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Wellenmechanische Behandlung des Problems des freien
Elektrons unter gleichzeitigem Einfluss eines homogenen
Magnetfeldes und einer ebenen elektromagnetischen Welle
(Comptoneffekt im Magnetfeld)
von Fritz Ludi.
(17. VIIL. 31.)

Inhalt. Es wird die Strahlung eines durch ein beliebig starkes Magnetfeld
gebundenen Elektrons nach klassischer, quantentheoretischer und wellenmecha-
nischer Grundlage untersucht. Alle drei Theorien fithren zur gleichen Frequenz
(doppelte Larmorfrequenz).

Anschliessend wird die Strahlung im Magnetfeld unter Beriicksichtigung
der Retardierung berechnet; die Verschiebung der Spektrallinie kann in der
Schrodinger’schen Weise als Doppler-Effekt gedeutet werden. Weiter wird das
Elektron im Magnetfeld durch eine elektromagnetische Welle gestért und die
Streustrahlung mit Hilfe der Waller'schen Dispersionsformel untersucht. Bei
Beobachtungsrichtung und Einfallsrichtung parallel zum Magnetfeld erhilt man
fir kurze Wellen (Rontgenwellen) einen Ramaneffekt zwischen Comptonstrah-
lung und Magnetstrahlung, wogegen im Fall langer Wellen das Auftreten eines
solchen wie beim Oszillator unterdriickt wird. Es wird noch der Fall schiefer
Inzidenz und schiefer Beobachtungsrichtung gestreift.

Einleitung.

Das Problem eines freien Elektrons im homogenen Magnet-
feld 1st schon von Kex~arp?!) und C. G. Darwin?) wellenmecha-
nisch behandelt worden; ebenso i1st von Rasi3) die Berechnung
der Kigenwerte fiir das Elektron im homogenen Magnetfeld nach
der Dirac’schen Gleichung gegeben. Der Comptoneffekt fiir das
feldfreie Elektron ist zur Gentige untersucht. Bezugnehmend auf
eine Notiz von BoTue?) mag es von Interesse sein, einmal das
Problem des freien Elektrons im Magnetfeld unter gleichzeitiger
Wirkung von Bestrahlung zu studieren.

1) KENNARD, Zeitschr. f. Phys., Bd. 44, p. 326.

2) C. G. Darwin, Proc. Roy. Soc., Vol. 117, p. 258.
3) Rasi, Zeitschr. f. Phys., Bd. 49, p. 507.

%) BorHE, Zeitschr. f. Phys., Bd. 41, p. 872.
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§ 1.

Ausgangspunkt fiir die folgenden wellenmechanischen Be-
handlungen 1st die relativistische Wellengleichung, wie sie z. B.
von GorpoN!) angegeben wurde:

4 mi 0V 4t
mp R —ZZ@HM e [szcbwmzc%}w 0. (1)

a

a=1,2,38,4.

Auf eimn freies Elektron soll ein homogenes Magnetfeld und
eine ebene linear polarisierte Lichtwelle wirken, die beide als
schwache Storungen behandelt werden. Die Storungspotentiale @,
der Lichtwelle bCllI‘Cll)CIl wir mit GORDON:

®, = a, cos [3 Gy = 18, = 0 (‘skalares Potential)

Das Storungspotential ¢ fiir das Magnetfeld, das in die Y-Rich-
tung (x,) gelegt wird, 1st wegen

0‘?1 . 03

H, = PENEY T

Hi=H3=0 : ¢g;=Huaxs,p,= 3=, =0. (3)

Gleichung (1) nimmt dann mit @, = A(®, + ¢,) und unter Ver-
nachlissigung vonGliedern mit A% folgende Gestalt an:

47 e oV 471 e oV
LF=d= =2 G gp S8~ B850
2
——4}51 mibel W = 0. (1

Diese Gleichung losen wir durch den Ansatz:
V=VW,+ AP* 4 AP**; (4)

womit wir zum Ausdruck bringen, dass sich die beiden Stérungen
in ithrer Wirkung auf das freie Elektron ¥ = ¥ einfach addieren.
Mit Beriicksichtigung dass ¥, der Gleichung (1) fir @, = 0 geniigt,

1) Gorpox, Zeitschr. f. Phys., Bd. 40, p. 117.




Comptoneffekt im Magnetfeld. | 3717

und weil die Stérungen unabhingig sind, zerfillt (1”) mit dem
Ansatz (4) in die zwei Gleichungen:
4 72 471 e o¥
¥ _ T 2.2k DT T ool NN 5
mh4 e m2ct¥ A CHxs A 0. (5a)
4

4 m2 41 oY
D’:p**'—— hj-: "fnzCij**— ;:'L ’i'Zau_oxn COSﬂzo. (5b)

a

1

Die Losung von (5b) fihrt mit ¥, auf diejemige von Gorpon,
welche wir hier mit derselben Bedeutung der Schreibweise iiber-
nehmen:

:Z:r]z?(ljx+}_ —P;?- sin ﬁ)
¥, =¥+ AP = ’ . (6)
P :_Epﬂa?,, «a=1,2,8,4 p,= l(:
pb :zpubu
pl = Epulu'

a

Es bleibt Gleichung (5a) (Storung durch das Magnetfeld) zu losen.
Da die Rechnungen dieses Paragraphen fiir das Spétere nicht
wesentlich sind, geben wir nur die Resultate an. Die Losung
von (5a) heisst:

7L pzs B )
; x, xr
w=e b () o

wo B und 4 Konstante sind.
Mit (7) und (6) wird die allgemeine Funktion gebildet:

W= [ Gp)[py+ 2P* + 2¥*dp (dp = dp, dpydpy), (8)

worin G (p) eine Gewichtsfunktion bedeutet. Daraus werden die
Gordon’schen Stromdichten s, berechnet:

1 (ﬁ_ow 0¥ 4mi e
B = ¥

i gj,ﬁa.&; g — D 'I“P) . (9)

a 7?57
Zur Berechnung der Strahlen aus den wellenmechanisch verteilten
Stromen und Ladungen, sind mit Gorpox die retardierten Po-

tentiale

1
D, =-c—f [Snf] de, de=da, doydz;, (10)
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zu bestimmen; die Klammer [ ] bedeutet, dass statt t:t———z ANl

setzen 1st, wo R die Entfernung von Quellpunkt und Aufpunkt
1st. Es entstehen dann neunfache Integrale tiber p und p” und «.
Die Gordon’sche Anwendung des Fourier-Theorems ist hier nicht
moglich; denn die Losung (7) entspricht einer aperiodischen Be-
wegung des Elektrons mit einer kontinuierlichen Menge von Eigen-
werten p,. In Wirklichkeit fithrt aber das Elektron in noch so
schwachem Magnetfeld eine periodische Bewegung, eine Schrauben-
linle mit einer diskreten Menge von Eigenwerten aus, wie die
exakte Behandlung in § 3 mit Beriicksichtigung von H? zeigen
wird. Da die aperiodische Bewegung, die (7) entspricht, nur in
einem kleinen Raumteil mit der wirklichen Schraubenlinie, die
das Elektron tatsichlich ausfiihrt, iibereinstimmt, diirfen die Inte-
grale iiber x nicht von — o bis -+ oo ausgefiithrt werden, und
das Fourier-Theorem kann in diesem Fall nicht beniitzt werden.
Aus der Anwendung des Fourier-Theorems schliesst Gordon aut
die Giltigkeit des Energie-Impulssatzes, d.h. dass nur ein ganz
bestimmtes Gebiet dp, - - - dp, miteinander kombinieren kann. Aus
der Nicht-Anwendbarkeit des Fourier-Theorems fiir den Magnet-
effekt schliessen wir, dass in diesem Fall ganz beliebige Kom-
binationen zwischen p, + dp, und p, + dp, vorkommen. Die
Ubergangswahrscheinlichkeit dirfte allerdings fiir solche Kom-
binationen, die der Eigenfrequenz im Magnetfeld entsprechen, ein
Maximum besitzen. Die Komplikation rithrt eben daher, dass
wir H? vernachlidssigt haben; die spitere Behandlung (§ 3) zeigt,
dass gerade nur solche Kombinationen stattfinden, die der Eigen-
frequenz 1im Magnetfeld entsprechen, allerdings ohne Berticksichti-
gung des Riickstosses des Streuquants; dagegen treten noch andere
Kombinationen in der Nihe der Eigenfrequenz auf (Verschiebung
der Spektrallinie), wenn der Riickstoss berticksichtigt wird (§ 4).

§ 2.

Die Frequenz o fir die Kreisbahn des freien Elektrons im
homogenen Magnetfeld berechnet sich klassisch unter Vernach-
lassigung des Energieverlustes durch Strahlung aus dem Gleich-
gewicht zwischen Zentrifugalkraft und Lorentz-Kraft.

v? e
m—=— Huv. (11)
r ¢
Fir die Umlaufzeit T bzw. Frequenz o gilt
1 e H

W =—=——".
T ¢ 2am
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Um.die quantentheoretische Ifrequenz ¢, die das Elektron im
Magnetfeld ber Spriingen aus einer Bahn in eine andere emittieren
wiirde, zu bestimmen, muss die Energie gequantelt werden. Im
Magnetfeld besitzt das Elektron nur kinetische Energie; fiir die
Strahlung kommt die Komponente parallel zum Magnetfeld nicht
in Betracht. In Polarkoordinaten ist

m m . de

v — P -2 R
Ei\'i" —_— 12 = i /) (,[2 v = )q7 == ==

9 9 TR (13)

Deér Azimutalimpuls bestimmt sich aus einer Lagrange’schen
Funktion I gemiiss

0L i
wobel L in Polarkoordinaten fir emn Elektron im Magnetfeld
B e B — B (15)
2 2¢

lautet. Die Quantenbedingung fiir den Azimutalimpuls liefert mit
(14) und (15)

Ny eH \ nh
Py = m (‘P — 2777:) =5 (16)
Mit
_ eH
P ="mo
nach (11) wird also
]
2n eH
so dass mit (13)
iy = ;‘Z —fg (17)

folgt. Nach Bohr's Korrespondenzprinzip gilt fiir die zum Dreh-
impuls gehorige azimutale Quantenzahl n die Auswahlregel:

n—»n + 1

und mit der Bohr’schen Frequenzbedingung wird damit aus (17)
die quantentheoretische Strahlungsfrequenz

e H
Y= Dam 18)

also genau so gross wie die klassische Umlauffrequenz w.
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8 3.

Um das Problem des Elektrons im homogenen Magnetfeld
wellenmechanisch mit Berticksichtigung des quadratischen Gliedes
zu behandeln, gehen wir von (1) aus, wo @, = ¢, @, = 0 gesetzt
1st. Das Magnetfeld legen wir jetzt in die z-Richtung und wahlen

der symmetrischen Schreibweise wegen die magnetischen Poten-
tiale [vgl. (3)]:

‘;p:c:_'%Hy (Py:‘l“lgH-I %:0 (19)
Dann lautet (1):

W 471 ¢ H (()‘l’ o
- h o 2\ 0x ¥y ()yl
472 (02 H2
——-};{—iz~ 4 (2% <+ y%) + m* (:2} ¥ =0, (20)

die Variablen t und z kommen nmicht exphzite vor; deshalb machen
wir den Ansatz fir ¥:

?!Il
—— [(me*+ E") t—p,-2]
He=e =m 1z, 9), (21)
wo I’ die gesamte Bewegungsenergie bedeutet. Damit wird (20 :
0%v  0%v 4m® 472 1 2 | B
rra 0y:  h? Per vt h? e ™ = E 8
4'” e H [0v 0w
R - - 'V s e $ w
hoe 2 \ox- 0y
4 2 H2 2
——;—; l—4—— —j— (2 4+ y?) + mzcz} p=={; (22)
in Polarkoordinaten:
0%v +}77 0%v n 1 ov 4=n* 472 1 2 1 [y
or2 ' 2 0g®  r Or  h? PV he @ (mc + B
_4m e H O0v 4 |e* H? 2y 2| »— 0
e 2 g T nT | 4 hmie)

oder
0%v N 1 0%v L1 1 0v 4m1 e H 0v
or2 2 0¢*  r Or h ¢ 2 0¢
mit den Abkiirzungen:
4 2 'i}’2 4 2 52 H2
sz—“_{ (E P- ) LA -} L Y\

h2 2m c?

1-[C2 - B2r2]o =0, (28)
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@ kommt in (23) nicht explizite vor; wir konnen deshalb separieren
durch den Ansatz

v=2¢"%2(r); (25)

n ist eine ganze Zahl entsprechend der Eindeutigkeitshedingung
fiir die #-Funktion. Die Differentialgleichung fiir y () wird damit:

0%y 1 0y n?
or2 " r or i [Athsz— T2]x=0’ (26)
4 n? ( nh e )
foa =% |0 (B o L L 27
A hz[ LTMMCH] (27)
T r E'Q‘ 3
2mE=2mFE T P (28)

Die letztere Abkiirzung bedeutet zugleich, dass E nur die Bewe-
gungsenergie senkrecht zum Magnetfeld 1st, welche wir kurzweg
als ,,Kreisenergie’* bezeichnen wollen. Gleichung (26) i1st ganz
dhnlich gebaut wie die Schrodinger’schel!) Gleichung fiir das
Wasserstoffatom; wir machen deshalb fiir y den weiteren Ansatz:

y=e """ P ), (29)

P(r) ist ein noch zu bestimmendes Polynom. Die Konstante o
bestimmt sich aus (26) fiir sehr grosse r; von (26) bleibt dann noch:

02
e 0
und mit der Variablen 72 == o wird (30):
02
02 P 2=0
welche zur Losung
-
x=e *
hat. Also 1st die Konstante
B
o= .
- 1)

Mit (29) und (31) erhalten wir aus (26) die Differentialgleichung
fir das Polynom

0*pP (1 ’_)OPI[ 5 n? B
W.‘ (—'“‘—ZB) By T -4‘1 —QB———T? P—O, (32)
wir setzen fiir P die Reihenentwicklung

P=> Ryrk (33)

1) SCHRGDINGER, Annalen d. Phys., Bd. 79, p. 361.
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und bekommen damit aus (32) die Rekursionsformeln fiir die
Koeffizienten
2B (k+1)—A42

Bi.o= R, (k + 2)2 —n?

(34)

Aus der Randbedingung fiir die ¥-Funktion: regulires Ver-
halten 1m Endlichen, Verschwinden der ¥-Funktion im Unend-
lichen, schliessen wir, dass das Polynom mit der m-ten Potenz
anfangen muss, da es keine negativen Potenzen besitzen darf,
und dass es mit der [-ten Potenz abbrechen muss (Beweis am
Schluss dieses Paragraphen), wobei | = n.

Dass das Polynom nur gerade oder nur ungerade Po-
tenzen besitzt, sieht man aus (34) ohne weiteres. Die Endlich-
keitsbedingung fiir das Polynom verlangt, dass vom ersten Ko-
effizienten R, an alle folgenden R,,, usw. verschwinden miissen.
Das ist der Fall, wenn in (34) der Zahler fiir k = [ verschwindet.
Das fithrt mit den Grossen 4% und B (24 und 27), direkt zu den
Eigenwerten fiir die Kreisenergie (ber Vernachléssigung der Rela-

tivitatskorrektur -2;2 in (28):
e h
1 _J— l — 5
Eo. ; H T (l+1—mn) (35)

mit den zugehorigen Eigenfunktionen (vgl. 21, 25, 29):

o
2T (mer+ EVt—py-2] ine

Ynlp,)=e h e x!,,(f)l
wobe1 i (36)
l =0 rr Pl .. A 7 p; l
Zn(r)_e Pn(’)? E_‘B‘ra,!+ 2m

1st. Zu einem Eigenwert FE,,; gehoren offenbar unendlich viele
Eigenfunktionen ¥(n,l, p.), d. h. es besteht eine unendlichfache
Entartung der Eigenwerte. Der Begriff Entartung ist hier aber
nicht mit demjenigen fiir die mehrfachperiodischen Systeme in
der Bohr'schen Quantentheorie zu verwechseln, denn 1n unserem
Fall haben wir nur ein einfach-periodisches System, bel dem eine
Entartung im Sinne der Bohr’schen Theorie gar nicht moglich
1st. Hier bedeutet dieser Ausdruck vielmehr, dass es unendlich
viele Koordinaten-Systeme gibt, in bezug auf die das Elektron
dieselbe Energie besitzt, ndmlich alle, welche durch Parallelver-
schiebung der z-Achse entstehen, oder mit anderen Worten: das
Elektron braucht nicht gerade um unsere gewihlte z-Achse zu
rotieren, es kann auch um eine parallel dazu verschobene rotieren.
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Dieses Verhalten 1st dhnlich demjenigen des freien Elektrons, das
ebenfalls unendlich viele Eigenfunktionen zu einem bestimmten
Eigenwert £’ hat, entsprechend dem Umstand, dass das Elektron
unendlich viele Bewegungsrichtungen (p,p,p.) mit derselben
Energie besitzen kann.

Zusatz: Bewels der auf Seite 6,7 angegebenen Bedingungen
fir das Polynom.

1. Das Polynom darf keine negativen Potenzen besitzen,
well sonst die y-Funktion im Nullpunkt irreguléar wirde.

2. Aus der Rekursionsformel (34) sieht man, falls das Polynom
mit einer Potenz < n beginnt, dass der Koeffizient R, unendlich
wiirde (fir k= n—2) und somit alle weiteren Koeffizienten, also:
Irregularitit von y im Endlichen. Um diese zu vermeiden, muss
P(r) mit der n-ten Potenz anfangen.

3. Dass das Polynom beim [-ten Glied abbrechen muss,
zeigen wir damit, dass das unendliche Polynom starker divergiert
als e’ (vgl. (29)). In Reihenform ist

1B (3)21‘1_- (Bs)’”“ N
R TR YA A N A T

Andererseits lautet das Polynom mit Berticksichtigung von (34):

2Bn+1)—42
(n + 2)2—mn? ’
2Bn+1)—A2 2B (n+3)— A2

n+4
T Mo —n? m+d)Pi—nt

(n+2)°—n?  (n+4)2—n® . (n+6)2—n -

Pi= R [r" 4

Das (m -+ 1)-te Glied dieser Reithe konnen wir allgemein
schreiben, wenn der Nenner (a 4+ b)2 —a® 1n (a+ b+ a)

(a 4+ b — a) zerlegt und im Zihler noch durch 2 B dividiert wird
Az
(c’t = 37{) :
r(2B)™r2m™ (n+1— t)(n+3—a)...n+2m—1—a)
2:-4:6...2m) 2n+2)2n+4)...2n+2m)

@B)™ r2m m+1-a) (n+3—a) n+5-a) (+2m-1-a
2m.m| 2™ n+1 n + 2 n+3 n+m

_Tan'?'zm T 1+1*a 1+2_7'_0_t n+2m-1-o
a 2m-m!( n+1)( n+2)( n+3)"'( n+m )

=‘rn
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Nun konvergiert der letzte Klammerausdruck fiir m—» oo (unendl.
Polynom) gegen 2. Es besteht aber der Satz, dass ein unendliches
Produkt von der Form in der eckigen Klammer nur dann gegen
einen endlichen Wert konvergiert, wenn der letzte Faktor gegen
1 konvergiert. Der Faktor

Bm 7.2 m
2’”1 m !

ist aber identisch mit dem (m -~ 1)-ten Glied der Reihe fiir e®”",
Weil die eckige Klammer divergiert, so divergiert also das Poly-
nom stérker als e’”, d. h. die Randbedingung fiir y im Unend-
lichen 1st bei nicht abbrechendem Polynom (Quantelung der
Energie) nicht erfiillt.

Zum Schluss sollen die Eigenwerte (35) verglichen werden
mit den von RaBi?) unter Beriicksichtigung des Spins berechneten.
Wir sahen aus (34), dass n und [ entweder gerade oder ungerade
sind; also konnen wir (35) schreiben

e h
E=SHp _@r+l), r=0,1,2.... (39)
Rasr findet
e B ;
EJ:?HQ—TE-’I;%}’ ]~—0, 1,2... . (40)

Die Beriicksichtigung des Spins ergibt also doppelt so viele
Energieniveaus. Wir kénnen den Spin aber auch nachtriaglich
beriicksichtigen, indem wir bedenken, dass emn Spin-Elektron

g : / .
wegen seines magnetischen Momentes m = % 4::m— im Magnet-
feld die zusatzliche Energie
e h
=4+ —H — 41
(m9) =+~ H-—— (41)

erhiilt, je nachdem, der Spin parallel (4) oder antiparallel })
zu 9 gerichtet 1st. Damit wird (39):

w g b ey h

B CH47‘[’H‘L (@7 +1) +1] = ¢ HQn:m (r+1)
ey M g_fg M

E’”ﬁcHﬁlnm[&T_‘—])- l]ﬂcHQ:rzm r,

und das sind die Rabi’schen Energieniveaus.

1) Rasi, L ec.
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§ 4.

Nach Hrrsexrere bestimmen die Matrizenelemente gq,,. die
Ubergangswahrscheinlichkeit vom Zustand des Elektrons mit der
Quantenzahl » zu demjenigen mit der Quantenzahl »'; sie geben
also die Auswahlregel fiir die zu diesen Ubergiingen gehorigen
Frequenzen »(rr’). Diese Matrizenelemente kinnen nach ScHRO-
pINGERY) aus den Eigenfunktionen (36) berechnet werden:

G —_"'[ffq oy . (42)

Massgebend fiir die Polarisation sind die kartesischen Ko-
ordinaten, resp. die dazu gehorigen verallgemeinerten Lage-
koordinaten gq,,. Fir die z-Richtung 1st ¢ = x = r cos ¢; das
Volumelement wird in Zylhnderkoordinaten dv=rdedrdz; also
wird mit (36)

gail( . o Pt .

" i : [(m ¢+ Ep+ _,;”) la;,z-z] ing —ort !

B T»/ ?. (‘(’H (I/‘ e ‘ () e P"
” .

- _
Ay T q"u’,f."/"

2;”' (mt" FER U+ 5 )t—l),:"z] SN | A } i
. e L\ =m e e P"i, 'i'dQ?d’)'dZ. (43)

Dabel 1st 1n (36) fir die totale Bewegungsenergie — I': Kreis-
s e : : 3,2 . 5
energie Iv,, (35) plus Translationsenergie ; ~~n der z-Richtung

gesetzt worden (vgl. (28)). Der Impuls p, 1st in den Zustinden
(nlp,) und (n'U'p,") derselbe, solange vom Riickstoss des ausge-
strahlten Lichtquants abgesehen wird. (43) wird also mit

elv - e-iv
cos = ———
2
+ @ 2n
o , 2ni 1 . . . i
. 2aiv(rr)t '—'h'wd,').;-z i(n—n"+1) ¢ iln—n'—1) ¢
gra==g ] e dz | 2 |e == 8 de
- 0
[e's}
~20r 1 pr
.2 /
’ ree I nI n’d' (44)
0

wobel

1 T r !
'V(‘rr,) e h (Ign 1~ ﬁfn [ )

1) SCHRODINGER, Annalen d. Phys., Bd. 79, p. 734.

25
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Das erste Integral ist die Dirac’sche ,,0'-Funktion und liefert
nur einen Beitrag fiir Ap, = 0. Wesentlich sind das zweite und
dritte Integral; das zweite liefert nur einen Betrag fiir

n=mn+t1 (45)
somit haben wir die Auswahlregel fiir n. Wir zeigen, dass diese die
Auswahlregel fir den Drehimpuls p, bestimmt. Der Drehimpuls
fur die z-Richtung ist

ﬂjry = TPy —P:Y
mit Beachtung, dass fiir das Elektron 1im Magnetfeld (nicht
konservatives System) fiir den Impuls p die Beziehung gilt:

P:’)’Pl«q**}*i A,

und mit Beriicksichtigung des Ausdruckes (19) fir das Vektor-
potential A nimmt M,, in Operatorform folgende Gestalt in
Polarkoordinaten an?t).
h 0 0N h 0
Yoy Y Or)m
Ausgeiibt auf die ¥-Funktion (36) folgt
h

Mg ¥'==n o b d

JII,J = I’be

271 0¢

n 1st also der zu ¥ gehorige ,,Drehimpuls™ p, und fiir diesen

l
2n
gilt dieselbe Auswahlregel (45), wie nach dem Bohr’schen Korre-
spondenzprinzip zu erwarten war. Das dritte Integral in (44) heisst

w [0}

‘,.2 —20r* Dl I R 2 ,—24r 4ol N+ 2
/) e InP,,,_HdJ~/7 e (R, "+ R, . 5 +...]
0 0

(R, v+ R, v+ ]dr (46)

n

wo das erste Polynom bis zur [-ten, das zweite bis zur l’-ten
Potenz ldauft. (46) liefert die Auswahlregel fiir {. Durch Aus-
fithren des Produktes in (46) entstehen Integrale von der Form

I‘
BBy | 6r297 @b gr (47)
0
mit der Substitution
T ¢ 1 . ) ¢

1) SoMMERFELD, Atombau und Spektrallinien, wellenmech. Erginzungs-
band, p. 297.
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wird (47):

@

1 1

R; R, ) fe_z‘”e‘l““’*’“”dw (48)
0

1 -+ k 4 1 ist immer eine gerade Zahl (vgl. (46)); deshalb gibt

die Ausrechnung dieses Integrals

k i+k+3
RRL(H_ -+--)!( ~
2
also wird (46) mit (31):

o 2]

o i+ k+3
fressempt ) S () o

0

1 liuft von n bis L und k von n -+ 1 bis lI'. Die Rekursionsformel

(34) fur die R, resp. R, lautet mit (27) und (35)
2 B(k—1)

k422 —n?

Durchgerechnete Beispiele zeigen, dass (49) mit Benutzung

von (50) nur dann einen von 0 verschiedenen Wert liefert, wenn
fur [ die Auswahlregel

Reoy— R (50)

= [ L1 (51)
gilt1).
T) Nach Abschluss der Arbeit wurde ich von Herrn G. Beck brieflich auf

den allgemeinen Beweis der Auswahlregel hingewiesen. Es kommt im wesent-
lichen darauf an, dass man erkennt, dass der Ausdruck (46)

@®

[rohahoqrar

0
nichts anderes als die Entwicklungskoeffizienten d,," darstellt, wenn man die
Funktion
7Y‘,1

l

nach dem vollstindigen Orthogonalsystem xfe entwickelt (der Fall r /fl ., kann
durch Anderung der Bezeichnungsweise n’ —»= n, n — n’ auf obigen zuriick-
gefiihrt werden.) Es lisst sich dann allgemein unter Beriicksichtigung der Diffe-
renzialgleichung (32) fur die Polynome P; und der Rekursionsformel (34) fir

die Koeffizienten R, beweisen, dass diese Entwicklungssumme sich auf zwei
Glieder reduziert.

20
T Xn—-1 12 /n

g e 1—1 I41
rln—ludﬁ—l/n _+_d/’4fl‘-tli‘(nT
also die Auswahlregel
=141

gilt. Ahnlich miisste man bei den Strémen s, in (71) verfahren.
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Die Bedeutung von (51) und (45) 1st folgende: wird (44)
mit der Ladung e multipliziert, so ergibt sich das wellenmecha-
nische Dipolmoment fiir die z-Richtung, welches nur Uberginge
fir

n—n -+ 1
also die Frequenzen
1 th 1 T J\,____eH,‘Z
g Ll arae ke A R E N

erlaubt. Die wellenmechanische IFrequenz

e H
Vo = g

¢ 2am
1st also gleich der klassisch und quantentheoretisch berechneten
Frequenz (fir die Ausstrahlung kommt nur das positive Vor-
zeichen 1n (52) in Betracht).

Um das Dipolmoment fiir die y-Richtung zu berechnen,
missen wir in (43) y = rsin ¢ an Stelle von = = r cos ¢ setzen;
das bedingt, dass

-
¥V —p 2 gt
Q= e 2 (.'lrr’
wird. Ferner gilt
AN
Q= 0.

Das wellenmechanische Dipolmoment ist also links-zirkular polari-
siert und gehort zur klassischen Umlaufsfrequenz o.

§ 5.

Es ist von Interesse bei dem relativ einfachen Beispiel eines
durch emn Magnetfeld gebundenen Elektrons die Ausstrahlung mit
Beriicksichtigung des Riickstosses des ausgestrahlten Lichtquants
zu untersuchen. Um den Impuls des Lichtquants zu beriick-
sichtigen, miissen statt der wellenmechanischen Dipolmomente
die retardierten Potentiale bestimmt werden, die sich aus den
wellenmechanischen verteilten Stromen s,

1 [_ oy oy 4z e

S, = T ¥ oz, 2 oz, h ¢ Pu¥¥ (56)
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berechnen. Die Ladungsdichte ¢”., die zum Ubergang (r —» r’
p.—> P, gehort, wird mit

Tg = VG, Py = 1@y =0, s =100,
rr’ 1 0 T —_— Yj" ) . [
o = T T 2 (gj S0t — ¥ ot |’ (57)
mit (36) gibt das einen Ausdruck von der Form:
iy == EER I g [T ) (58)
mit den Abkiirzungen:
’ ’ pe T p;z ~
v(rr'pp’) = 7 [Ln, + - 9 m —K,.,— 9 m] (59)

.
04 (;,:,) — g ~r (p,—p,)-2 ei(n— n') ‘PZL le;' , (60)
wo a eine Konstante ist.

Wir konnen jetzt fiir die retardierten Potentiale die Formeln
von Krrin?), mit derselben Voraussetzung iiber die Kleinheit der
Dimensionen der Elektronenbahn gegeniiber dem Abstand von
Aufpunkt und Koordinatenursprung, verwenden:

1 2:ziv(t—--s) 2::7;';5(",“
V= "¢ ¢/ [ gge ¢ dv

Qaiv .—s "'l‘niv 3
Q(='(:1;:e“ S ”)/806 o "o, (61)

wo s den Abstand von Koordinatenursprung zum Aufpunkt, t den
Vektor vom Koordinatenursprung zum Quellpunkt und n’ den
Einheitsvektor in der Beobachtungsrichtung bezeichnet.

Aus (61) bestimmt sich dann der elektrische Vektor

Vel

= (A—n'7) (62)

c

es 1st daraus ersichtlich, dass fiir die Diskussion von € nur 21
wesentlich i1st. Berechnet man s; = J,, so wird aus (56) mit
Beachtung von (19):

2aivt 2ai1%y-2 t(n+1—n")
I =ce e e ¥

I .l U )
’ xn Ln 0 L n d n’ 2 T (’
[— (?’L +n ) (xn 0}; - Zfz { )“ ( ~Hr /Cn /fn }

r or h
_I_(re-invte"nzsz zet(n—l—n)fp
. | I
n Xn' Xn 0 n{n 1 oxn’ 2 T e }
n n) ——- Y e H?‘ 68
{+ ( + ) r + (x" 0,,. An 0’)‘ + h e ln /n ( )

1) KLFIN, Zeitschr. f. Phys., Bd. 41, p. 422, Gl. 38.
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¢ und ¢’ sind Konstanten; ferner ist

’ 1 1 pg T.0 p:‘;z ] ’
Vo= B e = By | = — - (pa—ps) 8= 5, =0. (64)

Geht man mit (63) in (61) ein, so entstehen Integrale {iber
z, @ und r, die wir einzeln diskutieren. Es seir gleich bemerkt,
dass wir der betrichtlichen mathematischen Vereinfachung wegen
nur in der z-Richtung beobachten wollen n,”+0 n, =n, = 0;
es sel dv = dzdgrdr in Zyhnderkoordinaten. Das Integral tiber
z liefert nur einen merklichen Beitrag, wenn der Exponent

. 7 1’ |
2 7 (55 + R, — |2
c
Null 1st, d. h. wenn der Impulssatz fiir die 2-Richtung erfillt 1st:

hv'

(T -+ p:, — P (65)

unter Zuhilfenahme von (64). Das Integral iber ¢ lefert die
Auswahlregel fiir n:

n o=

n+1. (66)
Damit erhilt man weiter fiir die Integration tiber » die Auswahl-
regel fir !

I'=1F1 (67)
mit Beachtung der Auswahlregeln fiir n und [ kann der Energie-
satz (64) geschrieben werden:

1 2 '
W' = hvy + 5 (P: — p.?) (68)

wobel v, die Eigenfrequenz (53) im Magnetfeld ist. (68) schreiben
wir mit Beriicksichtigung der mittleren Geschwindigkeit » = 1
(v + v") des Elektrons parallel zum Magnetfeld:

hv' = hvg + © (p, — p.’) (69)

mit dem Impulssatz (65) kombiniert folgt:

oder
v =, — (70)

1) O. KLEIN, loc. cit., p. 422, Gl. 40.
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Bei Beriicksichtigung des Riickstosses des ausgestrahlten
Lichtquants erhalten wir also eme Dopplerverschiebung der
Eigenfrequenz. Die Deutung ist dhnlich derjenigen von ScuHRO-
pINGER fir den Dopplereffekt. Eine einfache Betrachtung zeigt,
dass

in
o
U, =2 2

1st, und dass A, zeitlich konstant 1st, so dass wir sagen konnen:
der Vektor € fiihrt eine zirkulare Schwingung in der Ebene senk-
recht zum Magnetfeld aus.

§ 6.

Das Elektron im Magnetfeld soll jetzt einer Stérung durch
eine ebene linearpolarisierte elektromagnetische Welle (Lichtwelle
oder Rontgenwelle) unterworfen werden. Von der Wirkung des
Wellenfeldes auf den Elektronenspin wird abgesehen, was fiir
nicht allzu hohe Frequenzen (Ultragammastrahlen) erlaubt ist.
Die Wechselwirkung zwischen Magnetfeld und Wellenfeld besteht
dann in einer Kombination von Comptoneffekt und Magneteffekt.
Das Vektorpotential der storenden Welle werde durch

¢ _ nr _
R = —a——I cosan(tk——) =10

Qmyy ° ¢ ¢’ { )
beschrieben. Die gestorte Schrodinger’sche Gleichung (1) nimmt
in vektorieller Schreibweise folgende Form an, wenn in a nur
lineare Glieder, dagegen in A die quadratischen Glieder bertick-
sichtigt werden:

_ 471 e 4 72 [ e2
£ ) v ysr - 2 2 .2 i
| ¥ . A grad ¥ 2 [(72 A2 4+ m2 ¢ }'{
41 e 4 72 e2
— e : j-—— o e _— 7
[ a grad ¥ R 2(Aa) ¥ = 0. (71)
Wird fiir ¥ der Ansatz
V=Y 4 ¥ (72)

gemacht, so erhilt man eine inhomogene Storungsgleichung der
Form

44’ ) 4J 2 2
Cwr+ S0 2 A grad wr— © (‘;2 A2 4 m? 02) e
4 n% e? Ani e
- L@+ S S agnd ¥y,
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Es sei bemerkt, dass hier zum Unterschied der iiblichen Stérungs-
probleme (bei denen nur die linearen Glieder der Vektorpoten-
tiale beriicksichtigt werden) auf der rechten Seite das erste Glied
hinzutritt. Durch eine Schriodinger’sche Stérungsrechnung, wobei
die Relativititskorrektion vernachliassigt wird, erhélt man fiir ¥*
wenn die cos-Funktion in Exponentialform geschrieben wird:

3 9 =
W F e_;h.z'l'(mcz‘TE'—i-hv)f + F e.'].‘:t (me* + E"— hv)t l
= n

F,=— E B.. 0 E()Bsn

(73)
8 n2 r(w—»p)l'” B 82w ( ,,,.-}“v)l"sll

8

Es sind hier, wie auch im folgenden, im allgemeinen die
Bezeichnungsweisen von J. WarLrner!) beniitzt, da von ihm die
allgemeine Streuungsformel bereits abgeleitet 1st; und somit auf
seine Rechnungen hingewiesen werden darf. Die einzige Abinde-
rung in der vorliegenden Arbeit besteht darin, dass nun auch
das quadratische Glied von 21 berticksichtigt wird, wihrend
linear auftritt. So ersetzen wir unser fritheres W(zyz) in (36)
durch die Waller’'sche Bezeichnung v, (v, 1st nur eine Funktion
der Koordinaten).

Fir B, folgt also

B, = Eﬂfbs ? [-2'h—-—‘gra(l Un Q[-v,n e M

dr. (74
h m e &) )
Fiir B,, ist der konjugierte Wert von B,; mit Vertauschung der
Indizes zu nehmen.

Mit den gestorten Eigenfunktionen (72) und (73) werden die
Strome s, (56) berechnet (wobel wir uns nur auf die in E; linearen
Glieder beschrinken), und aus diesen das Vektorpotential A (61)
(nicht zu verwechseln mit dem Vektorpotential des Magnetfeldes),
das (wie 1n § 5) fir die Ausstrahlung massgebend ist. IFtir den
i E; linear-abhingigen Teil A}, ergibt sich ein analoger Aus-

druck wie fiir das Dipolmoment nach Waller?):

E ;?n’ = a {Eo Vo' s bz [LE";BQ”)B_ sn’ (EO Bn x) Bn ei“ e‘z aiv't (75)

Vps T ¥ Vs —V

a und b sind zeitliche Konstanten; der Summationsbuchstabe s

1) J. WALLER, Zeitschr. f. Phys. 51, p. 213.
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repriasentiert den Zwischenzustand s, r, p; (vgl. Gl. (36)); ferner
bedeutet

!
V. = Vyu T V= N __"_h -+ B
2
- ~ 8 i(m’—x)rd
Yo = Uy Uy ’"L € T
271 el 2m e 1 .
By, = —— | ¥y —| —5—grad 5, — — 2y, e dz
s h S m h & " ¢ "
B Qn1r [. e [ 27a | e 2 ~int g
= — | D, ~orad v, —  Av, |e dt
" h 'm h 8 " ¢ "
Qawv , 20
% =—n x = ———n
¢ c

n: Einfallsrichtung; n’: Beobachtungsrichtung.

IFir lange Wellen, also bei Vernachlissigung der Retardie-
rung, ist das Glied y,, fir nichtkohirente Strahlung (n+n’)
Null infolge der Orthogonalititsbedingung fir die x’ in (36). Mit
Beachtung der Gleichung fiir den Impuls p auf Seite 86 wird

21 .
an - —T_ qns

und (75) geht in die von Dirac abgeleitete Strahlungsformel iiber.
Da allgemein ¢,,=2717,,* q,, gilt, folgt unter Beniitzung der
Auswahlregeln fiir die ¢q,, (§ 4), dass die Summe 1in (75) sich auf
ein Glied reduziert. Fir n' =n—4 s=mn—2, also fiir das
Auftreten eines Ramaneffektes

v =2y + v
wird (75) 1m Fall langer Wellen:

(EO Qn-—* n) &n—" n—4
::, ?!—4~ N , e +

Vu,n—2 ¥ Va—g, n—2— ¥

(En _q_n—4, __n—.‘!) ) én_,__n_—_?. ()“Zn (2 v+ )t (77)

berticksichtigt man, dass nach (52)

Vi gn-2= " Van-2= TV
und nach (54)

qy ] e—i ;2_ q.’t
so 1st ersichtlich, dass die eckige Klammer in (77) verschwindet
und also ein Ramaneffekt, wie 1im Ifall des Oszillators, nicht mog-
lich 1st.
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§ 7.

Anders liegen die Verhiiltnisse bei Berucinchtigung der Re-
tardierung. Aus demselben Grund wie in § 5 beschrinken wir
uns auf den Fall: Einfalls- und Beobachtung%rl(-htung parallel

zum Magnetfeld (n, = n, =n,” =n,” = 0). Die X- I\omponente
von B, Gleichung (76) lautet mit dem Wert A, = —1 H,,:

r_27m1 [, e h 0 ("( 1 ) _.,‘%_-I'EL"Z
B,= % _/l""m [2 =% BE AT "Q*Hyfn }(’. dzdxdy

analog die andern B’s.

Setzt man diese Ausdriicke in (75) ein unter gleichzeitiger
Eintithrung von Zylinderkoordinaten, so erkennt man bei Ver-
wendung der Eigenfunktionen (36) folgendes:

Die Integration tiber z lefert den Impulssatz:

hv ) . hy'
P- == n, —"E_ == Py + n, —— (78)

C
die Integration tiber » und ¢ liefert, da die Funktionen von r»
und ¢ durch die spezielle Wahl der Retardierung nicht geéindert
werden, dieselben Auswahlregeln, wie im nicht-retardierten Fall,

§=n -+ 2.

Damit gibt die Zeitabhingigkeit den Energiesatz in der Form

(vgl. (76)):

(79)

Es ist nun ohne weiteres ersichtlich, dass der Klammer-

ausdruck in (75) fiir diesen Fall nicht verschwindet, da die Nenner

nicht gleich mit entgegengesetzten Vorzeichen sind, wie im Falle

langer Wellen. Dagegen verschwindet auch bei dieser speziellen

Retardierung das Glied y,," fir nichtkohirente Strahlung. Der
Nenner des Bruches heisst:
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lautet. Wir stellen also das Auftreten eines Ramaneffektes zwi-
schen Magneteffekt und Comptoneffekt fest. Mit Einfithrung der
mittleren Geschwindigkeit v ldsst sich (78) mit (79) wie in § 5
kombinieren. Iir die Beobachtung in Richtung des einfallenden
Strahles (n,” = —n,) wird

1
"—" =Y + 2 V(, _—‘— : (80)
1 —t
C
Dagegen fiir die Vorwirtsbeobachtung (n,” = —n.)
v !
o
%" 5= B e o I g (81)
1+ 1+

Charakteristisch ist das Auftreten des Faktors 2 vor », gegen-
tiber (70). Neben der inkohérenten Strahlung tritt natiirlich auch
wie (75) lehrt, die kohérente auf, ndmlich fir n" = n.

Fiir verschwindendes Magnetfeld wird », = 0 nach (53), und
die Frequenzen gehen in diejenigen der Comptonstreuung iiber:

» =9 fir n, =n, (807)
,‘,’ — 1'(1 -— 2 ?(; ) fﬁl‘ nz, =l Il: (81’)

. [ . T (% .
(hierbei ist in (81) der Nenner nach Potenzen von — entwickelt

. . @ v = . .
und Glieder mit hoheren Potenzen von -~ vernachlissigt; (817) ist

die Darstellung der Comptonfrequenz in der Schriédinger’schen
Deutung als Dopplereftekt). Natiirlich gehen fiir verschwindendes
Magnetfeld die Intensititen in (75) auch in diejenigen des Comp-
toneffektes tiber, was man daran erkennt, dass die Eigenfunk-
tionen », die in die B,, eingehen, fiir verschwindendes Magnet-
feld in diejenigen des freien Elektrons iibergehen; allerdings ist
die Darstellung in Zylinderkoordinaten gegeben, aber mit Hilfe
von Besselfunktionen lassen sich die Eigenfunktionen in die be-
kannten, von Kartesischen Koordinaten abhéngigen:
—241(13'4.-73162)13 fzni—(p -x+p ¥+ D 2)
ijrei%s Elektron = € ’ e " ‘ ! :

tiberfiihren.

Es ware noch der Fall schiefer Inzidenz der Welle gegeniiber
dem Magnetfeld, sowie die Untersuchung der gestreuten Welle in



396 Fritz Ludi.

beliebig geneigter Richtung (was prinzipiell auf dasselbe heraus-
kommt) zu diskutieren. Doch ist wegen den hierbei auftretenden
mathematischen Komplikationen und den geringen Aussichten,
diese Effekte infolge der grossen experimentellen Schwierigkeiten
festzustellen, die Mithe micht lohnend.

Eines kann man jedoch mit einiger Bestimmtheit auch in
diesem Falle sagen: Infolge der auftretenden z- und y-Abhéngig-
keit des Retardierungsfaktors in (76) werden die einfachen Aus-
wahlregeln fur die B,, durchbrochen und das Linienbild des
Ramaneffektes wird mannigfaltiger als fiir Beobachtung und In-
zidenz parallel zum Magnetfeld. Der Impulssatz fiir die z- und
y-Richtung hat dann nicht mehr die einfache IForm (78), sondern
es kommt eine Unbestimmtheit in der Weise hinein, dass das
Magnetfeld selbst Impuls an das Elektron abgeben kann.

Zusammenfassung.

Das Problem des freien Elektrons im homogenen Magnetfeld
wird auf wellenmechanischer Grundlage fiir beliebig grosse Feld-
stirken gelost. Es sind dafir in (35) und (36) die Eigenwerte
und die Eigenfunktionen berechnet. Auf Grund der Matrizen-
berechnung werden die Auswahlregeln fir beide Quantenzahlen
n und [ in (45) und (51) gegeben, und es wird als Erweiterung
dieses Falles die Strahlungsfrequenz (70) unter Beriicksichtigung
des Impulses des ausgestrahlten Lichtquants berechnet. Der Elek-
tronenspin kann ohne weiteres mitberiicksichtigt werden und fithrt
zu den gleichen Resultaten wie die Behandlung durch RaB1 nach
der Dirac’schen Theorie. Der Comptoneffekt im homogenen
Magnetfeld wird als Storungseffekt durch eine einfallende, ebene
elektromagnetische Welle (Lichtquant) in erster Néherung be-
rechnet, fiir den Fall, dass diese Welle in Richtung der magneti-
schen Kraftlinien einfillt. Es werden die gestérten Eigenfunk-
tionen 1n (73) und (74) gegeben und daraus im Anschluss an
J. WarLLer das retardierte, gestorte Vektorpotential U* in (75)
berechnet.

Es gelten fiir die in Richtung der Kraftlinien gestreute Welle
die gleichen Auswahlregeln fiir n und [ wie fiir das freie Elektron
im homogenen Magnetfeld. Die verinderte Frequenz ist durch
(80) resp. (81) gegeben. Es treten also Kombinationslinien zwi-
schen Comptoneffekt und Magneteffekt auf (Ramaneffekt). Uber-
gang zu kleinen Frequenzen (Vernachlidssigung des Impulses des
primiren und sekundiren Lichtquants) fithrt einerseits zur Dis-
persionsformel von Born-Heisenberg-Jordan, und zeigt, dass fir
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lange Wellen ein Ramaneffekt micht auftritt. Andererseits fihrt
der Ubergang zu verschwindendem Magnetfeld auf den Compton-
effekt. Am Ende von § 6 werden einige kurze Bemerkungen
tiber den Fall schiefer Beobachtungsrichtung (oder Inzidenz) ge-
macht, welche zeigen, dass fiir diesen IFall die einfachen Auswahl-
regeln fiir » und [ (45) und (51) durchbrochen werden.

Zum Schluss mochte ich Herrn Prof. P. Gruxer und Herrn
Prof. F. Gonsrru in Bern, sowie Herrn Dr. G. Brck in Leipzig
aufs wirmste danken fir mancherlei Ratschlige und kritische
Bemerkungen.

Physikalisches Institut der Universitit Bern
(theoretische Abtellung).
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