
Zeitschrift: Helvetica Physica Acta

Band: 4 (1931)

Heft: II

Artikel: Die Streuung von Röntgenstrahlen an Metallen

Autor: Rusterholz, Alexander

DOI: https://doi.org/10.5169/seals-110035

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-110035
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


— 68

Die Streuung von Röntgenstrahlen an Metallen
von Alexander Rusterholz

(5. III. 31.)

Inhalt. Aus Debye-Scherrer-Aufnahmen werden die atomaren Streufunktionen

von AI, Cu, Ag, Au und Pt bestimmt. Es wird speziell Wert gelegt
auf genaue Erfassung der Absorptionsverhältnisse im Präparat. Die gefundene
Streufunktion für AI stimmt mit den quantenmechanischen Berechnungen von
Hartrek überein, diejenige von Cu mit den Messungen von Armstrong. Die
Streufunktionen von Ag, Au, Pt lassen sich nach Thomas-Fkrmi genau berechnen.

Einleitung.

Beim Auftreffen von Röntgenstrahlen der Wellenlänge /. auf
Materie entstehen Sekundärstrahlen, die man ihrem Wesen nach
in drei Gruppen einteilen kann:

1. Strahlen gleicher Wellenlänge (kohärente Streustrahlung).
2. Strahlen etwas vergrösserter Wellenlänge (Comptonstrahlung).
3. Strahlen, deren Wellenlänge nur von der chemischen

Zusammensetzung der bestrahlten Materie, nicht aber von der Art
der einfallenden Strahlung abhängt (Fluoreszenzstrahlung).

Von besonderer Bedeutung ist die kohärente Streustrahlung,
denn sie ist es, die die theoretisch und praktisch so wichtigen
Interferenzen an Kristallen liefert. Deshalb ist es in manchen
Fällen notwendig, zu wissen, in welcher Weise sich ein einzelnes
von Strahlung getroffenes Atom verhält. Namentlich ist es die
Intensität der kohärenten Streustrahlung in Abhängigkeit vom
Streuwinkel, die in viele Berechnungen eingeht. Diese sogenannten
Streufunktinnen müssen bekannt sein bei Bestimmungen von
Kristallstrukturen mit Parametern, bei der Erforschung des
Molekülbaus vermittels Röntgenstrahlen, bei der Berechnung
von Atoniformfaktoren für Elektronenstrahlen usw. Die Streuung
von Röntgenstrahlen an Materie ist es ja gewesen, die uns ermöglicht

hat, die Anzahl der darin befindlichen Elektronen zu bestimmen.

Inzwischen ist man einen weiteren Schritt gegangen, bis zur
Erforschung des Atombaues mit Röntgenstrahlen. Die Kenntnis
der Streufunktionen gibt uns die Möglichkeit, die Ladungsverteilung

im Atom zu bestimmen.
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Die bis jetzt gemachten Bestimmungen der Streufunktionen
sind in der Hauptsache auf leichtere Atome beschränkt. Hier sind
die Verhältnisse heutzutage geklärt; unter Voraussetzung
kontinuierlicher Ladungsverteilung der Elektronenhülle und unter
Heranziehung klassischer Methoden lassen sich die Streufunktionen
für diese Fälle in guter Näherung berechnen.

Anders werden jedoch die Verhältnisse bei schweren Metallen,
wenn die Frequenz der K-Absorptionskante grösser wird als die
Frequenz der einfallenden Strahlung. Abweichungen vom klassischen

Verhalten lassen sich auf Grund quantenmechanisch
durchgeführter Berechnungen erwarten und sind auch schon bei Eisen,
Kupfer und Nickel ('• 2)- nachgewiesen. Mit Ausnahme von
Wolfrain (3) sind die Streufunktionen bei keinem schwereren
Atom als Kupfer gemessen worden. Absicht der vorliegenden
Arbeit ist es, einiges zur Kenntnis der Streuung an Silber, Platin
und Gold beizutragen. Zunächst weiden die schon bekannten
Streufunktionen von Aluminium und von Kupfer bestimmt, um
die verwendete Methode auf ihre Brauchbarkeit hin zu prüfen.
Die Streufunktion von AI ist von James, Brindley und Wood und
von Bearden gemessen worden (*•5), die Streufunktion von Cu

von Armstrong (x).

Für Silber und Gold liegen nur Messungen der Atomformfaktoren

für die Fläche (200) vor, die von Brentano(6) ausgeführt
worden sind.

Das atomare Streuvermögen.

Es ist schon früh versucht worden, die Streuungsvorgänge
mit Hilfe der Ansätze der klassischen Elektrodynamik zu erklären
und zu berechnen. Man ging dabei von der Streuung an einem
einzelnen freien Elektron aus.

Trifft eine ebene Welle

• (i "-r2 .7 I Vit —

n Normalenrichtung
i- Lichtgeschwindigkeit
v Frequenz der einfallenden Lichtwellen
r Fahrstrahlvektor nach einem bestimmten Aufpunkt

auf ein freies Elektron, so wird dieses zu Schwingungen gleicher
Frequenz gezwungen und sendet dann selber eine Sekundärwelle



— 70

aus. Das Elektron verhält sich dabei wie ein Dipol mit dem
elektrischen Moment

e2 _ 2nivt
4 n v' ra

e, in Ladung und Masse des Elektrons.

Ist das einfallende Licht unpolarisiert, so erhält man für
die Intensität Js der Sekundärwelle in der Entfernung r vom
Elektron, falls man in einer gegen den Primärstrahl um den Winkel
cp geneigten Richtung beobachtet, den Wert

J^Jpr- 5-«—l 4 M «'S2?) (1)
2 y to2 r4

¦Ij,r Intensität des Primärstrahls
l — cos2 ip Thomsonfaktor.

Bei n unabhängig streuenden Elektronen ist

n p^
J, - Jpr *

o « 1 4
(1 + COs2 <P) ¦ (2)

2 r2 m. er

Eine Integration über eine Kugeloberfläche mit dem Radius r
liefert uns die Energie, die pro sec infolge Streuung an den n
Elektronen aus dem Primärstrahl entfernt wird. Diese Energie E
ist gleich

& —q '—y-A " J Pr ¦ (rf)
6 mi y

Bedeutet n die Anzahl Elektronen pro cm3, so ist die auf dem
Wege 1 cm pro sec aus dem Primärstrahl entfernte Energie

c j üiine* rE - a ¦ JPr — -j-^ • JPr. 8

a ist der sog. Streukoeffizient. Die Bestimmung von a setzt
uns in den Stand, die Anzahl der streuenden Elektronen pro cm3,
also auch pro Atom, zu bestimmen (7). Andererseits sollte a
nach (3') unabhängig von der Wellenlänge sein. In Wirklichkeit
ist dies jedoch nur angenähert erfüllt (8). Auch die Azimutalverteilung

der Streuintensität kann nicht durch den Thomsonschen
Faktor allein beschrieben werden. Dies kommt daher, dass in
Wirklichkeit die Elektronen eines Atoms nicht unabhängig
voneinander streuen. Für Strahlung, deren Wellenlänge grösser als
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die Atomdimensionen ist, werden die Elektronen eines Atoms
als Ganzes streuen. Enthält das Atom Z Elektronen, so ist

JS Jpr 0-fJ2
4 (1 + C0S2 rf • (4)

2 r rnl r4

Die Annahme unabhängiger Streuung liefert hingegen

Ze4
Js= Jpr 2r2m¥ M" cos2 ¦ (5)

In Wirklichkeit gilt weder der eine noch der andere Ausdruck
genau. Um die Abweichungen von (4) zum Ausdruck zu bringen,
schreibt man gewöhnlich

J.= 2r°L*c* F 2-('-^2(?)-M-. (6)

Dabei bezieht sich Js nur auf die Intensität der kohärenten
Streustrahlung.

F wird als Streuvermögen oder als Atomformfaktor bezeichnet.
Das Streuvermögen eines Atoms mit gegebener Elektronenanordnung

hängt von /. und von cp ab. Gewöhnlich strebt F mit
abnehmendem Winkel cp gegen den Wert Z.

F kann aus der Elektronenkonfiguration bestimmt werden.
Versuche zur Berechnung von F aus verschiedenen
Elektronenanordnungen in Schalen und auf bestimmten Bahnen haben jedoch
keine gute Übereinstimmung mit den experimentell bestimmten
Werten von F gezeigt. Bessere Übereinstimmung liefert die
Annahme kontinuierlicher Ladungsverteilung innerhalb des Atoms,
wie sie neuerdings nach der Schrödingerschen Wellenmechanik
gefordert wird. Bei den Berechnungen wird angenommen, dass

jedes einzelne Volumenelement nach den Gesetzen der klassischen
Elektrodynamik streut. Die von den einzelnen Volumenelementen
ausgehenden Wellen sind in bestimmten Phasenbeziehungen
zueinander. Die Abweichungen von (6) sind dann als Interferenz-
effekt bei der Überlagerung aller dieser Wellen zu deuten.

Hat die Ladungsverteilung Kugelsymmetrie, und ist die
radiale Ladungsverteilung U (r) bekannt, so berechnet sich F
auf Grund dieser Betrachtungsweise zu

i r- ^ s'n 0 ,». sin 0 _ cpF=jl(r)- - dr <£ 4,-tr— 6
g

• (/)
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Danach wäre F für ein Atom eine Funktion von - -.-— allein.

Umgekehrt lässt sich U(r) aus /'' folgendermassen berechnen:

2r I r, ¦ • i \ i i sin(9
/ xb (jc) sin (xi)clx .r 4tx

Man kann somit aus dem gemessenen Verlauf von F die
radiale Ladungsverteilung U(r) bestimmen. Leider ist es nicht
möglich, F für genügend viele Werte von x zu messen, um aus
ihnen den Verlauf von V (r) genau zu berechnen. Es ist, in diesen
Fällen günstiger, die experimentellen Werte von F zu vergleichen
mit F-Werten, die aus theoretisch berechneten Ladungsverteilungen

abgeleitet worden sind.

Für viele Atome lässt sich V(r) nach einer von Hartree (9)

angegebenen Näherungsmethode bestimmen. Die bisherigen
experimentellen Untersuchungen haben gezeigt, dass die auf diese Weise
berechneten Streufunktionen die tatsächlichen Verhältnisse gut
wiedergeben (4- 10- »• 12- 13- 49).

Nun haben Thomas (14) und Fermi (15) eine neue Näherungsmethode

zur Berechnung der radialen Ladungsverteilung
vorgeschlagen, die allerdings nur bei schweren Atomen Gültigkeit
besitzen soll. Danach wird die Elektronenhülle des Atoms als
entartetes Elektronengas aufgefasst und auf Grund dieser
Vorstellung mittels statistischer Methoden die radiale Ladungsverteilung

U(r) berechnet. Aus V(r) lässt sich mit Hilfe von (7)
die Streufunktion bestimmen. Die Methode von Thomas und Fermi
gibt zwar die tatsächliche Verteilung der äussersten Elektronen
nicht gut wieder; der Unterschied wird sich aber, was die /^-Funktion

betrifft, nur bei sehr kleinen Werten von - bemerkbar

machen, da für grössere Werte von der Anteil dieser

äusseren Elektronen zur Streuintensität infolge Interferenz auf
Null heruntergesetzt wird.

Nach der Methode von Tiiomas-Fermi erhält man für den
Potentialverlauf in einem Atom der Kernladungszahl Zin Abhängigkeit

von der Entfernung r vom Kern¦o

Ze cp (x)
a x
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wobei

a

it

%hh2

2'7 ti* me2 Z*

und 9 (.;¦) eine Funktion ist, die der Differentialgleichung

tl cp cp

dx2

und den Bedingunge

l<

cp (0) 1

cp (co) 0

genügt. Diese Funktion ist von Fermi mittels eines numerischen
Verfahrens ermittelt worden.

Nach der Poissonschen Gleichung erhält man dann für die
Ladungsdiehte n

cp (x)
x

U (r)

4 7TU3

4 771 r2 Z
4 71 aA

und für den Atomformfaktor (ie)

Cp (x)

x

F
r2Z M

X

\ sin 4 n -4- sin 6-*

4 7t sin 0
dr

1 cp (./¦•• a/, ¦ / -—smitxdx u, 4 71 -tt sin 0
II .1 x- 7.

11

¦ •, 1 sin 0F Z- 0{4n • a

w
1 / Ct> {-A '-

¦ -,0 (u) X sin uxdx
./•-¦
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Thomas hat die F0-Werte für Caesium (Z0 — 55) ausgerechnet.
Aus seinen Angaben kann man die Streufunktion für ein Atom
mit der Kernladungszahl Z bestimmen. Denn es ist

sin 0 \ „ _ / sin 0
MM-)=Z-0Un-ira Z • 0 4,7

sin O zX

z„ *•
sin 0 Zj

7. z*

Die auf diese Weise berechneten Streufunktionen geben anscheinend
selbst bei leichten Elementen eine gute Näherung (16).

Die Streufunktionen für Silber, Platin und Gold, wie sie sich
nach dieser Methode berechnen lassen, sind in Tabelle 1 angegeben.

Tabelle 1.

Streufunktionen von Silber. Platin und Gold nach Thomas-Fermi.

Silber Platin Gold

sin« F
sin 0 F

sin <->

/•'
/. /. ~^~

0 46.0 0 78,0 „ 79.0

0,094 42,4 0,112 71,9 0.113 72.8

0.188 36,6 0,225 62,2 0.226 63,0
0.282 31,4 0,338 53,3 0.339 54.0
0.377 27,1 0,450 45.9 0.452 46,5
0,471 24,0 0,562 40,7 0,565 41.2

0,565 21,6 0,675 36,6 0,678 37.1

0,659 19,4 0,787 32.9 0,791 33.3
0,753 17,4 0,899 29,5 0.903 29.9

0,847 15,7 1,012 26.7 1,015 27,0
0,942 14,2 1,124 24.1 1,128 24.4

1,035 13,0
1,130 12,1

Neuerdings hat Wallkr (17) die Streuung von Röntgenstrahlen

nach den Methoden der Quantenmechanik behandelt.
Für die Streuung an einem Atom mit ruhendem Kern und mit V
Elektronen (k 1,2,. ...JV) erhält er folgendes Resultat:

Das Atom befinde sich in einem Zustand n, dessen Energie E„
sei. Dieser Zustand sei beschrieben durch die dazugehörige
normierte Schrödingersche Eigenfunktion

0* ll

E„t



die von den SN Koordinaten xk, yk, zk der N Elektronen abhängt.
n' bedeutet irgend einen mit dem Zustand n kombinierenden Zustand
des Atoms.

Auf das Atom falle nun eine ebene Welle

2.7.X- X
« ®0 • e

V

11: Einheitsvektor in Richtung der Wellennormale
r: Vektor von einem festen Nullpunkt (Kern) zum Aufpunkt.

Die Emission von Sekundärstrahlung (Comptonstrahlung
inbegriffen) in der Richtung n' durch das Atom im Zustand n
lässt sich beschreiben durch eine Summe von Dipolmomenten

En'<En+hr ]¦:,/¦ KH-h,-
V ia ,i .\ V

wobei

d„„'
8 .t2 in vi

Al (''»/ ; dnn.) - >, (dn.K + <tH-n)

v (€„ SU) 91V
i So " (\n,

4 ti2 u V M V' tl 8 • '

l'„'.s. — >'

2 .7 / 1-'/

E — E
»¦„„' + r

J /¦ i

,v

2t,,,- f^s^e'1"^- grad,.. <Z>„r?r
J k I

V
2t;,, f0, Se~!' *'r'" grad,, <Z>„ r/ f

normierte Schrödingersche Eigenfunktion0„ e
'<

2nv
y. n

2 71

A' A*

d V — IIdVk IIdxu dijk dzj,
i=l /•-!
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Um den Anteil der kohärenten Streustrahlung zu erhalten,
hat man n — n zu setzen. Nimmt man zunächst an, dass v hoch

genug ist, damit nur das erste Glied von (dnn,) in Frage kommt,
und ist <5,,„ reell, so ist d„n F.

2 n i [vn - v n)r
5„„ y lb„ (xyz) e

' dxdydz

k

Wnk(xk,yk,zk) f0n 0yl\'X-

W „ (xyz) ist die sämtlichen Elektronen entsprechende Ladungsdichte.

Hängt 11',, nur von r vom Kern ab, so erbält man

/sin6>\ •
sin (~-Jr • sin ©)

Ön„-F rn.° K-4.-r/H'„(r)- M Lr*dr>
\ K 1 T -sin©

/.

was der Formel (7) entspricht..
Liegt nun v in der Nähe der K-Absorptionsfrequenz des

bestrahlten Atoms, so darf man das zweite Glied in { } von (dn„,)
nicht vernachlässigen. In diesem Falle tritt anomale Streuung
auf. Waller gibt eine Abschätzung des zweiten Gliedes an; er
findet dafür den Ausdruck

vjl - r2
<g0.*t- -' -In 1 -V- Vf:

1 bis 1,5.

Tatsächlich haben neue Messungen des Streuvermögens von
Eisen, Kupfer und Nickel (*' 2) gezeigt, dassi'1 für einen bestimmten

Wert von —-.— nicht konstant bleibt, sondern sich von Wellenlänge

zu Wellenlänge ändert: die für verschiedene Strahlungen
bestimmten Streufunktionen überdecken einander nicht. Dann
wäre aber die Anwendbarkeit von (7) im Falle dieser und noch
schwererer Atome in Frage gestellt. Die Berechnung von F nach
Thomas-Fkkmi stützt sich aber gerade auf Gleichung (7). Eine
Entscheidung kann das Experiment bringen. Die einzige Messung
der Streufunktion von schweren Metallen, die bisher vorlag, ist
von Claassen (3) an Wolfram ausgeführt worden. Seine Resultate
zeigen, dass die Winkelabhängigkeit von F mit dem nach Tiiomas-
Fermi berechneten Verlauf der Streufunktion gut übereinstimmt.
Es ist jedoch wünschenswert, weitere Messungen an anderen
schweren Atomen anzustellen.



Interferenzen an Kristallen.
Es ist nun nicht möglich, die Streuung an einem einzelnen

Atom zu messen. Beim Vorhandensein vieler Atome spielt aber
ihre gegenseitige Lage ebenfalls eine wichtige Rolle. Um aus den
beobachteten Intensitäten das Streuvermögen eines einzelnen
Atomes ableiten zu können, muss die Anordnung der Atome und
der Einfluss dieser Anordnung bekannt sein. Danach kann man
zwei verschiedene Methoden zur Bestimmung des atomaren
Streuvermögens unterscheiden:

1. durch Messungen an einatomigen Gasen;
2. durch Messung der Integralintensität der Interferenzen, und

zwar an Kristallen bekannter Struktur.
Die Messungen an Gasen weisen den Vorteil auf, dass man F

in einem kontinuierlichen Wertbereich von
' bestimmen

kann, während die Messung an Kristallen F nur für ganz bestimmte

diskrete Werte von -—=— liefert. Andererseits wird durch
Interferenz die uns allein interessierende kohärente Streustrahlung
isoliert, da nur sie allein interferenzfähig ist. Bei Gasen misst
man elie Comptonstrahlung mit.

Weitaus die grösste Zahl der /''-Bestimmungen ist bis jetzt
an Kristallen ausgeführt worden, obwohl bei diesen Messungen
sehr viele Faktoren in Betracht gezogen werden müssen. Es hat
sich gezeigt, dass es in den meisten Fällen genügt, den Einfluss der
Atomanordnung im Kristall nach der vereinfachten wellenkine-
matischen Theorie von Laif, zu behandeln. Diese Theorie
vernachlässigt die Absorption und die Wechselwirkung der von den
einzelnen Atomen ausgehenden Streuwellen untereinander. Diese
Streuwellen sollen sich danach ohne jede Modifikation in einem
bestimmten Aufpunkt zusammensetzen. Die Phasenunteischiede
der einzelnen Wellen sind infolge der regelmässigen Anordnung
der Atome im Kristallgitter genau bestimmt; man hat infolge
der Kohärenz der einzelnen Wellen die Amplituden zu addieren.
Auf diese Weise erhält man eine Intensitätsverteilung, die für
ganz bestimmte Richtungen und bei bestimmten Lagen des

Primärstrahls zum Gitter sehr hohe Werte annehmen kann.
Man kann den Vorgang auffassen als Reflexion an bestimmten
Netzebenen. Erfolgt die Reflexion an der Netzebene (Ihh.^hX),
so ist die Lage des Intensitätsmaximums cp0 gegen den Primärstrahl
gegeben durch die Bragg'sche Beziehung

M - Ä-M
d: Gitterkonstante.
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Auf beiden Seiten von cp0 fällt die Intensität ¦/* schnell auf
Null herab. Man bezeichnet J j J*dcp gebildet über die ganze
Umgebung des Maximums als Integralintensität der Interferenz cp0.

Sie hängt von den jeweiligen Versuchsbedingungen ab. Erfolgt
Reflexion von unpolarisierter monochromatischer Strahlung an
Kristallpulver, das sich in einem kleinen Volumenelement dU
befindet, so ist J gegeben durch den folgenden Ausdruck (18):

Jk, *, x Jpr ¦ const n2 ¦ S \2-p-
1 ± CÜS2 (f ¦] -dV (9)

sin cp ¦ sin *, -

JPr-Q-dV.
Dabei bedeuten:

n Anzahl Atome pro cm3

ij Abstand dV— Aufpunkt
p Häufigkeitsfaktor der Fläche h1hih3
tp Winkel zwischen Primärstrahl und reflektiertem Strahl
S ist die sog. Streuamplitude.

Für kubische Kristalle ist

IS ] S F ¦ e"" "Uk'''' **/,; v*k ''3'

k

x,., jik, zk Koordinaten der Teilehen innerhalb des Elementarbereiehes.

Für ein einfaches kubisches Gitter ist \ S \ \ F \.

Für ein flächenzentriertes Gitter ist j S j 4 | F | für Flächen
mit ungemischten Indizes (entweder alle gerade oder alle ungerade)
und | S | 0 für Flächen mit gemischten Indizes.

dV muss so klein genommen werden, dass die Absorption in
dV vernachlässigt werden kann.

Es zeigt sich aber, dass es Fälle gibt, in denen die Anwendung
der Laue'schen Theorie nicht zutreffend ist und zu falschen Resultaten

führen kann. Offenbar ist die Vernachlässigung der Wechselwirkung

der einzelnen Sekundärwellen untereinander nicht immer
erlaubt. Darwin (19) und Ewald (2I) haben das Problem der
Streuung an Kristallen ohne diese Vernachlässigung behandelt.
Die Aussagen ihrer sog. dynamischen Interferenztheorie der
Kristalle weichen in vielen Punkten von denen der Laue'schen Theorie
ab. Danach soll die Intensität der Interferenzen nicht mehr dein
Quadrat des Absolutwertes der Streuamplitude proportional sein,
sondern dem Absolutwert selber. Die Vorgänge lassen sich
angenähert darstellen als eine Vergrösserung des Absorptionskoeffizienten

bei Reflexionslagen (Extinktion). Dem Primärstrahl wird
nicht nur durch gewöhnliche Absorption (durch Auslösung des
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photoelektrischen Effektes und durch Streuung) Energie entzogen,
sondern auch in Form der reflektierten Strahlen.

Für Kristalle sehr kleiner Dimensionen gehen die Formeln
der dynamischen Theorie in die der Laue'schen über. Die genauen
Berechnungen der Intensität für grössere Kristalle ergeben jedoch
viel kleinere Werte, als wie sie die Beobachtung liefert. Der Grund
liegt in Folgendem: bei den Berechnungen wird das Gitter des

Kristallstückes als ideal, als ungestört vorausgesetzt. Diese
Kristalle erfüllen aber die Bedingung nicht. In Wirklichkeit
weisen sie Verwerfungen auf, durch welche sie in kleine Blöcke
eingeteilt sind. Diese Blöcke sind nicht genau parallel, sondern
gegeneinander ein wenig verdreht (Mosaikkristall). Sind diese
Blöcke sehr klein (idealer Mosaikkristall), so kann für sie einzeln
die Laue'sche Theorie angewendet werden. Sind sie jedoch grösser,
o modifiziert sich nach Darwin* der von der Laue'schen Theorie
gegebene Ausdruck

Jh,h,h,= Jpy Q-dV.
Es gilt dann

iQmqJh,h2h, - J Pr V — ¦ aV

e2 1

* ' - ' mc2 sin 0
m Anzahl Netzebenen /i1/i2/;3 in jedem idealen Block
D Abstand der Ebenen h1h2h3.

Diese Erscheinung wird als „primary extinetion" bezeichnet.
Durch die abschirmende Wirkung der einzelnen, in Reflexionslage

sich befindenden Blöcke auf die hinter ihnen liegenden erfolgt,
selbst im Falle, wenn die „primary extinetion" vernachlässigt
werden kann, eine merkbare Vergrösserung des
Absorptionskoeffizienten (secondary extinetion). Bragg, James und Bosanquet

(20) ist cs gelungen, die sekundäre Extinktion bei Steinsalz
zu bestimmen durch Messungen an Kristallplatten verschiedener
Dicke. So fanden sie als effektiven Absorptionskoeffizienten für
die Fläche (200) für ;. 0,613 Ä den Wert 16,30, während der
gewöhnliche Absorptionskoeffizient von Steinsalz 10,70 ist. Die
Kenntnis von ptelt, das von Fläche zu Fläche verschieden ist,
ist deshalb wichtig, weil diese Grösse bei der Auswertung der
Messergebnissc in die Rechnung eingeht. Der Betrag der primären
Extinktion kann jedoch mit der Methode von Bragg, James
und Bosanquet nicht gemessen werden. Er lässt sich auch nicht
berechnen, weil die Grösse der einzelnen Blöcke nicht bekannt ist.
Alle diese Schwierigkeiten lassen sich jedoch durch Verwendung
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von genügend feinem Kristallpulver umgehen (5- 22- 23). In
diesem Fall darf man mit dem Ausdruck (9) rechnen. Deshalb ist
auch bei dieser Untersuchung Metallpulver, und nicht
Einkristalle, gewählt worden.

Einfluss der Temperaturbewegung.

Die Gitterbestandtcile sind in Wirklichkeit nicht in Ruhe,
sondern schwingen um bestimmte Gleichgewichtslagen. Gerade aus
der Energie dieser Bewegung besteht ja zum grössten Teil der
Energieinhalt der festen Körper. Die Amplitude dieser Schwingungen

ist beträchtlich und darf den Atomabständen gegenüber nicht
vernachlässigt werden. Es ist deshalb von vornherein zu erwarten,
dass diese Temperaturbewegung auch einen Einfluss auf die Rönt-
geninterfercnzen haben wird. Die von den einzelnen Atomen
ausgehenden Wellen sind bei ruhenden Atomen in ganz bestimmten
Phasenbeziehungen zueinander; bei bewegten Atomen werden
diese Beziehungen verwischt, was eine Verminderung der Intensität
der Interferenzen zur Folge hat. Hingegen werden die Schärfe und
die Lage der Interferenzen nicht verändert, wenn man von der
Vergrösserung der Gitterkonstanten infolge thermischer
Ausdehnung absieht. Die genaue Berechnung der Intensitätsverminderung

ist bis jetzt nur für einige wenige Gittertypen gelungen.
Bei StrukturunteiBuchungen wird dieser' Intensitätsabfall
überhaupt vernachlässigt. Berechnet man die Streufaktoren aus den
Intensitäten, ohne der Temperaturbewegung Rechnung zu tragen,
so erhält man zu kleine Werte. Sie sollen im folgenden mit FT
bezeichnet werden. Um aus ihnen die Streufunktion für die ruhenden

Atome (F0) zu erhalten, hat man sie mit einem Faktor zu
multiplizieren, der grösser als eins ist.

Für kuhische Kristalle mit nur einer Atomart gilt

FT - F0 <: " n
3 \ /

»2 mittleres Verschiebungsquadrat der Atome aus ihrer Ruhelage.

Enthalten kubische Kristalle mehrere Atomarten, unel haben
die Atomarten verschiedene u2, so gilt für jede Atomart einzeln

F1T Fi0-e-*>

F,T--F20-e-»>.
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u2 lässt sich nur dann berechnen, wenn die Gitterkräfte
bekannt sind. Bekannt sind diese aber nur für die drei kubischen
Translationsgitter, und auch für sie nur dann, wenn sie aus einer
einzigen Atomart bestehen. Für alle anderen Gitter kann ,/-'

nicht berechnet werden. Hingegen ermöglicht ein Vergleich
der Werte von FT mit den theoretisch vorausberechneten Werten
von F0, die Grösse von %t2 experimentell zu bestimmen (11> 13).

Für die drei kubischen Translationsgitter mit nur einer Atomart

gilt nun nach Waller (25)

M _6^.^j0M+l|m y.0k/.2\x 4 J
v '

dabei bedeuten
h Planksches Wirkungsquantum
x Boltzmannsche Konstante
ni Atommasse
&k Charakteristische Temperatur

_ ®»

*(*) i rjdt7 J „*_!

Der Ausdruck innerhalb der geschweiften Klammer gilt
bei Annahme einer Nullpunktsenergie; im anderen Falle ist der
Summand 1/i zu streichen. Waller hat die Berechnung von AI
auch quantenmechanisch durchgeführt (17). Er findet
Übereinstimmung mit Formel (10), falls für die in der früheren Berechnung
unbestimmt gelassene Nullpunktsenergie der Plancksche Wert
gesetzt wird. Versuche von James, Brindley und Wood (4)

an Aluminium haben gezeigt, dass man Übereinstimmung zwischen
der theoretisch nach der Hartreeschen Methode vorausberechneten
Streufunktion und der experimentell ermittelten erhält, wenn man
eine Nullpunktsenergie annimmt. Weitere Versuche von James
und Brindley an Sylvin (26) und von James und Fürth an
Steinsalz (27), letztere in Verbindung mit den Berechnungen von
James, Waller und Hartree (10), haben ergeben, dass die Formel
von Waller auch bei Vorhandensein zweier Atomsorten in
einem grossen Temperaturbereich (86° bis 600° abs.) gültig bleibt,
jedoch nur für Reflexionen vom Typus E\ -f- F2; bei Reflexionen
vom Typus F1 — F2 liefert sie zu grosse Werte von AI. Eine
Nullpunktsenergie ist auch hier anzunehmen.

Da es sich in der vorliegenden Untersuchung um kubisch-
flächenzentriert kristallisierende Elemente handelt, kann die
Wallersche Formel ohne Bedenken angewendet werden.
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Bei Einführung der Braggschen Beziehung

lässt sich Formel (10) folgendermassen schreiben:

8 h2 [0 (x) 1

M
2 m x 0k d2 I x

Eh? L-Zh7.

Mit Hilfe der von Debye (28) angegebenen Werte von 0
erhält man für T 290° abs. folgende Werte von L

Tabelle 2.

('h vi d L

AI 390° 0,448. 10 "" 4,05 IO8 0,0128
Cu 315' 1,05 3,60 0,0142
Ag 215' 1,78 4,06 0,0102
Pt 225' 3,22 3,93 0,0055
Au 190' 3,25 4,08 0,0070

Berücksichtigung der Absorption.

Bei der Ableitung von Formel (9) wird vorausgesetzt, dass
die Strahlen an einem Volumen von sehr kleinen Ausmassen
reflektiert werden, so dass alle Stellen dieses Volumens von Strahlen
gleicher Intensität getroffen werden. Hat man es nun mit einem
Präparat von grösseren Dimensionen zu tun, so ist es notwendig,
die Absorption im Präparat in Betracht zu ziehen.

Je sei die Intensität des auf das reflektierende Volumenelement

dV fallenden Strahles, Jr die Intensität des an dV
reflektierten Strahles, letztere gemessen in der Entfernung q von dV.
Dann ist

J, =Je-p(Q,<f)-d V,

p bedeutet eine von q und vom Winkel cp, welchen der einfallende
und der reflektierte Strahl miteinander einschliessen, abhängige
Funktion. Ist st der Weg, den der Primärstrahl durch das Präparat
bis zu dV zurücklegt, so wird Je JPr ¦ e_"s>. /« bedeutet den
linearen Absorptionskoeffizienten, JPr die Intensität des Primärstrahls.

Analog beobachtet man nicht Jr, sondern Jr • e~>"">,

wenn mit s2 der Weg des reflektierten Strahles im Präparat bezeichnet

wird. Die gesamte Intensität des am ganzen Volumen V
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reflektierten Strahles in der mittleren Entfernung o0 von V ergibt
sich dann, da die Dimensionen von V gewöhnlich klein sind gegenüber

o0, zu

J Jpr-p(Q0,<p)-fffe-»^+>JdV
v

statt J Jr • p (q0 cp) • V, wenn keine Absorption vorhanden
wäre.

jjje-" <*'+«•> dV
v

ist eine mit cp veränderliche Grösse, die bekannt sein muss, falls
man die Winkelabhängigkeit von p aus den Intensitätsmessungen
bestimmen will.

Es ist naheliegend, eine solche Anordnung zu verwenden,
bei der diese Integration leicht ausgeführt werden kann. Dies
ist z. B. der Fall, wenn man das Kristallpulver in Plättchen
presst, nur muss man hier dafür sorgen, dass die reflektierenden
Xetzebenen entweder parallel oder senkrecht zur Plättchenoberfläche

stehen; man muss für jede Reflexion das Präparat in die
entsprechende Lage zum Primärstrahl bringen (5- 22). Dies geschieht
automatisch bei der fokussierenden Methode von Brentano (29' 30)

dadurch, dass man sowohl das Präparat als auch eine nur einzelne
Stellen des Filmes frei lassende Blende mit bestimmten Geschwindigkeiten

rotieren lässt. Diese Methode verlangt aber zeitlich
konstante Intensität der Primärstrahlen, da die verschiedenen
Interferenzlinien auf dem Film nicht gleichzeitig entstehen. Eine
konstante Röntgenlichtquelle stand nicht zur Verfügung; die
vorliegende Untersuchung ist nach der Anordnung von Debye-
Scherrer ausgeführt worden.

Bei dieser Methode ist das reflektierende Volumen V ein
Zylinder von der Höhe h, falls man eine rechteckige Blonde
verwendet und falls die Divergenz nicht zu gross ist. Dabei ist die
Höhe h klein im Verhältnis zum Radius der Kamera. Beobachtet
wird in gleicher Höhe mit dem Primärstrahl, also in einer Ebene,
die durch den Primärstrahl geht und zur Kameraachse senkrecht
steht (Äquator). Dann ist

fffe-" <*-+*•> dV h ¦ffe-"^+^ df h- A (cp)

v i<

A (cp) f/e-/< <».+«.> df

wobei die Integration nur über den Querschnitt des Stäbchens
erstreckt werden muss.
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a) Berechnung von A (tp) im Falle verschwindender Divergenz.

Es ist möglich, A (cp) analytisch auszurechnen bei einem Stäbchen

mit quadratischem Querschnitt (31). Ein solches Stäbchen
aus Kristallpulver lässt sich aber schwer genau herstellen. Bedeutend

einfacher ist es, Stäbchen mit kreisförmigem Querschnitt zu

pressen; etwelche kleine Abweichungen von der Kreisform lassen
sich noch durch Drehen des Stäbchens während der Aufnahme
kompensieren.

Bei kreisförmigem Querschnitt nimmt A (cp) bei Verwendung
von Polarkoordinaten r, f
Radius des Stäbchens):

(Fig. 1) folgende Gestalt an (R

A(cp)
'(v-<p)

0 ü
n 7" i ¦ i (¥-«)

r dr dt

-At

Fig. 1.

Dieses Integral kann im allgemeinen Falle nicht analytisch
berechnet werden. Man muss entweder graphische oder numerische
Methoden zu Hilfe ziehen. Auf diese Weise haben Debye und
Scherrer (32), Claassen (3), Greenwood (33) und Möller und
Reis (34) diese Integrale für einige Spezialfälle bestimmt.

Zunächst ist es zweckmässig, die Integration über den Kreis
vom Radius R zurückzuführen auf eine Integration über den
Emheitskreis. Setzt man nämlich

r r'- R

/tR= ,,'.



so wird

,1 (<p)=R2ffe„// XV 1-."'' -in (y-yX \ 1—r': sin- y, — r'cos (v— ^l+r'co,- V
I

r' dr' dtp.

Man sieht auch, dass die Veränderlichkeit von A (cp) mit
dem Winkel tp nur vom Produkt aus Absorptionskoeffizient und
Radius des Stäbchens /iR abhängt. Im folgenden soll immer über
den Einheitkreis integriert werden, wobei man aber
dementsprechend als linearen Absorptionskoeffizienten nicht pi, sondern
itR zu nehmen hat.

FjM

Fig. 2.

Für die numerische Berechnung ist es vorteilhafter,
rechtwinklige Koordinaten einzuführen (Fig. 2).

11 sei die Richtung des Primärstrahles (zugleich die positive
y-Richtung), 22 die Richtung des reflektierten Strahles, die mit
dem Primärstrahl den Winkel tp einschliesst. Durch den Punkt F,
in dem sich das streuende Volumenelement befinden soll, legen
wir eine Parallele zu 22; sie ist gegen die x-Achse um den Winkel

-„ cp geneigt; ihr Abstand 00' vom Koordinatennullpunkt sei

mit a bezeichnet. Diese Parallele schneidet den Kreis im Punkte M
mit den Koordinaten X, Y. X und Y berechnen sich zu

V a cos cp 4- ]'l —a2 sin cp

V yl-Ä2.
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Der Punkt F habe von AI den Abstand s. Dann sind die
Koordinaten von F

x — X — s ¦ sin cp

y Y — s • cos cp.

Der Weg, den der in F reflektierte Strahl im Stäbchen zurücklegt,

ergibt sich schliesslich zu

si + s2 y + >7i — j2 + s.

Wir integrieren zunächst über alle Flächenelemente, die auf
der Geraden AIFAP liegen.

A (cp) R2fdafe-"'<» < V1'*'': g)ds R2fI (a, cp) da
-1 ii/ -1

I (a,cp) gibt bei konstant gehaltenem cp in Funktion von a

die Intensitätsverteilung innerhalb der Interferenzlinie q an
(bei punktförmigem Brennfleck).

I (a, cp) ist numerisch zu bestimmen durch die Approximation

I (a, cp) ^fi-f' <«+ V1- xii+si} A s

As wurde so klein gewählt, dass der durch den Ersatz des

Integrals durch eine Summe entstehende Fehler < % % ist.
Die Massenabsorptionskoeffizienten für CuKa-Strahlung sind für
AI zu 51,2 und für Cu zu 50,4 angenommen worden(35). Die
Werte von piR ergaben sich dann bei den verwendeten Stäbchen
für AI zu 5.24 und für Cu zu 8.56.

I (a, cp) ist um so kleiner, je grösser //' ist; pt' • I (a, 9) strebt
mit wachsendem pc' gegen einen bestimmten Grenzwert, der weiter
unten berechnet werden soll. l'm Vergleiche zu ermöglichen, ist
nicht I la, tp), sondern /<' / (a, cp) für verschiedene a und für die
bei AI und Cu auftretenden Reflexionen in Tabelle (3) und (4)
angegeben. Mit diesen Werten lassen sich nun die Funktionen
pt' I (a, cp) für verschiedene cp zeichnen (Fig. 3 und 4). Die von
diesen Kurven eingeschlossenen Flächen ergeben die Werte von

-1^- A (tp), welche in Tabelle (5) und (6) zusammengestellt sind.
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Tabelle 3. /</i=5,24.

^\ cp 38» 22' 44» 36' 64» 55' 78» 0' 82»11'

0,99 0,774 0,731 0,741

0,97 0.798 0,797 0,832

0,95 0,750 0,768 0,818

0,9 0,588 0,635 0.735 0.750 0,752

0,8 0.344 0.401 0.573 0.598 0,618

0.7 0.124 0.190 0,435

0,6 0.039 0,085 0.340 0,434 0.452

0,5 0,013 0,029 0,232

0,4 0,002 (1.010 0,112 0.284 0,318

0,3 0,065

0,2 0.030 0,139 0,179

0.1 0,074

0,0 0.004 0.031 0,055

-0,2 0.004 0,009

a \. 98» 45' 111° 36' 116» r 136° 44' 160° 47'

0,95 0,690

0.9 0,775 0,767 0,761 0.738 0,631

0,8 0,661 0.672 0,662 0.640 0,585

0,6 0,524 0,552 0.546 0,572 0,547

0.4 0.423 0.473 0.484 0,520 0.523

0,2 0,326 0,399 0.416 0.480 0,504

0,0 0.221 0.323 0.346 0.440 0,488

-0,2 0,084 0,228 0,264 0.393 0,472

-0,4 0,017 0.095 0,151 0,332 0,450

-0.6 0,016 0,034 0.242 0,419

-0,8 0.060 0.359

-0,9 0.280
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Tabelle 4. ,uß=8,56.

*\ <p
a *\ 43° 24' 50» 33' 74» 17' 90» 9'

0,99 0,840 0,855 0,868 0,864

0,97 0,793 0,818 0,860 0,866

0,95 0,715 0,750 0,811 0,821

0,9 0,530 0,600 0,702 0,725

0,8 0,300 0,395 0,563 0,612

0,7 0,075 0,231 0,532

0,6 0,017 0,080 0,375

0,5 0,017

0,4 0,213 0,350

0,2 0,040 0,228

0,0 0,083

-0,2 0,006

M\ <p 95° 22' 117° 16' 137» 2' 145° 22'

0,95 0,816 0,816 0,757

0,9 0,727 0,736 0,713 0,687

0,8 0,623 0,648 0,638 0,620

0,6 0,489 0,547 0,564 0,558

0,4 0,378 0,478 0,518 0,521

0,2 0,274 0,411 0,477 0,487

0,0 0,161 0,341 0,431 0,454

-0,2 0,023 0.252 0,385 0,419

-0,4 0,130 0,322 0,372

-0,6 0,011 0,226 0,300

-0,8 0,023 0,145

-0,9 0,014
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Tabelle 5.
Aluminium pR 5,24.

<P A(ip)

38» 22' 0,144
44 36 0,174
64 55 0,297
78 0 0,382
82 11 0,406
98 45 0,532

111 36 0,635
116 7 0,659
136 44 0,815
160 47 0,948
180 0 1,000

Tabelle 6.

Kupfer ptR 8,56.

9 A(tp)

43» 24' 0,133
50 33' 0,172
74 17 0,319
90 9 0,427
95 22 0,469

117 16 0,646
137 2 0,802
145 22 0,857
180 0 1,000

Im Grenzfalle grosser Werte von fiR vereinfachen sich jedoch
die Verhältnisse derart, dass es möglich ist, die angegebenen
Integrale streng zu berechnen.
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Fig. 3.
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In Fig. 5 bedeutet POP die Richtung des Primärstrahles,
OR die Richtung des reflektierten Strahles. Durch einen Punkt F
des Flächenelementes df legen wir eine Parallele zu OR, die die

Peripherie des Kreises in M und M' schneidet und von 0 den

Abstand a hat. Der Abstand FM sei mit s bezeichnet. Man

integriert zunächst über alle df, die auf der Sehne MM' liegen.
Zu diesem Integral tragen wegen der grossen Absorption nur
solche df bei, für welche s klein ist; dann lüsst sich die
Kreisperipherie durch die Tangente an den Kreis in AI ersetzen und die

Integration über s statt bis s MM' bis s co erstrecken.
Aus AFMQ' (<x arc cos «, <£FM<2'=a, <£ Q'FM n-<p,
<£MQ'F <p-a, FQ' s') folgt

sm a

sin (cp — a)

s + s' sU 4
sin a

sin (tp — a)
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Es folgt dann

I («) fe "'<«^ds fe-"'*{i + snffey}

!(«) L.[_^.Z^ j für cos ^«^ + 1. (11)
ti (sm (tp— a) + sina

p-r-

(11) gilt nur für solche Werte von a, für welche der Punkt AI
im den von den Strahlen getroffenen Bereich der Peripherie fällt,
oder, wie man sich leicht überzeugt, nur im Intervall cos cp sS a
-X* -f- 1. Für a 5S cos tp ist I (a) 0. Fig. 6 stellt die auf diese

Weise berechneten Funktionen //' • / (a, cp) dar für cp gleich 30,

45, 60, 90, 120, 150 und 180 Grad.
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Man erhält schliesslich

+ 1 +1

f R2 f sin (<P~ <*¦)
-,

A(<p) R*jl(a)da=«jsin{yZ)+^d<

R1 I sin (cp — x) sin <x

.4 (w) — / -— :— dv.
tt / sin (cp — a) + sin y.

(12)

Der Ausdruck (12) ist der gleiche, wie ihn Claasskn auf
anderem Wege abgeleitet hat. Claassen gibt an, dass man dieses

Integral graphisch oder numerisch bestimmen müsse. Das Integral
ist aber streng lösbar.

Setzt man
x cos x

dx — sin xdy.

\1 —x2 sin oc

so wird

¦ i
sin (cp — y.) sin oc x ¦ sin cp — ]/l — x2 • cos cp

sin (cp — a) + sin a .7 x sjn ^ + y j _ x2. (j _ cos ^
dx.

Der Integrand lässt sich auf folgende Weise umschreiben:

rp:
<?¦

x -sin 93 — ]/l — x2 • cos cp

x ¦ sin cp — -j/l — x2 • (1 — cos 9?)

x2 (1 —cos tp) I cos <p (1 —cos <p) —xyl'—x2 - sin 7

(1 — cos cp) [2 a:2 — (1 — cos cp)]

cos2 y> 1 sin 95

2 2 x2 — sin2 y> 2(1— cos <?) | ^2 — sin2 y)|/l - x2

1 cos2 y> I ' 1

(.r,2 — sin2 y>) j/l - x2 I 2 4 sin xp \ x - sin y> x + sin

COS y> ,r • cos2 y>

2 sin y, | (X2 _. sin2 xp) ]/l - x2 *¦/! - x2
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^.A(cp)=±+[dx + ^R 2„
COS 9

+ 1

AL fixpj c

dx cos2 yi

¦ l
dx

4sinyii/ x—sin yi 4siiiyiy x + sin y>

COS y> COS ,-r

+ 1

COS-5 y; /
4 sin xp J (,r —sin

COS (/

dx cos3 y»

i

(/./'

yi) }/l - x2 4 sin xpj [x _|_ Sin w) yi _ 3.2

+

+ 1

cos xp X x dxV

2s\nxpJ 1/1 _,x-

Substituiert man noch im vierten Integral x — sin y>

mnd im fünften x + sin xp so gelangt man zu Ausdrücken,
che sich leicht integrieren lassen. Das unbestimmte Integral wird

/ .?• • sin cp- l/l- .1- • cos cp

x ¦ sin cp + j/l - x2 • (1 — cos 9?)
¦dx

cos

-2X-
2 sin |

Yi
cos 2 1-

A 4- lll
2 sin

l/r cos

sin
(13)

Für A (tp) erhält man dann, falls man noch für //' seinen Wert
//< R einsetzt

t> I cos2 lA(cp)^H 1+ M
" I 2 sin l

cos 7 + sin |
(l + sinf) (1+2 sinf)

_

(14)

.4 (180°)

Die folgende Tabelle enthält die Werte von ~ ¦ A (cp) von
z'.ehn zu zehn Grad; daneben stehen die Werte von A (cp), bezogen
aiuf A (180°) 1, die von Möller und Reis für den Fall piR 100
und tiR 1000 angegeben worden sind.
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Tabelle 7.

<f i-AW A(tp):A(\U°)- 11. u.R. <P i-M9)\A tf): .1(180") -I.n.R.

0 0,0000 100 0,4549
10 0,0071 110 0,5365
20 0,0201 120 0,6198 0,618
30 0,0457 0.0486 130 0.7032
40 0.0801 140 0,7840
50 0,1235 150 0,8594 0,852
60 0,1760 0,185 160 0,9254
70 0,2362 170 0,9761

80 0,3033 ISO 1.0000 1,000

90 0,3768 0,365

ft'Ifo.fl

08

0.6

0.4

50

45

50
Oi

O.S 0.90.5 0.6

Fig. 6a.
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Fig. 7 stellt die Funktion

cos 2 <f>

2

2 sin |
In

cos cp + sin ¦—

(l+sin|)(l + 2sin-|)

dar; daneben ist noch der Verlauf von ~^-• A (cp) für die Fälle

ptR 5,24 und ptR 8,56 eingezeichnet. Wie man sieht, ist der
Verlauf von A (cp) bei ptR 8,56 schon sehr ähnlich dem Verlauf
von A (cp) bei uR oo. Für die Werte von uR > 50 wird die
Funktion A (cp) praktisch mit der angegebenen Funktion (14)
übereinstimmen, so dass der Gebrauch von Formel (14) in allen
diesen Fällen die langwierigen numerischen Berechnungen bedeutend

abkürzen kann. Für Silber, Platin und Gold ist A (cp) mit
Hilfe dieser Formel berechnet worden.
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Die von Greenwood für seinen Fall (ptR 9) erhaltenen
Werte von A (cp) fallen mit abnehmendem cp viel langsamer ab,
als die vom Verfasser erhaltenen Werte von A (cp) bei ptR 5,24.
Es ist wohl bei seinen Berechnungen irgend ein Fehler unterlaufen,
weshalb auch seine Resultate für die Streufunktion von Aluminium
mit den Messungen von Bearden und von James, Brindley u.
Wood nicht übereinstimmen.

b) Berücksichtigung der Divergenz.

Die angeführten Berechnungen sind unter der Annahme von
parallelem Licht gemacht worden. In Wirklichkeit ist jedoch
immer eine gewisse Divergenz vorhanden. Es soll nun die Berechnung

von A (cp) im Falle grosser Absorption bei Berücksichtigung
dieser Divergenz durchgeführt werden.

Die geometrischen Verhältnisse sind in Fig. 8 dargestellt.
B sei der (zunächst als unendlich klein angenommene) Brennfleek,
0 der Mittelpunkt des kreisförmigen Querschnittes, F der Ort des

streuenden Elementes df. Wir ziehen, wie zuvor, durch F eine

parallele Gerade zu OR, die von 0 den Abstand a haben und die



Peripherie in den Punkten M und AI' schneiden soll. Wir
integrieren wieder über alle Flächenelemente, die auf dieser Geraden

liegen und können dabei die Peripherie durch die Tangente in M

*-{*'fi.J

*>-f«'fl.)

Fig. 8.

(ersetzen. Der in df reflektierte Strahl wird aber nicht mehr in
ider Richtung FM austreten, denn er muss mit der Richtung BF,
iumd nicht mit der Richtung BO den Winkel cp einschliessen. Die
Strecke FM kann als sehr klein angesehen werden, wir können dann
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< OBF ß durch <£ 053/ ß0 ersetzen, wobei ß0 sich mit Hilfe
des Winkels AIOB =--. -— (71 — a) berechnet zu

/»o
D7)

cos (99 — x)

D bedeutet den Abstand BF - BO.

Der in F reflektierte Strahl ist dann zur Richtung FM ebenfalls

um den Winkel ß0 geneigt, und wir können jetzt die Wege st
und s2 berechnen (Fig. 8 a).

Aus .1 FA1AF" folgt

sin x
s sin(a + /S0)

ebenfalls aus Dreieck FAIQ'

s, sin oc

oc arc cos a

sin [y — (oc+ /?„)]

s, + s9=s • sin ot-
sin(a + j80)

' sin [95— (a + /?,,)]_

Wir integrieren über alle df auf MM':
¦ f x 1 1

Hin a -\ -r nlsin(a+/5„) sin [?>-(a+/"„)] / OSl*(a,fp) fe-"'l''+"')ds fe-

,«'' ^* (a, V5)

sin a

sin («.+ ß0) sin[99— (a + ß0)]
sin [cp — (a X- ß0)] X sin (a X ß0) \

Ist />„ klein, so kann man

setzen, und erhält

cos ß0 1

sin ßo 0o

/«'• l*(a,cp)
{1 + gg eotg oc} {sin (y — q) — ß0 cos (y — x)}^
sin (cp — x) + sin oc — ß0 cos (y — x) + ß0 cos x

i* («. y) in Funktion von a gibt jetzt nicht mehr die
Intensitätsverteilung innerhalb einer Debye-Scherrer-Linie; für die
gesamte Intensität ist dies aber ebenso belanglos, wie die endliche
Ausdehnung des Brennfleckes.

D betrug bei den Versuchen ca. 12 cm, R 0,09 cm. Die Berechnung

mit Berücksichtigung der Divergenz ist nun für die Werte
D 12 cm, R 0,09 cm für die Winkel 30, 45, 60, 90, 120 und
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150 Grad durchgeführt worden; die erhaltenen Weite sind in
Fig. 6 als schwarze Kreise eingetragen. Wie man sieht, sind die

Abweichungen, die durch die Divergenz venu sacht werden,
sehr klein, so dass die Vernachlässigung der Divergenz in unserem
Falle berechtigt ist.

c) Absorptionseinfluss in Pulvern.

In einem Kristallpulver sind die einzelnen Teilchen durch
Zwischenräume getrennt. Die Absorption ist dann kleiner als in
kompaktem Metall. Dies wird dadurch berücksichtigt, dass man
als linearen Absorptionskoeffizienten nicht den

Absorptionskoeffizienten des Metalles, sondern // pi • — in die Rechnung

»».4

Fig. 9.

einführt, (q: Dichte des Metalles, 7> mittlere Dichte des
Metallpulvers inkl. Zwischenräume.) Die Anzahl der streuenden Teilchen«,

pro cm3 ist dann ebenfalls im Verhältnis — kleiner. Den auf diese

Weise berechneten Absorptionsfaktor wollen wir mit A (cp)

bezeichnen.
Die Volumenelemente dV müssen so klein gewählt werden,

dass sie an allen Stellen von gleicher Intensität getroffen werden.
Damit aber die oben gegebene Berechnungsart richtig ist, müssen
sie zugleich viele Pulverteilchen enthalten. Ist die Absorption
nun so gross, dass sie sich schon beim Durchgang durch ein
einzelnes Pulverkorn bemerkbar macht, so muss dV auch kleiner
als ein Pulverteilchen sein. Die Verhältnisse für diesen Fall sind
in Fig. 9 dargestellt.
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Statt
A (cp) [ffe-t<*'+>AdV

hat man nun zu setzen

a (cp) yyye-? (»/+<,')-<« <«."+*.")d 7

was auch folgenderniassen geschrieben werden kann

,4 (cp) --- f f fe-"'-*l' '<" ¦ ».'+*»") • e-(/'-/'X*,"-«ä")rf |* _

Der Unterschied gegen früher äussert sich im Faktor

p (/'—/O (••¦" I s.")
_

Ist das Produkt aus Dimension D der Teilchen und (u — /c)

klein, so kann dieser Faktor gleich 1 gesetzt werden. Im anderen
Falle wird er kleiner als 1 sein; er hängt von Grösse und Lage der
Teilchen ab. Dann wird auch

A (cp) a • A (cp), wobei a :S 1

Man kann nun folgende Fälle unterscheiden:
1. Einzelkristalle, (pt,—Jt). D klein fl 1.

2. Einzelkristalle, (u—Ji). D gross a < 1.

verschieden für die verschiedenen Reflexionen.
Hängt von Habitus ab.

3. Kristalle klein, enthalten in Teilchen, für welche (ft /<). /)
gross
a) Kristalle in Teilchen unregelmässig angeordnet a < 1

gleich für die verschiedenen Reflexionen.

b) Kristalle im Teilchen gerichtet o < 1

verschieden für die verschiedenen Reflexionen.
Hängt von Lage der reflektierenden Flächen
in bezug auf die äussere Begrenzung ab.

Bei einem Präparat aus zwei Pulvern wird zwar A (cp) für
beide Substanzen gleich sein, a im allgemeinen aber nicht. Vielleicht
ist dies der Grund, warum Brentano für F200 (6) von Gold einen
um über 25% zu kleinen Wert erhalten hat; er verwendete ein
Gemisch von Nickeloxyd und Goldpulver, das aus 10~6 dicker Folie
hergestellt war. Die Kristalle sind dann sehr klein, die
Pulverteilchen jedoch nicht (Fall 3a).

Bei der Messung der Winkelabhängigkeit von F sind nur
solche Präparate brauchbar, bei denen entweder Fall 1 oder Fall 3

vorliegt. Bei Absolutbestimmungen muss Fall 1 vorliegen.
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Die Integralintensität berechnet sich zu

J jj-dcp=h,Jpr- jA (cp)-p (o0,cp)dcp.

Da nun p (g0, cp) nur in einem kleinen Bereich um den durch die

Braggsche Beziehung gegebenen Winkel y0 von Null verschieden
ist, und da .4 (cp) sich langsam und meistens linear ändert, so
kann man schreiben

J =--h- A (y„) • JPr- J p (Q0,cp)dcp.

I P (Qo> 9) dcp ist alier nach Definition der Faktor von dV
in Formel (9).

Somit erhalten wir als Grundlage für die Auswertung der
Messergebnisse

./*,*..*, M-const,,2 •(/.-„ e »yy p A (c,) ¦ --' C°*2 * (15)
sin 7 • sin '

ItesliiiiMiiiiii) der Absolutwerte von F.

Bei der vorliegenden Untersuchung wurde auch versucht,
für Cu und Au den Absolutwert von F für eine Fläche zu bestimmen,
denn dann lässt sich die ganze Streufunktion in absolutem Masse

angeben. Zu diesem Zwecke wurden Aufnahmen hergestellt an
Gemischen von AI- und Cu-, bzw. Cu- und Au-Pulver (Gewichtsverhältnis

GX:G2). Aufnahmen an einem Gemisch aus AI- und
Au-Pulver können nicht verwendet werden, da wegen der nur
kleinen Differenz in den Gitterkonstanten die Linien beider Metalle
auf die gleichen Stellen fallen und sich nicht getrennt messen lassen.
Die Linien AI (220), Cu (220) und AI (311) bzw. Cu (220), Au (311)
und Cu(311) fallen mit keiner anderen Linie zusammen. Man

bestimmt ihre Integralintensitäten J und berechnet •/' —
' Dann

kann man z. B. aus J'(AI 220) und -/' (AI 311), -/'(AI) für den

gleichen Wert von —.--berechnen, wie er der Fläche Cu (220)

zukommt (durch lineare Interpolation). Analog für Cu und Au.

Nach (9) besteht nun für einen bestimmten Wert von —-.—
die Beziehung

JJ _
n2 JF2 e **)*_ djT2

Jx'
~~

n2
'

(P\ e--".)2
' dVl"
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Der Absorptionsfaktor ist für beide Stoffe der gleiche, falls
das Pulver so fein ist, dass man die Absorption in einem einzelnen
Pulverkorn vernachlässigen kann.

Die Gitter der in Frage kommenden Metalle sind sämtlich
flächenzentriert. Dann gilt

n2 dj3

nx d2B

Ferner ist, falls y das spezifische Gewicht bedeutet:

d F? G2 Cj'j

d Vj y2 71

•V (dsy (F2 e-f')2 GiYl
¦JX \ dX]

'

(^i« •U')2 71, y2-

Kennt man nun den Wort von Fxe il\ so berechnet sich F2e~iIs zu

F e ". F e -"¦ • I --*- ¦ I y \\\l(!^2 Q6)1 I JX \dJ I <7Yi
'

Der Wert F für Aluminium ist aus den Angaben von James.
Brindley u. Wood bestimmt worden.

Die Apparatur.

Als Röntgenstrahlenquelle diente eine Haddingröhre aus
Metall, deren Antikathode mit Wasser und deren Kathode mit
Petroleum gekühlt wurden. Die von der Cu-antikathode
ausgehende CuKa-Strahlung ist unpolarisiert (36). Die angelegte
Spannung betrug 45 KV, die Stromstärke 7 bis 8 mA. Die
Expositionsdauer war bei Verwendung von beidseitig begossenem Agfa-
Laue-Film für Aluminium, Kupfer und Silber acht Minuten, bei
Platin und Gold 12 Minuten.

Der Aufbau der verwendeten Kamera ist aus Fig. 10 und
Fig. 11 ersichtlich. Die Kamera ist in Messing ausgeführt. Der
Primärstrahl tritt durch eine rechteckige Blende in die Kamera.
Vor der Blende ist ein Filter aus Nickelfolie (Dicke 0,014 min)
angebracht, um die CuK/?-Strahlung und die langwelligeren Strahlen
des Bremsspektrums zu unterdrücken. Eine viereckige Blende
wurde gewählt, um die bei der Berechnung des Absorptionseinflusses

vorausgesetzten Verhältnisse zu verwirklichen. Die Blende
(Fig. 12) besteht aus einem Messingröhrchen, in dem zwei Scheibchen

mit Öffnungen angebracht sind. Die Öffnungen sind recht-
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eckig und haben eine Grösse von 1,5 X 2,0 mm. Hinter der zweiten
Scheibe ist die Blende verbreitert. Dies soll dazu dienen, um die in
der Blende entstehende Streustrahlung auf einen engen Strahlen-

fl_H

I
\\\^\\\\\\w\\\wss;

m
m

SZ 2
Fig. 10.

Ö--

6>

Fig. 11.

kegel zu begrenzen. Die Kamera selbst besitzt einen Durchmesser
von 80 mm; er wurde deshalb grösser gewählt, damit der Radius
des Präparatstäbchens im Vergleich zum Kameraradius als klein
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betrachtet, und die Entfernung streuendes Volumenelement-Film
gleich dem Kameraradius gesetzt werden kann. Der Deckel (A),
der Stäbchenhalter (B) und die Blende sind mit Schliffen versehen,
so dass die Kamera auch als Vakuumkamera dienen kann. Grosse

"EP

¦¦^7>R^W

Fig. 12.

Sorgfalt wurde verwendet auf genaue Zentrierung des Stäbchen-
halters. Es wurde auch eine neue Befestigungsart für den Film
gewählt, da bei der gewöhnlichen Befestigung durch Federn der
Film leicht beschädigt wird. Statt dessen ist in der Kamera ein
Zylinder (Fig. 13 C) aufgestellt, der der Wand dicht anliegt. Oben
ist der Zylinder konisch abgedreht, so dass zwischen ihm und der

Anscfilagöp/dflehen L

Kamera

h/a/zd

1
Q/'ngD

film

I
Zy/wc/er C

Fig. 13.

Wand eine Rille entsteht. In diese Rille wird der Film
hineingestellt. Ein analog abgedrehter Ring (D) mit drei Anschlags-
plättchen (E) hält den Film von oben fest. Der Primärstrahl
verlässt die Kamera durch ein mit selnvarzem Papier abgeschlossenes

Austrittsrohr.
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Das Kupferpulver wurde durch Fällung mit Zink aus
Kupfersulfatlösung gewonnen. Teilchengrösse 2—3 /<; die einzelnen
Kristallblöcke werden wohl kleiner sein. Die Teilchengrösse bei
.Silber betrug 3 pt. Für Aufnahmen an Platin wurde Platinmoor
verwendet. Das Goldpulver war aus sehr dünner Folie hergestellt.
In den beiden letzteren Fällen war es möglich, die mittlere Kristall-
grösse zu bestimmen; und zwar durch Messung der Halbwertsbreite

• Ptotm
o Gold

/ Jy^

jf^O

Fig. 14.

der Interferenzlinien. In Fig. 14 sind die Halbwertsbreiten (in
cm Film bei 14facher Vergrösserung) für Silber, Gold und Platin
aufgetragen in Funktion von -pr Der Verlauf der so erhaltenenD cos (y
Kurven ist gerade. Nun besteht nach Scherrer (3?) zwischen der
Halbwertsbreite B und der Kantenlänge W der würfelförmig
gedachten Teilchen (unter Voraussetzung parallelen Lichtes und
bei fehlender Absorption) folgende Beziehung:

B-B0 21 In2 X J_
ti

'
W

'
cos© (H)

Diese Beziehung wird durch eine Gerade dargestellt, deren
Neigung

2l/ln2 X

2\ 71 W

ist. Nun ist in Wirklichkeit das Licht ein wenig divergent,
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und auch das Material ist stark absorbierend, was eine neue
Winkelveränderlichkeit von B verursacht. Die Aufnahmen an
Silber, Gold und Platin sind jedoch unter gleichen Verhältnissen
(gleiche Divergenz) hergestellt worden. Auch die Absorptionsverhältnisse

sind, wie schon oben gezeigt, für alle drei
Substanzen gleich. Nimmt man nun an, dass das Silber keine
Linienverbreiterung infolge verkleinerten Auflösungsvermögens
aufweist, so stellt die Neigung der zu Silber gehörenden Geraden
den Absorptions- und Divergenzeinfluss dar, der sich nun bei Gold
und bei Platin berücksichtigen lässt. Man subtrahiert die Neigung
der Geraden von Silber von den Neigungen der Geraden von Gold
und Platin und kann nun aus diesen ,.reduzierten Neigungen"
mit Formel (17) den mittleren Wert der Teilchengrösse von Gold
und Platin bestimmen. Er ergab sich auf diese Weise bei Gold zu
2- 10-«, bei Pt zu 7- 10~7 cm.

Die Pulverstäbchen wurden durch Pressen durch Glaskapillaren

hergestellt, bei Cu und Ag ohne Hinzufügung von Bindemittel,

bei AI, Pt und Au mit Beimischung von stark mit Äther
verdünntem Kollodium. Aussen wurden die Stäbchen mit einer
feinen Kollodiumhaut umgeben. Der Durchmesser wurde unter
dem Mikroskop einer Teilmaschine gemessen und erwies sich als

genügend konstant.

Zur Messung der Intensitäten wurden die Filme mit einem
Moll'sehen Registriermikrophotometer längs des Äquators aus-
photometriert, die Platinaufnahmen im Verhältnis 1 : 7, alle
übrigen im Verhältnis 1 : 14. Um die Schwankungen infolge des

photographischen Kornes zu vermindern, wurden immer je zwei
Filme genau aufeinandergelegt und miteinander photometriert.
Auf der Registrieraufnahme wurden zugleich Schwärzungsmarken
angebracht, auf Grund deren man den Zusammenhang zwischen
Ausschlag des Galvanometers und der Schwärzung bestimmen
kann. Somit war es möglich, die Registrierkurve auf Schwärzungs-
kurve umzurechnen.

Gemessen wurde im Äquator, wo die Strahlen senkrecht auf
den Film einfallen, also gleich stark absorbiert werden und bei

gleicher Intensität gleiche Schwärzung erzeugen. Fallen nämlich
die Strahlen verschieden schief auf den Film, so verursachen sie bei

gleicher Intensität verschiedene Schwärzungen (38), ein Umstand,
der leider bei vielen Untersuchungen unberücksichtigt gelassen wird.

Die Schwärzungen waren (beim doppeltbegossenen Film) überall

kleiner als 0,6, so dass man Proportionalität zwischen Schwärzung

und Intensität annehmen darf (39, 40- 41).
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Der Intensitätsverlauf in der Umgebung einer Interferenzlinie
ist in Fig .15 schematisch wiedergegeben. Die Linie macht sich
als Zacke über dem allgemeinen Verlauf bemerkbar. Der Flächeninhalt

dieser Zacke ist proportional der Integralintensität dieser
Linie.

Bei den Platinaufnahmen wirkte die Pt-Eigenstrahlung
störend, indem sie eine stärkere Hintergrundschwärzung erzeugte.
Diese Eigenstrahlung wird angeregt durch den kurzwelligen Teil
des Bremsspektrums, der sich durch Filterung nicht unterdrücken
lässt. Es wurde deshalb versucht, Aufnahmen mit monochromatischer

Strahlung herzustellen. Die CuKa-Strahlung wurde durch

¦ ünie

Untergrund

Fig. 15.

Reflexion an einem Kristall aus der Primärstrahlung isoliert.
Die zwei Forderungen, die man an einen Monochromator stellen
muss, sind erstens grosse Intensität und zweitens leichte Einstellbarkeit.

In Fig. 16—19 ist ein Monochromator dargestellt, wie er
für die vorliegende Untersuchung gebaut wurde. Er lässt sich für
beliebige Wellenlängen einstellen. Als Kristall wurde Zucker
verwendet, da Zucker eine grosso Intensität liefert. Der ganze Apparat
ist in möglichst kleinen Dimensionen gehalten, damit der Abstand
Brennfleck-Präparat nicht zu sehr veigrössert wird. Der Apparat
ist direkt an der Kamerablende befestigt. (A) ist das im Träger
(B) drehbare Kristalltischchen mit dem Kristallhalter (C). Die
Drehachse des Kristalltischchens steht senkrecht zur Blenden-
achse. Das Tischchen besteht aus zwei Teilen, die durch eine auf
der Rückseite angebrachte breite Stahlfeder miteinander
verbunden sind. Der Kristall ist an der oberen Platte befestigt.
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Durch Verstellen der Feder (D) lässt sich die gegenseitige Neigung
der beiden Teile so lange verändern, bis die reflektierende Fläche
parallel zur Drehachse steht. Die Kontrolle darauf erfolgt optisch:
ein durch die Blende geschickter Lichtstrahl muss sich in diesem

RF
$

n

ü wv

=1

Fig. 16.

<s>

h-Os 7

Fig. 17.

Fall an der Kristallfläche durch die Blende zurückreflektieren
lassen. Der Arm (E) ist mit dem Kristalltisch fest verbunden,
der Arm (7*1) ist frei und kann vermittels Schraube (Ct) am Träger
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¦

Fi<z. 18

Fig. 19.
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festgeklemmt werden. Arm (F) trägt eine lange Schraube (H),
die durch eine Spiralfeder gegen Arm (E) gedrückt wird; durch
Verstellen dieser Schraube erfolgt Feineinstellung des Kristall-
tischchens. Die Lage desselben kann an einer 2°-Teilnng auf ca. 1/3°

genau abgelesen werden.
Zur Einstellung des Reflexionswinkels wird ein Röntgenstrahl

durch die Blende geschickt und der Kristalltisch so lange
verdreht, bis Reflexion eintritt. Dann wird die Blende in die Kamera
eingesetzt und nun die Kamera mit Kristall so lange verstellt,
bis die Röntgenstrahlen auf den Kristall unter dem richtigen
Winkel einfallen und in die Kamera reflektiert, werden. Diese
Einstellungen erfolgen visuell; der reflektierte Strahl lässt sich
auch nach seinem Durchgang durch die Kamera mit einem
Fluoreszenzschirm gut sichtbar machen.

Damit die Peripherie eines Querschnittes des Pulverstäbchens
in allen Punkten von Strahlen gleicher Intensität getroffen wird,
muss die Drehachse senkrecht zur Kameraachse gestellt werden;
dann fällt die „Spektrallinie" senkrecht zur Stäbchenachse ein.
Es ist dann bequem, die Kameraachse horizontal zu stellen, wie
man aus Fig. 19 ersieht.

Die Reflexion der CuKa-Strahlung erfolgte an (100) in
dritter Ordnung. Der Abstand der Netzebenen (100) beträgt
10,57 Ä (42). Für den Glanzwinkel findet man somit den Wert
12° 36', während er mit der 2°-Teilung zu 13,0° bestimmt worden ist.

Die Expositionszeit für Platin betrug 60 Stunden. Die
Verwendung von monochromatischem Licht hatte nun zur Folge,
dass das Auftreten von Eigenstrahlung unterblieb, und die
Interferenzlinien sich bedeutend deutlicher aus dem noch bleibenden
Hintergrund (Wärmestreustrahlung) hervorhoben.

Bei Verwendung eines Monochromators ist es erforderlich,
die Polarisationsverhältnisse in Betracht zu ziehen, denn die
ursprünglich unpolarisierte Strahlung wird nach der Reflexion
teilweise polarisiert sein. Tm folgenden sollen die Elektronen als
isotrop gebunden betrachtet werden, sowohl in den leichten Atomen
des Zuckers, als auch in den Pt-atomen. Letzteres ist nach
Versuchen von Mark und Szilard (43) sicherlich berechtigt. Die
Rechnung soll anhand von Fig. 20 durchgeführt weiden.

PP sei die Richtung des Primärstrahls (in der Zeiehnungs-
ebene). Wir denken uns die Lichtschwingungen zerlegt in zwei
Schwingungskomponcnten, welche senkrecht aufeinander stehen
(« in Zeichnungsebene, b senkrecht zu derselben), inkohärent sind
und gleiche Amplitude haben. Massgebend für die Schwingungsamplitude

nach der Reflexion ist die Projektion des Schwingungs-
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vektors vor der Reflexion auf die zum reflektierten Strahl
senkrecht stehende Ebene. Die Amplituden der beiden
Schwingungskomponenten sind somit nach Reflexion

a' ~ cos x
b'~l.

¦/ Winkel zwischen einfallendem und reflektiertem Strahl.

Die Richtung des reflektierten Strahles sei nun in die x-Achse
eines Koordinatensystems xyz gelegt, z sei die Achse der Debye-
Scherrer-Kamera (in der Zeichnungsebene). Der reflektierte

3t P

Fig. 20.

Strahl wird in <S nochmals reflektiert, so dass er in der Richtung S B
weitergeht (<C BSN' xp, <£ BSN cp). Den beiden Schwin-
gungskompononten des in S einfallenden Strahles entsprechen
zwei linear polarisierte Wellen des in S reflektierten Strahles,
deren Amplituden

a" ~ cos % cos xp

b" ~ j/cos2 y + sin2 xp

sind. Da beide inkohärent, sind, ist die Gesamtintensität des

Strahles SB gleich der Summe der Einzelintensitäten, also

J ~ cos2 x cos2 xp -f- cos2 y -| sin2 xp.

Ist xp klein, so gilt
J ~ cos2 x + cos2y + xp2,

falls längs des Äquators photometriert wird:

J~ cos2-/ + cos2y. (18)

Im Ausdruck (15) für die Integralintensität hat man demnach
den Faktor 1 X-cos2y durch cos2^ + cos2y zu ersetzen. Dies gilt
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natürlich nur für den Fall, dass die Drehachse des Monochromators
senkrecht zur Kameraachse steht. Sind beide parallel, so ist

J~ 1 cos2 ¦% cos2 </ -

Die Ergebnisse.

Die Ergebnisse der Messungen sind in den folgenden Tabellen 8
bis 14 zusammengestellt. Die aus den Intensitäten berechneten
Streufunktionen für AI, Cu, Ag, Pt und Au sind in den Figuren
21 bis 25 dargestellt. • bedeuten die Werte von Fe~M, Q die
Werte von F; bei Pt sind die Werte, die aus monochromatischen
Aufnahmen hergeleitet worden sind, durch © bezeichnet. In
die Figuren sind auch die Streufunktionen von Silber, Gold und
Platin eingezeichnet, wie sie sich auf Grund der Thomas-Fermischen
Ladungsverteilung berechnen lassen. Die theoretischen Werte von F
für Aluminium sind nach der Ilartreeschen Methode von James,
Brindley und Woon (4) berechnet worden. Für Kupfer lag eine
theoretische Berechnung der Streufunktion nicht vor. liier sind
zum Vergleich die experimentellen Werte von F,r, die von
Armstrong (x) angegeben worden sind, herangezogen. Diese sind
mit + bezeichnet.

Tabelle 8.

Aluminium.
4,05 Ä (44)d

U ¦

pR
T

51,2
5,24
290° abs. Mittel aus 4 Aufnahmen.

Qk 390° abs.
0 0,715
L 0,0128

Fläche &
sin 0

•/rel V A(tp) r^Trol eM -'Mi

111 19°11' 0,214 UM) 8 0,144 33,1 1,030 34,5
200 22 18 0,247 61,0 6 0,174 32,1 1,053 33.8
220 32 28 0,349 65,7 12 0,297 27,6 1,108 30,6
311 39 0 0,409 83,0 24 0,382 23,1 1,151 26.6
222 41 6 0,428 30,0 8 0,406 24,3 1,166 28,4
400 49 23 0,494 14,0 6 0,532 17,9 1,227 22,0
331 55 48 0.538 54,4 24 0,635 15,5 1,275 19,8
420 58 4 0,552 62.3 24 0,659 15,7 1,307 20.5
422 68 22 0,605 79,0 24 0,815 13,0 1,360 17.7
333

511
80 24 0,641 257

8

24
0,948 12,1 1.413 17.1



113

Tabelle 9.

Kupfer.
d ----_ 3,60 Ä (u
/« - 50,4
pR 8,56
T 290° abs. Mittel aus 4 Aufnahmen
<->, 315° abs.
>1> 0,762
L 0,0142

Fläche &
sinf)

;.
¦In-) P A(tp) ¦^Trel eM ¦forel

111 21042' 0,241 100 8 0,133 39,5 1,044 41,3
200 25 17 0,278 54,4 6 0,172 35,2 1,058 37,2
220 37 8 0.393 55,2 12 0,319 27,9 1,120 31,3
311 45 5 0,461 70,7 24 0,427 22,1 1.169 25.8
222 47 41 0,481 23,4 8 0,469 21,3 1,186 25,3
331 68 31 0,605 82,5 24 0,802 13,3 1,310 17,4
420 72 41 0,621 106 24 0,857 12,9 1,329 17,1

d

ptR
T :

Tabelle 10.

Silber.
4,06 ÄCe;
50
290° abs. Mittel aus 6 Aufnahmen.

0
L

0,831
0,0102

Fläche 0
sin &

^rel V A(tp) ¦fr rel eM ¦forcl

111 19° 9' 0,213 100 8 0,0736 41,3 1,031 42,5
200 22 15 0,246 60,2 6 0,0988 37,9 1,042 39,4
220 32 22 0,348 72,4 12 0,204 31,0 1,085 33,8
311 38 53 0,408 112 24 0,288 27,6 1,119 30,9
222 40 59 0,427 37,1 8 0,318 27,3 1,130 30,8
400 49 13 0,493 22,5 6 0,442 22,3 1,177 26,3
331 55 36 0.537 122 24 0,546 22,6 1,214 27,4
420 57 50 0,551 135 24 0,584 21,9 1,226 27,0
422 68 1 0,603 215 24 0,752 20,0 1,277 25,6
333
511

79 35 0,640 622 8

24
0.920 17,8 1,317 23,5
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Tabelle 11.

Gold.

d 4,08 Ä (' ")

pR > 50

T 290° abs Mittel a

Ok -- 190° abs

0 0,848
L 0,0070

Fläche

111

0

19° 3'

sin (-)

'/.

0,212

Jr,-)

56,6

V Alf) F Trei eM F0 rel

8 0,0727 37,9 1,021 38,7?
200 22 8 0,245 62,5 6 0,0976 46,8 1,028 48,2?
220 32 12 0,347 57,2 12 0,202 33,7 1,058 35,7

311 38 40 0,406 100 24 0,285 31.7 1,080 34,2

222 40 44 0,425 26,8 8 0,314 28,5 1,088 31,0

400 48 54 0,490 21,5 6 0,438 25,6 1,119 28,7

331 55 12 0,534 106 24 0,540 25,8 1,142 29,5

420 57 24 0,548 113 24 0,576 25,0 1,150 28,8

422 67 20 0,600 150 24 0,741 23,3 1,183 27,6

Tabelle 12.

Platin.
tl 3,93 Ä (,8)

pli > 50
T 290° abs. Mittel aus 6 Aufnahmen.

0
L

0,824
0,0055

Fläche 0
sin 0

-'rel P A(tp) -Fr rel eM •^orel
/.

111 19°48' 0,220 100 8 0,0784 44,1 1,017 44,8
200 23 2 0,254 57,6 6 0,106 39,4 1,022 40,2
220 33 35 0,360 76,2 12 0,219 34,1 1,045 35,6
311 40 26 0,422 135 24 0,310 31,8 1,062 33,8
222 42 39 0,441 45,0 8 0,342 31,5 1,068 33,6
331 58 28 0.555 193 24 0,594 27,6 1,110 30,7
420 60 59 0,569 213 24 0,636 26,9 1,116 30,0



ll;
mit monochromatischer Strahlung, ¦/

Mittel aus 2 Aufnahmen.
25° 12'

Fläche •¦'rel -fTrei
i

-^o rel

nM 100
'

41,4 42,0
200 65,6 | 39,4 40,2
220 90,5 ' 35,4 37,0
311 141 31,6 33,6
222 47,0 30,8 32,8
331 196 26,7 29,6
420 217 25,8 28,8

Tabelle 13.

A Iu mini um -Kupfer.
'/, 4,05 Ä
d2 ¦¦ - 3,60 Ä
X, : G2 1000: 732

-/, 2,60
y2 -= 8,92
F10 6,65
FlT — 5,88

Fläche
1 sin©

-/rel P J'ai J'cu ^it F2T

AI 220
Cu 220

AI 311

32f,28'
37 8

39 0

0,349
0,393

0,409

73,3

78,0
90.0

12

12

24

61,0
43,8
37,5

65.0 5,88 10,9

Tabelle 14.

Kupfer-Gold.
*', 3.60Ä
f/o 4,08 Ä
G, a2 looo 314

Y\ 8,92
X- 21,5
F, r= 10,9

Fläche 0 sin0
-'rel

73,5
90,4

100

P

IT
24
24

J'cn

73,5
69,0
50,0

J Au F1T F2T

Cu220
Au 311

Cu311

37° 8'
38 40
45 5

0.393

0,406

0,461

45,2 10,8 36,1
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Fig. 21. Aluminium.
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Fig. 25. Gold.
0.5 06 9.7

Wie man sieht, haben die experimentell ermittelten
Streufunktionen den gleichen Verlauf wie die theoretisch berechneten.
Grössere Abweichungen kommen nur bei den Flächen 222 und
400 vor; die Intensitäten dieser zwei Linien sind die schwächsten

von allen und lassen sich schwer genau messen.

zs

26

Bei Platin stimmen die mit monochromatischer Strahlung
und die mit nichtmonochromatischer Strahlung gewonnenen
Werte innerhalb der Messungsfehler überein.

Bei Gold zeigen jedoch die zwei ersten Werte von F
Abweichungen, die bedeutend grösser sind als die grössten Abwei-
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chungen vom Mittelwert (welche nach beiden Seiten abgetragen
sind. Fig. 25). Offenbar liegt hier der in Abschnitt „Absorptions-
einfluss in Pulvern" erwähnte Fall 3 b vor. Infolge der
Bearbeitung der Folie haben die Flächen (111) und (200) bestimmte
vorherrschende Lagen innerhalb der einzelnen Goldplättchen.
Die ungefähren Verhältnisse sind in Fig. 26 skizziert, a würde
der Fläche (111), b der Fläche (200) entsprechen, während c

(keine vorherrschende Lage) allen anderen Flächen entspricht.

nach Thomas Fermi

79

71/

60

i>a>di-.
SO

-. 220
a«£* •--. 311

"»-. oo
o- •

40

---.&7,,n
30

20

0505 06 0704OJOl 07

Gold

' X

Damit steht auch in Einklang, dass für F (311) von Gold ein zu
kleiner Wert (39,0 statt 40,0) erhalten worden ist. Rechnet man
alle anderen Werte von 7'1 danach in absolute Werte um, so erhält
man folgendes Bild (Fig. 27). Infolge ihrer Lage haben (111)
und (200) andere a als die übrigen Flächen, (111) ein kleineres
und (200) ein grösseres. In keinem Falle liegt jedoch eine
Übersteigung der theoretischen Werte vor. d. h. a ist ständig kleiner
als 1. Selbstverständlich soll nicht gesagt sein, dass kein anderer
Einfluss die Abweichungen verursacht; ihn anzunehmen liegt
jedoch kein Grund vor.



— 120 —

Hingegen bestimmt sich FT (220) von Kupfer zu 10,1), während
Armstrong dafür den Wert 11,15 angibt, was als gute
Übereinstimmung bezeichnet werden muss, und für die Brauchbarkeit
der verwendeten Methode spricht.

Es sei mir auch an dieser Stelle gestattet, Herrn Prof. Dr.
P. Scherrer, auf dessen Anregung hin die vorliegende
Untersuchung vorgenommen wurde, meinen herzlichsten Dank
auszusprechen für seine vielen Ratschläge, die die Ausführung der Arbeit
förderten, und für sein Interesse, das er ihr ständig entgegengebracht

hat.
Besten Dank auch Herrn Dipl. Fachlehrer R. Siegrist

für Überlassung von mehreren schön gewachsenen
Zuckerkristallen.

Zürich, Physikalisches Institut der E. T. II
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