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Beitrag zur Optik trüber Schichten

von P. Grüner und M. Grütter.
(16. X. 30.)

Inhaltsangabe: Der in einer früheren Arbeit1) berechnete Einfluss einer
homogenen planparallelen Schicht eines trüben Mediums auf elas zurückgeworfene
Licht wird hier für das durchgehende Licht berechnet und eingehend diskutiert.
Die aufgestellten Formeln geben die .Möglichkeit zu beurteilen, in welcher Weise
die reine Schichtwirkung die Lichtzerstreuung an einem einzigen Teilchen abändert.

In einer früheren Arbeit1) wurde die Beleuchtung einer
homogenen trüben Schicht untersucht für den Fall des
zurückgeworfenen Lichtes. Im folgenden soll der wesentlich kompliziertere

Fall des durchgehenden Lichtes in ähnlicher Weise
behandelt werden. Herr Max Grütter hat diese Aufgabe in
sinnreicher Weise gelöst; wir geben hier nur die Ilaupigedanken
und die Resultate seiner Berechnungen und seiner Figuren.

Eine homogene, isotrope, trübe Schicht, elie von parallelen
Ebenen begrenzt ist, werde mit parallel einfallendem, unpolari-
siertem, monochromatischem Licht beleuchtet. Wie verhält sich
die Intensität •/ des durchgehenden Lichtes zur Intensität J„ 1

des einfallenden Lichtes?

<S

A/y£ vr
n.r.K

Die
stante c

n
x

r
p.

I, 1928.

Fig. 1.

Schicht von der Dicke AH (Fig. 1) sei durch drei Kon-
harakterisiert:
Zahl der suspendierten Teilchen pro Volumcneinheit;
Auslöseliungskoeffizient pro Längeneinheit;
Zerstreuungskoeffizient der einzelnen Teilchen.

Grüner, Über die Beleuchtung trüber Medien. Helv. phvs. acta 1,
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r ist eine Funktion des Zerstreuungswinkels tp (zwischen
eler Richtung des einfallenden Strahles OR und des zerstreuten
Strahles, der sog. Blickrichtung PQ). Es i>t cp e — ä, wenn
der Einfallswinkel 90 — ö, der Blickwinkel 90 — e ist.

Hat das einfallende Licht beim Eintritt in die Schicht die
Intensität J0 1, so wird ein in S einfallendes Parallelstrahlen-
bündel, das an Teilchen bei T zerstreut wird, in der Blickrichtung
einen Anteil liefern, der pro Strecke dt. derselben den Betrag

dJ r.e~"<»+«. n.d).

ausmacht, wobei ST co, TQ 1. OQ -- IIb. PQ IL.
Die Intensität J (in Q) des in elie Blickrichtung zerstreuten

Lichtes ist dann:
H=AL

J n.T je-K^'X)-d?.,

was ergibt, da hier

A11T AL-AW
m + 1 A W + jj- - 7.:

* AL-AW [ '¦ W

Es entspricht dies der Gleichung (1) dei' früheren Arbeit,
wenn d durch —d, also AW durch —AW ersetzt wird: jedoch
kommt hier noch der Faktor e-*dW hinzu, der die Erscheinung
wesentlich komplizierter gestaltet.

Vermittelst nachfolgender Substitutionen:

xAH h, y.AW -J^r^h$-=.r. xAL ~J^-= hrj^y,sind sm £ ' ''

ht,=z x~y h[-~.—-— J Al (;
_

\ sm o sm e y.

wird:

G (d, e, h) -MMl_ e «in«11 _e
" (-i»« »ii W 2)

sm £ — sin d \
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bzw.

<MM=- xV_y (e-"-e-*) (3)

G(y,z) y.e-y. -- f~ A (y) ¦ B (z) (4)
z

Diese Funktion G ist massgebend für die Intensität des

durchgehenden Lichtes in Abhängigkeit von der Einfallsrichtung d,
der Blickrichtung e unel der Dicke AH der Schicht und ihres
Auslöschungskoeffizienten x (h y. • A H), während der andere

n rFaktor in J nur durch die Natur eler Teilchen und ihre Zahl
y.

bedingt ist.
Die unabhängigen Variabeln liegen zwischen folgenden Grenzen

: 0 < /< < oo; — oo < z < + oo; ferner:

0 < «3 g-J- 0 S2 e rg-J-
co ^ x ^ ll co 2g y 2": /i

ooSrf^l oo^^^l

A. Die Funktion G.

/. Diskussion der Funktion G yl ß,
wo

A(y) y.e-y, B (z)
1~e~*

z

Varnert nur d, also nur x, so ist das Verhalten von G durch
B (z) gegeben, wobei in z x — y das y konstant bleibt. Für
B (z) bestehen Tabellen1), der Verlauf ist übrigens einfach: für
z — co ist /> + co, nimmt dann stetig ab, für z 0 ist
B + 1, für z oc geht B asymptotisch zu 0.

In Abhängigkeit von x erhält man B (x) durch einfache
Verschiebung der B (z) -Kurve um die Abszisse + y. Durch
Multiplikation mit dem konstanten Faktor y e~y erhält man
G (x) bzw. G (d) bei gegebenem e und h.

Variiert nur e, also nur y, so nimmt G (y) vom Wert 0 (für
y 0) stetig zu bis zu einem Maximum für y ym, sinkt dann

') L. V. King, Philos. Transaction London, A 212, 375, 1913.
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wieder stetig und erreicht asymptotisch für y co den Wert e~x.
Die Lage ym des Maximums, sowie sein Werl Gm, lassen sich nicht
in einfacher Weise angeben. Aber für ein vorgeschriebenes x
findet man das zugehörige ym als Lösung der Gleichung

dy

t> (•**, y) y iv — ¦•')e~" — x Xr" - <M " (•">)

Die dadurch bestimmte Kurve verlauf! einfach: für x — 0

ist y + co, elie Kurve sinkt stetig, für x 2 wird auch y 2,
für x co erreicht die Kurve asymptotisch den Wert y +1.
Aus dem gefundenen ym ergib! sieh dann (>',„.

2. Übergang zu d und e; Abhängigkeit von h.

Zur weiteren Diskussion sind die Substitutionsvariabein
x, y, z bzw. |, ?/, £ wieder durch ö. r, /i zu ersetzen, gemäss

sm ti Mii t
alsi

sin o y--7]h
/•

sin £
2

dG dG d.r dG dG d y
dc3 da: ~äXd " de

"

dy
'

de

Die Abhängigkeit der Variabein f (bzw. i/) von <5 (bzw. e) ist
einfach: Von £ oo (für d 0) sinkt £ mit wachsendem d stetig

und erreicht für <S 4r den Wert £ l, mit

da -0.
Ferner ist

da: cos (3

sin- d df — Ä
CO

d<5 sin

Variiert nur h, so nimmt G (h) vom Wert 0 (für Ii 0) stetig
zu bis zu einem Maximum für h hm, sinkt dann wieder stetig,
hat bei hw 2hm einen Wendepunkt und erreicht asymptotisch
für h — oo den Wert 0. Hierbei ist

lgn sin e —lgn sin d ,„,&» ——j- —f (6)

sin (1 sin e
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Dieser Wert ergibt sich aus der Gleichung

dG
dh 0,

die in die einfache Form gebracht werden kann:

A(y)=A (x) ¦ (7)

Die dadurch bestimmte Kurve gibt für x 0: y oo; sie

sinkt dann stetig, es wird y 1 für x 1; sie erreicht
asymptotisch den Wert y 0 für x oo.

3. Diskussion der Kurrenschar G (e) mit Parameter d.

Bei gegebenem h ist der Verlauf von G als Funktion von e

für irgendein <5 durch G (y), s. S. 479, charakterisiert, sofern man
x, y, z durch d, e, h ausdrückt. Demnach fangen alle G (f)-Kurven
für £ 0 mit dem Wert

sin ö

an, wobei die Neigung der Kurve elurch

dG
d-,

1

sin d
sin 6

gegeben ist, und alle hören für £=-5-mit einem grösseren oder

kleineren positiven Wert von G auf, wobei die Kurve mit
horizontaler Tangente ausläuft (s. Fig. 2).

6=5

6--0
TL2<n <oo

Fia. 2 a.

31
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<*-.tcOl̂>,
<*?

cf=7T

6g

6--0

n1 Lh L2
Fig. 2 b

\<*
\ r-i
\ e»^

rf=JT
T

6--0 =~e7tQLh 4/
Fig. 2 c.

Diese Kurven können ein Maximum haben, oder aber sie

steigen stetig von c -- 0 bis £

von G ist bestimmt durch

"9 Die L.'ige des Maximums

h

arc sm

wobei ym sich aus der Gleichung (5): 0(xym) 0 für das jcweilen
gegebene

h
x

sin d

bestimmt. Offenbar muss

0 g em r£ X,
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sein, also 0 *£= h 5S ym; nur unter dieser Bedingung weisen die
Kurven ein Maximum auf. Somit gibt ym >.h die Grenze für
die Kurven mit Maximum. Nun kann umgekehrt zu jedem ym Ji

aus 0(x,jh) 0 ein zugehöriger Grenzwert xg und daraus

h
d„ arc sin ¦,

xg

bestimmt werden, so dass elie Kurven mit Maximum nur
auftreten für x ;g xg, also für d 5: d„.

Mit wachsendem Parameter d verhalten sich elie Kurven
der Schar G(e) folgendermassen: Für <5=0 wird G(e) 0, G liegt
ganz in der Abszissenaxe. Bei wachsendem d nehmen alle
Ordinaten stetig zu, die Kurven der Schar erheben sie-h immer höher
über der Abszissenaxe ohne sich zu schneiden, die oberste Kurve

ist die für ci -~-.
Dabei werden diese Kurven, je naeh elem Wert von h,

Maxima aufweisen oder nicht, entsprechend den Bedingungen:
ym ^ h, d ^ d„.

Für (5=0 ist x — co, ym 1 (nach Gleichung [5]), also
treten hier Maxima auf für h 5**" 1.

Für d —=- ist x h, also treten Maxima auf für ym 2": x;
aber aus der Kurve 0(xy) =0 ist ersichtlich, dass y x 2

wird, und dass y > x nur möglich ist, wenn x < 2. Da aber
x h ist, so treten hier Maxima auf für h :£ 2.

Resultat: Für 0 sS h gs 1 haben alle G(e)-Kurven für jeden
TC

Parameterwert 0 *£= d 5g -„- ein Maximum bei der Abszisse

h
f„ arc sm

Vm

Für 2 < h < oo bat keine 6'(e)-Kurve ein Maximum. Für 1 g; h £"" 2
haben nur diejenigen G(e)-Kurven ein Maximum, für welche
d^dtJ.

Die Maxima em wandern mit wachsendem Parameter <5 zu
immer kleineren e, ihre \\'erte Gm nehmen beständig zu (s. Fig. 2).

4. Diskussion der Kurvenschar G(e) mit Parameter h.

Bei gegebenem c5 ist der Verlauf vonG(e) mit veränderlichem
Parameter h folgender: Für h 0 fällt ein Teil der G(£)-Kurve
in die Ordinatenaxe, von G 0 bis G 1, eler andere Teil in
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die Abszissenaxe, von £ 0 bis e —

sich die G-Kurve ab; ihre Ordinate
-. Mit wachsendem h löst

für e 0 sinkt mit wachsendem h von 1 bis 0. Für e > 0 steigt
die G-Kurve an und erreicht bei em ihr Maximum, um elann wieder

für £ -s- zu einem positiven Wert mit horizontaler Tangente

zu gelangen.
Solange h £S 1 treten immer Maxima auf. ihre Lage em

verschiebt sich bei wachsendem h zu immer grösseren e, die Maxima

ii

,fi
\V
/\\2~^\l

v3

/

/ <^^
V \ *>-, X <7 S^IZ?\ —--—'— \. *""'• >

/ -^^^^J^__M^^:-«<-._.
—-——^^CI! /M-— ^~~~

0 h*0 ft,ao 71

Fig. 3.

selber nehmen immer ab. Offenbar schneiden sich die Nachbarkurven;

die Ordinate es eines solchen Schnittpunktes ist aus der
Gleichung

dG
dh

0

d. h. aus der Gleichung (7): A (x) A (y) zu bestimmen, in
ähnlicher Weise wie em aus (5). Es zeigt sieh, dass £s > em, d. h.
die Schnittpunkte Hegen immer auf dem fallenden Stück der
G(£)-Kurve. Mit wachsendem h schiebt sieh £s zu wachsenden £.
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Das Sichüberschneiden hört auf, sobald £s > -„ wird (also noch

bevor em -y), d. h. für einen bestimmten Wert von

JgnBin«
1 ~ -'-T

sin o

wobei 0 -fS hs tu 1. Diese zu hs gehörende Kurve (s. Fig. 3) grenzt
also elie oberen, sieh überschneidenden G(e)-Kurven von den

unteren ab; sie hat für £ 0 und e -'„ denselben G-Wert:

_h
p sin ö

die Kurven für h < hs (Kurven 1—G in Fig. 3) haben bei £ 0
n
2

TZ

eine grössere Ordinate als bei e -g-, umgekehrt elie Kurven für
h > hs (Kurven 8—11 in Fig. 3).

Für hs 5S h :£ 1 sinken mit wachsendem h alle Ordinaten G,
haben aber immer noch ein Maximum für ein nach wachsenden
£ rückendes em.

Sobald h > 1, können die Maxima nur für bestimmte t5 > c59

auftreten, d. h. bis em > -7- wird. Dies tritt, bei gegebenem <5,

für ein bestimmtes li h„ ein; die Rechnung zeigt, dass stets
1 "ä hg ¦****; 2, also immer //,, > hs.

Die zu hg gehörende Kurve grenzt elie G-Kurven mit Maxima
von den darunter liegenden Kurven ab, die ohne Maximum stetig
mit £ anwachsen. Mit wachsendem h sinken diese Kurven immer
tiefer; für h oo wird G(e) 0.

Aus A (x) A(y) lässl sich auch die Ifüllkurve eler ganzen
Kurvenschar (s. Fig. 3) bestimmen.

¦5. Diskussion der Kurrenscharen G(d) mit Parameter e.

Bei gegebenem h ist der Verlauf von G als Funktion von d

für irgendein £ durch G(x), s. S. 479, charakterisiert, sofern man

x,y,z durch d,e,h ausdrückt. Alle G(e5)-Kurven fangen für
c5 0 mit G 0 an; mit zunehmendem d wachsen alle
Ordinaten stetig und erreichen, ohne ein Maximum oder Minimum

zu bilden, für c5 -x- einen grösseren oder kleineren positiven
Wert (s. Fig. 4).
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e-7L

t--0

TT2 </7<o°

Fie. 4 a.

[10.M

Es

71i ±n%2

Fig. 4 b.

/

MMii*!x ^

¦>=*•"-

ts/AA
5

^^~s~~
7' / ^*-~5r*~~'—~Z^ Zs_J^-

*"? cJ

£=o

0 o ±n 4/ 71
Z

Fis. 4 c.
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Für e 0 wird
h

G (d)=e sin ö

eine Kurve, die erst langsam (unter spitzem Winkel) ansteigt,

dann einen Wendepunkt erreicht und für c5 -5- mit horizontaler

Tangente im Wert e~h endigt. Wächst eler Parameter e, so wachsen
alle Ordinaten, die G-Kurven steigen ohne sich zu schneiden und
behalten ihre Form (Wendepunkt, kein Maximum).

Bei einer betimmten Grenze £, (bei geeignetem Ji) beginnt
ein Überschneiden eler Kurven: zwei benachbarte Kurven schneiden

sich im Punkt
dG dG
---— 0, also—= 0;de dy

d.h. die Gleichung (¦">): 0(.rsy) =0 gibt für den betreffenden
Parameter

y_
h

£ arc sin

ein zugehöriges xs, bzw.

(hä< arc sin —
\xs

das die Abszisse eles betreffenden Überschneidungspunktes gibt.
Eine solche Überse-hneidung tritt also auf für <5S -^ -5-. also xs 22 h.

Diesem Grenzfall, xs h, gehört aus 0(xsy) 0 ein bestimmtes
ys zu, also ein Grenzparameter

•
h

es arc sm —
\ y°.

Für e=es entsteht demnach eine Grenzkurve Gs(d) mit e5s =M>*
erst für e > £s beginnen die Nachbarkurven der Schar sich zu
schneiden; die Abszisse <5S des Schnittpunktes rückt mit wachsendem

£ zu kleineren d. Bei sehr kleiner Änderung von £ wachsen
die Ordinaten G(<5) für <5 < t5s und nehmen ab für <5 > <5S; im
allgemeinen sinken sie mit e5.

Für Eg arc sin h, d. h. für yg 1, x 00 wird <5S 0; hier
verschwinden wieder die Überschneidungen; mit wachsendem
£ > Eg (es ist stets ea 2""; £,.) sinken alle Ordinalen von G(c5) stetig,
ohne Wendepunkt, bis zum positiven Endweit

n \ sin dl. 5_
G[e -2- =-M^I-A-e
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Die ganze Kurvenschar besitzt eine leicht an zuoeben ele
Hüllkurve (s. Fig. 4).

Das eben geschilderte Verhalten gilt für 0 £ h <: 1.

Für h ^2 ändert sich die Sachlage: da <5S g *- sein soll,
xs>h, so wird xs>2; aber aus (5) folgt für das zugehörige
ys£2, somit £s > ~; da £s rg -77- sein muss, so folgt, elass für
h > 2 die Überschneidungen aufhören. Für 2 < h < co wachsen
alle G((5)-Kurven mit wachsendem c5 stelig.

Im Zwischengebiet: 1 g h < 2 wird eg ----- an- sin h ^ —, d. h.

diese Grenzkurve fällt mit der Endkurve für e | zusammen;

folglich überschneiden sich alle Kurven, für welche es < e rg —.

C. Diskussion der Kurvenscharen G(d) mit Parameter h.

Bei gegebenem e ist eler Verlauf von G(ä) mit veränderlichem
Parameter h folgender: Für h 0 ist, G 0; mi! wachsendem h

f$2y^yy

^6 "^

/jyr^AA---

3 ^^
5

"'i 5

-—"~7

h o ft- 3.
2

Fig. 5.

wachsen alle Ordinaten (ausser für (5 0, wofür stets G 0),
aber so, dass sich benachbarte Kurven im Punkt mit der Abszisse
(5S schneiden. Dieser Schnittpunkt geht mit zunehmendem h zu
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TT

grösseren (5. Ist (5S -=- geworden, was für eiuen bestimmten

Wert

h hs JSE^L
i -M-

eintritt, so hören die Überschneidungen auf; elie Kurve mit
Parameter hs bildet eine Grenzkurve; wächst h > hs, so nehmen die
G(<5)-Kurven wieder ab, ohne dass sie sich schneiden. Für h oo

geht G 0 in elie Abszissenaxe über (s. Fig. 5).

1 dG
lt. Die Funktion K _ • -.—.G df

1. Die Zerlegung von R (d) =-' -• -j-r- ¦

G et d

Es wird später (s. S. 499) auf die Bedeutung dieser Funktion

1 dG
ß

G ei 9>

hingewiesen; vorläufig soll nur ihr analytischer Verlauf besprochen
werden. Da cp e — e5, kann entweder

ß<M4?--
worin e als Parameter auftritt, oder

p. 1 dG
/i(£) 7MdM

mit Parameter ö, untersucht werden.
Zunächst werde R(d), das naturgemäss immer das entgegengesetzte

Zeichen wie R hat, behandelt.
Es ist zweckmässig, dieses R nach zwei verschiedenen

Gesichtspunkten in zwei Faktoren zu zerlegen:

R(d) ±[\ z \ cos (5

• 2 1
h ~

sur e5 ¦('¦ ez-lj
eotg d

e--l)

,h)-V(z)

| -rill c,
sm £ — sm o

(8)

(9a)

R(d) =S(ä,e)-K(z), (9b)
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worin
cos c5 eotg <5

¦ 2 ¦- ; S c5, f M—
sin-5 c5 sin £ —sm r)Ü(^=fc-M-M; S(«)S)= — sms;

Z«-1-Ä-1-W r^:-M7K«
(10)

Der Verlauf dieser vier Funktionen sei nur kurz angedeutet,
wobei zunächst noch auf die Grenzwerte der Variabein hinge-

wiesen wird: wenn c5 die Werte 0, f,-9 annimmt, geht z von + co

zu 0 und zu einem negativen Wert:

1 —sin £
— ze= —h-

sin £

U(d) ist immer positiv, —=¦ immer negativ; wenn <5 von 0

his -~— wächst, fällt J7 stetig von +co zu 0 ab. Für /* 0 schmiegt
sich die t/(<5)-Kurve der Ordinaten- und Abszissenaxe an, für
wachsende h löst sie sich immer mehr, für h co wird sie zur
Vertikalen in t5 -=-.

S(d) besteht aus zwei Ästen; für d 0 ist

dS
S + co -TT-= ~ co;

a d

die Kurve sinkt mit wachsendem (5 aus dem co herunter, bleibt
aber immer positiv, erreicht bei einer Abszisse <5m ein Minimum
und steigt dann wieder ins co, wenn f5 — £ (Parameter) wird;
dabei ist also stets <5m sS e. Für t5 e wird

die Vertikale c5 £ ist eine Asymptote, S springt dort von + co
nach — co und nimmt nun mit wachsendem d > dm negativ ab

und erreicht für <5 -5- die Abszissenaxe unter einem spitzen
Winkel

o f.
d S sin £

ad 1 —sm
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Die Extrema von S, speziell dm, ergeben sich aus der Gleichung:
sin £ sin c5(2 — sin2<5). S hängt nicht von h ab.

K(z) kommt für z — — co aus dem negativen Unendlichen,
hat bei

einen negativen Wert, nimmt mit wachsendem z negativ ab,
erreicht für z 0 (c5 - e) den Wert 0 und steigt bei wachsendem

z positiv langsam an unel erreicht für z + cc (d 0)
asymptotisch den Wert + 1.

V(z) \-K(z) ist immer positiv, -, immer negativ. Für
z — co hat V asymptotisch den Wert + 1, sinkt dann stetig
mit wachsendem z, hat bei — zs einen positiven Wert > |-, wird
bei z 0(<5 e) gleich + \ und erreicht bei z + co (c5 0)

asymptotisch den Wert Null.

Aus diesen Angaben ist leicht folgendes zu ersehen:

R(d) ist immer positiv; für <5 0 ist R oo, mit der Ordi-
natenaxe als Asymptote, für (5 £ wird

h COS £

2 sin £

für d -_— endigt elie JR-Kurve unter einem spitzen Winkel im
Wert R 0 (s. Fig. 6, 7, 8, die für bestimmte Werte berechnet
wurden).

In Abhängigkeit vom Parameter e ist zu erkennen: Für £ -=-
Hat R(d) die kleinsten Werte; mit, abnehmendem £ nehmen die
Ordinaten zu; für e 0 wird R(d) U(d).

In Abhängigkeit vom Parameter h gilt: Für h 0 schmiegt
sich R der Ordinaten- und Abszissenaxe an; mit wachsendem h
löst sich die ß-Kurve davon ab, die Ordinaten nehmen zu. Wenn
h gross ist und £ genügend klein, so elass z negativ und sehr gross
wird, so nähert sich jR(c5) im Gebiet <5 < s der S-Kurve, im Gebiet
d > £ eler G-Kurve; für h co trifft dies exakt zu.

Das genauere Verhalten von R erfordert die Bestimmung
seiner Extrema.
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2. Die Extrema von R(d).

Die Bedingung für dieselben lässt, sich schreiben: l(£,h)
r (f), wo

Ji r _ lohc_il

r (f)

fe2£*.e*f— (e"f — l)2

cos2 c5

1-

1 i (1 + cos2 d) sin ö

1 1
£ f — -7, f -^-T, »7 —t— ; KM co.' sm c5 sm £

7

C7

5

3

\rA ^y^

1 ^^^ $/

/r-iZy 2

^vSmin

5 ^sCS/ncu JyA/

/

0 I 2 3 4-56 l ö 9 JO // /2
< 9=5 *

t-0 \
\-0 6=6 '%

Fig. 9.

Die Funktion r(f) (s. Fig. 9) beginnt bei f 1 mit r 0 und

steigt stetig an und nähert sich mit grossen f asymptotisch der
t

Geraden r — —^-.

Die Funktion l(C, h) — l(£ — r\, h), worin z /*¦£, ist auch
immer positiv; bei grossen negativen 2 verläuft sie wie elie Parabel
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l t~2h + £, sinkt relativ rasch zu einem Minimum bei ungefähr
h ¦ £m =2,3, steigt dann mit wachsendem £ wieder an und
nähert sich asymptotisch eler Geraden l £. Durch Parallel-
verschiebung der Kurve um die Abszisse ?; erhält man die /(f, h)-
Kurve in Abhängigkeit von f. Ihr Zusammenhang mit dem
Parameter £ ist durch elie Grösse dieser Verschiebung,

1

n
sm £

gekennzeichnet. Ihre Abhängigkeit von h ist folgende: Für kleine
h ist / sehr gross, mit wachsenden h sinkt das Minimum, die
l-Kurve kommt für pos. f unel für kleine negative f der Asymptote

/ f immer näher, während sie für grössere negative f sich
der Parabel / f2/i + £ anschliesst, elie mit zunehmendem h

immer steiler wird.
Die Schnittpunkte S der Kurven /(f) und r(f) geben die

Abszissen fm der Extrema von R(d). Der allgemeine Charakter
derselben ist leicht einzusehen: solange das Minimum eler /-Kurve
oberhalb der r-Kurve liegt, treten keine Extrema auf, die R(d)-
Kurven sinken mit wachsendem <5 stetig von 4- co zu 0. Wenn
die /-Kurve die r-Kurve gerade tangiert, so ergibt das zugehörige
f, bzw. c5, einen Wendepunkt mit horizontaler Tangente. WTenn

die /-Kurve noch tiefer sinkt, so schneidet sie die r-Kurve in
zwei Punkten S, von denen elas kleinere f ein Maximum, das-

grössere f ein Minimum der R(d)-Kur\e bedeutet.

3. Die Kurvenschar R(d) mit Parameter e.

Ihr Verlauf is! aus elen für einzelne Fälle berechneten Kurven
erkennbar. Fig. 8 ist für e 11° 32', i] 5, für die beiden WTerte
^ Vio und h — 10 berechnet; Fig. ü gibt elen Verlauf von R(d)
für h 10 für die Werte e 90°, 75°, 60°, 45°, 30°, 15° und 0°.

Die stets positiven R-Kurven sinken mit wachsendem £ von
R co nach R 0. Bei nicht zu grossem h haben die Kurven,
deren Ordinaten für abnehmende £ immer zunehmen, zunächst
keine Extrema; bei einem bestimmten Grenzwert von £ erhält
die Kurve einen Wendepunkt mit, horizontaler Tangente, und
mit weiter abnehmendem £ treten Minima unel Maxima auf, wobei

letztere immer bei grösseren t5 liegen. Beide steigen mit
abnehmendem £, die Minima rücken zu immer kleineren <5, die
Maxima gehen zuerst zu grösseren d, dann wieder zu kleineren,
bleiben dann aber bei Werten von (5, die > £ sind. Über den
Übergang in die G-Kurve s. S. 491.
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4. Die Kurvenstcharen R(d) mit Parameter h.

Ihr Verlauf ist aus Fiig. 7 ersichtlich, worin für e 45° die
E-Kurven für h 0; 1; 65,5; 10; 20; oo dargestellt sind. Auch
hier zunächst mit wachsendem d stetiges Sinken der R(d)-Kurve
von co bis 0, solange h uinterhalb einer gewissen Grenze liegt.
Dann Auftreten einer Kuirve mit Wendepunkt mit horizontaler
Tangente; sodann, für grössere h Auftreten von Minima, die ihre
Lage und ihren Wert nur wienig ändern, und Auftreten von Maxima
bei grösseren c5. Die Ma.xima wandeln bei wachsendem h zu
wachsenden <5, so dass balid dm > e wird, gleichzeitig steigen die
Maxima rasch an. Über (den Übergang in die U- und S-Kurve
s. S. 491.

15

Cr.

10

ti

60

75

QU

0 R ({) turn 10 variabler Parameter 6 f
Fig. 10.

5. Die Kurvenscharen R(e)

Wenn d als Parameteir und £ als laufende Variable aufgefa.sst
wird, so wird

1 dG 1 dG
G dcp G de -R^7
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R (e) —eotg £

n
H (A

Wir verzichten auf eine allgemeine Diskussion elieser nicht leicht
zu analysierenden Funktionen und geben die Kurvenscharen für

/
n-

10
// co

20

10

R(t).6--4-5° variabler Parameter7i

Fig. 11.

/' 10 mit Parameter d unel für <5 45° mit Parameter £, wie
sie für einige Werte berechnet worden sind (s. Fig. 10 und 11).

n.r('.. Die Intensität /--- G.

Das einzelne, in eler Schicht suspendierte Teilchen bedingt
im Ausdruck der Intensität J einen vom Zerstreuungswinkel
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cp £ — d abhängigen Zerstreuungsfaktor r(cp); die Gesamtwirkung
aller Teilchen bedingt elen im Abschnitt A diskutierten Schichtfaktor

G(e, d, h). Demnach wird eine Schicht eine wesentlich
andere Intensitätsverteilung des durchgehenden Lichtes erzeugen
als die, welche von einem einzigen Teilchen hervorgebracht würde.

Da die Werte von G immer positiv und < 1 sinel, so ergibt
dieser Schichtfaktor stets eine Verkleinerung des Teilchenfaktors

n- r

aber diese Verkleinerung kann sehr verschiedenartig sein. Greift
man als Beispiel eine der G(e) -Kurven eler Fig. 2 heraus, die bei
£ £m ein Maximum hat, so erkennt man folgendes: In dem relativ-
flachen Gebiet der G-Kurve, für grössere e, wird der Verlauf von
r(cp) (d. h. hier von r(e) mit gegebenem Parameter d) kaum
geändert; allerdings ist hier G meistens klein, so dass die Intensität

merklich verkleinert wird. Aber da, wo die G-Kurve sich
rasch ändert, treten erhebliche Verschiebungen auf. Für £ < £„,,
wo die G-Kurve stark ansteigt, werden die Maxima von P(cp)
merklich zu grösseren d verschoben und relativ vergrössert, während

die Minima von r(tp) entsprechend zu kleineren c5 wandern
und relativ vertieft werden; umgekehrt verhält es sich auf dem
steil abfallenden Ast für £>£„,. Es ist klar, elass diese Verschiebungen

nahe aufeinanderfolgender Maxima und Minima von P(cp)
so stark werelen können, dass sie unter Umständen zusammenfallen

(und also nahezu verschwinden) oder sogar sich überholen
und also ihre Reihenfolge mit wachsendem cp vertauschen.

Aus dem Verhalten der G-Kurve mit wanderndem Parameter
(o und Ji) (siehe Fig. 2 und 3) kann demgemäss die Veränderung
der Intensitätsverteilung mit c5, x und AH (x ¦ AH h) ermittelt
werden.

Ebenso wird in den G(<5)-Kurven (Fig. 3 und 4) ein ähnliches
Verhalten festzustellen sein: da diese alle mit d ansteigen, werelen
alle Maxima von r(tp), bzw. F(<5), zu grösseren (5 verschoben
und alle Minima zu kleineren <5.

Wie schon in unserer früheren Arbeit1) angegeben wurde,
werden diese Verrückungen der Alaxima und Alinima von F(cp)
durch den Schielitfaktor G am einfachsten aus der Funktion R
(s. Gl. 8) bestimmt.

*) P. Grüner, 1. c.
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Aus

./ "-r-G
y.

folgt:
1 dJ_ 1 d F

L
1_ dG_

¦I tl tp P dcp G il tj

Die Extrema von J werden (da J > 0) durch

"¦' 0
tlfj

bestimmt, also durch:

1 dF 1 dG
P dtp G dcp

R. (11)

Bei variablem c5 (mit Parameter e und /') sind die Extrema
gegeben durch

und bei variablen r (mit Parameter d und /') durch

r" £"»«>•
Kennt man F(<p), also auch die Kurven

1 dT
r' dtr -

mit cp f — d. in Abhängigkeit von ö bzw. e, so werden die
Abszissen (dm bzw. f,„) der Extrema von J durch die Schnittpunkte
der Kurve

1 r/F
7'

'
ri<p

mit den .ß-Kurven erHalten. In den -/""(^-Kurven, in welchen
einzig die zerstreuende Wirkung der einzelnen Teilchen zur
Geltung kommt, sind die Extrema von J aus

dtp

zu ermitteln. Der verschiebende Einfluss, den der Schichtfaktor G
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ansübt, kann somit, in prinzipiell einfacher Weise gefunden
werden.

Es hat keinen Sinn, diese im allgemeinen Fall nicht
übersichtliche Diskussion durchzuführen. Das Schema derselben ist
für den einfachsten Fall des zurückgeworfenen Lichtes in unserer
früheren Arbeit1) durchgeführt worden und kann ohne weiteres,
verallgemeinert werden.

Über die Verwendung dieser Berechnungen für konkrete-
Fälle soll später berichtet werden.

Bern, physikalisches Institut der Iniversität.

') P. Grüner, I. c.
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