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Losung des Eigenwertproblems eines Potentialfeldes
mit zwei Minima

von Philip M. Morse, Massachussets Institute of Technology
und E. C. G. Stiieckelberg, Princeton University, z. Zt. in Cambridge.?)

(15. VIIL. 31.)

1. Einleitung.

Die Analysis der Schwingungsspektren mehratomiger Mole-
kiille wie NIH;, PH;, AsH, zeigt, dass das schwere Atom zwel
(leichgewichtslagen hat. Die drei leichten Atome liegen in einer
Ebene, deren Mittelsenkrechte wir die Symmetrieachse nennen
wollen. Die beiden Minima der potentiellen Energie liegen dann
auf dieser Achse und symmetrisch zur definierten Ebene. Die
Elongation ¢ des schweren Atoms in Richtung der Symmetrie-
achse 1st anndherungsweise eine Normalkoordinate des Systems.
Man 1st daher berechtigt, die Schwingungen in dieser Koordinate
unabhéingig von den andern Freiheitsgraden des Molekiils zu
behandeln?). Die potentielle Energie 1"*, welche diese Schwin-
gungen veranlasst, 1st eine um den Schnittpunkt (¢ = 0) von
Achse und Ebene symmetrische Funktion von ¢g. Die Minima
liegen bel ¢ = + q,. V*(q,) sel gleich Null. Die beiden Tiler
bel ¢ = -4 g, sind durch einen Berg potentieller Energie von der
Hohe V7, getrennt. Analytisch beschreiben wir diese Eigen-

schaften von V* durch
VEO) =T Vg = V*@); V() =0; V*(g)=0 (1)

(stehe Iig. 1). Ilerr Professor Dexxison hat dieses Problem mit
Anndherungsmethoden behandelt und auf das Ammonium-Spek-
trum angewendet?). Die nachfolgenden Rechnungen sind eine
exakte Losung eines speziellen Kraftfeldes, das die in (1) gestellten
Bedingungen erfillt, und im zweiten Teile ein Vergleich der so

1y U. S. National Research Fellows.

2) D. M. DenxisoN, Rev. Mod. Phys. 3, 280 (1931).

3) D. M. DENNISON, erscheint demnichst in Rev. Mod. Phys. Die vor-
liegenden Rechnungen sind eine ausfiihrlichere Behandlung einiger Uberlegungen,
die in der Arbeit von DENNISON gestreift werden.
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erhaltenen Resultate mit Dennisons Stérungstheorie. Auf diese
Weise erhilt man interessante Aufschliisse iber die Giiltigkeit
der Storungsrechnung in dhnlichen Fillen. Die Verfasser sind
Herrn Dexnison fiir die Anregung zu diesen Rechnungen zu
Dank verpflichtet.

2. Die exakte Losung.

Die Frequenz harmonischer Schwingungen kleiner Ampli-
tiiden um die Minima bei ¢ = 4 ¢, set ». Dann ist die Entwick-
lung von V um gq,:

TR 2\ 2 2 s 31 ...
V* =2a2Mv*(q—qo)* + 0% (g —qo)* +

Hier bezeichnet M die reduzierte Masse fiir die betrachtete Nor-

|4

\ / T
VIT:
! \
—q, 0

+aq,
Fig. 1. Potentialfeld eines Molekiils mit zwei Gleichgewichtslagen.

malkoordinate. Wir schreiben jetzt als unabhiingige Verénder-
liche =, wo:

—— h -
9 ]/4 a2 My = (2)

1st. Die Energie in erg sei hvE/2. Dann wird die Wellengleichung:

L hov
W{‘F{B—V(.I‘)}'lp:—o, V*ﬁ 2

V. (3)

Diese Gleichung versuchen wir jetzt exakt und nédherungsweise
zu losen. Die Entwicklung von V nach x um z, 1st dann:

V= (=) 4 3z — )+
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Eine Funktion V, die exakte Behandlung zuldsst und (1) geniigt,
15t :

x6 a2 ;
122 4 e e

Ihre Entwicklung um -+ r, ist

V (z) =

- e
[;

5 5
V(@)= (+a—a)+ 4 (+T—2)3+ 5 (& z—1)*
Vi) = (do—a)+ g Dty (=

1 1 o
+ Y (£ & —x)° + 120 (£ z—x)S. (5)
Setzen wir
1 1 - a | ;1 /3 9
z=(12)s z,72; B = '(]'2)‘{&;“ + - (i“ n s _1_‘.)_ x?
\ 0 =t

so wird (3)

"'+ (a + bz2— 2%y =0 (3a)

Gleichung (3a) 1st eine lineare Differentialgleichung, die einen
irreguliren Punkt im Unendlichen hat. Diesen ziehen wir in der
tiblichen Weise durch die Substitution von

W, 4. f
in Betracht und erhalten emme Differentialgleichung fiir f:
["—222f +{a+ (b—-3) 2% f=0. (5)

Die Losung versuchen wir durch die Potenzreihe:
f= ezt (6)
%
Der Gleichung (5) wird Geniige geleistet, wenn

2cg +ac,=0
12 ¢4 + acy + (b—3)cy =0 (7)

2k 4 2) 2k 4 1) cyppg+ acyp+(b+1—4k) cypp =0

oder
6cg+ ac; =0
20 ¢; + acg + (b—5)cy =0 (8)

gelten. Die ersten Gleichungen in (7) und (8) bewirken das Ver-
schwinden der Koeffizienten fir negative Potenzen von x. Die
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Losungen sind dann fir z = 0 endlich. Die Reihe (6) stellt die
Funktion f dar, wenn sie fir alle reellen Werte von & konvergiert.
Eine quantenmechanische Losung ist sie aber nur dann, wenn
zl

e 4 -f im ganzen reellen Gebiete endlich bleibt. Das wird nur
far diskrete Werte des Parameters a der Fall sein. Diese Werte
sind die gesuchten Eigenwerte des Problems.

Fir (7) und (8) 1st das Verhiltnis aufeinanderfolgender Ko-
effizienten y, = ¢;/cp _»

2k —b--1 '
] R 1] N | UV ()
@t (k1) (k+2)yi
Man sieht, dass fir grosse Werte von k die Annahme vy, = ;

sich rechtfertigt. Gehen wir nimlich zu grossen Werten von £,
so dass a gegen (K + 1)(k + 2)y, ., vernachlissigt werden kann,
so erhalten wir:
2h—b—1
Yio Vk+2 o« = (I‘ 4 1) (/1 + 2)

Die Losung dieser Gleichung ist:
(P
Vig = = .’i k+° 5 I;Cbbm';_l et -]// - 1) (10)
F(‘ )F(' )F(““g) / k

Fir positive Werte von (10) wird die Reihe stirker unendlich

z4

als e+ . Dieselbe stellt daher keine Lisung unseres Eigenwert-

problems dar. Nehmen wir aber in (10) das negative Zeichen,
zl

so bleibt die Funktion e +.f fir alle reellen Werte von = end-

lich. Aus (9) erhédlt man dann durch sukzessives Einsetzen:

(n + 1)7(’”;“,% 2) 2n—b-+3)
(n 1 3) (n+4) (2 n— b +7)

Vn =

a -+

....... ) (b 2) s (11)
1) Fiir die folgenden numerischen Rechnungen konnen wir nicht immer
bis zu so grossen k-Werten gehen, dass (9) richtig ist. Ist K’z nicht sehr gross
gegen a, so haben wir
2k-b-1 a 1 ‘

= Gey (Casrainan )

oder statt (10)
1 “

ne=a (-5 Tt T ) (10a)
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Der unendliche Kettenbruch (11) konvergiert allerdings nicht.
(Gehen wir aber zu k-Werten, fiir welche (10) richtig wird, so
konnen wir abbrechen und erhalten ein in der Niaherung (10)
richtiges Resultat. Der unendliche Kettenbruch hat Analogie zu
gewissen asvmptotischen Darstellungen, die, wenn alle unend-
lich vielen Glieder berticksichtigt werden, nicht konvergieren, die
jedoch eine geniigende Annéherung ergeben, wenn man in der
Entwicklung nur bis zu einer endlichen Anzahl von Termen geht
(Semikonvergente Rethen). Auf diese Weise haben wir eine kon-
vergente Reihe fir f erhalten, die Giberall endliche Werte annimmt,
wenn wir verlangen konnen, dass keine negativen Potenzen von
z auftreten. Das wird erreicht durch Gleichsetzen der Werte

c - Cq .
Vo :-(;:— aus (7) und y3 = (,: aus (8) mit den entsprechenden Aus-

driicken (11). So erhalten wir

a (3—0Db)
Yy = — > g ],) -
a2 (T—0)
1) +_ 3() !_1_1_ __‘b_z
Bk simsanie
..... +R2E+1) (28 +2)yy.,0 (122)
und
a 5—b
20 (9—b)
a4+ —

Die unendlich vielen Losungen (Wurzeln) von (12a) und (12Db)
sind die Eigenwerte von a. Insbesondere entsprechen den Lo-
sungen von (12a) die geraden Eigenfunktionen und denjenigen
von (12b) die ungeraden Eigenfunktionen. Wir nennen die nie-
drigste Energiestufe, d.h. die algebraisch kleinste Wurzel von
(12a): a; und die zugehorige Eigenfunktion: ¥;. Veon (12b) ist
dann die algebraisch kleinste Lisung: a, und ¥;. Die nichst
kleinern Losungen und zugehorigen Ifunktionen seien: a;, ¥y
und a;, P7 usw.

Die ersten sechs Eigenwerte haben wir fiir Werte von b zwi-
schen 0 und 25 berechnet. Be1l bestimmten Werten [b = 3,7, 11...
m (12a) und b= 5,9,13 ... m (12b)] brechen die Kettenbriiche
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ab und gestatten so eine wesentliche Vereinfachung der Rech-
nung. Fir andere Werte von b wurde von (10a) Gebrauch ge-
macht. Fig. 2. zeigt die Werte der «* als Funktion von b. Die
Koeffizienten und damit auch die Wellenfunktionen konnen daher
fir alle Werte von b und alle Eigenwerte af gefunden werden.
Der Kettenbruch wird abgebrochen durch Einsetzen des nega-
tiven Wertes von y,., aus (10) oder (10a). In Grissen unseres

+ 20 -

/-

—30 L 1 L
0 10 ; 20

Fig. 2. Eigenwerte der Gleichung (3a) als Funktion des Parameters b.

Molekiilmodelles £ und x, schreiben sich dann die normalisierten
Wellenfunktionen (N* Normalisierungsfaktor):

4 i k
Y,=N_ e 8V3 g . Md, -zt wo: d= (12 ) ¥ .
A.
l+m-3 . LT ')
N, =1(12) Ve, - Meen, 2 4 .T (j_?z-u)} - {9
Im

Die Orthogonalitit dieser Eigenfunktionen ergibt sich aus der
Differentialgleichung (3), der sie ja geniigen miissen. In Fig. 3
1st ¥ und ¥ fir den Fall z, = 4,17 dargestellt. Zum Vergleich
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sind auch die spéter zu verwendenden angeniherten Funktionen
gestrichelt eingezeichnet. Ferner zeigt Fig. 3 auch das Potential-
feld und die beiden Eigenwerte a; und aj fiir diesen Fall. Aus
den Beziehungen zwischen z,F und z, einerseits und z,a und b

3 F —_——
if N ,
3 | E[:’
v

| A
I r R —

_ &
0 ! Y‘L e i

0 +2 +4 +6
Fig. 3. Potentialfeld (V), die ersten vier Eigenwerte (]a‘f;) und zwei exakte (‘Pfl')

und angeniherte (chl') Wellenfunktionen fiir Gleichung (4).

andererseits konnen die Eigenwerte E* der Gleichung (3) als
Funktion von x, berechnet werden. Diese Beziehungen sind in
Fig. 4 dargestellt. Die mit 1, bezeichnete Linie stellt die Hohe des
die beiden Minima trennenden Potentialbetrages dar. Die gestrichel-
ten Horizontalen sind die Eigenwerte eines harmonischen Oszillators
derselben Frequenz ». Bemerkenswert ist die annihernd gleich-
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miissige Vertellung der Energieniveaus, solange der Potentialberg
klemner als die betrachteten Eigenwerte ist, und das starke Zu-
sammenriicken des ,,geraden’ (-+) und néchst hoher gelegenen
sungeraden™ (—) Termes, sobald die Potentialschwelle iiber die

7

—

1 2 3 4 5

Xy

L ] i | : 1

Fig. 4. Lage der Energieniveaus (Ef;) und Hohe des Potentialberges (17,)) als
Funktion des halben Abstandes (x,) der beiden Minima.

betreffenden Niveaus wiichst. Die Paare streben dann dem zuge-
horigen Eigenwert des harmonischen Oszillators zu. Die Uber-
gangswahrscheinlichkeiten lassen sich in der iblichen Weise
berechnen. Man sieht sofort, dass die Ubergiinge zwischen dem
geraden (4) und dem ungeraden (—) Svstem optisch verboten
sind.
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Einen Ausdruck fiir die Trennung dieser Eigenwertpaare
erhalten wir, wenn wir anstatt der unendlichen Kettenbriiche
die entsprechenden unendlichen Determinanten der Koeffizienten
von (7) und (8) betrachten. Die Gleichungen (7) konnen wir
aber, geméss unserer Betrachtung tiber das Abbrechen der unend-
lichen Kettenbriiche, mit ((2hk + 1)(2k + 2) y55.5 + @) o +
(b +1—4Fk) = 0 abbrechen, wo k, wie in (12a), geniigend gross,
aber nicht oo 1st. Die endhiche Determinante, welche fir kleine
a schon bei relativ kleinen k abgebrochen werden kann, lautet
dann:

a 2 0 0 . 0

b—3 a 12 0 . 0

0 b—T a 30 ; 0
1)(11) - 5 % i - " () — ()

Ce e A 2k@2k—1)
0 0 0 0 bil-4k a+(2k+2)(2k-+1)ppy| (14)

['nd i analoger Weise aus den Gleichungen (8):
D(a) =10, (15)

Die Wurzeln von (14) sind gleich den Losungen von (12a) und
die von (15) gleich denen von (12b). Fir grosse b sind die nie-
drigeren Eigenwerte «, und «, nahe beisammen. Kennen wir
z. B. a}, so lautet der Ausdruck fiir a, — a) = da, niherungs-
welse :

D™ (a)))y— D" (a;)
D™ (ay) + D™ (a3)

0, =2

(16)

D’ (a;) bedeutet den Differentialkoeffizienten von D nach a am
Orte a = a.

Aut diese Weise haben wir eme exakte Lisung eines spe-
ziellen Potentialfeldes mit zwer Minima gefunden. Leider ent-
spricht der Verlauf der potentiellen Energie (4) nicht besonders
cut derjenmigen von NI, da (4) schon nahe den Minima stark
von der parabolischen Form abzuweichen beginnt. Andere, der
Wirklichkeit besser entsprechende Kraftfelder lassen aber keine
einfache exakte Liosung zu. Diese miissen daher durch Naherungs-
methoden (Storungsrechnung) behandelt werden. Wir wollen
daher 1m zweiten Teile die Storungsrechnung fiir den betrachteten
Fall durchfithren und so emn Urteil iiber die in iihnlichen Fillen
erhaltene Annidherung erreichen.
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3. Die Stérungsrechnung.

Die folgenden Rechnungen stellen eine vollstindige Behand-
lung der von DENNISON verwendeten Storungsmethode dar, und
fihren ihre Anwendung auf die spezielle Funktion (4) aus. Da
sich alles um Schwingungen um Potentialminima handelt, ent-
wickeln wir alle vorkommenden Funktionen nach normalisierten
und orthogonalen Hermite’schen Funktionen:

" H, (x) (17)

H, (x) stellt das n'® Hermite’sche Polynom dar?). Wir definieren

1

H, s
]/’2" ‘n! Va

H, (z)

und machen von zwei Eigenschaften der so definierten Funk-
tionen Gebrauch:

T
z- K, (2) = ]/E?;_ K, (@) + ]/ - (18)

d - —

— o K (2) = K, (1) = V2n- K, (x). (19)
Die y,(x — x;) sowohl, als auch die y,(— x— ) stellen je ein
vollstindiges System dar. Wir konnen daher mit gleichem Recht
sowohl nach

und:

T+ . )
U n = Zn (‘T .’EO)
als auch nach

U, = tn(— 2 — )
entwickeln. Die in Betracht kommenden Funktionen sind alle
entweder gerade oder ungerade in x. Daher wire es von Vorteil,

nach in z geraden oder ungeraden Funktionen entwickeln zu
konnen. Solche stehen uns in

P, (z) = N, (U, (2) + U, (x))
als gerade, und in

P, (x) = N, (U5 (z) — U, ()
als ungerade zur Verfiigung. Die N* sind die Normalisierungs-
faktoren [andere als im ersten Teil (13)]. Dass diese Funktionen

1) CouranT-HIiLBERT, Methoden der Math. Phys. I, 1. Aufl., p. 76.
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recht gute Anndherungen fiir Energiewerte, welche stark unter
V,. liegen, geben, sieht man unter anderm auch aus Fig. 3, wo
dieselben gestrichelt eingetragen sind. @} dhnelt ¥§ schon stark,
withrend das dem V1, nahekommende K| entsprechende @7
stark von ¥ abweicht. Das System Pin=0,1,2...;k=4,—)
1st zwar vollstindig, aber nicht mehr orthogonal. Es ist daher
eine gewisse Unbestimmtheit in der Entwicklung nach diesem
System vorhanden, da es ,,ibervollstandig’ ist. Durch folgende
Uberlegungen soll dieser Nachteil behoben werden:

Die Entwicklung einer in x geraden Funktion /'(r) 1st ein-
deutig, wenn nach dem System U, entwickelt wird:

F=>8.U; (20a)

F habe nur in der Ndhe von x = 4z, grosse Werte. Wesentlich
in der Entwicklung sind dann die Terme niedriger Ordnung =,
welche den Aufbau von I in der Umgebung von r = + z, be-
wirken. Wir werden aber noch eine weitere Gruppe von nicht
vernachldssigharen Termen in den hohen Ordnungen (grosse n)
finden, welche F um = = — x, darstellen.

Die Entwicklungskoeffizienten 3, nach U} einer in z geraden
Funktion, welche klein 1st tir z = 0 und gross fir r = 4+ z,,
zerfallen also in zwel wesentliche Gruppen, deren eine (niedrige
Ordnungen) die rechte Hilfte darstellt und nur sehr wenig zum
linken Teile beitrdagt, und deren andere Gruppe (hohe Ordnungen)
in entsprechender Weise die linke Hailfte aufbaut.

Genau die gleiche Betrachtung kann fir die Entwicklung
nach U, durchgefiithrt werden:

F=>8,Us. (20b)

Die f3, in (20b) sind gleich den f, in (20a), da die Funktion gerade
1st. Die f, rechnen sich in gewohnter Weise aus
Bu= [dz FU; = / de I'U-.

Unser Ziel ist die Entwicklung von F' nach dem iibervollstindigen
System der @F. Addition von (20a) und (20b) gibt:

OF =N «, (20)
WO L
Pl e T @~ (AT ®F
=T NI T 2N;? fde S~ fda-T- o,
wenn

fl',;" Usdz1.
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Wie die B8,, so zerfallen auch die «, in die beiden wesentlichen
Gruppen hoher und niedriger Ordnungen. Die Koeffizienten nie-
driger Ordnung allein bewirken durch den Uj-Anteil von @]
den Aufbau von F um r = + x, und durch den U,-Anteil clen
Aufbau um z = — z,. Die Terme niedriger ()u]uunw allen von
(20) stellen also eine brauchbare Annéherung von F (lar Durch
Hinzufiigen der Terme hoher Ordnung von (20) addieren wir ein
weiteres I und erhalten so das in (20) verlangte 2 F. Die Summe
tiber die niedrigen Terme von (20) 1st daher eme Darstellung
von I. Formell haben dann die Beziehungen zur Koeffizienten-
bestimmung und die Darstellung in @, dieselbe Form wie fiir
ein vollstindiges System

R ] ol
F ,,\ %, D, ; 1,,:fd.r]* - D)
N
nur dann, wenn wir die nicht vernachlissigbaren Terme hoher Ord-
nung vollstindig weglassen.
Die Faktoren N und N, sind

= g,

m ( m

Eam=Emn = [ Ut Un da~ [®} &) da~- [ &

Wir werden von den ¢,, Gebrauch machen missen. Zur Berech-
nung nehmen wir n>m, was wegen der Symmetrie in n und m
keine Spezialisierung bedeutet:

L T .2 2 > >
Enm :f Ue Us i = ="~ fe'“"-” Koz —2z2p) - K, (—x—2zp) - dz.

Tavror’s Entwicklung und Einsetzen der Abgeleiteten von K,
aus (19) fithrt auf:

und
S=m S
. . [ 25-m!  x° . .
Ky(—&—ay)=(=1)"" ]_’/ (*"*?*_:‘) : N K, . ().
8=0)

Einsetzen dieser Entwicklungen in den Ausdruck fir e,, gibt
eine Doppelsumme iber » und s von Produkten von g, ,(r) mit
Am—r(x). Wegen der Orthogonalitat der y, fihrt die Integration
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auf eine einfache Summe iiber alle Glieder mit n —r = m — s.
Es wird
n—m

m! S 2 —m 5
enn1==(——1)m-‘p/(n.)3-(2:nf) Dot LT Q). (22)
L4 bedeutet ein Laguerre’sches Polynom?).

Auf die Stérungsrechnung von zwer harmonischen Oszilla-
toren angewandt, sieht man leicht, dass

[V — (2 — 22| Ut (z) = A~ T(z) U;(a)

eine klemne Grosse 1st, wenn 17 in der Nihe von r = + z, nur
wenig von der parabolischen Form abweicht und wenn die U,
m der Gegend, wo das nicht der Fall ist, sehr klein sind. 2 be-
zeichne hier wie 1m folgenden eine kleine Grosse. Svmmetrie von
" um & = 0 fihrt auf folgende zweil Gleichungen:

[V — (e — )} U = 2 T(2) U,

n

[V—(—z—2)2U,=4-T(—2x)U;. (23)

n

Die @, ertillen daher die homogene Differentialgleichung (3)

beinahe. Exakt aber erfiillen dieselben folgende mhomogene

Gleichung:

az o, PO b e g Tp=
O + @n41) O, — N, (z—2,)2 U, —N; (—z—2,)® U, =0.

Die @, ertillen eine analoge Form. Unter Verwendung von (23)
schreiben wir die beiden in:
d? Pk

—— (@ )=V B =— A2k (2); =+, — (24

wenn
Y . NE(T{A T+ , T— o=
'(2,: (J') - “Va (j (I‘) L w L T(— .1') L n) . (2'))
Da die @F also Gleichung (3) bis auf die kleine Grosse 2 2F fur
den Eigenwert K = 2n + 1 geniigen, erwarten wir, dass die P}
bis anf Terme der Ordnung 2 einem der @F gleich sind und das
zugehorige IV ebenfalls bis auf Terme der Grosse 4 gleich 2n + 1
wird. Daher setzen wir

T=0a0 o=
k0 1 N Tk . gk N j0 bk . @k k
Ef 20 +1+ VA EX ; PEDS 2ok o oF — oF,
=1 a=1{0
Dann wird (3) zu
o] 42 B
” . NGt LN R F | — ¢
A d;i;’"*- +@n+1=V)Dg + D EL, D5 [=0. (26)
o =1

1) ConpoN und MoRsSE, Quantummechanics, p. 63.
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Nehmen wir z. B. an, dass die erste Naherung (d. h. k = +)
gerade sei, so miissen auch alle hohern Glieder @}, und somit
alle 1n (26) erscheinenden Summanden in = gerade sein, da ja
voraussetzungsgemiss 17 in = gerade ist. Ist k = —, so miissen
alle Summanden ungerade sein. Gemiss dem Vorangegangenen
konnen die geraden @7, durch

O =M A D

an L1 e, nl
l

an

dargestellt werden, wenn wir nur die Terme kleiner Ordnungen
| gebrauchen. Die A% = bestimmen sich aus (26), wenn man
diese Gleichung in eine Reihe nach @F entwickelt und die Ko-
effizienten jeder Grisse A° @} gleich Null setzt. Fiir gewisse Sum-
manden von (26) konnen wir die ganze Entwicklung nach @}
benutzen; so wird z. B. der letzte Ausdruck

o a
N g+ 1 +
2_]],1.) a—1,n 3 li}_,Aa—r nl] n r] A7 ¢l
=] =1

T=

wo die Klammer auf der rechten Seite der exakte Entwicklungs-
koeffizient ist. Das ist nicht immer der Fall. Ifir den ersten
Summanden erhalten wir aus (24):

X T L
. d,L‘2 = A lZ 1, ”t"—d“}tg
-El:l Gnl (2l+1) Aaqyl-_'_Aaan'AGQT_A:J?I'ZH-H'Q?—(‘/B) 2

Fiir den zweiten entsprechend:

2@n4+1-V)- jl:Z[‘iG“(Zn—{—])Z"@l A3, V2 @f

so dass mit V multiplizierte Terme sich herausheben. Die Ent-

wicklung von
GLL‘[ -1
Z 40 n m? 'Qm

m

mit zu bestimmenden Koeffizienten o nach @; fehlt nun noch.
In (25) haben wir Q. definiert, und finden (1(111(:1 fir

m

— “0+1 +
CX = A a n p}if® m I

a+1
= '_%—_JZ 4‘7 nm N-i f(UT = Ijl—) /i (1) U m =+ T(_'T) LT;}(IIE.
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Es stelle W,, den allgemeinen Entwicklungskoeffizienten der
Funktion ’I’(m)- U, nach dem System U] dar, d. h.

m

Viw=[UfT(2) Uldz= [ U7 - T (-a) Uy, dax.
Dann erhédlt man fiir die Integrale
Uf*T(-x)U,de= U - T(x)Uldx = Uy - YW, Uldx
f ’ ./ ! ' f ! — P
-\/_"E]uu’rpm.
P

Der Entwicklungskoeffizient «f wird im geraden Falle

e N Ny w 27
% =4 “to, nm ﬂ\r’* nmn + €1p pm| - ("")
m 4 P

Hier 1st wieder zu beachten, dass in der Entwicklung nach [ und
i der Summe iber p nicht vernachlassighare hohe Terme weg-
gelassen werden miissen. Im ungeraden Falle 1st der Index -

durch — zu ersetzen und die X' negativ zu zihlen. Der Koetfi-

P
zient von A% in (26) ist jetzt durch die Reihe in @}

Eq)l o, nl (2 n—2 l) aa \j .F —1, nlEr_n 1‘4;—1 n m(ufl HEDL-_-ZEIDW]JTR)

1 T 1 m r

dargestellt. N} ist gleich N* gesetzt, was ja nach ihrer Definition
mit gentigender Anndherung meist der Fall ist. Nullsetzen des
Koeffizienten von A°- @f gibt uns die zur Bestimmung von K%,
und 4%, z notwendigen Gleichungen. Es ist ja definitionsgemiiss

40 w1 = On, 80 dass die Gleichung fiir n = | lautet:
ag—1
Yon — SW 4;—1 nm(Wlm j: Elp me) —.Z‘l 4 —1, mr‘Ei (28)
m T=
und fiir n+1

. 1 "
o, nt = 2 n-921 [2"40—1 um(Wlm j: e me) 2"4 -7, nl (29)

Normalisiert werden die Anniiherungen durch

o—1
" 1 A% . A%
‘40,:111:"—__—2_ r,nl “to—r nl-*
l =1

Dies, (28) und (29) bestimmen alle Ef, und A} ;. Ausser dem
Auftreten der mit e,,, versehenen Terme, welche von der Uber-
vollstindigkeit (Nichtorthogonalitit) herriithren, stimmen die Glei-
chungen (28) und (29) mit denjenigen der iiblichen Schrodinger-
schen Storungstheorie iiberein.
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4. Vergleich der Resultate vom 2. und 3.

Auf den Fall des Potentiales (4) angewendet, ergeben sich
die W,, nach (18) zu:

-4 0" ’ ¢ ¢ .
W =gl (o ors S (m e D e B

a y . 5 ‘I'//[ _T— 1 [i 2 / 2 ‘) ‘ 3 ):l
/. Ii LI41 = 4]/2'33; 2([ i ]) .I” i (’ < I‘T '2—
Ny T, S—
AW, .= OV ;_'321.3[;‘(’ A 4@ a2+ 314 3)
| 5Y(+1)()(1+3)[4
/ AV, ia PV T NI VT Y= e 9
(30) | AWe s 81/2 ¥ l:s R “‘)]
o ANIENY OO0+ [, (. B
AW, gpg=—T" 00 =15 a2+ (I 2)1\

16 x!

Irrel: ”'In; ”"RI = O fur !f’l‘-_?lf/ >6'

Beriicksichtigung der ersten Potenz von 4 allein (Storung erster
Ordnung) gibt:

Y- - 7 Y
Ef =2n+14iW,, + > le

nl VVIH g (81)

W, ., stellt also in dieser Nédherung die Verschiebung des
Schwerpunktes des um Z{’Qﬁa,,,— W, aufgespaltenen Dubletts dar.
Diese (erste) Niherung der Aufspaltung riihrt nur vom Uber-
lappen von U; mit U, her. Das entspricht der Erwartung, da
dieses Uberlappen ein Mass der Wechselwirkung der beiden Minima
1st. Die Aufspaltung wird daher durch die Stelle x = 0 bewirkt,
wo die Wellenfunktionen schwach sind. Die Schwerpunktsver-
schiebung aber stammt von den Stellen z = -+ x,, wo die Funk-
tionen sehr stark sind. Da die erste Nidherung die ungestorten
Wellenfunktionen benutzt, wird der Fehler der Aufspaltung also
auch viel kleiner sein als derjenige der Schwerpunktsverschiebung.
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Aus (22) und (30) erhalten wir fir die Aufspaltung:

! 1+ 1 2 ] _L B ‘-j '3
o= By =y = g ity gy 2)
2 / I() .'3 5 35 \
ket 4‘+ I 41 -2 P N 2k = A —9 M
Iil e ]41 Z () [ll e (1] ( }; -1-“ I G’ ._I“ + ]!) 8 _j“ + ]6 'I.t”'-l) .

Diese Grossen sind kleiner als die aus (16) errechneten. Sie geben
aber fir Terme, die stark unter V7, liegen, die richtige Grossen-
ordnung. Wenn die K% sich 1, annéihern, so bricht unsere Nihe-
rungsmethode natiirlich zusammen, da das Uberlappen durch die
nullte Néherung sehr schlecht wiedergegeben wird (siehe Fig. 3).
Betrachten wir aber die Schwerpunktsverschiebung, o sehen
wir, dass deren erste Nitherung sogar das falsche Vorzeichen hat.
Die Verschiebung in Fig. 4 1st negativ, wihrend alle W, positiv
sind.  Das eewihlte Kraftfeld weicht also so stark von dem eines
harmonischen Oszillators ab, dass hohere Nidherungen notwendig
werden.  Berticksichtigung der zweiten Niherung fiithrt auf:
1
9

LAE, + R EL 4+ 22 E) =

1 4
4
1 20

145 1 4055 1
144 2 T68

= g (33)

[ohere Ordnungen beeinflussen den 1/z’-Term nicht mehr, so
dass wir jetzt eine verntinftige Ndherung haben. Die Aufspaltung
wird von werteren Nédherungen nur wenig und in richtigem Sinne
beeinflusst.  Die erste Ordnung gibt also in unserem IFalle die
richtige Aufspaltung und die zweite Ndherung auch die richtige
Verschiebung gecen den Wert 2n 4+ 1. In andern Fiillen, wo die
parabolische Anniherung in den Minima besser ist, diirfen wir
also annehmen, dass die- Aufspaltung schon in erster Ordnung
richtig erhalten wird. Wegen des IFaktors e =y ist dieselbe fiir
die niedrigeren Zustinde stets klein.

Diese kleme Aufspaltung i1st auch fir das aus der Temperatur-
abhiingigkeit der Dielektrizititskonstanten von NII; u. a. ersicht-
liche permanente elektrische Moment verantwortlich. Die Qua-
drate der Wellenfunktionen eines jeden Zustandes simd zwar in
x gerade, so dass man annchmen konnte, dass ein solches nicht
vorhanden sei. Allemm Vax Vieck!) hat gezeigt, dass das tiefste
¥ mcht notwendigerweise unsymmetrisch sein muss, sondern

1) Vax V0LEck, Phys, Rev. 29, 727 (1927).
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dass benachbarte Zustédnde geniigen, deren Energiedifferenz klein
gegen kT ist und deren Ubergangsmoment von Null verschieden
ist. Die ,,Dauer des Uberganges ist dann niamlich so lange,
dass die hierber auftretenden Momente als permanent angesehen
werden miissen. Das Moment in der Langevin-Debyve-Formel ist
somit das in gewohnter Weise zu berechnende Ubergangsmoment
von ¥, nach ¥, und ist annihernd gleich dem Moment eines
Molekiils mit nur einer der beiden Gleichgewichtslagen fiir das
schwere Atom.

Herr Prof. Dex~isox hat die Storungstheorie fiir ein sich
der Parabel bel x = 4 x, besser anschmiegendes IPeld entwickelt.
Seine erste Nédherung [entsprechend unserer (31)] gab befrie-
digende Ubereinstimmung fiir eine Zuordnung zum Spektrum von
NH,;. Sein Feld erlaubt aber keine exakte Lisung, so dass die
Gultigkeit von (31) auch fiir die ersten Dubletts nicht erwiesen
war. Auch konnten die hohern Eigenwerte und Wellenfunktionen
nicht erhalten werden.

Unsere Rechnung soll den Giiltigkeitsbereich der Storungs-
theorie zeigen und den Gebrauch von (31) tir die beiden ersten
Dubletts rechtfertigen. Ferner erlauben die erhaltenen Resultate
von 2. auch die Eigenwerte, Wellenfunktionen von hohern Schwin-
gungsquanten solcher Molekiile zu berechnen, wenn ja auch das
Feld (4) selbst keine sehr gute Annéherung ist.

Die Verfasser sind Herrn Dr. Diex~ison fiir die Anregung
zu dieser Rechnung und viele sie fordernde Diskussionen sehr
zu Dank verpflichtet. Der Universitit Cambridge mochten sie
thren Dank sagen fiir die Erlaubnis zur Benutzung des phyvsika-
lischen Laboratoriums und der Bibliothek.

Cavendish Laboratory, Cambridge, 1. August 1931,

Erratum.

Helv. Phys. Acta 3/4. Seite 141, Zeile 10 ven oben, lies
Meter Wassersiiule anstatt Atmcsphiren.
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