeit dafür, dass das
Atom in t'sk. unter dem Einfluss der Strahlung v, vom Zustand fc

nach V springt:
/.'.«• ß

(2ti)-q, 1

.1 V,

e2 N, h v,
Pl=M2'

(36)

V

Ferner ist die Wahrscheinlichkeit, dass ein Atom in der
Zeitspanne At' unter dem Einfluss der Strahlung v2 vom Zustanel V

nach m gehoben wird:

Q 2

(2*)* yl<M«_
Z—i X'2~ >',,.r)

oo

Ylll. II Y nX' / ^
r(2) r(3) /

r2 l'm,n /
li':

e* Nohv., (A"-l)fc,
-2 ~ IA

t-

(37)
V V

Und da J t' A t' ist, erhält man ohne weiteres das Resul-
o

tat (35).
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Man sieht aus Gleichung (18), dass auch dann Resonanz
eintritt, wenn v, -f- v2 gleich ist einer Atomfrequenz v, k. Da dieser
Fall praktisch wohl kaum realisierbar ist, sei auf die Durchrechnung

dieses Falles verzichtet. Die Rechnung verläuft ganz analog
der eben ausgeführten. Was uns viel mehr interessiert, ist der
Fall, wo sowohl v, wie auch v2 mit einer Atomfrequenz
übereinstimmen, und zwar soll v, vv k sein, wo fc der Grund- und V

ein angeregter Zustand ist; ferner setzen wir v2 d. h. durch
das Lichtquant, hv2 soll das Atom aus dem angeregten Zustand /'
in einen noch höheren l gehoben werden.

Die Glieder, die nach Gleichung (15) in Betracht kommen, sind:

117m —•M.U)

V

X

*,/.(. l yL 17 Y*'¦ &

;
*-(3) X2) *(1)

X'l-Vl'.k)

_1
(v,+v2— vl>t)

1

| e2 nit( v,+ vi-vi-vmtk)_ i g2 n t (- r3- vm.,)_ j
| (v,+ v2— I'g— vm.k)

[ -2 7iit(v.,- v3- t;_l
~vm,l')

(—"3—vm,l)

e2nitl-v3-vm,i)_-^
(—v*—vmi)

J'2-Vl,l',
(38)

Lassen wir ein Lichtbündel (v,) von der Breite J v, und ein
solches (v2) von der Breite A v2 einfallen, wo sowohl v, die kritische
Frequenz vVk wie auch v2 die Frequenz vl v einschliessen soll.

Wenn wir die Gesamtintensität der emittierten Strahlung v.
berechnen wollen, müssen wir das Integral

A v, Av2Av3- W fd v, Jd v2 Jd v3 j »/>

(,!>,.) (J.,) (Jr,)
berechnen.

Die Rechnung ergibt nun folgendes Resultat:

m /2
(-V) '

und da:

t3 (2TiY-ß2 1>V ,tkj2" M Av,-Av2-Av3
' (3) X™Vvl '

e6 N,hv, N2hv2

(39)

(40)

ß2=(2 7l)3

war, erhalten wir

6

h6 V

<6-(2te)9" ' JlJa h«c*(Av1-Av2-Av3)

V

I Ym-l ¦ r'r 'X Yl- * /2
/ * (3) *(2) r(l) / (41)

wo J, die Intensität iV,;^-.
c und

Jo die Intensität — -.-,-- c der einfallenden Strahlung ist.
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Es sei hier noch bemerkt, dass solche Prozesse, die hier diskutiert

werden, auch an freien Elektronen auftreten können. Die
Störungsgleichung lautet hier:1)

-Ar xp'" M M

~7ZmL f,/v (e oi».n- ¦ c- a
' [i'"' ("'>--Bi"<"'-"r->-"'» ,/yA-- i yiXr \vr **k />' ¦ Vj L l ¦>>¦ - /¦/., X, -1)

-, n ~7' lEm(p')-Ek(p'-pr)-hvr]xPkv,-„, y+nl. (42)

Dabei ist,
h vr

Vr — »r

gesetzt, ferner ist:

Strp'={"m(P') ««*(?)}¦
Führt man die Integration bis zur dritten Näherung durch, so

findet man Glieder von der Form:

e2--"''(_l
I'"' - -.- — (43)

_—_ [X Qtm, p+p, + p,-p,- \f Ol»./' - Pj-Pi1 [X OJ»»', p-p,lX 1 [M» ^H.jl-p.-p, J l>2' vt»',/i-p, J iX3> ^lA-.p J

2-Jßn' (p-p3)-Ek(p) + hv3][En (p-p3-p2)-Ek(p)+h (v3-v2)] " '

/,, /,-

wobei
Bm (p-rpi + p, - p3) " £\- (p)

/ " -ß— ("l + ''2— >'3)

ist. Man sieht also, dass auch im Falle eles freien Elektrons
Prozesse auftreten können, bei denen zwei Lichtquanten hv, und
hv2 mit mit einem Elektron zusammenstossen, und wo zugleich
ein Lichtquant hv3 ausgesandt wird.

§ i. Behandlung des Problems nach der Heisenberg'schen Methode.

Es soll nun im folgenden versucht werden, die mit Hilfe der
Dirac'schen Strahlungstheorie abgeleiteten Resultate auch nach
der Methode von Heisenberg2) zu berechnen. Bei dieser Methode
geht man nicht etwa aus von tier Hamiltonfiinktion des Gesamt-

') Vgl. I. Waller, loc. eit. S. 846, Gl. (21).
2) W. Heisenberg, Ann. d. Phys., Bd. 9, 5. Folge, S. 338.
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Systems, sondern man benützt für das Atom z. B. die Dirac'sche
Gleichung und für die Strahlung die Maxwell'schen Gleichungen.
Zur Berechnung der Streustrahlung betrachte man das
Vektorpotential :

2l8= [^Ar-r-^dW. (44)

Dabei setzen wir für den Strom @ den Ausdruck <3 e (IT7* a W)
ein, wo W die Wellenfunktion des durch das Strahlungsfeld gestörten
Atoms bedeutet. Beschränkt man sich auf grosso Distanzen, so
findet man für 2t, einen Ausdruck von der Form:

(v)

a^i^fß^r-'iB,;,^^"} (45)

v soll stets positiv sein, ferner gehört B zum Glied mit dem Zeit-
faktor e+2"ivt. Diese Zerlegung in ebene Wellen ist immer
möglich, wenn man in grosser Entfernung vom Atom beobachtet.
Man würde nun quantentheoretisch erwarten, dass die Intensität
der Strahlung mit der Frequenz v der Grösse

{BB^ + B'B} (46)

proportional sei. Die Eigenwerte dieses Ausdruckes sind aber:

{Nhv + (N + 1) hv} + 2 hv (N +¦ J/2). (47)

Man sieht also, dass bei der Anwendung von

{BB+ + B+B}
die Nullpunktsenergie in unerwünschter Weise hereinkommt. Um
richtige Resultate zu erhalten, wird man die Intensität dem
Ausdruck

2BB+ (48)
proportional setzen.

Nach der Integration der Störungsgleichung wird man nun
für xp elie verschiedenen Näherungen einsetzen; für 21, bekommen
wir dann eine Entwicklung nach Potenzen der Elektronenladung e:

21, 2ls<°> + 2ls<1» + 2l/2) + (48)

wo zum Beispiel 21U) das Glied erster Ordnung ist. Fasst man 2ls

als Matrix auf, so sind 2l<1( und 2l<2) Matrizen sowohl hinsichtlich
des Atoms als auch des Strahlungsfeldes; 2l(0) ist speziell eine
Einheitsmatrix in bezug auf das Strahlungsfeld. 2f<ü) erhält, man,
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wenn man in den Stromausdruck e (xp* xp) die Funktionen des

ungestörten Atoms einsetzt. In 2l<n sind Prozesse enthalten, wie

zum Beispiel Ramaneffekt, Dispersion u. a. m. Für die in dieser
Arbeit betrachteten Prozesse kommt nur 21^2) in Frage (Absorption
von zwei Lichtquanten).

Wir lassen nun auf das Atom ein störendes Strahlungsfeld
wirken, dessen Vektorpotential wir in folgender Weise ansetzen:

^V^tTiATv {MM^MM2-V} (3')
' '

-k)
V *

wobei die Retardierung zum vornherein weggelassen werden soll
(Fall langer Wellen.) Man kann nun die Grössen bk untl tf. als

Operatoren auffassen, die auf elie Variable Nk des Strahlungs-
felcles wirken. Für diese Operatoren lässt sich aber eine
Matrixdarstellung einführen, und zwar wollen wir folgendes festsetzen:

(&*)&:::&-i::&=l/tfä (49)

(bXxX77xlj::x:=V^+i
oder abgekürzt:

bkXk-r=VNk (49')Vr

,+ -VA

Alle andern Matrixelemente von bk und b\ sollen Null sein. Die
Matrix bk tf. hat dabei die Eigenwerte Nk (t). (Dies gilt für irgend
eine Zeit!) Ebenso setzen wir:

«a-'-l/n^fövsi.«*-**}- (49")

Um das Verhalten des Atoms zu beschreiben, gehen wir also von
der Dirac'schen Gleichung aus. Diese lautet allgemein:

h d
_

e

2 Ttic dt c
T'

v~" I h " e
gl« + a4 m0 c \W 0 (50)

(0

Wir wollen annehmen, die Eigenfunktion U„ des ungestörten
Systems (21 o) seien bekannt. Lassen wir nun das Strahlungsfeld

auf das Atom einwirken, so wird man eine Lösung von der
Form:

2nl

!r/i)=yaa)(j e * "•
(51)
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erwarten. (Erste Näherung.) Als Störungsgleichung erster Nähe
rung findet man:

h d e TT\ v—~ h d „,„.
2 n % c d t c I / i

l 2 ti i d x{
(O

fMA{HXA!^'2""'+"'^"A]'i'm-^

Dabei bedeutet a den Vektor (oq, a2, a3). Bei der Integration
dieser Gleichung ist nun zu beachten, dass die Grössen br und
tf zeitabhängig sind. Da aber die dadurch entstehenden Glieder
für den hier betrachteten Prozess nicht in Frage kommen, seien
sie zum vornherein weggelassen. Die Lösung von Gleichung (52)
liefert für die Grösse A^ folgenden Ausdruck:

7} AL,\f7,
2,7lli(vr-Vn.k)__l 27T,t(vr+Vn.k)_l\ f -*\brl - — tfA -\ / Ll(a.cr)LkdV. (08)

{ Vr—Vn.k Vr + Vn.k \J

Es wird elabei angenommen, das Atom sei zur Zeit t 0 im
Zustand fc. Ferner wurde abkürzungshalber

)] — — e M hV

gesetzt. Wie Heisenberg gezeigt hat, genügt diese Näherung
vollkommen, um zum Beispiel Ramaneffekt und verwandte
Effekte zu untersuchen.

Wir wollen nun auch hier die Grösse / U* xUkdl' etwas
umformen. Bei Vernachlässigung der Spineffekte findet man, wie
in § 2 gezeigt wurde, dafür folgendes:

f VI « UkdN - — »"-.* - — iJ c. c
ffl, A-

C

Um nun den in dieser Arbeit betrachteten Strahlungsprozess
zu diskutieren, brauchen wir noch die zweite Näherung von xp.

Dabei setzen wir in Gleichung (52) an Stelle von xp{1) die zweite
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Näherung y>(2), und für tpm die erste xp0) ein. So erhalten wir
folgende Gleichung:

h _ö
2 nie dt

I -f/'i.)

h •/2X-,V^(«I- a) f,
"'¦J-bt e~'lniv^\ Un-e >>

ll r r

I yinil{vr'~ v, a-)_1 e-27iil(v/+ V,*)_l)X *V M __ _L __ fc ± J (C, „ 'X Ar)
I ('V--)'„-./.) (J»f— Vn'.k) J

Setzt man für xp(2) eine Lösung der Foim

(54)

(m)
V

i " ffl ^ m

an, so findet man für a(n2>:

'/2V^(c,-°"'"') («i-o"'¦*')
,<2) xU'

A- rr'
('V vr)

b, tf | e27ii<(i;r+>/-i'„a-)_i e2jtit(vr-v„ „')_ 1 |

(('V l'n'.k) (>'r+ ^r — >,n.k) (vr—Vn'ik) (vr— !',-,„-) J

(55)

Wir wollen uns nun der Aufgabe zuwenden, die Streustrahlung
zu berechnen. Wie schon angedeutet, gehen wir aus vom
Ausdruck für das Potential 2ls, das ja

/' ^pdV
•- ' Uli'

ist; (5 Stromvektor.
Der Index s soll darauf hindeuten, dass es sich hier um die

Streustrahlung und nicht um die einfallende Strahlung handelt.

Wir setzen nun in den Stromausdruck

ig e (xp* ct. - xp): e V xpi ct.„ „ xpa

die zweite Näherung von ip ein. Wenn man in grosser Entfernung
vom Atom beobachtet, findet man für 21.:

21. ri [xp* xxp)l-r;cdV. (56)
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Wir suchen jetzt elas Matrixelement <3™ des Stromes, das

zum Übergang fc —>¦ m gehört. Sein Wert (in zweiter Näherung)
ist folgender:

r«-V kfrf /eq2'
to* -2-iVw\hc'

sr*\ vm-" v;;X'v'^]"'
^—H l(»V-»'«',*¦) (",•+V->'«,A-)

2.-i i.'(rr+ r, •-!•„,,,,) (57)

wobei n und n' auch über die Zustände negativer Energie zu
erstrecken ist. Für das Potential, das uns hier näher interessiert,
findet man dann:

a.r= l {e?+0*r} (58*)

op»--1-/6''2^A- ~ ^ fc r3

") /) ¦«—1 I m"'>" «»¦"' ¦»"'¦¦>' I
--1-8- V ° 0a) °(2) _ +

I e2 n itJt + r,- v„ ,J
VV1V2JA-^\\V2—Vn\k) (}'i+V2—V„:k)

'
J

btb$x-~-( «*'"'" »*"•"' »*"'•*' 1oi 02 v^) » '"•" »({)•" o
]/l'1»'2Z_ji(l'2-J'„,)J.) (v^-fj -"«,*)

58)

Nun ist also die Intensität der Strahlung mit der Frequenz
(v, + v2 — vm *) gegeben durch

2BB+,

wenn man 2ls in der Weise zerlegt, dass

21,™ — gj+2lItl(»1-|-J!-Vm,i) + g+e-2!t!l(»1+»r«m,r.)

wobei vorausgesetzt ist, elass v, -j- r2 — vm Ä. > 0 ist. So finden
wir für B und 7?+:

er,2\ b,b2 ~srp\ t>m'" v'';, vkm, n ^n, n' **«', k

B= (-x^_ * 2 X v V(D w(2)

n, n

*-(tf)££| ¦ !• m
,1. ll'

Wir wollen nun elie Energie ausrechnen, die unter dem
Winkel < (»<3) durch das Flächenstück dco3 hindurchgeht, wobei
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c3 ein Einheitsvektor senkrecht zum Streustrahl ist. Für diese

Energie findet man:

2,= ^IfB^-^^l'coB'iv^dw,. (60)

Da

/^M'iM'-^M'^r^iMN, (6i)
ist, wird also:

2,~N,N2.
Um nun (wie in § 2) die Energiedichte 2 zu erhalten, die aus dem
Strahlungskegel (dv,dv2) dco, dco2 in den Kegel dcu3 fällt,
multiplizieren wir 2, noch mit

2
i'i i'.,-
.3

'
.3 ' v" {d vi d ''2) {7t co, d ojo)

Dann erhalten wir als Endresultat:

(2 n)5c6
2 J, (v,) J2(v2) •

}ii--9 v,2v.2iX(dv„dv2)(dco,dco2dco3)

I V 1 r'"- " Y","' Y "','¦' I /2x/E!xMnMMx-'!/ |62)

wo n unel n' über alle positiven Energiowerte zu erstrecken ist.
Ferner ist

Jl("j)= y
gesetzt, und ?'3 v, — v.2 — vm k angenommen. Vergleicht man
diese Formel mit (20), so findet man völlige Übereinstimmung.

Herrn Prof. Dr. W. Pauli bin ich für die Anregung zu dieser
Arbeit zu grossem Dank verpflichtet, ebenfalls Herrn Dr. R,
Peikrls für manchen wertvollen Rat.

Zürich, Eidg. Techn. Hochschule.
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