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Beitrag zur Optik triiber Schichten
von P. Gruner und M. Griitter.
(16. X. 30.)

Inhaltsangabe: Der in einer fritheren Arbeit!) berechnete Einfluss einer
homogenen planparallelen Schicht eines tritben Mediums auf das zuriickgeworfene
Licht wird hier fiir das durchgehende Licht berechnet und eingehend diskutiert.
Die aufgestellten Formeln geben die Moglichkeit zu beurteilen, in welcher Weise
die reine Schichtwirkung die Lichtzerstreuung an einem einzigen Teilchen abandert.

In ciner friheren Arbeit!) wurde die Beleuchtung ener
homogenen tritben Schicht untersucht fir den IFFall des zuriick-
cgeworfenen Lichtes. Im folgenden soll der wesentlich kompli-
ziertere Iall des durchgehenden ILachtes in #hnlicher Weise be-
handelt werden. IHerr Max Griitter hat diese Aufeabe in sinn-
reicher Weise gelost: wir geben hier nur die Hauptgedanken
und die Resultate seiner Berechnungen und seiner Ifiguren.

Eine homogene, isotrope, triibe Schicht, die von parallelen
Ebenen begrenzt ist, werde mit parallel einfallendem, unpolari-
siertem, monochromatischem Licht beleuchtet. Wie verhalt sich
die Intensitiit JJ des durchgehenden Lichtes zur Intensitit J, = 1
des einfallenden lichtes?
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Fig. 1.

Die Schicht von der Dicke A H (Fig. 1) sei durch drer Kon-
stante charakterisiert:

n = Zahl der suspendierten Teilchen pro Volumeneinheit:

» = Ausloschungskoeffizient pro Léngeneinheit;

I" = Zerstreuungskoeffizient der einzelnen Teilchen.

1) P. GruNEr, Uber die Beleuchtung triiber Medien. Helv. phys. acta I,
1, 1928,
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I' ist eine Funktion des Zerstreuung-winkels ¢ (swischen
der Richtung des einfallenden Strahles OF und des zerstreuten
Strahles, der sog. Blickrichtung P@). Es ist ¢ = ¢, wenn
der Einfallswinkel = 90 — 4, der Blickwinkel 90 — ¢ ixt.

Hat das einfallende Licht beim Eintritt in die Schicht die
Intensitat J, = 1, so wird ein in S einfallendes Parvallelstrahlen-
biindel, das an Teilchen bel T' zerstreut wird, in der Blickrichtung
einen Anteil liefern, der pro Strecke di derselben den Betrag

dJ =I.e*wtd pn d)

ausmacht, wober ST = w, TQ =4, 00 — 11", I’() I]..

Die Intensitit J (in @) des m diec Blickrichtung zerstreuten
Lichtes 1st dann:

A=AdL
J ey I | grabesd g7 .
)
was ergibt, da hier
A Lr ‘*‘;’1 ”T -
w4+ A= AW + UL =
g2l AL i iy

Es entspricht dies der Gleichung (1) der friheren Arbeit,
wenn 0 durch —4é, also AW durch —AW ersetzt wird: jedoch
kommt hier noch der Faktor e=*4" hinzu, der die Erscheinung
wesentlich komplizierter gestaltet.

Vermittelst nachfolgender Substitutionen:

h _ ,
xAH=h, « AW = — =:]?»E‘-:.1-'.Z.-TILZJ-'-.]"F" = hp =y,
sin 0 S € '
1 1 nl’
===l |, J = e
hi=z=z Y (Slné 51118)' J % '

wird :

. h C 1 \
G ((S, g, h) = _"____ElmIli_i . e ::'in_s‘(l —-6_ s ( sino ~i||"r',_)) (2)

sin € —sin 0



bzw.

bhzw.

1,_ -z
Gys)=y.ev. = =A@y B(). (4)

~
~

Diese Funktion G st massgebend fiir die Intensitit des duwrch-
gehenden Lichtes m Abhingigkeit von der Einfallsrichtung 9,
der Blickrichtung ¢ und der Dicke A H der Schicht und ihres
Ausloschungskoeffizienten = (h = % - A H), wihrend der andere

nil' . . . .
Faktor - - 1n J nur durch die Natur der Teilchen und ihre Zahl
bedingt 1st.
Die unabhingigen Variabeln liegen zwischen folgenden Gren-
zen: 0 < h < w; —oo <2z < + o; ferner:

0=0=+o 0<e=g
o0 ==k w=y=h
o 2f =1 w=n=1

A. Die Funktion G.

1. Dishussion der Funktion G = A B,
WO
. p—%
AW =y.ev, BE=— zeﬁﬁ.

Varilert nur o, also nur x, so 1st das Verhalten von G durch
(2) gegeben, wobel in 2 = x —y das y konstant bleibt. Fir
(2) bestehen Tabellen?), der Verlauf ist ibrigens einfach: fiir
= — o 1st B = + co, mmmt dann stetig ab, fiir z =0 1st
B = + 1, fir z = o geht B asymptotisch zu 0.

In Abhingigkeit von « erhdlt man B (x) durch einfache
Verschiebung der B (z)-Kurve um die Abszisse + y. Durch
Multiplikation mit dem konstanten Faktor y.e-* erhilt man
G (x) bzw. G (9) bel gegebenem ¢ und h.

Variiert nur ¢, also nur y, so nimmt G (y) vom Wert 0 (fir
y = 0) stetig zu bis zu einem Maximum fiir y = y,,, sinkt dann

1) L. V. King, Philos. Transaction London, A 212, 375, 1913.

B
B

22



480)

wieder stetig und erreicht asvmptotisch (i y == o0 Jden Wert e-s,
Die Lage y,, des Maximums, sowie sein Wert (7, lassen sich nicht
in einfacher Weise angeben. Aber f[iir cin vorgeschrichenes x
findet man das zugehorige y,, als Losung der Gleichung
dG
== [}z
dy
D(x,y) =yly—ajer —aler )0 (%)

Die dadurch bestimmte Kurve verliinft cinfach: fine 2 =0
ist y = + oo, die Kurve sinkt stetig, {iir 0 — 2 wird auch y — 2,
fiir £ = oo erreicht die Kurve asvmptotisch den Wert 5y = + 1,
Aus dem gefundenen ¥y, ergibt sich dann (7,

2. Ubergang zu o und e; Abhingigheit von h.

7Zur weiteren Diskussion sind  die Substitutionsvariabeln
x, ¥, z baw. & #, { wieder durch 0, &, h zu ersetzen, gemiiss
h h

== ———, Z=I1 —
y=1n S Y

r=&h=——,
sin 0

also
0G 0G dx 0G oG dy

00 odx do oe oy de
Die Abh#ingigkeit der Variabeln & (hzw. %) von o (bzaw. &) ist
einfach: Von & = oo (fiir 0 = 0) sinkt & mit wachsendem o stetig

und erreicht fir 6 = %* den Wert & 1, mit

SO
do
Ferner 1st
ﬂ: 3 cos 0 dy _ g vose
do sin?od ' de sin? ¢

Variiert nur h, so nimmt (' (h) vom Wert 0 (fiv h = 0) stetig
zu bis zu einem Maximum fiir h = h,,, sinkt dann wieder stetig,
hat bei h, = 2h,, einen Wendepunkt und erreicht asvmptotisch
fir h = oo den Wert 0. IHierber 1st

lgn sin & —lgn sin 0
h,, =-—2— — . (6)

sin o sin ¢
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Dieser Wert ergibt sich aus der Gleichung

dG
an =0

die in die einfache FForm gebracht werden kann:
g

A(y) =A(z). (7)

Die dadurch bestimmte Kurve gibt fir ¢ =0: y = o0; sie
sinkt dann stetig, es wird y =1 fir & = 1; sie erreicht asym-
ptotisch den Wert y = 0 fiir x = o0,

3. Daskussion der Kurvenschar GG (¢) mat Parameter 9.

Bei gegebenem h ist der Verlauf von G als Funktion von ¢
fiir irgendein 6 durch G (y), s. 8. 479, charakterisiert, sofern man
z, Yy, 2 durch 9, €, h ausdriickt. Demnach fangen alle G (¢)-Kurven
fir ¢ = 0 mit dem Wert

dG
]de

gegeben 1st, und alle héren fiir e= —-mit elnem grosseren oder

kleineren positiven Wert von G auf, wobei die Kurve mit hori-
zontaler Tangente ausliuft (s. Fig. 2).

G
&I

d:=0
0 2 <N Koo

Fig. 2a.

Pl

31
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% 08 h L7 Zfz_
Fig. 2c.

Diese Kurven konnen ein Maximum haben, oder aber sie

stelgen stetyg von e —0 bis e =-5 . Die Lage des Maximums

fe

von G 1st bestimmt durch
Em = Qre sin .
"‘ Y

wobel y,, sich aus der Gleichung (5): @ (xy,) = 0 fiir das jeweilen
gegebene

o h
e
bestimmt. Offenbar muss
7T
0 g Em é )
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sein, also 0 =< h = y,; nur unter dieser Bedingung weisen die
Kurven ein Maximum auf. Somit gibt y,, = h die Grenze fir

die Kurven mit Maximum. Nun kann umgekehrt zu jedem y,, = h
aus @(r,h) = 0 ein zugehoriger Grenzwert x, und daraus

d, = arc sin ——
1‘9
bestimmt werden, so dass die Kurven mit Maximum nur auf-
treten fir ¢ < z,, also fir § = 4,. |
- Mit wachsendem Parameter o6 verhalten sich die Kurven
der Schar G (¢) folgendermassen: Fir 6 = 0 wird G (¢) = 0, G liegt
ganz in der Abszissenaxe. Bel wachsendem ¢ nehmen alle Ordi-
naten stetig zu, die Kurven der Schar erheben sich immer hoher
iiber der Abszissenaxe ohne sich zu schneiden, die oberste Kurve
" § T
st die fir 0 = —-.

Dabeir werden diese Kurven, je nach dem Wert von h,
Maxima aufweisen oder nicht, entsprechend den Bedingungen:
Yo = h, 0 =0,

Fiir 6 =0 18t © = o0, y,, =1 (nach Gleichung [5]), also
treten hier Maxima auf fir A = 1.

R 5 " a o . " . i
Fiar 6 = —5-ist © = h, also treten Maxima auf fiir y, = z;
aber aus der Kurve @(zy) = 0 ist ersichtlich, dass y =z = 2
wird, und dass y > = nur moglch 1st, wenn z < 2. Da aber
x = h 1st, so treten hier Maxima auf fir h < 2.

Resultat: IFiir 0 = h =1 haben alle G(g)-Kurven fiir jeden

L IT 5 % 3 i
Parameterwert 0 = 6 = 5 el Maximum ber der Abszisse
. h
E = arc sin
m
Y

Fur 2 < h < oo hat keine G (e)-Kurve ein Maximum. Firl < h <2
haben nur diejenigen (/'(e)-Kurven ein Maximum, fir welche
0 = 9,.

Die Maxima e, wandern mit wachsendem Parameter ¢ zu
immer klemeren ¢, ihre Werte (7,, nehmen bestiindig zu (s. Fig. 2),

4. Dishkussion der Kurvenschar G(g) mit Parameter h.
Bei gegebenem o ist der Verlauf von G (¢) mit verdinderlichem

Parameter h folgender: Fir h = 0 fillt ein Teil der G(e)-Kurve
in die Ordinatenaxe, von G = 0 bis G = 1, der andere Teil In
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. w . T N -
die Abszissenaxe, von ¢ = 0 bis ¢ =- 5 Mit wachsendem h lost
sich die G-Kurve ab; ihre Ordinate
__r_
e sino

fir ¢ = 0 sinkt mit wachsendem Ak von 1 bis 0. Fiir ¢ > 0 steigt
die G-Kurve an und erreicht bei ¢, ihr Maximum, um dann wieder

ey 4

fir ¢ = 5- zu einem positiven Wert mit horizontaler Tangente

zu gelangen.
Solange h =<1 treten immer Maxima auf, thre Lage ¢, ver-
schiebt sich bei wachsendem h zu immer grosseren e, die Maxima

71 G
\\
9
4 3
/| N
4 ez,
6 :"7—@
x| -
s SR
(S X~
T\
SN~ 4
- — ‘9 5 6
hg 70 e S
”\\
— s
E
0 20 feco /4

Fig. 3.

selber nehmen immer ab. Offenbar schneiden sich die Nachbar-
kurven; die Ordinate &, eines solchen Schnittpunktes st aus der
Gleichung
d(
dh

=0,

d. h. aus der Gleichung (7): 4(x) = A(y) zu bestimmen, in &hn-
licher Weise wie ¢, aus (5). Es zeigt sich, dass &, > ¢,, d.h.
die Schnittpunkte liegen immer auf dem fallenden Stiick der
G (¢)-Kurve. Mit wachsendem h schiebt sich e, zu wachsenden e.
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Das Sichiiberschneiden hort auf, sobald e, > —; wird (also noch

Tt . % G <
bevor ¢, = 75), d. h. fir einen bestimmten Wert von
lon sin 6
h=h=—"2—_—
1
1—
sin o

wobel 0 = h, = 1. Diese zu h, gehorende Kurve (s. I'1g. 3) grenzt
also die oberen, sich iberschneldenden (i (g)-Kurven von den un-
T

teren ab; sie hat fur € = 0 und ¢ = 5 denselben G-Wert:
_,,,]a",*
e sin 0 :

die Kurven ftiur b << h, (Kurven 1—6 m IFig. 3) haben ber ¢ = 0
® . ¥ ¥ 3 1 . r P os
eine grossere Ordinate als ber & = -, umgekehrt die Kurven fiir

h > hy (Kurven 8—11 1 Fig. 3).

I'ir hy < h <1 sinken mit wachsendem h alle Ordinaten G,
haben aber immer noch ein Maximum fir ein nach wachsenden
e rickendes ¢,

Sobald h > 1, kionnen die Maxima nur fiir bestimmte 6 > 9,

‘ 4 v y i .
auftreten, d. h. bis &, > —- wird. Dies tritt, ber gegebenem 9,
fir ein bestimmtes h = h, cin; die Rechnung zeigt, dass stets
1 <h, £2, also 1immer h, > h,.

Die zu h, gehorende Kurve grenzt die G-Kurven mit Maxima
von den darunter liegenden Kurven ab, die ohne Maximum stetig
mit ¢ anwachsen. Mit wachsendem h sinken diese Kurven mmmer
tiefer; fiir h = oo wird G(g) = 0.

Aus A (r) = A (y) lisst sich auch die Iltdllkurve der ganzen
Kurvenschar (s. Fig. 3) bestimmen.

5. Diskussion der Kurvenscharen G (0) mit Parameter e.

Ber gegebenem hoist der Verlauj von G als Funktion von 0
fir rgendein ¢ durch G(x), s. S. 479, charakterisiert, sofern man
x,y,z durch d,e, h ausdrickt. Alle G(9)-Kurven fangen fir
0 =0 mit ¢ =0 an; mit zunehmendem ¢ wachsen alle Ordi-
naten stetig und erreichen, ohne ein Maximum oder Minimum

zu bilden, fiir & = - einen grosseren oder kleineren positiven
S T
Wert (s. Fig. 4).
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Fir e =0 wird
h
G (0) —¢ sino

eine Kurve, die erst langsam (unter spitzem Winkel) ansteigt,

. e . 5% r 4 . .
dann emnen Wendepunkt erreicht und fiir 6 = -5~ mit horizontaler

Tangente im Wert e~ endigt. Wichst der Parameter ¢, so wachsen
alle Ordinaten, die G-Kurven steigen ohne sich zu schneiden und
behalten ihre Form (Wendepunkt, kein Maximum).

Bei einer betimmten Grenze e; (bel geeignetem h) beginnt
ein Uberschneiden der Kurven: zwei benachbarte Kurven schnei-
den sich 1im Punkt

dG dG
—— =0, also—— =0;
de dy ’
d. h. die Gleichung (5): @(x,y) = 0 @bt fiir den betreffenden
Parameter
‘ |

£ = arc sin |-

' h
ein zugehoriges x,, bzw.
. [ h
d. = arc sin| — .
Lg

das die Abszisse des betreffenden Uberschneidungspunktes gibt.
” .. . 3 . T
Eine solche Uberschneidung tritt also auf fir 6, = —-, also x;= h.

Diesem Grenzfall, x; = h, gehort aus @(z,%) = 0 ein bestimmtes
Y, zu, also ein Grenzparameter

. h
g = arc sin [ —
Ys
.. . . . o
Fir e = ¢ entsteht demnach eine Grenzkurve Gg(0) mit 0y = —-;

erst fiir & > ¢, beginnen die Nachbarkurven der Schar sich zu
schneiden; die Abszisse o, des Schnittpunktes riickt mit wachsen-
dem & zu kleineren . Bei sehr kleiner Anderung von & wachsen
die Ordinaten G(9) fir 0 < o; und nehmen ab fir 6 > d,; 1m
allgemeinen sinken sie mit 9.

Hiw g, = aresn by d. b 10F 5, = 1, 8= 86 wiid d, = U] huet
verschwinden wieder die Uberschneidungen; mit wachsendem
e > g, (es 1st stets g, == ¢,) sinken alle Ordinaten von G(9) stetig,
ohne Wendepunkt, bis zum positiven Endwert

7 sin o __h )

(] [Ty . — e " —¢ sins

2] 71 —sino
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Die ganze Kurvenschar besitzt eine leicht anzugebende Hiill-
kurve (s. Fig. 4).
Das eben geschilderte Verhalten allt fir 0 = h =1,
Fir b =2 andert sich die Sachlage: da o, S;— sein soll,
T, 2 h, so wird x, = 2; aber aus (5) folet {iir das zugehorige
Ys = 2, somit &, = ff;-z—; da g, < ;;— sein muss, so folgt, dass fiir

h > 2 die Uberschneidungen aufhiren. Iiir 2 < h < o wachsen
alle (9)-Kurven mit wachsendem & stetio,

. 5 . v - i
Im Zwischengebiet: 1 <h = 2 wird &, = arcsin h = —-, d. h.

. » i T

diese Grenzkurve fallt mit der Endkurve fiir e - 5o Zusammen ;
. . ‘ ; . . _ n

tolglich tiberschneiden sich alle Kurven, fiir welche ¢, < e < -

0. Diskussion der Kwrvenscharen () mit Parameter h,

Be1r gegebenem ¢ ist der Verlauf von () mit verinderlichem
Parameter h folgender: Fiir h = 0 ist ¢ = 0; mit wachsendem h

Fig. 5.

wachsen alle Ordinaten (ausser fir & — 0, wofiir stets G = 0),
aber so, dass sich benachbarte Kurven im Punkt mit der Abszisse
0, schneiden. Dieser Schnittpunkt geht mit zunehmendem h zu
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grosseren 9. Ist o, = 5" geworden, was fir emmen bestimmten
Wert
lgn sin ¢
h—h,— o0 SneE
1
sin ¢

eintritt, so horen die Uberschneidungen auf; die Kurve mit Para-
meter h, bildet eine Grenzkurve; wichst h > h,, so nehmen die
(G (8)-Kurven wieder ab, ohne dass sie sich schneiden. Iiir h = o
geht ¢ = 0 In die Abszissenaxe tber (s. Fig. 5).

B. Die Funktion R— —- 3¢
i 1¢ unkKktiion = G d([; .
1 dG

1. Die Zerlequng von R (0) = e e

Es wird spiter (s. 5. 499) auf die Bedeutung dieser Funktion

hingewiesen; vorlaufig soll nur ihr analytischer Verlauf besprochen
werden. Da ¢ =& — 0, kann entweder
1 dd

BO="¢ 45

worin ¢ als Parameter auftritt, oder

, 1 ddG
B(s)=— 20,
(+ de
mit Parameter o, untersucht werden.

Zunichst werde R(0), das naturgemiiss immer das entgegen-
gesetzte Zeichen wie @ hat, behandelt.

Es 1st zweckmiissie, dieses R nach zweir verschiedenen Ge-
sichtspunkten 1in zwer Faktoren zu zerlegen:

R(6)=~21—(1—— 3 )M(,'()S(s hz(l_ z ) cotg 0 _ gl &,

e*—1/ sin? d ¢—1 1/ sin € —sin 0
(8)

R(©) = U6, h)-V (), (9a)
R(8) = S5, ¢ - K(2), (9b)




worin
cos 0 cotg J g
Aol sin?é ’ 5 8] = sine—sino Y ] 10)
2 1 . 1 1 1., N
K@) =1- ei—1 b= B(-2)’ V() = : el 2 L J

Der Verlauf dieser vier Funktionen sei nur kurz angedeutet,

wobei zuniichst noch auf die Grenzwerte der Variabeln hinge-
. ‘ . r n .

wiesen wird: wenn 0 die Werte 0, &, - - annimmt, geht 2 von + oo

“

zu 0 und zu einem negativen Wert:

1 —=sin ¢
—2z,= —h— e :

SN €

TT

U(6) ist immer positiv, —— immer negativ; wenn ¢ von 0

bis —g— wiichst, fallt U stetig von + o zu 0 ab. Fiir b = 0 schmiegt
sich die U(d)-Kurve der Ordinaten- und Abszissenaxe an, fiir
wachsende h lost sie sich immer mehr, fir h = o0 wird sie zur
Vertikalen in 6 = ;—

S(0) besteht aus zwei Asten; fiir 6 = 0 ist

o 48
S=+o, 5

=; ——-UJ'

)

die Kurve sinkt mit wachsendem o aus dem <o herunter, bleibt
aber immer positiv, erreicht bei einer Abszisse 0, ein Minimum
und steigt dann wieder ns o, wenn 0 — ¢ (Parameter) wird:
dabel 15t also stets 0, =e. Ir 0 -- ¢ wird

dS
S = 4+ 0, —— = + 0;
e b d() e s b,
die Vertikale 6 = & 1st cine Asvmptote, S springt dort von + oo
nach — o0 und nimmt nun mit wachsendem ¢ > 9,, negativ ab

und erreicht fiir 6 = —- die Abszissenaxe unter einem spitzen
Winkel
S=0

*d6 T 1—sine

dS . sIne )



— 491 —

Die Extrema von S, speziell 4,,, ergeben sich aus der Gleichung:
sin ¢ = sin 0(2 — «in?6). S hingt nicht von h ab.

K(2) kommt fiir z = — o0 aus dem negativen Unendlichen,
hat bei
.7
53]

einen negativen Wert, nimmt mit wachsendem 2z negativ ab,
erreicht fir z =0 (0 — ¢) den Wert 0 und steigt ber wachsen-
dem z positiv langsam an und erreicht fir ¢ = + o0 (6 = 0) asym-
ptotisch den Wert + 1.
V() = : K (z) 1st 1mmer positiv 2
2 ' ' R * dz
z = — o hat " asymptotisch den Wert + 1, sinkt dann stetig
mit wachsendem z, hat bei — 2, elnen positiven Wert > 1, wird
ber 2 =0(0 = ¢) gleich + } und erreicht bei z = + o0 (6 = 0)
asymptotisch den Wert Null.

immer negativ. Fir

Aus diesen Angaben ist leicht folgendes zu ersehen:
E(0) 1st immer positiv; fir 6 = 0 ist B = oo, mit der Ordi-
natenaxe als Asymptote, fiir 6 =& wird

h cose
B=g e

. g . . : e i . o3 :
fir 6 =-5-endigt die R-Kurve unter einem spitzen Winkel im

Wert R =0 (s. Iig. 6, 7, 8, die fiir bestimmte Werte berechnet
wurden).

In Abhingigleit vom Parameter ¢ 1st zu erkennen: Fir ¢ = %
hat R(d) die kleinsten Werte; mit abnehmendem e nehmen die
Ordinaten zu; fir e = 0 wird R(d) = U (9).

In Abhingigkeit vom Parameter h gilt: Fir h = 0 schmiegt
sich R der Ordinaten- und Abszissenaxe an; mit wachsendem h
lost sich die R-Kurve davon ab, die Ordinaten nehmen zu. Wenn
h gross ist und e gentigend klein, so dass z negativ und sehr gross
wird, so nihert sich E(0) im Gebiet 6 < & der S-Kurve, im Gebiet
0 > ¢ der U-Kurve; fir h = oo trifft dies exakt zu.

Das genauere Verhalten von I erfordert die Bestimmung
seiner Extrema.
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E=15° '

R(S), furh =70, variater Pauameter &

Fig. 6.
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2. Die Extrema von R(0).
Die Bedingung fiir dieselben ldsst sich schreiben: [(, k)
=r(§), wo

) F (ol E
L(E By =¢ (eht—1) e D)

h2 ,:2 . ()It;___ ((}h :__])2 ?

& cos® 0
£) = ... -
T ) . ll a4 g (1 + cos?d) sin o
g
1 1
P B R e -~ = -
. > K E siné il sin € 1&.,<uo
Fi
6
r .?5_
S .
Ay
~\ew -0 72t
“ il
=
3 o
2
1 r®
&5° ‘
o 1 2 3 4« &5 6 7 6 9 1w 7 2
=5 « W8
;:0
£-0 8-£ L
Fig. 9.
Die Funktion 7 (&) (s. Fig. 9) Leginnt bei & = 1 mit r = 0 und
dr
dé& '

steigt stetig an und ndhert sich mit grossen & asymptotisch der
£
Geraden 1 = -5 .

Die Funktion I{C, h) = (& — 1, k), worln 2z = h{, 1st auch
. . d . ] /} . - : -
immer positiv; bei grossen negutiven z verliuft sie wie die Parabel
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| = {%h + £, sinkt relativ rasch zu elnem Minimum bei ungeféhr
h-C, =2,3, steigt dann mit wachsendem ¢ wieder an und
nihert sich asymptotisch der Geraden ! = ¢. Durch Parallel-
verschiebung der Kurve um die Abszisse # erhalt man die (&, h)-
Kurve in Abhéngigkeit von & Ihr Zusammenhang mit dem Para-
meter ¢ 1st durch die Grosse dieser Verschiebung,

1

T dine
gekennzeichnet. Ihre Abhéngigkeit von h ist folgende: IFiir kleine:
h 1st | sehr gross, mit wachsenden h sinkt das Minimum, die
[-Kurve kommt fiir pos. & und fir kleine negative & der Asym-
ptote | =& immer niher, withrend sie fiir grossere negative & sich
der Parabel | = £2h + { anschliesst, die mit zunehmendem h
immer steiler wird.

Die Schnittpunkte S der Kurven [(§) und r(&) geben die
Abszissen &, der Iixtrema von R(0). Der allgemeine Charakter
derselben 1st leicht emnzusehen: solange das Minimum der [-Kurve
oberhalb der r-Kurve liegt, treten keine Extrema auf, die E(0)-
Kurven sinken mit wachsendem ¢ stetig von + oo zu 0. Wenn
die [-Kurve die r- Kurve gerade tangiert, so ergibt das zugehorige
&, bzw. 0, einen Wendepunkt mit horizontaler Tangente. Wenn
die [-Kurve noch tiefer sinkt, so schneidet sie die r-Kurve in
zwel Punkten S, von denen das kleinere & ein Maximum, das.
grossere & ein Minimum der R (d)-Kurve bedeutet.

3. Die Kurvenschar R(0) mat Parameter e.

Ihr Verlauf ist aus den fir einzelne IFdlle berechneten Kurven
erkennbar. Fig. 8 1st fiir e = 11°32' 5 = 5, fiir die beiden Werte
h = 1/ und & = 10 berechnet; Fig. 6 gibt den Verlauf von E(9)
fiir h =10 fiir dic Werte e = 909, 75°% 60° 45° 30° 15° und 0°.

Die stets positiven I-IKurven sinken mit wachsendem ¢ von
R = o0 nach R = 0. Ber nicht zu grossem h haben die Kurven,
deren Ordmaten fiir abnehmende ¢ immer zunehmen, zunichst.
keine Extrema; beir elnem bestimmten Grenzwert von e erhiilt.
die Kurve einen Wendepunkt mit horizontaler Tangente, und
mit weiter abnehmendem & treten Minima und Maxima auf, wo-
bei letztere immer bel grosseren o liegen. Beide steigen mit ab-
nehmendem &, die Minima riicken zu immer kleineren 6, die
Maxima gehen zuerst zu grisseren 0, dann wieder zu kleineren,
bleiben dann aber bei Werten von 6, die > ¢ sind. Uber den
Ubergang in die U-Kurve s. S. 491,
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4. Die Kurvensicharen R(d) mit Darameter h.

Ihr Verlauf ist aus Fig. 7 ersichtlich, worin fiir ¢ — 45° dje
R-Kurven fir h = 0;1;6),5;10;20; co dargestellt sind. Auch
hier zunéchst mit wachsendem 6 stetiges Sinken der R(9)-Kurve
von oo bis 0, solange h wnterhalb einer gewissen Grenze liegt.
Dann Auftreten einer Kuwrve mit Wendepunkt mit horizontaler
Tangente; sodann, fiir grosssere h Auftreten von Minima, die ihre
Lage und ihren Wert nur wenig indern, und Auftreten von Maxima
ber grosseren 4. Die Maxima wandern bei wachsendem h zu
wachsenden 9, so dass balid d,, > ¢ wird, gleichzeitig steigen die
Maxima rasch an. Uber den Ubergang in die U- und S-Kurve
s. 8. 491.

15 R Y,

-9

[0\
W
N

d-45°

o

10

d=75°
/’-—T\
d=90

g R CE) ruir 10, variater Paramerer & T
Fig. 10.

5. Die Kurvenscharen R (e).

Wenn d als Parameter und ¢ als laufende Variable aufgefasst
wird, so wird
1 dG 1 dG

T dp G RO



Hiefiir wird

Mok
3
H—c

Wir verzichten aut eine allgemeine Diskussion dieser nicht leicht
zu analysierenden Funktionen und geben die Kurvenscharen fiir

-5 K (&), O=457 variabler Pararmerer /
Fig. 11.
h =10 mit Parameter 6 und fiir 6 — 45° mit Parameter ¢, wie

sie fiir einige Werte berechnet worden sind (s. Fig. 10 und 11).

n.nI

C. Die Intensitiit J- - G.

Das einzelne, in der Schicht smuspendierte Teilchen bedingt

im Ausdruck der Intensitit J eimen vom Zerstreuungswinkel

32
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@ = ¢ — 0 abhingigen Zerstreuungsfaktor I'(¢) ; die Gesamtwirkung
aller Teilchen bedingt den im Abschnitt. A diskutierten Sechichi-
faktor G(e, 0, h). Demnach wird eine Schicht eine wesentlich
andere Intensitatsverteilung des durchgehenden Lichtes erzeugen
als die, welche von einem einzigen Teilchen hervorgebracht wiirde.

Da die Werte von G immer positiv und <1 sind, so ergibt
dieser Schichtfaktor stets eine Verkleinerung des Teilchenfaktors

n- I’

bed

’

aber diese Verkleinerung kann sehr verschiedenartig sein. Greift
man als Beispiel eine der G (¢)-Kurven der Fig. 2 heraus, die bei
& = g, ein Maximum hat, so erkennt man folgendes: In dem relativ
flachen Gebiet der G-Kurve, fiir grossere €, wird der Verlauf von
I'(¢) (d. h. hier von I'(¢) mit gegebenem Parameter ¢) kaum
geiindert; allerdings ist hier G meistens klein, so dass die Inten-
sitit merklich verkleinert wird. Aber da, wo die G-Kurve sich
rasch dndert, treten erhebliche Verschiebungen auf. Fir e < g,
wo die G-Kurve stark ansteigt, werden die Maxima von I"'(¢)
merklich zu grosseren 6 verschoben und relativ vergrossert, wih-
rend die Minima von I'(¢) entsprechend zu kleineren 6 wandern
und relativ vertieft werden; umgekehrt verhélt es sich auf dem
steil abfallenden Ast fir ¢ > ¢,,. Es ist klar, dass diese Verschie-
bungen nahe aufeinanderfolgender Maxima und Minima von I'(gp)
so stark werden konnen, dass sie unter Umstdnden zusammen-
fallen (und also nahezu verschwinden) oder sogar sich iiberholen
und also ihre Reihenfolge mit wachsendem ¢ vertauschen.

Aus dem Verhalten der G-Kurve mit wanderndem Parameter
(6 und &) (siche Fig. 2 und 3) kann demgemiiss die Veriinderung
der Intensititsverteilung mit 6, x und AH (x- AH = h) ermittelt
werden.

Ebenso wird in den G (0)-Kurven (Fig. 3 und 4) ein dhnliches
Verhalten festzustellen sein; da diese alle mit ¢ ansteigen, werden
alle Maxima von I'(¢), bzw. I'(0), zu grosseren 6 verschoben
und alle Minima zu kleineren 9.

Wie schon in unserer fritheren Arbeit!) angegeben wurde,
werden diese Verriickungen der Maxima und Mimima von I'(g)
durch den Schichtfaktor ¢ am einfachsten aus der Funktion R
(s. Gl. 8) bestimmt,

1) P. GRUNER, l. c.
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Aus
e I’

folgt:
1 dJd 1 Al 1 dG
J dge ' de G de¢

Die Extrema von o werden (da J > 0) durch

dJ ()
({q
bestimmt, also durch:
1 dl’ | dd
Fodg T TG s R (1

Bei variablem ¢ (mit Parameter ¢ und /) sind die Extrema
}.’,(‘{.’;L‘])(‘ll durch
1 dr

T dp ~E0O),

und be1l variablen ¢ (mit Parameter 6 und h) durch

1 drI’
F i .

Kennt man I'(¢), also auch die Kurven

1 ' (1,117
' d¢’

mit ¢ = ¢ — 9, in Abhangigkeit von 4 bzw. ¢ so werden die
Abszissen (0,, bzw. ¢,) der Fxtrema von .J durch die Schnittpunkte
der Kurve

I dr

' dyg

mit den R-Kurven erhalten. In den I'(¢)-Kurven, in welchen
einzig die zerstreuende Wirkung der einzelnen Teilchen zur Gel-
tung kommt, sind die Extrema von J aus

drl’

L

dg

zu ermitteln. Der verschiebende Einfluss, den der Schichtfaktor G
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ansiibt, kann somit 1 prinzipiell cinfacher Weise vefunden
werden.

Es hat keinen Sinn, diese mm allcemeinen Fall nicht iiber-
sichthiche Diskussion durchzufihren. Das Schema derselben ist
fir den einfachsten Fall des zuriickgeworfenen Lichtes in unserer
friheren Arbeit!) durchgetithrt worden und kann ohne weiteres
verallgemeinert werden.

Uber die Verwendung dieser Berechnungen fir konkrete:
Falle soll spiter berichtet werden.

Bern, physikalisches Institut der Universitiit.,

P, GRUNER, | c.
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