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Uber Streuprozesse hoherer Ordnung
von P. Guttinger.
(3. VL. 32.)

§ 1. Einleitung.

Es 1st bekanntlich moglich, mit Hilfe der Dirac’schen?) Strah-
lungstheorie, deren Kennzeichen die Lichtquantenhypothese ist,
Aufschluss zu erhalten tiber alle vorkommenden Emissions-,
Absorptions- und Streuprozesse. So lassen sich damit z. B. Fragen
behandeln, die mit der natiirhchen Limenbreite, mit Dispersions-
und Ramaneffekten zusammenhéngen. 7

Im folgenden soll nun eine kurze Ubersicht iiber neuere Arbei-
ten auf dem Gebiet der Strahlungstheorie gegeben werden. Fragen,
die mit der Resonanzstrahlung zusammenhéngen, sind von WEgiss-
kKoPF?) und WieNER?) eingehend behandelt worden.

Von Maria GopperT?) sind zwel Prozesse untersucht worden,
deren Wahrscheinlichkeit man ohne weiteres aus der zweiten
Niherung erhilt, und zwar Doppelabsorption und Doppelemission.
Letzterer Prozess spielt praktisch kaum eine Rolle, wohl 1st aber
der erstgenannte Prozess, die Doppelabsorption, von Bedeutung.
Ist namlich die Summe zweler Frequenzen des einfallenden Lichtes
gleich einer Anregungstrequenz, so kann Doppelabsorption statt-
finden, wobel das Atom angeregt wird. Dieser Prozess wird beson-
ders dann hiufig auftreten, wenn die Intensitit des eingestrahlten
Lichtes gross ist, da die Ildufigkeit dieser Prozesse dem Produkt
der Strahlungsdichten proportional ist. Auf Grund einer ein-
fachen wellenmechanischen Stérungsrechnung wurde von BLaTon®)
die Frage untersucht, ob ein Atom ber Bestrahlung mit der
Frequenz » nicht auch Streustrahlung der doppelten Frequenz
aussenden kann. Eine solche tritt theoretisch tatsichlich auf;
es zelgt sich aber, dass das mit 2» schwingende Dipolmoment
in der Fortpflanzungsrichtung des emfallenden Lichtes liegt, dass
sich also 1n einem Medium dieses Streulicht nicht zu einer ebenen
Welle zusammensetzt, Klassisch ldsst sich das Auftreten der

') P. A. M. Dirac, Proc. Roy. Soc. A 114, 1927.

) V. WEisskopr, Ann. d. Phys. 5. Folge, Bd. 9, 1931, S. 23.

%) V. Weisskorr und E. WieNER, Z. S.{. Phys. 63, S. 54, 1930.
1) Mar1a GOrpErT-MAYER, Ann. d. Phys. Bd. 9, 1931, S. 273.
%) J. Bratox, ZS. {. Phys. 69, S. 835, 1931.



238 P. Gittinger.

Frequenz in folgender Weise erklaren: ein Elektron, das einem
alektrischen Wechselfeld von der Frequenz » ausgesetzt ist,
schwingt mit dieser Frequenz ». Fithrt man nun die Lorentzkraft

-—E-— (9] des Lichtfeldes als Storungsglied in die Bewegungsglei-

chungen ein, so tritt ein Dipolmoment auf, das mit der Frequenz
2 v schwingt und in der Fortpflanzungsrichtung der einfallenden
Strahlung liegt. Der von Braton diskutierte Prozess ist aber
nur ein Spezialfall einer allgemeineren Art von Streuprozessen,
ndamlich derjenigen, bei denen ein Lichtquant von der Frequenz »,
und eines mit der Frequenz », verschwinden und ein solches von
der Frequenz », + », entsteht, wober das Atom seinen Energie-
zustand nicht dndert. Nun konnen Streuprozesse auftreten, die
mit dem eben erwihnten in emem analogen Zusammenhang
stehen, wie Dispersion und Ramaneffekt: es 1st anzunehmen,
dass 1 der gestreuten Strahlung auch Licht von der Frequenz
vy + vy + v, ; auftreten kann, wo », ; emmer Atomfrequenz ent-
spricht. Autf die Bedeutung solcher Prozesse ,héherer Ordnung
hat schon friher Paurr!) hingewiesen. Die Intensitit aller dieser
Streuprozesse st dem Produkt der Strahlungsdichten proportional;
es scheint also moglich zu sein, bei Bentitzung grosser Intensititen
solche Prozesse beobachten zu konnen.

In engem Zusammenhang damit steht ein Versuch von
FucnrBaver?): Bestrahlt man namlich mit Licht der Frequenz
V) = ¥, 4 WO ¢ der Grundzustand des Atoms sein soll, ferner
mit vy = v, ,, so wird auch die letztere Strahlung absorbiert,
da durch Absorption von 7, , das Atom bereits in den angeregten
Zustand m gehoben wurde. Die Untersuchung des emittierten
I_Jichtes ergab, dass alle Linien in Emission auftreten, die durch
Ubergiinge vom Zustand m aus entstehen konnen; diese Erschei-
nung tritt aber nur dann auf, wenn auch die Anregungsfrequenz
V., eingesandt wird.

Die vorliegende Arbeit setzt sich nun zum Ziel, solche Prozesse
zu untersuchen, bei denen zwei Lichtquanten mit den Frequenzen
v, und », verschwinden und ein gestreutes lLichtquant hwv; neu
entstanden ist. Es zeigt sich, dass in der iiberwiegenden Mehrzahl
nur solche Prozesse auftreten, bei denen vy = v, 4+ v, &-»,,
1st, wo 7, ; einer Atomfrequenz entspricht.

Eine Abschitzung der Grossenordnung zeigt, dass die hier
betrachteten Prozesse beobachtbar sein miissen, wenn man starke

1) Siehe Handbuch der Physik, Bd. XXIII, S. 26 u. 95.
2) C. FicHTBAUER, Phys. ZS. Bd. 21, S. 635, 1920. ferner R. W. Woop,
I'roc. Roy. Soc. A. 106, 1924, S. 679.
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Lichtquellen zur Verfiigung hat. Ein Vergleich mit der Wahr-
scheinlichkeit eines Ramaneffektes zeigt, dass sich die Wahr-
scheinlichkeiten verhalten wie:

‘”' 18
g 10

”_;-\ MAN (i] v)?

wo Av die Grossenordnung eines Resonanznenners haben soll,
und & die Strahlungsdichte bedeutet (von », oder w»,).

Wie zu erwarten ist, zeigt sich, dass dann Resonanz eintritt,
wenn:
1. eine der einfallenden Frequenzen mit einer Atomfrequenz v, ;
iibereinstimmt, wo &k der Grundzustand ist;
die Summe v, + v, = ¥, ist;
. sowohl »; wie », mit ». . bzw. » , identisch ist, wo [ und I
angeregte Atomzustinde sind.

o 10

Es se1 hier noch erwiihnt, dass auch Prozesse auftreten konnen,
bei denen die Frequenz der Streustrahlung — v, 4 v, + 2, ;
ist. Bedingung dabei ist, dass v, , > »; T= »,. Dabei treten noch
Doppellichtquanten 2 x »; eventuell 2 X », auf, ganz analog zu
dem von Kramers und IHrisenBere!) hervorgehobenen Fall,
wo ausser der Streustrahlung » 4, ; auch noch eine solche
mit der Frequenz », , — v auftreten kann.

Die Wahrschemlichkeit fiir das Auftreten derartiger Prozesse
1st von derselben Grissenordnung, obschon die Gesamtzahl der
beteiligten Lichtquanten mehr als drei betrigt.

§ 2. Liosung der Storungsgleichung bis zur dritten Niiherung.

Im folgenden soll versucht werden, auf Grund der Dirac’schen
Strahlungstheorie die Wahrscheinlichkeit solcher Prozesse zu
berechnen, bei denen die Gesamtzahl der verschwindenden und
der entstehenden ILichtquanten drei betrigt. Es ist klar, dass
man in diesem Falle mit der zweiten Niherung nicht durchkommt,
sondern dass erst die dritte Nidherung die gewiinschten Prozesse
liefert.

Als Wechselwirkungsenergie zwischen Atom und Strahlungs-
teld wihlen wie diejenige, die sich aus der Dirac’schen Theorie
des Elektrons ergibt, also:

H=—eSmin,-=—€(1Q[); o= (o oty %) . (1)

') H. A. Kramers und W. HEiseNBere, ZS. f. Phys. 31, 1925.
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Wir wollen nun 2 aufbauen aus den Eigenschwingungen des Hohl-
raumes, so dass:

A= };, Ay, (2)

wobel man in bekannter Weise:

a h( N [ ’nl'k(t— ";‘F) o T2awvg (t—- Itkt)l ;
Qlk—ek]/o o L ¢ / +bfe ¢ 1 (3)
5 . . . A, . .
setzt. Dabel ist ¢, ein Einheitsvektor = ‘Q;A,/, , m, 1st ein Vektor
in der Fortpflanzungsrichtung der Welle, steht also senkrecht
auf e,.

Die Grossen b, und b sind komplexe ¢-Zahlen, welche folgende
bekannte Vertauschungsrelationen erfiillen:

bi—i_bl_‘_bl bg“=(5l,k]
bk bz_' bz. bk = () (4)
bifbi  —bibif = 0. r

Fiithrt man neue kanonische Variable N, und @, ein, so lasst
sich b, und b% auch so schreiben:

211,
by = ]/\:.3 ek (9)

und

6, lasst sich als der zu N, konjugierte Tmpuls deuten und kann
als Ditferentialoperator

h 0
271 0N,

geschrieben werden. So gilt fir irgend eine Funktion f der
Variablen N

bif (Nyy oo Ny oo ) = YN f (N, oo N —1,.0)
ferner

b}?— ("\Tlr'-l\?ks"‘)_v klf( "';\rk_:_]-9"')' (6)

Wir wollen nun die N, als Besetzungszahl fir die Frequenz »,
auffassen, ferner soll (N,,...N,,...) den Zustand des gesamten
Strahlungsfeldes charakterisieren; wenn m und n die stationiren
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Zustinde des Atoms nummerieren, so miissen die Wahrscheinlich-
keitsamplituden
B (Bl w5 0 DN 2 5 5l¥ )

folgendes System von Differentialgleichungen erfiillen:
ho 1| i
A 'ij A\' ——y Z__ _Jm 1 gjn ) ' /\! 2aivt
2 1 ( .') .l v, l ( ) 1
B 4 ;n, " l]jn (Av, 4 1)_‘1‘\‘-?_1 e—?. i vy t} e'_’. aq Yn.om" {. (T)

Dabei haben y;. A" und A" folgende Bedeutung:

/he?
'?.:rirr
" X T T == (n.'.. T)
A;"-”:cfbm(y.er) Uye ¢ dv
2aiy
v+ T (nyv)
z "__ ‘ r 7
47 (*j U (ze,) U,e’ ¢ dV

wobei U, die Eigenfunktion des nngestorten Atoms sein soll.
Im folgenden soll nun die Gleichung (7) integriert werden.

Diese lasst sich stets auf folgende allgemeine Form bringen:

P a0 B B g :
9 g1 LT REAT (¥) (9)

(M) soll dabei ein Symbol sein fiir den Endzustand des Strahlungs-
feldes, E?!,, ist die Gesamtenergie des Atoms + Strahlungsfeld im
Endzustand. Wir wollen annehmen, die Integration von (9) sel

ausgefithrt. Dann lisst sich ¥, stets entwickeln nach den ¥}y, (0)

(1)
(zur Zeit t = 0); also erhilt man:
i ) = X w0 v 0. (10)
n(\)

Man erkennt sofort, dass die Grossen

m,n /2

1wy !

die Ubergangswahrscheinlichkeiten aus dem Zustand = nach
m sind.

Zur Berechnung der ersten Nidherung nimmt man an, die
Grossen Y7y, seien zeitlich langsam verinderlich. So erhélt man
fir Yo folgende

(3
2t [yam i
;i EGn= Eo) __ 4

s m m. mk .
P ENUES (11)(1;) + 231 (K) m ok (11}
(M) H(K)

16
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: : ] : m — Sm, k Ticksichtl 1
wobei die Anfangsbedingung ¥, (o) == 075/, berticksichtigt ist.

(074, nur o, wenn m = k und ferner, wenn (M) = (K).)

Diese erste Nidherung 1st vollkommen ausreichend fiir die
Berechnung der einfachen Emission und Absorption. Fir Streu-
prozesse benditigt man bekanntlich schon die zweite Niherung.

Um diese zu erhalten, setze man die erste Niherung von
(\y (1) auf der rechten Seite von (9) ein. So erhalten wir:

. 2ait v 3
__].E_ ym. pM N o h l:"”) l?\)\
Qa1 (M) = "'(”)(\)
n(N) 7'rrt
n k
| o I By~ B 1 l
- 6"," +zn,k - (12)
l (V) (K) T = (3) (K) Fn Rk
(N) (K)
Die Integration ergibt folgendes Resultat:
2ait [pam Vi
smon ok O [b(”) £ (1\)]
ysm am.k EN I zm.k L (M) (N) 7 (N), (A)}e — 1
(M)= 9(M)(K) ) 40 (K) E : = —
| = Etwm— Efx, Ety —Efx)
_‘_3-1”{ m o ]
5, N ank h “On TR 1
- AN “N). k) ¢ — 1 (13)
k m n
5, () E(‘\')_—E(l\') J(.l!)_E(.\')

Diese zweite Néherung wiirde geniigen, um Streuprozesse
erster Ordnung, d. h. Dispersion, Ramaneffekt, Doppelemission
und Doppelabsorption zu diskutieren. Fiir Streuprozesse, wie
sie hier betrachtet werden sollen, brauchen wir auch noch die
dritte Niherung:

Dazu setze man die zweite Naherung in (9) ein; dann findet
man:

h P 2nit {Fm Akl 1[ i
mo__ m,n MY T (A n, k
o=i L E 2hnme ! ( ( l O, a0t

2nit an LA ]

N n'k Th (N) (IK)
4 [z?\k) (k)T “an, )Z(\")”")] e —
i 1 ¢ N m Tk
n (N') P“) EU\) I’(\) E(K)
2 it n )
211,71' 0k R [E(\) ‘(N )‘ 1]
— (N), (N)S(N), (K) € — . (14)
n Ik n_ In
n,(N’) (N7) E(K) (N") (N)
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Die Integration hefert folgendes:

yrm ",
'l (M) CS 11) (1\)+

S 1 Lk Lm,n LR, N0 Lk
‘ mk k1 A, (N) T (N), l\) "'(‘I)(\')"(\)(\)"(\)(h)
‘ “(M)(K) _-_»,,7 o En i
I n(N) “(N) (l ) N, (\) (l )W L(\. ) f'f([ )J
" (\ )
21t rpm 2
S II =K,
7 “on~ i)
e -1
T ) m WI___

“an J(A’\)

o, N ok TR n,n' SNk A
e E AN 2 NE) E AN T (N, ()N )
Nkl i n AlTH
Ef By, BN ] [El,— EE

1w (N) J(\) () woNY () “(N) T (l\)J
w(N')
2ait m
S LH TS R
¢ —1
B
E(JI) L(\)
m,n Lhn 'k
_ E : AN X)) F D
an’ [ n’ "
nn' [ J(A\ ) IJ(I\) L 1(\ ) ] (\)]
(N)(N)
2ni ! m n nit o m N
l S [ESn= By | =i [Bon=Ely) 1 ] 5
e - — 1 e — 1. (15
\FiT) H Tm n
I 1‘(11) £ AN = (M)T (N l

Man sieht, dass folgende Zeittaktoren auftreten:

2nrit e m Akl
=i P '.J 'K ) .J
P [ AN~ R L (M)~ H(N)
e " g e ¥ -1
R .
i AN
]‘(_11)_]‘<1{) h(m B(\)

2ait [ - '
o BGn—Ex)

e — 1

7 ; [ m '?_l;. o

J(.‘I)_ [‘J(‘\‘,)

Dabe1 1st m der End-; k der Anfangszustand des Atoms,

n und n’ sind Zwischenzustdnde. Es werden nun in der iiber-
wiegenden Mehrzahl Prozesse auftreten, bei denen E —F * ()~ 0
ist. Sieht man vorldufie vom Resonanzfall ab (er soll in einem
spatern Paragraphen behandelt werden), so sind die Glieder in
der zweiten und dritten Zeile von (15) zu vernachlissigen. Man
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erhélt also fiir diesen ,,Nicht-Resonanzfall*® folgendes vereinfachte
Resultat:

W m

l}‘- |
(M) (\[),(K)T

m, n n,k m,n n,n
n Izml ” Fonwn Fdna . N FOD.(» )!'?Q)(\) 3(\»(:\)
l (M), (K) ' Fn 1{ ‘ []pn ][Fn ]‘/. ]
n,(N) (M) () m= JU) (K)
2 m
“;’(U) L([\)]
e — 1 ~
. (159

Ton— Bk

Es tritt also eine Summe auf, in der zwer Zwischenzustinde
n und n’ vorkommen. Resonanz 1st dann zu erwarten, wenn
iy — Big, = 0 oder wenn Ef., — Ef = o0 wird. (Vgl. mit den
Ergebnissen des Fichtbauer’schen Versuches, § 1.)

In dieser dritten Niaherung kann man nun folgende Prozesse
betrachten:

A) Dreifachabsorption; d. h. es verschwinden drei Lichtquanten,
welche das Atom anregen.

B) Doppelabsorption-Einzelemission. Es handelt sich hier um
den wichtigsten Streuprozess hoherer Ordnung, der 1m
folgenden Paragraphen ausfihrlich behandelt werden soll.
Er ist wohl der einzige, der noch beobachtbar ist.

C) Einzelabsorption-Doppelemission. Dieser Vorgang liefert ein
kontinuierliches Streuspektrum, ist aber kaum beobachtbar.

D) Dreifachemission.

Fir den unter B) betrachteten Prozess sollen nun in (15)
die Werte fiir 24, ) eingefiihrt werden, wie sich diese aus Gleichung
(7) ergeben.

§ 3. Diskussion hestimmter Streuprozesse.

Man sieht ohne weiteres, dass die ersten zwer Glieder in
(15") keinen Beitrag liefern, da in dieser Theorie Z7» . nur Uber-
gangen entsprechen, die 1 einem erlaubten Schritt erfolgen
konnen. In der Summe iber zweil Zwischenzustinde ist n und m
auch iiber Zustinde negativer Energie zu erstrecken. Zur Berech-
nung dieser Summe 1st es zweckmissig, diese 1n vier Summen zu

zerlegen, und zwar in folgender Weise:

o) K, positiv, K, pos.
B) E, negativ, I&ﬂ pos.
y) E, positiv, K, neg.
0) K, negativ, E,” neg.
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Fir die Summe « finden wir:

INT T INT . 10 0k T, n n n mn An,n" Jn'k
/Ny Ny (Ny+1) 7°® TAGT - 4(3) 4 A( Afy" Al

’ Vi Vo Vg ]1'3 o (_"3_]'11'.A‘)(Vz_'v3_1’n,k) ( 2= Vn ,k) (1’2_1’3_1’11’,#)
Tm.n gn.n gnk Tm.n An.n’
L dep” Ao _lli) A(’,’:) T 3) '1(1)
(—vg—vy &) (P1—V5—Vu 1) ("—vw &) (”1 )
m,n nwon' Tk m.n qmn gnk 2aift
N i—‘l(l) A 2) 4 4(3)7 —jl 2) (1) ] 8 o 1 (16)
(]"2_"'N', ) ('II'H 2=V, ﬂ) (_"1_111 , ) (]' + 7. 2~ Vn, A) ] f ‘
3 3
& ,
'y3 = sy = Py Vo —Vg—Vy o
h (2ahl7ye - ’

Bei der Berechnung der Summe A kann man im Falle, wo
mes . . - ’
vy, Va, 3 K =, 18ty die Nenner vy — vz — v, durch + 2 m¢? er-
ersetzen.
Fasst man je zwel Glieder zusammen, so erhiillt man Summen

von der Form:

\‘ \j m " n n o gmon n n i
{ 4 +A4q) - } 4(3) . (177)
f’ H
Nach Warrer!) findet man hiefir:
— (n n )
w. * - e 1My 1, X y = -
IH) j [ Ln’d[ . (1‘)

Wenn man die einschrinkende Annahme macht, dass die
Wellenliangen gross sind gegeniiber den Atomdimensionen, so wird:

2ai

i — (-, va, T I
[T e U,dV=34, .. (18)
Wir erhalten also i diesem IFalle folgendes Resultat:
i NN, (N -1y e
o / e B
m ¢ h } Py by f
. k m k qgmok o
| A" cos oy, A" cos o AN COS sy 16’
XI - = F nE B T ( )
(_"3 — "m. I.') (3'2 — Vnm, k) (,1'1 - rm,l‘r)

') I. WaLLER, ZS. f. Phys. 61, 1930, S. 843.
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Ebenso finden wir fiir die Summe y: (£, negativ)
T e2mift__1q
/

n, k me o Tm,k
{423) COB %9 Ap COS 943 Agy” cos 1,31

h y3
me2 K3/

1
Yy T "'2 L ""3 l'2 - "3 ]

Bei der Betrachtung der Summe 0, wo beide Zwischenzustiinde
negative Energie besitzen, treten Glieder von folgender Form aut:

\‘ 4% B (m = Endzustand) .

H
Da Anfangszustand k und Endzustand m einem positiven Energie-
wert entsprechen, verschwindet der Anteil, der von der Summe é
herriihrt. e

Die hier erhaltenen Resultate sind ohne jede Vernachliassigung

von Spineffekten abgeleitet worden. Um aber die folgenden
Rechnungen nicht zu komplizieren, wollen wir die Ausdriicke
A7k ... etwas umformen. Man findet nimlich unter Beiziehung

(1
der Dirac’schen Kontinuititsgleichung:

m, 1 = *'ﬂ < . - —_—
Agh=—— f e " ”{ Us (pey) Up+ 4”1 rot (Uy, o Uy dV.
Bei Weglassung des Spingliedes

A rot (U o Up)
4 T ) m k

und fir den Fall langer Wellen

- _7; ) )
e = ]

g m,k __ mk mk m, k
Ag =93 WO g, = (g% )

ergibt sich:

gesetzt 1st. Zu beachten 1st also hier, dass diejenigen Glieder,
bei denen beide Zwischenzustinde negative Energie besitzen,
nichts beitragen.

Die Diskussion der Resonanzstellen soll auf einen spiteren
Paragraphen verschoben werden.

Wir wollen uns nun weiter fragen, ob es moglich ist, die Glieder,
die den einzelnen Niaherungen entsprechen, zusammenzufassen,
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wie das fiir den Fall der Dispersion und des Ramaneffektes von
Diracl) ausgefithrt wurde. Dies gelingt tatséchlich, und man
bekommt folgendes:

(k = Anfangs-, m = Endzustand)

’

o —— = N 9 3 o — . — i
VNyv s Novg- (Ng+— 1) vy e2Tel0ntre= = vmp)—1

—(27ie)?- et K . AL -
(2 ahl ) ()'1 T Vo — V3 — "m,i\‘)
(O TR I TRV A & M, N, oM, W, et K
N E [ el ey et g vy
"’3 3:«',1:_) (1_ Vo=, l\) ("2_7’13' L) (]' —Va—Vy, I.)
(70 TR T TR TR & m,n non' o, etk
R R PR It L Yoy R gy
(m Vg = pn'..ﬂ‘) (_ ]'3'+"'1_"n,l.') . ("1—1'11 s k) ()'1_1'3_1'??,1.‘
IR TR T MO T & M, N, g, R n
e ") e e FG rm . (18)

| (o—wi &} (P42~ 2) | ("1‘”":; A) (”1+"2—7’n,k)

Das Quadrat dieses Ausdruckes gibt also die Wahrscheinlich-
keit dafiir, dass zwel Lichtquanten h»; und hy, absorbiert und
hvy emittiert werden, wobel das Atom aus dem Zustand k nach m
ibergeht. Daber werden natirlich die meisten Frequenzen w,
die Energiegleichung vy = v, = », — v, ; erfillen. Ebenso er-
kennt man aus Gleichung (18) folgende Tatsache:

Wenn », oder v, mit einer Atomfrequenz »,. , tibereinstimmt,
hat man Resonanz, wie sie ja auch zu erwarten ist. Was hier
aber besonders bemerkenswert ist, ist der Umstand, dass eine
solche Resonanz auch dann emtritt, wenn

wird. Besonders starke Resonanz hat man dann, wenn sowohl
v; wie auch », einer Atomfrequenz gleich 1st. Dieser Fall ent-
spricht demjenigen, der beim I'tichtbauer’schen Versuch vorliegt.
Dann wird natiirlich die Frequenz »; des Streulichtes mit einer
Atomfrequenz zusammentallen.

Wir wollen nun im folgenden die Intensitit der Strahlung
berechnen und im Anschluss daran die Grosse des Dipolmomentes
bestimmen, das klassisch die hier betrachtete Streustrahlung
erzeugen wirde. Wir wollen dabei annehmen, dass eine Linie 7,
von der Breite .», und eine solche (v,) von der Breite 4, ein-
gesandt werde. Dabei sollen, wie schon gesagt, »; oder », nicht
mit einer Anregungsfrequenz des Atoms identisch sein.

1y P. A. M. Dirap, Proc. Roy. Soc. A. 114, S. 724
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Wir wollen uns nun fragen, wie gross die Wahrscheinlichkeit
sel, damit irgend ein Lichtquant hv; ausgestrahlt werde. Man

hat also den Ausdruck:
N . Y2 dy (19
A ’,3 ! / 3 \ ')
0

zu bilden. Daber miissen wir das Integral

w

/e2ftl‘t(i’1‘l\""2'— Vg— Vﬂl.k) —1 /2 ‘
| L g,

; (1’1 + V-z — V3 — F]’fl, A)
(

berechnen. Dieses hat den Wert 4x%¢, wie a. a. O. gefunden wurde.
Man sieht, dass der Integrand fiir vy = »; 4 v, — v, ; eine scharfe
Resonanzstelle besitzt, so dass im folgenden vy stets = »; 4+ v, —
v, r zu setzen ist, da ja im wesentlichen nur die Umgebung dieses
Wertes etwas zur Intensitat der Streustrahlung beitrigt.

Fir die Lachtenergie, welche pro Sekunde aus dem Strahlen-
bindel (4w, -Av,) (4w, Aw,) 1ns Bundel 4w, fillt, erhilt man
dann folgende Grosse:

L=G; (v) " S (v,) _\_;;4_.9_ vl vh . (dvy s Avy) (Ao - Ay dey)

(20)
M, n ., wh, n n,k m,n, e, 1, i,k
/E RO L Pw G e
n,n' 1}3—-11,,'!,1.) ('V2—1'3—1’n’ k) (7"2_1’1{, k) (vz_v —Vp, A)
rn. rn,n’ . rn',k e n, 1.n', k

. @) (1 3) L @ "t P _

(_'V3_'Vn',k) (1’1—”3“1':1,.‘&') ("1_'"n A) (]’1—1’3_Vre %)

m, " n,n n,k m, n n,n n 2

L EE oty Yy L e vy ]/ _

(]’2_7’"’, I{) (v1+1"2—'re.k) v ("’1_1’11’.1.') (Vl -4 Vz_j’rz,ﬁ') J

Dabei bedeuten &, (v,) und &, (v,) die Strahlungsenergien
Nihv, bzw. N,h- v, der einfallenden Strahlung.

Wir wollen uns nun fragen, welchem Dipolmoment (in klas-
sischer Ausdruckweise) diese Strahlung zuzuschreiben ist. Die

von einem Dipol M in der Sekunde in den Kegel 4w, gestreute
Energie ist nun:

873yt . /M2

'(‘3’ cos? (M, ¢;) . (21)
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Vergleicht man dies mit obigem Resultat, so entspricht dieser
Strahlung folgendes Moment:

47 e’ T 7 2 .3 .3 (A ) /
L= E'{:izﬁ_ X -If A\ 1° A‘Q . h 1’1 . 1'2 (_I )'1 . /_]l'._)_) (_] (f)-l 2 sz)
Z [ r:r;_)n . r;{-;)n' rn'.}!' B rzrla,)n rn, n rzgsk B (22)
i l (_ 1'3— Yy k) (1'2— Vg— rn, k . (1'2_ ?’n’. k) (]'2'_ ]"3_ l’n: k)

n,n'

Nun i1st die zum Strahlenbiindel Av;- 4w, gehorige Ield-
stirke gegeben durch:

coo N,o-h? .
47:;[: t'{ e -**'] "(.2’" i ‘._] 'Vl * _] CU] (23)
ebenso:
¢ oy  Ng-li- 93 -
e & = g Avy - A w,. (24)

Setzt man dies ein, so erhilt man fir das Moment M:

€,/ &/

E)’R p o} (I
I
m,n gt 0 g’k m,n I TR T
. g8 2 :[ Yo *a ¥ LRttt eyt (24)
(_'1’3_"n’./’.‘) ("2_)'3_1":1,“ (]"2"]"11’,A') (1'2—?’3“1’",k) ‘

n.n
Man sieht sofort die Analogie zum Resultat, das man beim
Ramaneffekt erhilt, wo man fiir das entsprechende Moment:

! / M, R, M, k n, n g i,k
o)) _ €/ RIS r LN
~~}]{;mmn = e l S A

h 1=V Vo Vuk

n
bekommt.

Es soll hier ein kurzer Abschnitt folgen tiber die Auswahl-
regeln bei dem hier betrachteten Prozess. Aus Formel (18) lassen
sich diese ohne weiteres ableiten. Man iibersieht leicht, dass man
dabei die Matrixelemente der Matrix X3 zu suchen hat, die nicht
verschwinden. D. h. man sucht nach denjenigen Ubergiingen,
die in dret erlaubten Schritten erfolgen kénnen. Da fiir X™*
die Auswahlregeln:

Al = +1 und 4) =0, +1
gelten, erhélt man fir (X2 *:

Al =10, 4 2
und fir ; ,
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Ferner ergibt sich fir (X3)™*

Al = -1, + 3 | ebenso fir j: (25)
Aj=0,+1,4+2, +8.|

Grossenordnunyg.

Es ist nun maoglich, an Hand von Gl. (18) eine Abschitzung
der Grossenordnung auszufiihren. Dabel ist es vielleicht am ein-
fachsten, die Wahrscheinlichkeit unseres Prozesses etwa zu ver-
gleichen mit derjenigen eines Ramaneffektes. Fiir diese erhilt
man bekanntlich den Ausdruck:

/4 7% 8% B VN1 v (No+ 1)y, 270 On= = v 0) g

2V Vy—Vy—

M, N etk m,n n I.
: E {__"__(2) ORI \
Uy — Vu, ¥ Vo — Vy ik

(n)

m. k

Ifir das Verhiltnis der Wahrscheinlichkeiten erhialt man dann
folgendes Grossenordnungsverhaltnis:

W N,k ,
ﬁ}tffl{a-nm;l - |4 h / 1]’/ (26)

Dabei soll [r] die Grissenordnung des Atomradius (~10-% cm)
Nyhovy
V
die Strahlungsdichte & (»;) fir die Frequenz »,. Setzt man dies

ein, so ergibt sich:

und Av diejenige eines Resonanznenners sein. Ferner ist

w S

S e

1
= ;
" Kaman ( A

1018, (27)

Nimmt man ferner fiir einen giinstigen Fall 4» = 102 em~? an,
so wird:
w 108
g — S, (1)

Es scheint demnach wohl méglich zu sein, unter giinstigen Bedin-
gungen (grosse Intensitidt der einfallenden Strahlung und in der
Niahe der Resonanz) den hier diskutierten Prozess nachzuweisen,
und zwar um so eher, als man den Ramaneffekt schon bei ver-
hialtnisméssig  geringen Intensititen . des einfallenden Lichtes
beobachten kann.




Streuprozesse hoherer Ordnung. 251

Dishussion der Resonanzstellen.

Wir haben bisher nur den Fall betrachtet, wo keinerler Reso-
nanz vorkam. Nun wollen wir in diesem Paragraphen die Resonanz-
stellen genauer diskutieren. Prinzipiell hat man hier drer Fille
zZu llIltGIhChE‘l(_lell, und zwar folegende:
1. Eine der emfallenden Frequenzen stimmt mit einer Atom-
frequenz v, , tiberein.
2. Die Summe v, + vy ist = 1, .
3. Sowohl »; wie », entsprechen je einer Atom-Kombinations-
schwingung (Ifichtbauer’scher Versuch).

Zunichst ser der erste IFall betrachtet, der wohl auch experi-
mentell leicht zu realisieren 1st. Wir \\-()llen hier annehmen, dass
v, ganz in der Nihe ciner Atomfrequenz », ; liege. Dann darf man
i Gleichung (15) die letzten Glieder nicht mehr vernachlissigen.
Allerdings werden wir nur diejenigen Glieder mitnehmen, fiir die
n" = 1" 1st. Wir ersehen aus (18), dass hier zwei Glieder den Reso-
nanznenner (v; — v, ;) besitzen. Wir werden daher alle Glieder,
bet denen n" == I’ 1st, aus (18) herausnehmen. Setzt man zugleich
die Werte fir 275 , usw. ein, so ergibt sich folgendes Resultat:

Uk T nt’
ym l‘.(1) 1:(”)’ 1'.('l)
() e == &
(i) el T35, )
{ p2 Tl (== w,) p27 (1= vy, n) ]
(‘ll'f_ ]"2__]'3'#1';".!.') (]’2—1'7)1.71) l
U, k M, g M
(o) i ﬁ 7 1"(l) - E B r(:;y LYED
("1’"!’.#) o ("3‘"3‘”::./.-)
{ el (v re— =1, 1) i (,53.7 it (= ry—n,, ,,),,,1]
()'l‘i‘ P:ZL).;SL")'JH.I:) (_]3._)”‘ H) J
o MR
(]’1_11.1\‘) (_]!3_7'1571')
(n)
{ 82 Tt (‘."_ Y3 = Vi, TI) - ] 6’2 7 it (l'l‘i_ "fmyw) -—- ] ]
(,8) (" ﬁ’.;*lm 1) (7'2_7'm,n) J
rl'. k e rn U
— /5‘ M E e Yo
(vl_ vy, I.‘) (+ Vo=Vy, I’)
()
8‘2:1' it (g—vg—v. ) __ 1 82 meb(=vg—v, ) __ 1
e ~ (28)
(1'2_]'3_"m.l') (_7}3_7"111,13)

m, (M) = Endzustand; = (2x1)3e3h"" VA ?2 - ;‘:)(JL\[ i,




]
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Zunichst wollen wir die Wahrscheinhichkeit bestimmen, dass
ein festes Lichtquant hv; emittiert wird, wobei man iber ein
Frequenzintervall A v, summiere, fiir welches v, in der Nihe der
Resonanzfrequenz v, ; liegt. Wir wollen also das Integral:

1 { I Y
Ay .[ [ [*dn (29)
‘ 1

berechnen; d. h. wir wollen annehmen, dass emne Lime », mit
der Linienbreite A, eingestrahlt werde. Um keine divergenten
Integrale zu bekommen, miissen wir die Glieder mn (28) etwas
anders ordnen. So werden wir z. B. ein Glied aus (28«) mit einem
aus (28 ) kombinieren, z. B.

0 IZ N T i S
l!

(vi—vr &) e Y Vit Vo—V3— Vi
(n)
M, ogett, 1 Qaet(vo— va— v, 1
1'(.2) r(g) . e (», .37“ m, ') _._.-_]__ (3())
('— l’3_ I'n, l') 7"2_ V3_ Vi, 1
Da wir uns in der Nédhe v; ~ v, ; befinden, kénnen wir » ~ vy —», ;
durch —v;—1», , ersetzen und vereinfachen:
Uk m,n g n,
,‘3 _ rt’l) 2 : r('.‘!) r(:i)
("1—“ rp, k) (_ Va—WVy, l')
(n)
p2 vl (n T va— vy— Vo, &) — 1 g2 it ( .—1'—1',,,1)_‘1} (31)
e @ }
Vit Vo—V3— V& Vo—Va3— Vin, 1
Dann reduziert sich Gleichung (28) auf foleenden Ausdruck:
]
U,k ne, n ITrA m n n,
g e o) *e |, Y@ PO
(“1) ) ’ y ' L ’ ] ‘) o
(‘1_”’,5') ('—’3—“'%,1’) (12_"":',4.
(n)
2t (v — =y p) 1 2 At (va= v3— vy ) __ 11 20
\'\' l R ] (C))...J)
Pl + ]’2— )"3—_— l"i)l, k )'2_ 1'3_ ‘VJH, U

Wir miissen nun folgendes Integral ndher untersuchen:

d v,
(1’1— Vz',z:)2

J =

(Aw)

e‘z:rit(rl—‘rv?—:'3*:',,,”.)_ 1 62:15tt(n.z—ra—rm_r)__ 1 2 .
: — . (33)
Vit Vo—Vg—Vyu Vo—=V3— Vi '

Man sieht, dass dessen Integrand fiir »; — », ; ein starkes Maximum




Streuprozesse héherer Ordnung. 253
besitzt, ohne jedoch divergent zu sein. Man kann nun fir dieses
Integral nidherungsweise die Integration von 0 bis co ausfiihren.
So erhilt man dafiir folgendes:

'2‘51‘ (1'2—1'3—1',,,_ y)—sin 2 ¢ (1'2—1'3—1',,,. r) 33)

eJ — '4:7[ -
(ro—13—Vm. 1)

1
gpm 3., .
/l;’_‘,)dll.

-]"1.

Uk /2 i nt’ M. g Nl 2
g2 [®3) [2 :réi)’ Yo ,rif—’) r(:‘)}
A 'y = (1'3"":!,1’) | (-H "3_"“-11)
n
21 gyt ) s Bt ryvgrmr) gy
(1,27 Vy— P, l")3

Also erhilt man fiir

Um nun die Gesamtwahrscheinlichkeit zu erhalten, dass ein
beliebiges Lichtquant hrg in emer festen Richtung gestreut wird,
integrieren wir iiber »;, wobel jetzt zu beachten ist, dass vy ~
vy + v, wird. Wir erhalten in diesem Falle folgendes:

gl k)2 n, 72

1 r j ti.;k n 1.){. U l'?f"" r”
(2 )4 t2 B2  ’ (_;l)_rf 2 :ﬁ(n C) R+ N G (35)

("2_7'11,1') ("2_ Vm,n)
(n)

Dieses Resultat ist so zu deuten: Nach den Einstein'schen
Strahlungsgesetzen ist die Wahrscheimlichkeit dafiir, dass das
Atom in t’sk. unter dem Einfluss der Strahlung »; vom Zustand &

nach I springt:
R

@a)2e, Nt (36)
Ay
e Nyhr
f = ¥ B o
S 7

Ferner 1st die Wahrscheinlichkeit, dass ein Atom in der Zeit-
spanne At unter dem Einfluss der Strahlung », vom Zustand !
nach m gehoben wird:

P N TR T m,n g0, 2
(2 7) Pa ¥ oy Y@ :
O e e ot N |
A V3 (1'2"""“"?-‘!') VoV n
)
e _‘ll hf."z_ CNg= 1) oy (37)
A TR 7 I ' ‘
t 2 .
Und da ft’ At = 1st, erhdlt man ohne weiteres das Resul-
i 2

tat (35).
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Man sieht aus Gleichung (18), dass auch dann Resonanz ein-
tritt, wenn », + », gleich 1st emner Atomfrequenz », .. Da dieser
Fall praktisch wohl kaum realisierbar ist, sei auf die Durchrech-
nung dieses Falles verzichtet. Die Rechnung verlduft ganz analog
der eben ausgefihrten. Was uns viel mehr interessiert, 1st der
Fall, wo sowohl »; wie auch », mit emner Atomfrequenz iberein-
stimmen, und zwar soll »; = », ;. sein, wo k der Grund- und I’
emn angeregter Zustand 1st; ferner setzen wir », = », ;; d. h. durch
das Lichtquant hv, soll das Atom aus dem angeregten Zustand !’
m emen noch hoheren [ gehoben werden.

Die Glieder, die nach Gleichung (15) in Betracht kommen, sind:

W=
ﬂ r z}é-)l rgég’ ri’l,)k[ l 62 7T l- t ( ]’1+ l’z— 1'3— i'm.}c)_ 1 (_,..a) oy 4 l‘ t (_ 1'3 - PIH- l) o 1 ,
("’1_]"[’, k) ‘ (vi+vo—rg—wy, 9] (_‘1’3‘““ I'm,l)
1 [ e2 it (vo— v3— v, 1)1 2 it (=vy=vy ) 1 }
A - s e )
(Vl tvy—y k) l (V2—- V3=V, r) [ Va— Vi, 1)
1 } |
. (38)
(va— 1) .

Lassen wir ein Lichtbiindel (»,) von der Breite A» und emn
solches (»,) von der Breite 4 v, einfallen, wo sowohl »; die kritische
Frequenz », ; wie auch », die Frequenz v, einschliessen soll.

Wenn wir die Gesamtintensitit der emittierten Strahlung ».
berechnen wollen, miissen wir das Integral

Avy Avy Avg- W = [dvy [dvy [dvy | W7,/ (39)
(4wv) (Avy) (4ry)
berechnen.

Die Rechnung ergibt nun folgendes Resultat:
{3 (2 n)ﬁ . ﬁ2

I]':; /r'ﬂ’?.lrl:)l' r"‘"k'2 40
6 :LIVI . ,;Ivz -;];.3 (3) @ Y/ ( )

und da:

e® Nyhvy Nyho,
h8 V V
war, erhalten wir:

$3

6

. e . (2 m)®
II = JIJ'Z hG( ( )

o 7 / rn'i.l ; rl:)l' . rl" k2 y
o® (Awy = A, v dwg) ¢ 7@ (2) (1) |/ (41)

s o, Nyl
wo oJ; die Intensitit —'--*.¢ und

|
; i, Noho, ; ‘ :
J, die Intensitit —%:—* ¢ der einfallenden Strahlung ist.
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Es sel hier noch bemerkt, dass solche Prozesse, die hier disku-
tiert werden, auch an freien Elektronen auftreten konnen. Die
Storungsgleichung lautet hier:?)
h .
_ W (' N

D

2l
z : ; [Em (p)—Ek(p' +p)+nvr) L
o ¢ m p r r'a
- / I V 1 \ ( I‘ ‘,‘ ‘f} e }t ]j(l"’ T ‘”k" ‘\', _1)

2ait

k
h [Em(p)—Ek(p —pg)—hv.] ljj(p’-p

e ( n.p’ L N 1) e
FYN T (A, e B3|

Dabe1 1st
hy,
: - n

gesetzt, ferner ist:

Ay = (s, () 2 (p)}

Fihrt man die Integration bis zur dritten Niherung durch, so
findet man Glieder von der FForm:

)Qne'ft_
l]/m —_ ¢ . oo L (43)
/
SO L g O SO o N
B (p-pa)- By (p) Mus][h,, = p3 pz) Ey (p)+h (vg=r,)]
wobel

r Em (P P P ]')3) _ E‘k (p) [
= — : I : — {5 + ¥y — o)

1ist. Man sieht also, dass auch im Falle des freien Elektrons Pro-
zesse auftreten konnen, Del denen zwei Lichtquanten hy; und
hvy, mit mit einem Elektron zusammenstossen, und wo zugleich
ein Lichtquant hy, ausgesandt wird.

§ 4. Behandlung des Problems nach der Heisenberg'schen Methode.

Es soll nun im folgenden versucht werden, die mit Hilfe der
Dirac’schen Strahlungstheorie abgeleiteten Resultate auch nach
der Methode von HeisexBERG?) zu berechnen. Bei dieser Methode
{,eht man nlcht etwa aus von der Hamiltonfunktion des Gesamt-

), V(rl I WALLER, loc. cit. S. 846, Gl. (21).
) W. HEISENBERG, Ann. d. Phys., Bd. 9, 5. Folge, S. 338.
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systems, sondern man beniitzt fiir das Atom z. B. die Dirac’sche
Gleichung und fir die Strahlung die Maxwell’schen Gleichungen.
Zur Berechnung der Streustrahlung betrachte man das Vektor-
potential :

A, = f Sire gy (44)
7%

Dabei setzen wir fir den Strom &€ den Ausdruck © = e (P*a V)

ein, wo ¥ die Wellenfunktion des durch das Strahlungsfeld gestorten

Atoms bedeutet. Beschrinkt man sich auf grosse Distanzen, so

findet man fir 2, einen Ausdruck von der Form:

(v

Q[S:%TZ{BU)QZJ‘:EM_:_ Bf e~2mitt) (45)

v soll stets positiv sein, ferner gehort B zum Glied mit dem Zeit-
faktor e+27iv!,  Diese Zerlegung in ebene Wellen ist immer
moglich, wenn man in grosser Entfernung vom Atom beobachtet.
Man wiirde nun quantentheoretisch erwarten, dass die Intensitit
der Strahlung mit der Frequenz » der Grosse

{BB"+ BB} (46)
proportional sei. Die Eigenwerte dieses Ausdruckes sind aber:
{Nhv + (N + 1) hv} + = 2hv (N + /). (47)
Man sieht also, dass beir der Anwendung von
{BB*+B*B}

die Nullpunktsenergie in unerwiinschter Weise hereinkommt. Um
richtige Resultate zu erhalten, wird man die Intensitit dem Aus-
druck
2 BB~ (48)
proportional setzen.
Nach der Integration der Stiérungsgleichung wird man nun
fir  die verschiedenen Niherungen einsetzen; fir 2, bekommen
wir dann eine Entwicklung nach Potenzen der Elektronenladung e:

A = AO 4+ AD + A ..., (48)
wo zum Beispiel A" das Glied erster Ordnung ist. Fasst man 2
als Matrix auf, so sind A" und A® Matrizen sowohl hinsichtlich

des Atoms als auch des Strahlungsfeldes; A" ist speziell eine Kin-
heitsmatrix in bezug auf das Strahlungsfeld. A erhilt man,
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wenn man in den Stromausdruck e (p* ) die Funktionen des
ungestorten Atoms einsetzt. In 2" sind Prozesse enthalten, wie
zum Beispiel Ramanetfekt, Dispersion u. a. m. Fir die in dieser
Arbeit betrachteten Prozesse kommt nur '® in Frage (Absorption
von zwel Lichtquanten).

Wir lassen nun auf das Atom ein storendes Strahlungsfeld
wirken, dessen Vektorpotential wir in folgender Weise ansetzen:

he? L |
] == —I/Q:I Z {b e2ainl L phle Qnamkt} (3)

’]9
(k) 1(

wobel die Retardierung zum vornherein weggelassen werden soll
(Fall langer Wellen.) Man kann nun die Grossen b, und bj als
Operatoren auffassen, die auf die Variable N, des Strahlungs-
feldes wirken. IFir diese Operatoren lisst sich aber eine Matrix-
darstellung einfithren, und zwar wollen wir folgendes festsetzen:
NG R L RTE. > j
(bp) N1 vpi = ]/\ (49)
Nooo o Ng .. .. 1 Vi —
) 3 vbi A= 1YN+1
oder abgekiirzt:
Nk
bl Np—1— -I/*\k (49’)
+ Nk

kE Np+l™ 1/1\/A+1

®

Alle andern Matrixelemente von b, und b} sollen Null sein. Die
Matrix b, b} hat dabei die Eigenwerte N, (f). (Dies gilt fiir irgend
eine Zeit!) Ebenso setzen wir:

: T ;'u'ukt] g’
Ly YR etTind. (497)

Nip—

k=17 I 2 - V 1
Um das Verhalten des Atoms zu beschreiben, gehen wir also von
der Dirac’schen Gleichung aus. Diese lautet allgemein:

[(_ h 0 e
[ Qaic Of ¢ L
s ai( e+ i Ql‘”) + oy My € } =1, (50)

Wir wollen annehmen, die Eigenfunktion U, des ungestdrten
Svstems (A = o) seien bekannt. Lassen wir nun das Strahlungs-
feld auf das Atom einwirken, so wird man eine Ldsung von der
Form:

2x1
—— En-t
(1) __ ) rr h E
gl _E‘Jan Dne (01)
n
17
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erwarten. (Erste Niaherung.) Als Storungsgleichung erster Nihe
rung findet man:

i = 0 B B )
| 2aic 0t T ¢ =7 +Z°‘i2:”; 0z, | 2y My ¢4

- e] 211 lzl/p [b ...;'u.;t_l_b P EAR t]}l_p(o) (52)

Dabei bedeutet o« den Vektor (oty, %y, #3). Bel der Integration
dieser Gleichung ist nun zu beachten, dass die Grossen b, und
bT zeitabhingig sind. Da aber die dadurch entstehenden Glieder
tir den hier betrachteten Prozess nicht in Frage kommen, seien
sie zum vornherein weggelassen. Die Losung von Gleichung (52)
liefert far die Grosse 4(” folgenden Ausdruck:

m_ L
n K Z l ]/v,,

(r)
B yrid —p
[b,, e..;:nt(v, Ln’k)_l_bi“ Zth(v,.-i-vn, 1}[1"1 L v, (53)
l Ve— Vo, k ’ Vrt Vn, k

Es wird dabei angenommen, das Atom seir zur Zeit t =0 1im
Zustand k. Ferner wurde abkiirzungshalber

gesetzt. Wie HrEISENBERG gezeigt hat, geniigt diese Néherung
vollkommen, um zum Beispiel Ramaneffekt und verwandte
Effekte zu untersuchen.

Wir wollen nun auch hier die Grosse [ U, 2 U, dV etwas um-
formen. Bei Vernachlissigung der Spineffekte findet man, wie
i § 2 gezeigt wurde, dafiir folgendes:

1 5
f[} m O (j N:m_Jj_. pm,k—__ T pmk
c c

Um nun den in dieser Arbeit betrachteten Strahlungsprozess
zu diskutieren, brauchen wir noch die zweite Niaherung von .
Dabei setzen wir in Gleichung (52) an Stelle von ™ die zweite
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Niherung @, und fiir ' die erste pV ein. So erhalten wir
folgende Gleichung:

[ 0 lpe
l 2Qaiec 0t ]
2 ) ,- ’
- h"}o’"ZZ(er % I[; p2Tiv 4 pt 27w, fl U,e n Bn'ed
7 V v, r,'l e
Saiblv, —v,, 1) 1 P—‘.’.*nt( e VR 1]
x{b, f’ ) —=b ¢, 0"k (54
(1 r vy, t'.') v, Y, ‘) J( ) ( )

Setzt man fir »™ eme Lisung der Form

Lx.L
y@ =N aPU.e &
(m)
an, so findet man fiir «>:
(2) ”2 (Q,. n" H,) (er‘ l)”" "‘)
i e=——g By
(,'- (rr ]'r')
Iorr
2 e — ) 2 R ,
b, | ST ) 2T ) — 1) (55)
I(V - ]’u,k) (]’r‘}“ rr""“"n.lx) ("."’_]'Jr', I:) v _]n n’ l

Wir wollen uns nun der Aufgabe zuwenden, die Streustrahlung
zu berechnen. Wie schon angedeutet, gehen wir aus vom Aus-
druck fiir das Potential 2, das ja

2 AT

pp’

\
~ G

=)

1st; & = Stromvektor.
Der Index s soll darauf hindeuten, dass es sich hier um die
Streustrahlung und nicht um die einfallende Strahlung handelt.
Wir setzen nun in den Stromausdruck

— - B i_-
& =eip*u=yp)=e Z Yo %oo Yo
0,a

die zweite Niherung von w ein. Wenn man in grosser Entfernung
vom Atom beobachtet, findet man fir 2,:

€

S ./('P*_;'-"!')z—rcdlﬂ- (56)

)
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Wir suchen jetzt das Matrixelement &7 des Stromes, das
zum Ubergang k —> m gehort. Sein Wert (in zweiter Néherung)

1st folgender:
G b, b en®
£ ]/,, vy h(‘s)

MmN .M i’k _ a
E [ ¥ 9(” D(,) +.,,]eﬁnlx(l'r%ﬁ"v'_'"'m.l.') (Sl)

o l(l’,' 1'71’,1') (Vr+ Vyr—"Vn, k)

)

wobel m und n' auch tber die Zustdinde negativer Energie zu
erstrecken ist. Fiir das Potential, das uns hier niher iteressiert,
findet man dann:

1 "
A =, {er+a' (58%)

n, n’
+ ht *on, o4y *N, N ¥k
b by E:[ # by P +
1/1' Vy4 ]('vg-—v,,',k) (vi+v9—vn, 1)

Nun ist also die Intensitdt der Strahlung mit der Irequenz
(v, + vy — v, ¥) gegeben durch

2 BB+,

-2net(vy+ve—

Vins I.‘) . (38)

m,n g, 0 e n’ k
{ by ?,, 2 :: PTG Pt ,,_le‘zm‘t(r1+,-._.—r,_,_,,_.\
, )
]/Vl Vo (v 2_1’71’,k) (_7’1+7'2_‘Vn,k) ]

wenn man 2, in der Weise zerlegt, dass
1 o o
Ql m ____ Be _t_-"'”i(vl_f—”?_ Vm,k) + Bte==7? t(]’1+"'2_ '!-m,k)
=

wobel vorausgesetzt 1st, dass v, + vy — %, ; = 0 ist. So finden
wir fiir B und B*:

B=(; 7’2) o Z[ o o ot |
3| T — e
h— C V’Vl ’1)2 (1:2_ rn,' l‘) (191.*_ 1;2_?_;”, ﬁ') J

Wir wollen nun die Energie ausrechnen, die unter dem
Winkel < (ve;) durch das Fliachenstiick d w; hindurchgeht, wobei
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¢; ein Einheitsvektor senkrecht zum Streustrahl 1st. Fiir diese
Energie findet man:

2
L= BLRTNTR cos® (B ey day. (60)

];m }' = ; \‘3 l \1 lb N,—1 ] ‘_\71 ‘\'2 (61)
1st, wird also:
‘)1 ot “\"1 N2

Um nun (wie in § 2) die Energiedichte £ zu erhalten, die aus dem
Strahlungskegel (dvydv,) dw, dw, in den Kegel dw, tiallt, multi-
plizieren wir &£; noch mit

Vo . _
s a2 (dv, dv,) (dew; dw,).
Dann erhalten wir als Endresultat:

2 7)° eb
L="Jy (ry) Jy(rs) - ( 11_4)

m‘n l'" n l‘”.” k 2
X/Z : o o) T h} (62)
S A) (1-'1+ Vo—1Wy, !.-)

n, n’

v vt et (dvy, dv,) (doy dwy dowy)

wo n und n’ tber alle positiven Energiewerte zu erstrecken 1ist.
Ferner ist
7
T, () = A] h v,
1 1 ‘[]

gesetzt, und vy = vy + v, —», , angenommen. Vergleicht man
diese Formel mit (20), so findet man vollige Ubereinstimmung.

Herrn Prof. Dr. W. Pavwr bin ich fiir die Anregung zu dieser
Arbeit zu grossem Dank verpflichtet, ebenfalls Ilerrn Dr. R,
PeierLs fir manchen wertvollen Rat.

Ziirich, Eidg. Techn. Hochschule.
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