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Lösung des Eigenwertproblems eines Potentialfeldes
mit zwei Minima

von Philip M. Morse, Massaehussets Institute of Technology
und E. C. G. Stückelberg, Princeton Cniversity, z. Zt. in Cambridge.

(15. VIII. 31.)

1. Einleitung.

Die Analysis der Schwingungsspektren mehratomiger Moleküle

wie XII3, PII3, AsH3 zeigt, dass das schwere Atom zwei
Gleichgewichtslagen hat. Die drei leichten Atome liegen in einer
Ebene, deren Mittelsenkrechte wir die Symmetrieachse nennen
wollen. Die beitlen Minima der potentiellen Energie liegen dann
auf dieser Achse und symmetrisch zur definierten Ebene. Die
Elongation q des schweren Atoms in Richtung tier Symmetrieachse

ist annäherungsweise eine Normalkoordinate tles Systems.
Man ist daher berechtigt, die Schwingungen in dieser Koordinate
unabhängig von tlen andern Freiheitsgraden des Moleküls zu
behandeln2). Die potentielle Energie V*, welche diese Schwingungen

veranlasst, ist eine um den Schnittpunkt (q 0) von
Achse und Ebene symmetrische Funktion von q. Die Minima
liegen bei q + q0. V*(qA sei gleich Null. Die beitlen Täler
bei q + q0 sind durch einen Berg potentieller Energie von der
Höhe U* getrennt. Analytisch beschreiben wir diese
Eigenschaften von V* durch

U*(0) U*; V*(-q) V*(q)l V*(±q0) 0; V*'(±qo) 0 (1)

(siehe Fig. 1). Herr Professor Dennison hat dieses Problem mit
Annäherungsmethoden behandelt und auf das Ammonium-Spektrum

angewendet3). Die nachfolgenden Rechnungen sind eine
exakte Lösung eines speziellen Kraftfeldes, das die in (1) gestellten
Bedingungen erfüllt, und im zweiten Teile ein Vergleich der so

x) U. S. National Research Pellows.
7) D. M. Dennison, Rev. Mod. Phys. 3, 280 (1931).
3) D. M. Dennison, erscheint demnächst in Rev. Mod. Phys. Die

vorliegenden Rechnungen sind eine ausführlichere Behandlung einiger Überlegungen,
die in der Arbeit von Dennison gestreift werden.
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erhaltenen Resultate mit Dennisons Störungstheorie. Auf diese
Weise erhält man interessante Aufschlüsse über die Gültigkeit
der Störungsrechnung in ähnlichen Fällen. Die Verfasser sind
Herrn Dknnison für die Anregung zu diesen Rechnungen zu
Dank verpflichtet.

2. Die exakte Lösung.

Die Frequenz harmonischer Schwingungen kleiner Amplituden

um die Minima bei q + q0 sei v. Dann ist die Entwicklung

von U um q0:

V* 2 n* M v2 (q - q0)2 + d* (q - q0)* +¦¦¦
Hier bezeichnet AI die reduzierte Masse für tlie betrachtete Nor-

v

Fig. 1. Potentialfeld eines Moleküls mit zwei Gleichgewichtslagen.

malkoortlinate. Wir schreiben jetzt als unabhängige Veränderliche

x, wo:
h

(2)
y 4 ,t2 m v

ist. Die Energie in erg sei hvE/2. Dann wird die Wellengleichung:

^ + {E-V(x)}y, 0;V* ^-V. (3)

Diese Gleichung versuchen wir jetzt exakt und näherungsweise
zu lösen. Die Entwicklung von V nach x um a"0 ist dann:

V=(x-x0)* + ö(x-x0)3+---
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Eine P'unktion V, die exakte Behandlung zulässt und (1) genügt,
ist:

r>^MMM <4>

Ihre Entwicklung um + x0 ist

V(x) =- (+ x-xn)* + ° (± x-x0)3 + -,V (± x-x0)1
0 Xn -i xn

s- (± x — -ro)5 + i o™r (± x -

2x\ ^ "' 12 r„
Setzen wir

so wird (3)
•Z7" + (fl + bz*-z6)y> 0 (3 a)

Gleichung (3 a) ist eine lineare Differentialgleichung, die einen
irregulären Punkt im Unendlichen hat. Diesen ziehen wir in der
üblichen Weise durch tlie Substitution von

W e
4 • /

in Betracht untl erhalten eine Differentialgleichung für /:

f"-2z3f + {a + (6-3) z2}f 0. (5)

Die Lösung versuchen wir durch die Potenzreihe:

/-Sc***- (6)

Der Gleichung (5) wird Genüge geleistet, wenn

2 c2 + ac0 0

12 c4 + ac2 +(b- 8) c0=0 (7)

(2 fc + 2) (2 k + 1) r2,,,2 + a r2, + (fc + 1 - 4 fc) c2fc_2 0

oder
6 r3 + «Cj 0

20 c5 + ac3+ (b-5)r0=0 (8)

(2 fc + 3) (2 fc + 2)c2fc+3 + a e2k + 1 + (b - 1 - 4 fc)^,..^ 0

gelten. Die ersten Gleichungen in (7) und (8) bewirken das
Verschwinden der Koeffizienten für negative Potenzen von x. Die
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Lösungen sind dann für x 0 endlich. Die Reihe (6) stellt die
Funktion / dar, wenn sie für alle reellen Werte von x konvergiert.
Eine quantenmechanische Lösung ist sie aber nur dann, wenn

e * • / im ganzen reellen Gebiete endlich bleibt. Das wird nur
für diskrete Werte des Parameters a der Fall sein. Diese Werte
sind die gesuchten Eigenwerte des Problems.

Für (7) und (8) ist das Verhältnis aufeinanderfolgender
Koeffizienten yr ckfck_2:

2A'-b~] -• (9)y*- a + (k + 1){k + 2).yk.+2 [-}

ie y, ]/ "Man sieht, dass für grosse Werte von /,- die Annahme
sich rechtfertigt. Gehen wir nämlich zu grossen Werten von fc.

so dass a gegen (fc + l)(fc + 2)yk 2 vernachlässigt werden kann,
so erhalten wir:

2 fc — fc — 1

y*»y* + 2 -(/c + 1)(/x+2) •

Die Lösung dieser Gleichung ist:

yk =± M..J_1Ü 4 / 1 _J_J.~+-,/2 n (1())

^(r-)^(48)^("-v--) ti,*-)(1Q)
Für positive Werte von (10) wird die Reihe stärker unendlich

als e * Dieselbe stellt daher keine Lösung unseres Eigenwertproblems

dar. Nehmen wir alier in (10) tlas negative Zeichen.

so bleibt die Funktion e * f für alle reellen Werte von x endlich.

Aus (9) erhält man dann durch sukzessives Einsetzen:

(2ra-fc-l.
7«= -

1) (ra + 2) (2 ra - fc -r 8)

(it I 8) (n | 4) (2w —fc + 7)

H(fcH l)(fc + 2)yÄ + 2. (11)

') Für die folgenden numerischen Rechnungen können wir nicht immer
bis zu so grossen fc-Werten gehen, dass (9) richtig ist. Ist k " nicht sehr gross
gegen a, so haben wir

'''•¦ y^ ~ (* + l)<* + 2) l1 " <* + l)(* + 2)yfc+1
+ • • -J (9a)

oder statt (10)

>'^>'-(1-iT(^-ik+7 + ---) <10a>
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Der unendliche Kettenbruch (11) konvergiert allerdings nicht.
Gehen wir aber zu fc-Werten, für welche (10) richtig wird, so
können wir abbrechen und erhalten ein in der Näherung (10)
richtiges Resultat. Der unendliche Kettenbruch hat Analogie zu
gewissen asymptotischen Darstellungen, tlie, wenn alle unendlich

vielen Glieder berücksichtigt werden, nicht konvergieren, die
jedoch eine genügende Annäherung ergeben, wenn man in der
Entwicklung nur bis zu einer endlichen Anzahl von Tennen geht
(Seniikonvergente Reihen). Auf diese Weise haben wir eine
konvergente Reibe für / erhalten, die überall endliche Werte annimmt,
wenn wir verlangen können, tlass keine negativen Potenzen von
z auftreten. Das wird erreicht durch Gleichsetzen der Werte

y2 =— aus (7) und y3 - aus (8) mit den entsprechenden Aus-
''« ''l

drücken (11). So erhalten wir

a (3 — fc)

y2 —- _1 12 (7 — 6)

a
30 (11—fc)

a +
+(2fc + l)(2fc + 2)y2Ä+2 (12a)

und

73
a

__
(5 —fc)

6 20 (9-6)
a + —

a +
+2fc(2fc + l)ylt+1. (12b)

Die unendlich vielen Lösungen (Wurzeln) von (12a) und (12b)
sind die Eigenwerte von a. Insbesondere entsprechen den
Lösungen von (121) die geraden Eigenfunktionen und denjenigen
von (12 b) die ungeraden Eigenfunktionen. Wir nennen die
niedrigste Energiestufe, d. h. die algebraisch kleinste Wurzel von
(12a): a,Q und die zugehörige Eigenfunktion: ,//,7. Von (12b) ist
dann die algebraisch kleinste Lösung: oö und W~~. Die nächst
kleinem Lösungen und zugehörigen Funktionen seien: aj", V*
und «7, V?i usw.

Die ersten sechs Eigenwerte haben wir für Werte von 6

zwischen 0 und 25 berechnet. Bei bestimmten Werten |fc 3, 7, 11...
in (12a) und fc •">, 9, 13 in (12b)] brechen die Kettenbrüche
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ab und gestatten so eine wesentliche Vereinfachung der Rechnung.

Für andere Werte von fc wurde von (10a) Gebrauch
gemacht. Fig. 2. zeigt die Werte der a* als Funktion von fc. Die
Koeffizienten und damit auch die Wellenfunktionen können tlaher
für alle Werte von fc und alle Eigenwerte a* gefunden werden.
Der Kettenbruch wird abgebrochen durch Einsetzen tles negativen

Wertes von yk + 2 aus (10) oder (10a). In Grössen unseres

+io -

-20

-30
0 10 20

b

Fig. 2. Eigenwerte der Gleichung (3a) als Punktion des Parameters b.

Molekülmodelles x und x0 schreiben sich dann die normalisierten
Wellenfunktionen (N* Normalisierungsfaktor):

x1 JX
«p± NX ¦ e 8 V8"*S ¦ V dk xi- wo. dk -= (12 x40)

8
• r,

Ni
l+m-3

(12)*i/a-0-2ciC, /' Uffl + 1 (13)

Die Orthogonalität dieser Eigenfunktionen ergibt sich aus der

Differentialgleichung (3), der sie ja genügen müssen. In Fig. 3

ist Wq und Wj für den Fall x0 4.17 dargestellt. Zum Vergleich
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sind auch die später zu verwendenden angenäherten Funktionen
gestrichelt eingezeichnet. Ferner zeigt Fig. 3 auch das Potentialfeld

untl die beiden Eigenwerte aj untl a,7 für diesen Fall. Aus
den Beziehungen zwischen x,E und x0 einerseits und z,a und 6

+0J ¦

3 -

cy

z

V, r^r*

\ /NP/\\ /

/v./
OJ

OJ
7 \V.

7 7
/, 0/> \

+6- 2 +2 + 4

Fig. 3. Potentialfeld (F), die ersten vier Eigenwerte (£*) und zwei exakte (W*)
und angenäherte (•*"*•*) Wellenfunktionen für Gleichung (4).

andererseits können die Eigenwerte B* der Gleichung (3) als
Funktion von x0 berechnet werden. Diese Beziehungen sind in
Fig. 4 dargestellt. Die mit U,„ bezeichnete Linie stellt die Höhe des
die beiden Minima trennenden Potentialbetrages dar. Die gestrichelten

Horizontalen sind tlie Eigenwerte eines harmonischen Oszillators
derselben Frequenz v. Bemerkenswert ist die annähernd gleich-
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massige Verteilung der Energieniveaus, solange der Potentialberg
kleiner als die betrachteten Eigenwerte ist, und das starke
Zusammenrücken des „geraden" + und nächst höher gelegenen
„ungeraden" (—) Termes, sobald die Potentialschwelle über die

12 3 4 5

Fig. 4. Lage der Energieniveaus (E~) und Höhe des Potentialberges Vm) als
Funktion des halben Abstandes (x„) der beiden Minima.

betreffenden Niveaus wächst. Die Paare streben dann tlem
zugehörigen Eigenwert des harmonischen Oszillators zu. Die Über-
gangswahrscheinlichkeiten lassen sich in der üblichen Weise
berechnen. Man sieht sofort, dass die Übergänge zwischen dem
geraden + untl dem ungeraden (—) System optisch verboten
sind.
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Einen Ausdruck für die Trennung dieser Eigenwertpaare
erhalten wir, wenn wir anstatt der unendlichen Kettenbrüche
die entsprechenden unendlichen Determinanten der Koeffizienten
von (7) und (8) betrachten. Die Gleichungen (7) können wir
aber, gemäss unserer Betrachtung über tlas Abbrechen tier unendlichen

Kettenbrüche, mit ((2 fc + 1)(2 fc + 2) y2i.2 + «) c2k +
(fc + 1 — 4 fc) 0 abbrechen, wo fc, wie in (12a), genügend gross,
aber nicht co ist. Die endliche Determinante, welche für kleine
a schon bei relativ kleinen fc abgebrochen werden kann, lautet
dann:

a 2 ll ll 0

6-3 tt 12 ll 0

Dt..
0 6 — 7 n 30

a

0

0

2fc(2fc-l)

0

0 0 (l 0 6-1 1--4fc a+(2fc+2)(2fc+l)72fc+2 (14)

Lud in analoger Weise aus den Gleichungen (8):

D~(a) 0. (15)

Die Wurzeln von (14) sind gleich den Lösungen von (12a) und
die von (15) gleich denen von (12b). Für grosse fc sind die
niedrigeren Eigenwerte a"£ untl a~ nahe beisammen. Kennen wir
z.B. M so lautet der Ausdruck für a~ — at öan näherungs-
weise:

o «„
D-(at)~D+ (o+)

D~' (at) + D+' (at)
(16)

D'(aX) betleutet den Differentialkoeffizienten von D nach a am
Orte a a*.

Auf diese Weise haben wir eine exakte Lösung eines
speziellen Potentialfeldes mit zwei Minima gefunden. Leider
entspricht der Verlauf der potentiellen Energie (4) nicht besonders
gut derjenigen von NH3, da (4) schon nahe den Minima stark
von der parabolischen Form abzuweichen beginnt. Andere, der
Wirklichkeit besser entsprechende Kraftfelder lassen aber keine
einfache exakte Lösung zu. Diese müssen daher durch Näherungsmethoden

(Störungsrechnung) behandelt werden. Wir wollen
daher im zweiten Teile die Störungsrechnung für den betrachteten
Fall durchführen und so ein Urteil über tlie in ähnlichen Fällen
erhaltene Annäherung erreichen.
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."!. Die Störungsreehnunu.

Die folgenden Rechnungen stellen eine vollständige Behandlung

der von Dennison verwendeten Störungsmethode dar, und
führen ihre Anwendung auf die spezielle Funktion (4) aus. Da
sich alles um Schwingungen um Potentialminiina handelt,
entwickeln wir alle vorkommenden Funktionen nach normalisierten
und orthogonalen Hermite'schen Funktionen:

Xn(x)=
'

-e~~*~-Hn(x) (17)

|/2n-ra! -fn

lln(x) stellt das rat0 Hermite'sche Polynom dar1). Wir definieren

Kn (x)
1

_= Hn (x)

y2"-n! ]/ti

und machen von zwei Eigenschaften der so definierten
Funktionen Gebrauch:

und:

Kn (x)=yz+i Kn ^l(x)+y| Kn_x {x) (18)

A- Kn (x) K'n (x) j/2 ra • Z»_! (x). (19)dx

Die %„(x — xA sowohl, als auch die %n(—x—xA stellen je ein
vollständiges System dar. Wir können daher mit gleichem Recht
sowohl nach

^ n Xn (¦*- •''o)

als auch nach

fr; Xn{-X-X0)
entwickeln. Die in Betracht kommenden Funktionen sintl alle
entweder gerade oder ungerade in x. Daher wäre es von Vorteil,
nach in x geraden oder ungeraden Funktionen entwickeln zu
können. Solche stehen uns in

0+n(x) K(U+n(x) + u;(x))
als gerade, und in

0-n(x) N-n(U+n(x)-U-n(x))
als ungerade zur Verfügung. Die Nkn sind die Normalisierungs-
faktoren [andere als im ersten Teil (13)]. Dass diese Funktionen

l) Courant-Hilbert, Methoden der Math. Phys. I, 1. Aufl., p. 76.
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recht gute Annäherungen für Energiewerte, welche stark unter
Vm liegen, geben, sieht man unter anderm auch aus Fig. 3, wo
dieselben gestrichelt eingetragen sind. 0,j ähnelt Wq schon stark,
während das dem Vm nahekommende EX entsprechende 0|
stark von Wt abweicht. Das System 0*(ra 0, 1, 2 ...; fc + —)

ist zwar vollständig, aber nicht mehr orthogonal. Es ist daher
eine gewisse Unbestimmtheit in der Entwicklung nach diesem
System vorhanden, da es „übervollständig" ist. Durch folgende
Überlegungen soll dieser Nachteil behoben werden:

Die Entwicklung einer in x geraden Funktion F(x) ist
eindeutig, wenn nach dem System Ut entwickelt wird:

n

F habe nur in der Nähe von x +a*0 grosse Werte. Wesentlich
in der Entwicklung sind dann die Tenne niedriger Ordnung ra,
welche den Aufbau von F in der Umgebung von x + x0
bewirken. Wir werden aber noch eine weitere Gruppe von nicht
vernachlässigbaren Tennen in den hohen Ordnungen (grosse ra)

finden, welche F um x — — x0 darstellen.
Die Entwicklungskoeffizienten ß„ nach Ut einer in x geraden

Funktion, welche klein ist für x 0 und gross für x +x0,
zerfallen also in zwei wesentliche Gruppen, deren eine (niedrige
Ordnungen) die rechte Hälfte darstellt und nur sehr wenig zum
linken Teile beiträgt, und deren andere Gruppe (hohe Ordnungen)
in entsprechender Weise die linke Hälfte aufbaut.

Genau die gleiche Betrachtung kann für die Entwicklung
nach U~ durchgeführt werden:

F 2/J»E7». (20b)
ii

Die ßn in (20b) sintl gleich den ßn in (20a), tla die Funktion gerade
ist. Die ßn rechnen sich in gewohnter Weise aus

ßn= fdxFUt fdxFUt.
Unser Ziel ist die Entwicklung von F nach dem übervollständigen
System der <P'J Addition von (20a) und (20b) gibt:

2F 2M, 07, (20)
wo "

wenn

Pn

Nt
¦ f tl i- • F ¦ 0 -

2 AT,!2 J

[UjlJ,dx«l

« fdx-1
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Wie die ß„, so zerfallen auch die a„ in die beiden wesentlichen
Gruppen hoher und niedriger Ordnungen. Die Koeffizienten
niedriger Ordnung allein bewirken durch den [/^-Anteil von 0+
den Aufbau von F um x + x0 und durch den U~-Anteil den
Aufbau um x — x0. Die Terme niedriger Ordnung allein von
(20) stellen also eine brauchbare Annäherung von F dar. Durch
Hinzufügen der Tenne hoher Ordnung von (20) addieren wir ein
weiteres F und erhalten so das in (20) verlangte 2 F. Die Summe
über die niedrigen Terme von (20) ist daher eine Darstellung
von F. Formell haben dann die Beziehungen zur Koeffizientenbestimmung

und die Darstellung in 0t dieselbe Form wie für
ein vollständiges System

F yiocn 0t; <*n JdxF- 0;

nur dann, wenn wir die nicht vernachlässigbaren Tenne hoher

Ordnung vollständig weglassen.

Die Faktoren Nt und A7~ sind

1 1

y,2 + 2£n„ ' " l/2-2fn„
r,,,,, emn =/ü+ U~mdx~ f 0+n0+mdx ~ - f 0~„ 0~mdx

Wir werden von den e„„, Gebrauch machen müssen. Zur Berechnung

nehmen wir ra>w, was wegen der Symmetrie in ra und m
keine Spezialisierung bedeutet:

£„m =j Ut lydx e~xl ¦ je~x' ¦ Kn(x — x0) ¦ Kn (— x — ,r0) • dx.

Tavlor's Entwicklung und Einsetzen tier Abgeleiteten von Kn
aus (19) führt auf:

K„ (x-Xq) > 1/ " "•, -^ru)"- A'„

- x ¦

£j\ (n-r)l

-!)¦"• Vi/-2'•w!---J>"-g] Zj Y (m-sl) s\
•

Einsetzen dieser Entwicklungen in den Ausdruck für e„m gibt
eine Doppelsumme über r untl ,s- von Produkten von %„-r(x) mit
7.m-,-(¦'')¦ Wegen der Orthogonalität der -y, führt die Integration
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auf eine einfache Summe über alle Glieder mit ?.—/•= m — s.
Es wird

y. n — m

M3.(2.rü2)^.eM.L;;-'"(2r02). (22)

L't bedeutet ein Laguerre'sches Polynom1).
Auf die Störungsrechnung von zwei harmonischen Oszillatoren

angewandt, sieht man leicht, dass

[V - (x - x0)*}Ut(x) X- T(x)Uj,(x)

eine kleine Grösse ist, wenn V in der Nähe von x + X0 nur
wenig von der parabolischen Form abweicht und wenn die Ut
in der Gegend, wo das nicht tier Fall ist, sehr klein sind. X

bezeichne hier wie im folgenden eine kleine Grösse. Symmetrie von
V um x 0 führt auf folgende zwei Gleichungen:

[V-(x-x0)*)Ut 7-T(x)Ut
[V-(-x-x0YWn X-T(-x)U-. (23)

Die 0„ erfüllen daher die homogene Differentialgleichung (3)
beinahe. Exakt aber erfüllen dieselben folgende inhomogene
Gleichung:

-d p- +(2« + l)0I-K (x- ,r0)2 Ut -N- (-x- x0f C7-=0.

Die 0„ erfüllen eine analoge Form. Unter Verwendung von (23)
schreiben wir die beiden in:

d2 0k-^ + [(2n + l)-V]0k==-XQ*n(x); fc= + ,- (24)

wenn
ß± (x) N±(T(x) Ut±T{- x) U~). (25)

Da die 0* also Gleichung (3) bis auf die kleine Grösse X ß* für
den Eigenwert E 2 n + 1 genügen, erwarten wir, dass tlie Wkt

bis auf Tenne der Ordnung X einem tier 0* gleich sind untl tlas
zugehörige E ebenfalls bis auf Terme der Grösse X gleich 2 ra + 1

wird. Daher setzen wir
T —OO CT— OC

FJ 2n -i-l + y Xr Ek ¦ Wk Y X" 0" ¦ 0k 0k
T=l CT Ü

Dann wird (3) zu

d*0kanVA"
a

l) Condon und Morse, Quantummechanics, p. (53.

(2n + l-V)0l + yjEkn0l_T
a x r=l

0. (26)
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Nehmen wir z. B. an, dass die erste Näherung (tl. h. fc +)
gerade sei, so müssen auch alle höhern Glieder 0t„, und somit
alle in (26) erscheinenden Summanden in x gerade sein, da ja
voraussetzungsgemäss V in x gerade ist. Ist fc —, so müssen
alle Summanden ungerade sein. Gemäss dem Vorangegangenen
können die geraden 0tn durch

0+ =Y^+ ,07an XJ °, nl l
1

dargestellt werden, wenn wir nur die Terme kleiner Ordnungen
/ gebrauchen. Die Ak nl bestimmen sich aus (26), wenn man
diese Gleichung in eine Reihe nach 0k entwickelt und die
Koeffizienten jeder Grösse X" 0f gleich Null setzt. Für gewisse
Summanden von (26) können wir die ganze Entwicklung nach 0'
benutzen; so wird z. B. der letzte Ausdruck

X" 0t

wo tlie Klammer auf der rechten Seite der exakte Entwicklungskoeffizient

ist. Das ist nicht immer der Fall. Für den ersten
Summanden erhalten wir aus (24):

d2 0'ct„ "ST1 .* d2 0t
xa. :-"-=A"2_J<lll-

T 1

"?+ 0+ =V-'n ct *r CT— T, n / |

CT

V 4 +
J, -dCT-r, nl Kr

dx2 Z_j' "•"' da;2
i

yf[-AA,,r{^+r)-X''0t+AXillV-Xn0t-Atlll-X^Üt(x)
Für tlen zweiten entsprechend:

;/*(2ra + l-F)-0+( 2 Atnl(2n + l)X°0t-AtnlV-X°0t

so dass mit V multiplizierte Terme sich herausheben. Die
Entwicklung von

Y 4+ ;n+1 ü+/ i ct, n m '- in
in

mit zu bestimmenden Koeffizienten v7, nach 0," fehlt nun noch.
In (25) haben wir i2+ definiert, und finden daher für

aMA"+12/:, fvtnXdx
m

-^r^/X n m K ¦ j{Ut + UJ) [ T (x) U: + T (-x) U~] d x.



Eigenwerte eines Potentialfeldes mit zwei Minima. 351

Es stelle W,m den allgemeinen Entwicklungskoeffizienten der
Funktion T(x) • U* nach dem System Ut dar, tl. h.

W, m fllt ¦ T (x) 11
m dx jlJ-T(- x) U;n-d x

Dann erhält man für tlie Integrale

[Ut ¦ T (-x) Umdx jüj ¦ T (x) Uldx JU7 ¦ yytvm U+pdx
P

Ye, W/ i c 1 p ff p m -

Der Entwicklungskoeffizient af wird im geraden Falle

«+ ;.- ' Y_, < ,„ Ij (wnm + ^Tjel, Wv m) (27)
in p

Hier ist wieder zu beachten, tlass in der Entwicklung nach / und
in der Summe über p nicht vernachlässigbare hohe Tenne
weggelassen werden müssen. Im ungeraden Falle ist der Index +
durch — zu ersetzen und die E negativ zu zählen. Der Koeffi-

p

zient von X" in (26) ist jetzt durch die Reihe in 0f

^0l\A-Xtnl(2n-2l) + ±A^tnlE^-^At1,nm(Wlm±^elpWpm)
l [_ t 1 m p

dargestellt. Nj' ist gleich Af* gesetzt, was ja nach ihrer Definition
mit genügender Annäherung meist der Fall ist. Nullsetzen des

Koeffizienten von X" • 0\ gibt uns die zur Bestimmung von Ekn
und A\ „i notwendigen Gleichungen. Es ist ja definitionsgemäss
Ao.„i ön,, so dass die Gleichung für ra l lautet:

ct-1

E±=YA±, (W, +Yf, W — YM E± (28)an S-i a—l.nm\" Im -^C ^_yip " pm) Z-i a— r, n n ^ i n \""7

und für n + l
1

j± _ _"•"' 2n-2l (29)

CT-l

1* =-xVVJ4'' 4*'
a.nn t) /, /_, T, n' °—T, " 1 ¦

ZjAct-1 nm( " "m i 2j£lp" Pm) ZjA „X r. „(-£¦•.„
m p t I

Normalisiert werden die Annäherungen durch
CT-1

1 V —<
4kAn,.... ^ l r 1

Dies, (28) und (29) bestimmen alle EkH und Al tll. Ausser dem
Auftreten der mit £„„. versehenen Terme, welche von der
Übervollständigkeit (Nichtorthogonalität) herrühren, stimmen die
Gleichungen (28) und (29) mit denjenigen der üblichen Schrödinger-
schen Störungstheorie überein.
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4. Vergleich der Resultate vom 2. und :t.

Auf tlen P'all tles Potentiales (4) angewendet, ergeben sieh
die W„i nach (18) zu:

AH',,

XWU+1

.i
24 x
5

9/2 |-9* + !)a-Z + (l»+ l J2 + 2Z+-|

yTTT
4 |/2 • x'l

2(1 l).iyr \P+ 2 1 +
3\1

/Il',.,-^5l/(/L1)rr2)h(2/r3)^X(/2,-3/x3)|
32 x,

(30) xw,l+3

7. wu+i

XWij+6--

8/2jf,
V(f+TT"( ")"()(/¦"+4)

16 <
lf+Dl)[)()FTÖ)

8j/2x»

| a$ + (/ + 2)

5 ,/M(/ 2/J

.,,- lMU ()()()()(/ -6)

Wnl Wln; U„, 0für/Z-ra/>6.

Berücksichtigung der ersten Potenz von X allein (Störung erster

E± 2n + l + XWnn±yiXenlWln. (31)

Ordnung) gibt:

Wnn stellt also in dieser Näherung die Verschiebung tles
Schwerpunktes des um Z2Xeni W,n aufgespaltonon Dublotts dar.

Diese (erste) Näherung der Aufspaltung rührt nur vom
Überlappen von Ut mit lT~ her. Das entspricht eler Erwartung, tla
dieses Überlappen ein Mass der Wechselwirkung der beiden Minima
ist. Die Aufspaltung wird daher durch die Stelle x 0 bewirkt,
wo die Wellenfunktionen schwach sind. Die Schwerpunktsverschiebung

aber stammt von tlen Stellen x + x0, wo die
Funktionen sehr stark sind. Da die erste Näherung die ungestörten
Wellenfunktionen benutzt, wird der Fehler der Aufspaltung also
auch viel kleiner sein als derjenige der Schwerpunktsverschiebung.
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Aus (22) und (30) erbalten wir für die Aufspaltung:

4 5 5ft-- ß+ <5 E0 e~*o (yxI+ 4 32
(32)

K -Et= dE, e-4 ^ x* + -|- xl + 15 - I xrj + ^x-
Diese Grössen sind kleiner als die aus (16) errechneten. Sie geben
aber für Tenne, die stark unter Vm liegen, die richtige
Grössenordnung. Wenn die FJn sich Vm annähern, so bricht unsere Nähe-
rungsmethode natürlich zusammen, da tlas Überlappen durch die
nullte Näherung sehr schlecht wiedergegeben wird (siehe Fig. 3).

Betrachten wir aber die Schwerpunktsverschiebung, so sehen
wir, dass deren erste Näherung sogar das falsche Vorzeichen hat.
Die Verschiebung in Fig. 4 ist negativ, während alle II',., positiv
sind. Das gewählte Kraftfeld weicht also so stark von dem eines
harmonischen Oszillators ab, dass höhere Näherungen notwendig
werden. Berücksichtigung der zweiten Näherung führt auf:

1

2
(A Ko + * M

145 1

+ 77 E\

4055

o + V

1

E
20.

144 xf
~~

768 XX-. (33)

Höhere Ordnungen beeinflussen den l/.2'^-Term nicht mehr, so
tlass wir jetzt eine vernünftige Näherung haben. Die Aufspaltung
wird von weiteren Näherungen nur wenig und in richtigem Sinne
beeinflusst. Die erste Ordnung gibt, also in unserem Falle die
richtige Aufspaltung und die zweite Näherung auch die richtige
Verschiebung gegen tlen Wert 2 n + 1. In andern Fällen, wo die
parabolische Annäherung in tlen Minima besser ist, dürfen wir
also annehmen, dass die Aufspaltung schon in erster Ordnung

¦>

richtig erhalten wird. Wegen des Faktors e "o ist dieselbe für
die niedrigeren Zustände stets klein.

Diese kleine Aufspaltung ist auch für das aus der
Temperaturabhängigkeit der Dielektrizitätskonstanten von NII3 u. a. ersichtliche

permanente elektrische Moment verantwortlich. Die
Quadrate der Wellenfunktionen eines jeden Zustandes sind zwar in
./¦ gerade, so dass man annehmen könnte, dass ein solches nicht
vorhanden sei. Allein Vax Vleck1) hat gezeigt, dass das tiefste
Wk nicht notwendigerweise unsymmetrisch sein muss, sondern

') Vax Vleck, Phys. Rev. 29, 727 (1927).
23
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dass benachbarte Zustände genügen, deren Energiedifferenz klein
gegen k T ist untl deren Übergangsmoment von Null verschieden
ist. Die „Dauer" des Überganges ist dann nämlich so lange,
dass die hierbei auftretenden Momente als permanent angesehen
werden müssen. Das Moment in der Langevin-Debye-Formel ist
somit das in gewohnter Weise zu berechnende Übergangsmonient
von Wq nach Wq untl ist annähernd gleich dem Moment eines
Moleküls mit nur einer der beiden Gleichgewichtslagen für das
schwere Atom.

Herr Prof. Dennison hat die Störungstheorie für ein sich
der Parabel bei x + x0 besser anschmiegendes Feld entwickelt.
Seine erste Näherung [entsprechend unserer (31)] gab
befriedigende Übereinstimmung für eine Zuordnung zum Spektrum von
NII3. Sein Feld erlaubt aber keine exakte Lösung, so dass die
Gültigkeit von (31) auch für die ersten Dubletts nicht erwiesen
war. Auch konnten tlie höhern Eigenwerte und Wellenfunktionen
nicht erhalten werden.

Unsere Rechnung soll den Gültigkeitsbereich der Störungs-
theorie zeigen und den Gebrauch von (31) für die beiden ersten
Dubletts rechtfertigen. Ferner erlauben die erhaltenen Resultate
von 2. auch die Eigenwerte, Wellenfunktionen von höhern
Schwingungsquanten solcher Moleküle zu berechnen, wenn ja auch das
Feld (4) selbst keine sehr gute Annäherung ist.

Die Verfasser sind Herrn Dr. Dennison für die Anregung
zu tlieser Rechnung untl viele sie fördernde Diskussionen sehr
zu Dank verpflichtet. Der Universität Cambridge möchten sie

ihren Dank sagen für die Erlaubnis zur Benutzung tles physikalischen

Uaboratoriums und tier Bibliothek.

Cavendish Laboratory, Cambridge, 1. August 1931.

Erratum.

Helv. Phys. Acta 34. Seite 141, Zeile 10 von (dien, lies

Meter Wassersäule iinstatt Atnu Sphären.


	Lösung des Eigenwertproblems eines Potentialfeldes mit zwei Minima

