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Wellenmechanische Behandlung des Problems des freien
Elektrons unter gleichzeitigem Einfluss eines homogenen

Magnetfeldes und einer ebenen elektromagnetischen Welle

(Comptoneffekt im Magnetfeld)

von Fritz Lüdl.

(17. VIII. 31.)

Inhalt. Es wird die Strahlung eines durch ein beliebig starkes Magnetfeld
gebundenen Elektrons nach klassischer, quantentheoretischer und wellenmecha-
nischer Grundlage untersucht. Alle drei Theorien führen zur gleichen Frequenz
(doppelte Larmorfrequenz).

Anschliessend wird die Strahlung im Magnetfeld unter Berücksichtigung
der Retardierung berechnet; die Verschiebung der Spektrallinie kann in der
Schrödinger'schen Weise als Doppler-Effekt gedeutet werden. Weiter wird das
Elektron im Magnetfeld durch eine elektromagnetische Welle gestört und die
Streustrahlung mit Hilfe der Waller'schen Dispersionsformel untersucht. Bei
Beobachtungsrichtung und Einfallsrichtung parallel zum Magnetfeld erhält man
für kurze Wellen (Röntgenwellen) einen Ramaneffekt zwischen Comptonstrah-
lung und Magnetstrahlung, wogegen im Fall langer Wellen das Auftreten eines
solchen wie beim Oszillator unterdrückt wird. Es wird noch der Fall schiefer
Inzidenz und schiefer Beobachtungsrichtung gestreift.

Einleitung.

Das Problem eines freien Elektrons im homogenen Magnetfeld

ist schon von Kennard1) und C. G. Darwin2) wellenmechanisch

behandelt worden; ebenso ist von Rabi3) die Berechnung
der Eigenwerte für das Elektron im homogenen Magnetfeld nach
der Dirac'schen Gleichung gegeben. Der Comptoneffekt für das
feldfreic Elektron ist zur Genüge untersucht. Bezugnehmend auf
eine Notiz von Botiie4) mag es von Interesse sein, einmal das
Problem des freien Elektrons im Magnetfeld unter gleichzeitiger
Wirkung von Bestrahlung zu studieren.

') Kennard, Zeitschr. f. Phys., Bd. 44, p. 326.

2) C. G. Darwin, Proc. Roy. Soc, Vol. 117, p. 258.

3) Rabi, Zeitschr. f. Phys., Bd. 49, p. 507.
4) Bothe, Zeitschr. f. Phys., Bd. 41, p. 872.
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§ 1.

Ausgangspunkt für die folgenden wellenmechanischen
Behandlungen ist die relativistische Wellengleichung, wie sie z. B.
von Gordon1) angegeben wurde:

4 Tri e v-*" d W 4 ti2 \ e2 v-~* „ „a v - HT cZ*^ ~ h> [mI> + m*c* W 0. (1)

1,2,3,4.

Auf ein freies Elektron soll ein homogenes Magnetfeld und
eine ebene linear polarisierte Lichtwelle wirken, die beitle als
schwache Störungen behandelt werden. Die Störungspotentiale 0„
der Lichtwelle schreiben wir mit Gordon:

(2)

0U aa cos ß aA ia0 0 (skalares Potential)

ß ~—\ / nkxk — ct y laxa lx.

Das Störungspotential cp für das Magnetfeld, das in die Y-Rich-
tung (x2) gelegt wird, ist wegen

Hz dx1--7V3r> Hl H3 0 : cp1 Hx3,cp2=cp3=cpi=:0.(^)

Gleichung (1) nimmt dann mit 0'a X(0a -f- cp,) und unter
Vernachlässigung von Gliedern mit A2 folgende Gestalt an:

Ani ev-' dW 4,ni e TT
dW

QW-l-h xxlf^d-x:C0Sß-^rcHx*-d^
a

4 TT2

-1^-m»C"F=0. (1')

Diese Gleichung lösen wir durch den Ansatz:

W Wq + XW* + XW**; (4)

womit wir zum Ausdruck bringen, dass sich die beiden Störungen
in ihrer Wirkung auf das freie Elektron W W0 einfach addieren.
Mit Berücksichtigung dass W0 der Gleichung (1) für 0'a 0 genügt,

») Gordon, Zeitschr. f. Phys., Bd. 40, p. 117.
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und weil die Störungen unabhängig sind, zerfällt (1') mit dem
Ansatz (4) in die zwei Gleichungen:

4ti2 4,7ii e dW.
\JlI'*--}-2-mZc2W*- -j-

4tc2 47ti e
QW** — }2

m2c2W** -
Die Lösung von (5b) führt mit W0 auf diejenige von Gordon,
welche wir hier mit derselben Bedeutung der Schreibweise
übernehmen :

2 n i I p b \
—r-\vx + }. --,- sm/J

W1 W0+ XW** M" v pl ' (6)
E

F 2P<.;r« a=l,2,3,4 p4 -i —

a

a

Es bleibt Gleichung (5a) (Störung durch das Magnetfeld) zu lösen.
Da die Rechnungen dieses Paragraphen für das Spätere nicht
wesentlich sind, geben wir nur die Resultate an. Die Lösung
von (5 a) heisst:

2 ni
-JTpx B

w* e -SiTiT—«Tj« (7)

wo B und A Konstante sind.
Mit (7) und (6) wird die allgemeine Funktion gebildet:

W JG(p)[y>0 + XW* + XW**]dp (dP dPldp2dp3), (8)

worin G(p) eine Gewichtsfunktion bedeutet. Daraus werden die
Gordon'schen Stromdichten s„ berechnet:

1 /_ dW dW Ani e — \

Zur Berechnung der Strahlen aus den wellenmechanisch verteilten
Strömen und Ladungen, sind mit Gordon die retardierten
Potentiale

0a=—l—X—dx, dx — dxxdx2dx3, (10)
c J Ii
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zu bestimmen; die Klammer [] bedeutet, dass statt t:t zu

setzen ist, wo R die Entfernung von Quellpunkt und Aufpunkt
ist. Es entstehen dann neunfache Integrale über p und p' und x.
Die Gordon'sche Anwendung des Fourier-Theorems ist hier nicht
möglich; denn die Lösung (7) entspricht einer aperiodischen
Bewegung des Elektrons mit einer kontinuierlichen Menge von
Eigenwerten p4. In Wirklichkeit führt aber das Elektron in noch so
schwachem Magnetfeld eine periodische Bewegung, eine Schraubenlinie

mit einer diskreten Menge von Eigenwerten aus, wie die
exakte Behandlung in § 3 mit Berücksichtigung von H2 zeigen
wird. Da die aperiodische Bewegung, die (7) entspricht, nur in
einem kleinen Raumteil mit tier wirklichen Schraubenlinie, die
tlas Elektron tatsächlich ausführt, übereinstimmt, dürfen tlie
Integrale über x nicht von — co bis J- cc ausgeführt werden, und
das Fourier-Theorem kann in diesem Fall nicht benützt werden.
Aus der Anwendung des Fourier-Theorems schliesst Gordon auf
die Gültigkeit tles Energie-Impulssatzes, d. h. dass nur ein ganz
bestimmtes Gebiet dp,, ¦ ¦ ¦ dp,,' miteinander kombinieren kann. Aus
der Nicht-Anwendbarkeit des Fourier-Theorems für den Magnet-
effekt schliessen wir, dass in diesem Fall ganz beliebige
Kombinationen zwischen p„ -f- dp,, untl p,,' + dpj vorkommen. Die
Übergangswahrscheinlichkeit dürfte allerdings für solche
Kombinationen, die der Eigenfrequenz im Magnetfeld entsprechen, ein
Maximum besitzen. Die Komplikation rührt eben daher, dass

wir FI2 vernachlässigt haben; die spätere Behandlung (§ 3) zeigt,
dass gerade nur solche Kombinationen stattfinden, die der
Eigenfrequenz im Magnetfeld entsprechen, allerdings ohne Berücksichtigung

des Rückstosses des Streuquants; dagegen treten noch antlere
Kombinationen in der Nähe der Eigenfrequenz auf (Verschiebung
der Spektrallinie), wenn der Rückstoss berücksichtigt wird (§4).

§2.
Die Frequenz co für die Kreisbahn des freien Elektrons im

homogenen Magnetfeld berechnet sich klassisch unter
Vernachlässigung des Energieverlustes durch Strahlung aus dem
Gleichgewicht zwischen Zentrifugalkraft und Lorentz-Kraft.

V*
m —

r c

it T bzw. Frequenz
1 e H

m — ~j7 —
c 2nm

(11)

Für die Umlaufzeit T bzw. Frequenz co gilt
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Um.die quantentheoretische Frequenz y, die das Elektron im
Magnetfeld bei Sprüngen aus einer Bahn in eine andere emittieren
würde, zu bestimmen, muss die Energie gequantelt werden. Im
Magnetfeld besitzt das Elektron nur kinetische Energie; für die
Strahlung kommt die Komponente parallel zum Magnetfeld nicht
in Betracht. In Polarkoortlinaten ist

„ Tn m „ „ .dcpEkin= 2
^2 -2 »-v v r<p -£rr- (13)

Der Azimutalimpuls bestimmt sich aus einer Lagrange'schen
Funktion L gemäss

ÖL

P<P=W (14)

wobei L in Polarkoortlinaten für ein Elektron im Magnetfeld

L mr2cp2 — — Hr2cp (15)
2 2 c

lautet. Die Quantenbedingung für den Azimutalimpuls liefert mit
(14) und (15)

/ eH \ nh
P* mr ^-2^j=2^- (16)

Mit
eH

<P

nach (11) wird also

so dass mit (13)

mr2

mc

nh 2 mc
~2XX eil

E»n=2AilnXc (17)

folgt. Nach Bohr's Korrespondenzprinzip gilt für tlie zum Dreh-
impuls gehörige azimutale Quantenzahl n die Auswahlregel:

n —>- n ± 1

und mit der Bohr'schen Frequenzbedingung wird damit aus (17)
die quantentheoretische Strahlungsfrequenz

"• T 2XXXn (18)

also genau so gross wie die klassische Umlauffrequenz co.
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§3.
Um das Problem des Elektrons im homogenen Magnetfeld

wellenmechanisch mit Berücksichtigung des quadratischen Gliedes

zu behandeln, gehen wir von (1) aus, wo 0J cpa 0U 0 gesetzt
ist. Das Magnetfeld legen wir jetzt in die ^-Richtung und wählen
der symmetrischen Schreibweise wegen die magnetischen Potentiale

[vgl. (3)]:

cpx —\Hy tpy= + 2Hx cpz 0.

Dann lautet (1):

(19)

Ani e H / dW^ + -h-!X 2 \ dx .'/

dW

dy
¦irr2 H2

(x2 + y2) + m2 c2 \W 0 (20)

die Variablen t und z kommen nicht explizite vor; deshalb machen
wir den Ansatz für W:

2*J-[(mc* + E')t-pz.7}
W=e -v(x,y), (21)

wo E' die gesamte Bewegungsenergie bedeutet. Damit wird (20):

d2v d2v

dx2 dy2

An2 4n2 1
(mc2 + E')

4 Tri e H f dv
h, Ac "2

dv
dx - dy

'M-M+*'>h2 { 4 <¦

in Polarkoordinaten:

d2v 1 d2v 1 dv
r2 $^2 r dr
4:7ii e H dv

'~ ~2XXüp~

m2c2 \ v 0, (22)

dr2

h

4 TT2

l2

pz-v +
¦2 H<

4,7t2 1

7i2M2 (mc2 + E')2 ¦ v

oder

d2v

dr2
'

1 d2v

r2 dXp2

1 dv

r dr
4ni e H dv

h c 2 dcp

r2 4- m2c2

+ [C2-B2r2]v 0,(23)

mit den Abkürzungen:
4 TT2

C2
-h2~ 2m IE' — 2m

E'2 4 tt2 e2 H2
ß2 - -» " r -4- * (**>
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cp kommt in (23) nicht explizite vor; wir können deshalb separieren
durch den Ansatz

v ein,fx(r); (25)

n ist eine ganze Zahl entsprechend der Eindeutigkeitsbedingung
für die ¥y-Funktion. Die Differentialgleichung für %(r) wird damit:

iM
dr2

A2

r dr

2 m [E

A2-B2r2-~]

n h

0,

h2

2 m E 2 m E'

4 ti m c

E'2
-~2 Vi

H

(26)

(27)

(28)

Die letztere Abkürzung bedeutet zugleich, dass E nur die
Bewegungsenergie senkrecht zum Magnetfeld ist, welche wir kurzweg
als ,,Kreisenergie" bezeichnen wollen. Gleichung (26) ist ganz
ähnlich gebaut wie tlie Schrödinger'sche1) Gleichung für tlas
Wasserstoffatom; wir machen deshalb für % den weiteren Ansatz:

z e-^'p(r)) (29)

P(r) ist ein noch zu besiimmendes Polynom. Die Konstante <5

bestimmt sich aus (26) für sehr grosse r; von (26) bleibt dann noch:

d2%

dr2 B2'^°'
und mit der Variablen r2 q wird (30):

(30)

d2 7.

öq1
B2Z 0,

welche zur Lösung

hat. Also ist die Konstante
B^

~2 (31)

Mit (29) und (31) erhalten wir aus (26) die Differentialgleichung
für das Polynom

d2P -1—2 Br
r

dJX
dr A2-2B-- P 0

wir setzen für P die Reihenentwicklung

p y n. rk

(32)

(33)

') Schrödinger, Annalen d. Phys., Bd. 79, p. 361.
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und bekommen damit aus (32) die Rekursionsformeln für die
Koeffizienten

2B(k + l)-A2B*+2-B*
(k + 2)>-n2

• (34)

Aus der Randbedingung für die V*-Funktion: reguläres
Verhalten im Endlichen, Verschwinden der W-Funktion im Unendlichen,

schliessen wir, tlass das Polynom mit der w-ten Potenz
anfangen muss, da es keine negativen Potenzen besitzen tlarf,
und dass es mit der Men Potenz abbrechen muss (Beweis am
Schluss dieses Paragraphen), wobei / 2": n.

Dass das Polynom nur gerade oder nur ungerade
Potenzen besitzt, sieht man aus (34) ohne weiteres. Die
Endlichkeitsbedingung für das Polynom verlangt, dass vom ersten
Koeffizienten R, an alle folgenden RU2 usw. verschwinden müssen.
Das ist der Fall, wenn in (34) der Zähler für k l verschwindet.
Das führt mit den Grössen A2 und B (24 und 27), direkt zu den
Eigenwerten für die Kreisenergie (bei Vernachlässigung der Rela-

K'2tivitätskorrektur --„s- in (28):

En>l —H
h

(l + l~n) (35)
c 4 ti m

mit den zugehörigen Eigenfunktionen (vgl. 21, 25, 29):

—-—[(mc' + E')t — pz ¦ z\ inq,
W(n,l,pA e

"
e X'n(>)

wobei

Xln{r) e-6'*Pn(r), E' K,+ ''
2 m >

(36)

ist. Zu einem Eigenwert Enl gehören offenbar unendlich viele
Eigenfunktionen W(n,l, pt), d.h. es besteht eine unendlichfache
Entartung der Eigenwerte. Der Begriff Entartung ist hier aber
nicht mit demjenigen für die mehrfachperiodischen Systeme in
der Bohr'schen Quantentheorie zu verwechseln, denn in unserem
Fall haben wir nur ein einfach-periodisches System, bei dem eine
Entartung im Sinne der Bohr'schen Theorie gar nicht möglich
ist. Hier bedeutet dieser Ausdruck vielmehr, dass es unendlich
viele Koordinaten-Systeme gibt, in bezug auf die das Elektron
dieselbe Energie besitzt, nämlich alle, welche durch Parallelverschiebung

der z-Achse entstehen, oder mit anderen Worten: das
Elektron braucht nicht gerade um unsere gewählte z-Achse zu
rotieren, es kann auch um eine parallel dazu verschobene rotieren.
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Dieses Verhalten ist ähnlich demjenigen des freien Elektrons, das
ebenfalls unendlich viele Eigenfunktionen zu einem bestimmten
Eigenwert E' hat, entsprechend dem Umstand, dass das Elektron
unendlich viele Bewegungsrichtungen (px py pA mit derselben
Eneigie besitzen kann.

Zusatz: Beweis der auf Seite 6, 7 angegebenen Bedingungen
für das Polynom.

1. Das Polynom darf keine negativen Potenzen besitzen,
weil sonst die ^-Funktion im Nullpunkt irregulär würde.

2. Aus der Rekursionsformel (34) sieht, man, falls das Polynom
mit einer Potenz < n beginnt, dass der Koeffizient Rn unendlich
würde (für k= n — 2) und somit alle weiteren Koeffizienten, also:
Irregularität von i im Endlichen. Um diese zu vermeiden, muss
P(r) mit der n-ten Potenz anfangen.

3. Dass das Polynom beim /-ten Glied abbrechen muss,
zeigen wir damit, dass das unendliche Polynom stärker divergiert
als eJr' (vgl. (29)). In Reihenform ist

B r2 B\2 r* f B?3 r"
e"'=1+-2-i7+hrJ 2.-'-hrJs!+ • ¦ •

Andererseits lautet das Polynom mit Berücksichtigung von (34):

2B(n + l)—A2P (r) Rn
(n + 2)2-

.•n + 2

2B(n + l) — A2 2B(n + S)-A2 ^.
(n + 2)2 — n2 (n + 4)2 —n2

2B(n + l)-A2 2B(n + 3)-A2 2B(n + 5) — A2 MR

(n + 2)2 — n2 (n + 4)2 —n2 (n + 6)2 — n2

Das (m + l)-te Glied dieser Reihe können wir allgemein
schreiben, wenn der Nenner (a + b)2 — a2 in (a + b + a)

(a + b — a) zerlegt und im Zähler noch durch 2 B dividiert wird

a TB j :

rn (2 B)m r2m (n + l — a.) (n + 3 — <x). (n + 2 m— 1 — ai)

(2-4

„ (2 B)m r
2m ¦ m! i

~Dm «2m

2m -m\

¦ 6 2 m) (2 n + 2) (2 n + 4) (2 n + 2 m)

2 m (n + 1 - oc) (n + 3- a) (n + 5- a) {n + 2 m-1- oc)

lm n + l n + 2 n + 3 '"" n + m

[f1- a1)(i+l~;)(i+2::v--(n+2m"l_a)l
\ n + l/ \ n + 2) \ n + 3) \ n-tm
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Nun konvergiert der letzte Klammerausdruck für m-> oo (unendl.
Polynom) gegen 2. Es besteht aber der Satz, dass ein unendliches
Produkt von der Form in der eckigen Klammer nur dann gegen
einen endlichen Wert konvergiert, wenn der letzte Faktor gegen
1 konvergiert. Der Faktor

Iim v2m

2™ m!

ist aber identisch mit dem (m + l)-ten Glied der Reihe für etn
Weil die eckige Klammer divergiert, so divergiert also das Polynom

stärker als eör', d. h. die Randbedingung für % im Unendlichen

ist bei nicht abbrechendem Polynom (Quantelung der
Energie) nicht erfüllt.

Zum Schluss sollen die Eigenwerte (35) verglichen werden
mit den von Rabi1) unter Berücksichtigung des Spins berechneten.
Wir sahen aus (34), dass n und / entweder gerade oder ungerade
sind; also können wir (35) schreiben

Br — fl-r (2r + l) r 0,1,2.... (39)
c 4nm

Rabi findet

B'-Tfl5W' »-0.1.2.... (40)

Die Berücksichtigung des Spins ergibt also doppelt so viele
Energieniveaus. Wir können tlen Spin aber auch nachträglich
berücksichtigen, indem wir bedenken, dass ein Spin-Elektron

e h
wegen seines magnetischen Momentes m j im Magnet-

C tc -TT Tfl

feld die zusätzliche Energie

(mS>) ±--H-r^— (41)¦" c 4 Jim

erhält, jo nachdem, tier Spin parallel (|) oder antiparallel (¦],)
zu i) gerichtet ist. Damit wird (39):

[(2MD + l] >^m(Ml)
e TT h

2r + l) -1 H- r,c 4 Tim ' ¦ c 2 Tim

und das sind die Rabi'schen Energieniveaus.

x) Rabi, 1. c.

Er eH h

c 4 Tim

ES_eH h
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§ 4.

385

Nach Heisenberg bestimmen die Matrizenelemente qrr- die
Übergangswahrscheinlichkeit vom Zustand des Elektrons mit der
Quantenzahl r zu demjenigen mit der Quantenzahl r'; sie geben
also die Auswahlregel für die zu diesen Übergängen gehörigen
Frequenzen v(rr'). Diese Matrizenelemente können nach
Schrödinger1) aus den Eigenfunktionen (36) berechnet werden:

qrr-= jjjqWjl'yir. (42)

Massgebend für die Polarisation sintl die kartesischen
Koordinaten, resp. die dazu gehörigen verallgemeinerten
Lagekoordinaten (/,.,... Für die .r-Riehtung ist q=x r cos cp; das
Volumelement wird in Zylintlerkoordinaten dr r dcp dr dz; also
wird mit (36)

-/, =9Ü/.«-/•=_/ jjr cos ;:'[( m c- + Eni-
Vz'

z irnt — iz•z \ inv — ör
e e

ru mc3 + En' l' - .," H-Pz -in' <f — <>/¦-

p<

r dtp dr dz (43)

Dabei ist in (36) für die totale Bewegungsenergie — E': Kreis-
"Venergie En, (35) plus Translationsenergie .,r in der ^-Richtung

gesetzt worden (vgl. (28)). Der Impuls pz ist in den Zuständen
(nlpz) und (n'l'pj) derselbe, solange vom Rückstoss des
ausgestrahlten Lichtquants abgesehen wird. (43) wird also mit

COS Cp

r-r VJ

r -i.ri¦2r,i,(,r-)t / - Ap,.
e I e

'
i(n — n' + l) tp iln—n'—l) <i

e + e (11/

wobei

r"-e '"'P'P'Xdr

{Enl-En'7)

(44)

l) Schrödinger, Annalen d. Phys., Bd. 79, p. 734.
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Das erste Integral ist die Dirac'sche „^''-Funktion und liefert
nur einen Beitrag für Apz 0. Wesentlich sind das zweite und
dritte Integral; das zweite liefert nur einen Betrag für

n' n ± 1 (45)

somit haben wir die Auswahlregel für n. Wir zeigen, dass diese die
Auswahlregel für den Drehimpuls pv bestimmt. Der Drehinipuls
für die ^--Richtung ist

Mxv= xpv — pxy

mit Beachtung, dass für das Elektron im Magnetfeld (nicht
konservatives System) für den Impuls p die Beziehung gilt:

e
P m q + - Sl,

und mit Berücksichtigung des Ausdruckes (19) für das
Vektorpotential 21 nimmt Alxv in Operatorform folgende Gestalt in
Polarkoordinaten an1).

h / d d \ h d
j'b« — o • Ix a „, y2ni\ dy dxj 2ni dcp

Ausgeübt auf die ^-Funktion (36) folgt

MxvW=n-£-W

n—,— ist also der zu W gehörige „Drehimpuls" p^ und für diesen

gilt dieselbe Auswahlregel (45), wie nach dem Bohr'schen Korre-
spondenzprinzip zu erwarten war. Das dritte Integral in (44) heisst

QO 00

'-},.2e-iör'pinpctdl.= l r2e--')rt\Ry" + R„

[Bn±lr"^ + Rnjz3r"^+...]dr (46)

wo das erste Polynom bis zur Men. das zweite bis zur /'-ten
Potenz läuft. (46) liefert die Auswahlregel für /. Durch
Ausführen tles Produktes in (46) entstehen Integrale von der Form

R{Rk je~26r'- ri+k -dr (47)
o

mit der Substitution
r.' a + i,- + -i)

1) Sommerfeld, Atombau und Spektrallinien, wellenniech. Ergänzungsband,

p. 297.
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wird (47):
00

RiRyt f e-i*'e>«+* + "dx (48)

o

i + k + 1 ist immer eine gerade Zahl (vgl. (46)); deshalb gibt
die Ausrechnung dieses Integrals

1 /i+fc + l\ _
* + *+3

2 «'»*(- 2 )!(2Ö) 2

also wird (46) mit (31):
00

r>e-^>P',lP^ldr=-2 * — ,'i + k + l\ ni±*±±

o

t läuft von n bis / und fe von n + l bis /'. Die Rekursionsformel
(34) für die Rt resp. Rk lautet mit (27) und (35)

2B(k — l)ß-=^w-^ (50)

Durchgerechnete Beispiele zeigen, dass (49) mit Benutzung
von (50) nur dann einen von 0 verschiedenen Wert liefert, wenn
für / die Auswahlregel

V l±l (51)
gilt1)-

l) Nach Abschluss der Arbeit wurde ich von Herrn G. Beck brieflich auf
den allgemeinen Beweis der Auswahlregel hingewiesen. Es kommt im wesentlichen

darauf an, dass man erkennt, dass der Ausdruck (46)
X

jr-/An Xn±1rdr
0

nichts anderes als die Entwicklungskoeffizienten dj darstellt, wenn man die
Funktion

M'-i=^M,
i

nach dem vollständigen Orthogonalsystem -/' entwickelt (der Fall r y kann
durch Änderung der Bezeichnungsweise n'—«¦ n,n ~ n' auf obigen
zurückgeführt werden.) Es lässt sich dann allgemein unter Berücksichtigung der Diffc-
rcnzialgleichung (32) für die Polynome Pn und der Rekursionsformel (34) für
die Koeffizienten Rk beweisen, dass diese Entwicklungssumme sich auf zwei
Glieder reduziert.

I- ¦/ - tl v'_1 X d vl + 1r 7;,-\ "/,/- 1 7.,i + al,l + l 7.n

also die Auswahlregel
l' 1+1

gilt. Ähnlich musste man bei den Strömen sD in (71) verfahren.
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Die Bedeutung von (51) und (45) ist folgende: wird (44)
mit der Ladung e multipliziert, so ergibt sich das wellenmecha-
nische Dipolmoment für die «-Richtung, welches nur Übergänge
für

l >l -_
1

n >- n + l
also die Frequenzen

1 e Hh e H
V(rf')= _ [/ + i_„_ i'+l-n')] — -j [+2]h c 4 ti nt c 4 ti m

erlaubt. Die wellenmechanische Frequenz

e H
0

c 2 Tim

ist also gleich der klassisch und quantentheoretisch berechneten
Frequenz (für tlie Ausstrahlung kommt nur das positive
Vorzeichen in (52) in Betracht).

Um das Dipolmoment für die y-Richtung zu berechnen,
müssen wir in (43) y r sin cp an Stelle von x r cos cp setzen;
das bedingt, dass

iv -,-!
wird. Ferner gilt

qyTT, e 2q%.

qX. 0.

Das wellenmechanische Dipolmoment ist also links-zirkular polarisiert

und gehört zur klassischen Umlaufsfrequenz co.

Es ist von Interesse bei dem relativ einfachen Beispiel eines
durch ein Magnetfeld gebundenen Elektrons die Ausstrahlung mit
Berücksichtigung des Rückstosses des ausgestrahlten Lichtquants
zu untersuchen. Um den Impuls tles Lichtquants zu
berücksichtigen, müssen statt der wellenmechanischen Dipolmomente
die retardierten Potentiale bestimmt werden, die sich aus den
wellenmechanischen verteilten Strömen sa

1 |_ dip dip 4ni e _]
S" 'i VJxA-v dx--~ hT-c^w (5ß)
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berechnen. Die Ladungsdichte qT7, die zum Übergang (r ->¦ r'
pz-> pX gehört, wird mit

xi ict, tpi itp0 0, S4 icQrrp.,

dWr. -• dW,

ic2 \X r dt '' dt
mit (36) gibt das einen Ausdruck von der Form:

M-<">"'MoO (58)

& —T»\ ^-TT—^^-TrV (57)

o"
-/¦/< ¦ —

it den Abkürzungen:
1

v (rr pp') h
v Pl

w PrKl + 2to ~L"''"~2to (59)

Z n i (p-P')-t i(n-n')ir i /¦Irr' \ ',— \P„—P„l'£ i\.,t—it y ,¦ ,r.t\\Qa{pV) ae h z z e ¦/.„%„¦, (60)

wo a eine Konstante ist.
Wir können jetzt für die retardierten Potentiale die Formeln

von Klein1), mit derselben Voraussetzung über die Kleinheit tier
Dimensionen der Elektronenbahn gegenüber dem Abstand von
Aufpunkt und Koordinatenursprung, verwenden:

V
1 2niv(t
- e \
s

21
1 2nif(t
— e \

TT l V

(n'r)Moe c av

1 2.1 i v It-") f a 2^-(n'r)
—e \ c> I 30e c dv, (61)

wo s den Abstand von Koordinatenursprung zum Aufpunkt, r den
Vektor vom Koordinatenursprung zum Quellpunkt und n' den
Einheitsvektor in der Beobachtungsrichtung bezeichnet.

Aus (61) bestimmt sich dann der elektrische Vektor
2 Tiiv

g= (21-n'F) (62)

es ist daraus ersichtlich, dass für die Diskussion von S nur 21

wesentlich ist. Berechnet man st ftT, so wird aus (56) mit
Beachtung von (19):

Ct _ „ „2 * 1 '' t '7. n i <sz ¦ z i (n + 1 - n') q,

/ 2 ni v' * 2ni&* • z A(,n — 1— n') tp

-r c 6 e e

1+ + „¦) AA. + kA-A. - A±g) + r£ X H^Zd (68)

") Klein, Zeitschr. f. Phys., Bd. 41, p. 422, Gl. 38.
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c und c' sind Konstanten; ferner ist
9 / 9

E - V'z -E -V^Pjnl 2to ä»''' 2to j-(P.-P.0»- ».=O- (64)

Geht man mit (63) in (61) ein, so entstehen Integrale über
2, cp und r, die wir einzeln diskutieren. Es sei gleich bemerkt,
dass wir der beträchtlichen mathematischen Vereinfachung wegen
nur in der z-Richtung beobachten wollen nz' + 0 nx' n,/ 0 ;

es sei dv dzdcprdr in Zylinderkoordinaten. Das Integral über
z liefert nur einen merklichen Beitrag, wenn der Exponent

v

.'ll i^ + Ur/ J

Null ist, d. h. wenn der Impulssatz für die ^-Richtung erfüllt ist:

hv'
— + PX Pz (65)

unter Zuhilfenahme von (64). Das Integral über cp liefert die
Auswahlregel für n:

n' n ± 1 (66)

Damit erhält man weiter für die Integration über r die Auswahlregel

für l
V l T 1 (67)

mit Beachtung der Auswahlregeln für n und / kann der Energiesatz

(64) geschrieben werden:

hv' hv0+ 2w (pM?>;2) (68)

wobei v0 die Eigenfrequenz (53) im Magnetfeld ist. (68) schreiben
wir mit Berücksichtigung tier mittleren Geschwindigkeit v \
(v + v') des Elektrons parallel zum Magnetfeld:

hv' hv0 + v(pz— pX) (69)

mit, dem Impulssatz (65) kombiniert folgt:

7

c
oder

1
V 7'„0 v

C

(70)

l) O. Klein, loc. eit,, p. 422, Gl. 40.
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Bei Berücksichtigung des Rückstosses des ausgestrahlten
Lichtquants erhalten wir also eine Dopplerverschiebung der
Eigenfrequenz. Die Deutung ist ähnlich derjenigen von
Schrödinger für tlen Dopplereffekt. Eine einfache Betrachtung zeigt,
dass

i n

<\y •= e <\x

ist, und dass 2L. zeitlich konstant ist, so dass wir sagen können:
der Vektor S führt eine zirkuläre Schwingung in der Ebene senkrecht

zum Magnetfeld aus.

§ 6.

Das Elektron im Magnetfeld soll jetzt einer Störung durch
eine ebene linearpolarisierte elektromagnetische Welle (Lichtwelle
oder Röntgenwelle) unterworfen werden. Von der Wirkung des
Wellenfeldes auf den Elektronenspin wird abgesehen, was für
nicht allzu hohe Frequenzen (Ultragammastrahlen) erlaubt ist.
Die Wechselwirkung zwischen Magnetfeld untl Wellenfeld besteht
dann in einer Kombination von Comptoneffekt und Magneteffekt.
Das Vektorpotential der störenden Welle werde durch

a —-. C-^E0 cos 2:rxiv \t — — \, (V 0)
2 Tiiv \ c J

beschrieben. Die gestörte Schrödinger'sche Gleichung (1) nimmt
in vektorieller Sehreibweise folgende Form an, wenn in a nur
lineare Glieder, dagegen in 21 die quadratischen Glieder berücksichtigt

werden:

4ni e 4 n2

üy-X - 21 grad W- h2
212 + TO2C2 W

4ni e ,„ 4n2 e2 ß2

agrad¥/ ,-, r 2(2la) W 0. (71)
h c h2 el

Wird für W der Ansatz

W W1 + W* (72)

gemacht, so erhält man eine inhomogene Störungsgleichung der
Form

4ni e _. 4tc2DF+- 21 grad W*-~ I ¦

2- 2l2 + w2 c2) W*

4 ti2 e2 4 ni e- h2 --22(^a)W1 + -h - agradlP,.
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Es sei bemerkt, dass hier zum Unterschied der üblichen Störungsprobleme

(bei denen nur die linearen Glieder der Vektorpotentiale

berücksichtigt werden) auf der rechten Seite das erste Glied
hinzutritt. Durch eine Schrödinger'sche Störungsrechnung, wobei
die Relativitätskorrektion vernachlässigt wird, erhält man für W*
wenn die cos-Funktion in Exponentialform geschrieben wird:

».ti 2.11
ir/* tti —I—(mc'+ E'+ hv)t T1 (me* + E— hv)tW* Fne » + Fne h

Z—i%Tl2v(vAs — v) ' " A^8 7l2v(vns+V) "

(78)

Es sind hier, wie auch im folgenden, im allgemeinen die
Bezeichnungsweisen von J. Waller1) benützt, da von ihm die
allgemeine Streuungsformel bereits abgeleitet ist und somit auf
seine Rechnungen hingewiesen werden darf. Die einzige Abänderung

in der vorliegenden Arbeit besteht darin, dass nun auch
das quadratische Glied von 21 berücksichtigt wird, während a
linear auftritt. So ersetzen wir unser früheres W(xyz) in (36)
durch die Waller'sche Bezeichnung vs (vs ist nur eine Funktion
der Koordinaten).

Für Bns folgt also

2

h
ti i /+ e

h J üs~m L2^gracU''--"c2t""
2 u i v

'~(nf)dT. (74)

Für Bsn ist der konjugierte Wert von Bns mit Vertauschung der
Indizes zu nehmen.

Mit den gestörten Eigenfunktionen (72) untl (73) werden die
Ströme sa (56) berechnet (wobei wir uns nur auf tlie in E0 linearen
Glieder beschränken), und aus diesen das Vektorpotential 21 (61)
(nicht zu verwechseln mit dem Vektorpotential tles Magnetfeldes),
das (wie in § 5) für die Ausstrahlung massgebend ist. Für den
in E0 linear-abhängigen Teil 21*,- ergibt sich ein analoger
Ausdruck wie für das Dipolmoment nach Waller1):

21*, a\E0ynn. l-bY)^*—- +
{E«B"'*)B:"

Vns + V Vn's—V
e2-"¦•"'"(75)

a und b sind zeitliche Konstanten; tier Summationsbuchstabe s

") J. Waller, Zeitschr. f. Phys. 51, p. 213.
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repräsentiert tlen Zwischenzustand s,r,pz (vgl. Gl. (36)); ferner
bedeutet

E(n,l,pz)~E(n'l'pX)
h

Y«H-=J vnV„i
m

e dr

+ v

Bns
2jii
M A m

B,ls
2 ni

h J
f- e f
f «8

TO

2 n i
~h~
2 ni

h
grad vn — -- 21 u„

grad t*„ — - 2lü,

2 Tl V

dx

dx

u

tt: Einfallsrichtung; n': Beobachtungsrichtung.
Für lange Wellen, also bei Vernachlässigung der Retardierung,

ist das Glied ynn für nichtkohärente Strahlung (n ±. n')
Null infolge der Orthogonalitätsbedingung für die xl„ in (36). Mit
Beachtung der Gleichung für den Impuls p auf Seite c.86 wird

R 2ici
n**ns *fns

und (75) geht in die von Dirac abgeleitete Strahlungsformel über.
Da allgemein qns =2nivns- qns gilt, folgt unter Benützung der
Auswahlregeln für die qns (§ 4), dass die Summe in (75) sich auf
ein Glied reduziert. Für n n — 4 s n — 2, also für das
Auftreten eines Ramaneffektes

v' 2 v0 + v

wird (75) im Fall langer Wellen:

Eq qn-->,„) q„-2, »-1 (Enq„-4. ,,-2) q,i.n-2 ,2ii(2»,+ i')(«H*"'" ¦¦
L vn<n_.,+ v r„_4| „_2 — v

berücksichtigt man, dass nach (52)

""(77)

und nach (54)

qy • 2 qx

so ist ersichtlich, dass die eckige Klammer in (77) verschwindet
und also ein Ramaneffekt, wie im Fall des Oszillators, nicht möglich

ist.
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§ 7.

Anders liegen die Verhältnisse bei Berücksichtigung der
Retardierung. Aus demselben Grund wie in § 5 beschränken wir
uns auf den Fall: Einfalls- und Beobachtungsrichtung parallel
zum Magnetfeld (tl, n„ nX nv' 0). Die A'-Komponente
von Bns Gleichung (76) lautet mit dem Wert Qix —\HV:

di 2 ti i I ~ e

ans— r / V*-—h / m

h d ef 1
TT-2nJdxr"-c[--2-Hyr' dzdxdy

analog die andern Bs.
Setzt man diese Ausdrücke in (75) ein unter gleichzeitiger

Einführung von Zylinderkoordinaten, so erkennt man bei
Verwendung der Eigenfunktionen (36) folgendes:

Die Integration über z liefert den Impulssatz:

h v hv'
Pz + n2 — pz + n2 — (78)

die Integration über r und cp liefert, da die Funktionen von r
und cp durch die spezielle Wahl der Retardierung nicht geändert
werden, dieselben Auswahlregeln, wie im nicht-retardierten Fall,

s — n + 2.

Damit gibt die Zeitabhängigkeit den Energiesatz in der Form
(vgl. (76)):

V - { (Enl-Enr) + l -^ (vX-P?) + v 2 v0 +
-h \m (Pz2-p^.

Es ist nun ohne weiteres ersichtlich, dass der Klammerausdruck

in (75) für fliesen Fall nicht verschwindet, da die Nenner
nicht gleich mit entgegengesetzten Vorzeichen sind, wie im Falle
langer Wellen. Dagegen verschwindet auch bei dieser speziellen
Retardierung das Glied ynn' für nichtkohärente Strahlung. Der
Nenner des Bruches heisst:

während der des zweiten Bruches:

-v»+2X7AhW-^-v
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lautet. Wir stellen also das Auftreten eines Ramaneffektes
zwischen Magneteffekt und Comptoneffekt fest. Mit Einführung der
mittleren Geschwindigkeit v lässt sich (78) mit (79) wie in § 5

kombinieren. Für die Beobachtung in Richtung des einfallenden
Strahles (n/ — nz) wird

v' v + 2vq—^-- (80)

c

Dagegen für die Vorwärtsbeobachtung (n.' — tu)

(81)2 Vq r - + V

1+
Ĉ

V~T)
1+1

c

Charakteristisch ist das Auftreten des Faktors 2 vor v0 gegenüber

(70). Neben der inkohärenten Strahlung tritt natürlich auch
wie (75) lehrt, die kohärente auf, nämlich für n n.

Für verschwindendes Magnetfeltl wird v0 0 nach (53), und
die Frequenzen gehen in diejenigen der Comptonstreuung über:

v' v für tu' n2 (80')

r' r(l -2 - für n2' -ns (81')

(hierbei ist in (81) der Nenner nach Potenzen von — entwickelt

und Glieder mit höheren Potenzen von vernachlässigt; (81') ist
die Darstellung der Comptonfrequenz in der Schrödinger'schen
Deutung als Dopplereffekt). Natürlich gehen für verschwindendes
Magnetfeld die Intensitäten in (75) auch in diejenigen des Comp-
toneffektes über, was man daran erkennt, dass die Eigenfunktionen

v, die in tlie Bns eingehen, für verschwindendes Magnetfeld

in diejenigen des freien Elektrons übergehen; allerdings ist
die Darstellung in Zylinderkoordinaten gegeben, aber mit Hilfe
von Besselfunktionen lassen sich die Eigenfunktionen in die
bekannten, von Kartesischen Koordinaten abhängigen:

—r—IE + mc')t — - (p ¦ x + p y + ;;. z)
17/ - p

h
o

h
1 frei-'s Elektron "-" "*

überführen.
Es wäre noch der Fall schiefer Inzidenz der Welle gegenüber

dem Magnetfeld, sowie die Untersuchung der gestreuten Welle in
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beliebig geneigter Richtung (was prinzipiell auf dasselbe
herauskommt) zu diskutieren. Doch ist wegen den hierbei auftretenden
mathematischen Komplikationen und den geringen Aussichten,
diese Effekte infolge der grossen experimentellen Schwierigkeiten
festzustellen, die Mühe nicht lohnend.

Eines kann man jedoch mit einiger Bestimmtheit auch in
diesem Falle sagen: Infolge der auftretenden x- und ^-Abhängigkeit

des Retardierungsfaktors in (76) werden die einfachen
Auswahlregeln für die Bns durchbrochen und das Linienbild des

Ramaneffektes wird mannigfaltiger als für Beobachtung und
Inzidenz parallel zum Magnetfeld. Der Impulssatz für die x- und
?/-Richtung hat dann nicht mehr die einfache Form (78), sondern
es kommt eine Unbestimmtheit in der Weise hinein, dass das

Magnetfeld selbst Impuls an das Elektron abgeben kann.

Zusammenfassung.

Das Problem des freien Elektrons im homogenen Magnetfeld
wird auf wellenmechanischer Grundlage für beliebig grosse
Feldstärken gelöst. Es sind dafür in (35) und (36) die Eigenwerte
und die Eigenfunktionen berechnet. Auf Grund der
Matrizenberechnung werden die Auswahlregoln für beide Quantenzahlen
n und l in (45) und (51) gegeben, und es wird als Erweiterung
dieses Falles die Strahlungsfrequenz (70) unter Berücksichtigung
des Impulses des ausgestrahlten Lichtquants berechnet. Der Elck-
tronenspin kann ohne weiteres mitberücksichtigt werden und führt
zu den gleichen Resultaten wie die Behandlung durch Rabi nach
der Dirac'schen Theorie. Der Comptoneffekt im homogenen
Magnetfeld wird als Störungseffekt durch eine einfallende, ebene
elektromagnetische Wolle (Lichtquant) in erster Näherung
berechnet, für den Fall, dass diese Welle in Richtung der magnetischen

Kraftlinien einfällt. Es werden die gestörten Eigenfunktionen

in (73) und (74) gegeben und daraus im Anschluss an
J. Waller das retardierte, gestörte Vektorpotential 51* in (75)
berechnet.

Es gelten für die in Richtung der Kraftlinien gestreute Welle
die gleichen Auswahlregeln für n und l wie für das freie Elektron
im homogenen Magnetfeld. Die veränderte Frequenz ist durch
(80) resp. (81) gegeben. Es treten also Kombinationslinien
zwischen Comptoneffekt und Magneteffekt auf (Ramaneffekt). Übergang

zu kleinen Frequenzen (Vernachlässigung des Impulses des

primären und sekundären Lichtquants) führt einerseits zur
Dispersionsformel von Born-Heisenberg-Jordan, und zeigt, dass für
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lange Wellen ein Ramaneffekt nicht auftritt. Andererseits führt
der Übergang zu verschwindendem Magnetfeld auf den Comptoneffekt.

Am Ende von § 6 werden einige kurze Bemerkungen
über den Fall schiefer Beobachtungsrichtung (oder Inzidenz)
gemacht, welche zeigen, dass für diesen Fall die einfachen Auswahlregeln

für n und l (45) und (51) durchbrochen werden.

Zum Schluss möchte ich Herrn Prof. P. Gruxkr und Herrn
Prof. F. Gonseth in Bern, sowie Herrn Dr. G. Beck in Leipzig
aufs wärmste flanken für mancherlei Ratschläge und kritische
Bemerkungen.

Physikalisches Institut der Universität Bern
(theoretische Abteilung).
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