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Die graphischen Methoden der Bewegungslehre (Kinematik)
von Dr. Ing. H. Brandenberger, Ziirich.
(21. 1. 30.)

I1. TEIL.
Die hiheren Beschleunigungen.

a) Die vektoriellen Beziehungen zicischen den Beschleunigungen und
den Kriimmungen der Bahn eines eben bewegten Punlktes.

Die Differentialrechnung nimmt an, dass die Differentiale
der unabhéngig Variabeln (dt) emander gleich und konstant
sind, withrend die Differentiale der abhingig Variabeln (ds,,
ds, = ds, — d2s) 1n den aufeinanderfolgenden gleichen Zeitele-
menten sich voneinander unterscheiden. In den nachfolgenden
Ableitungen wird von dieser Eigenschaft in weitgehendem Masse
Gebrauch gemacht.

Wir definieren die Bahnnormale in den einzelnen Lagen eines
bewegten Punktes als die Senkrechte auf das vorangehende Weg-
element, so dass man aus den Lagen 4, 4,, 4,,.... der Bahn
des Punktes, Fig. 8, die Lagen 4', 4", 4,",.... als Punkte der
ersten Evolute der Kurve, daraus die Punkte 4", 4,", 4,7, .. ..
der zweiten Evolute usw. bestimmen kann. Stets bestimmen n
Lagen eines Punktes, n — 1 Lagen auf der ersten Evolute, n — 2
Lagen auf der zweiten Evolute usw. Wir bezeichnen die in den
gleichen aufeinander folgenden Zeitelementen zurtickgelegten Wegen
des Punktes 4 der Rethe nach miat ds;, ds,, dsg, ... ., die des
Punktes A" mit ds,’, ds,’, dsy’...... die des Punktes 4”7 mit
ds,”,ds,”...... usw. Ferner bezeichnen wir die von den Bahn-
normalen in den gleichen aufeinander folgenden Zeitelementen dt
zuriickgelegten Winkeln mit dgy, dgy, dgy, . ... und die Kriim-
mungsradien der Kurve bezw. der ihrer Evoluten der Reihe nach
I Py s Tgs e 05 ¢

Die Bewegung des Punktes 4 nach A, (ds,) kann als eine
Drehung der Bahnnormalen 4" 4 = r; um den Winkel d¢, auf-
gefasst werden. Dementsprechend ist

dg; = fy~d Py
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Ebenso kann die Bewegung des Punktes 4, nach A4, als eine
Drehung der Bahnnormalen 4," — 4, (vektoriell gleich r; +- ds; —
ds,’) um den Winkel d¢, angesehen werden. Es ist daher

ds, = (r; + ds; —ds)') - de,.
Ebenso 1st

dsy = (ry + ds; + dsy —ds;" —ds,’) - dpg usw.
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Fig. 8.

Da die Bewegung des Punktes A" nach 4,” durch eine Drehun
o i 1 :
der Strecke 4" — 4’ um den Winkel d ¢, erzeugt werden kann, 1st

g8y = 1y By
Ferner
ds, = (ry + ds;’ —ds;,"”") de, usw.
Ebenso 1st
ds,”” = ry-dg, usw.
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Setzen wir die einzelnen Werte in den vorhergehenden Gleichungen
ein, so erhalten wir:

ds; ,
do,
ds ;
(!r;%_; =1 (1 —dgy) —ry-de,
ls
((lqs =r(l +dg, —de, +de,dey) —ro(de, — de,+2de, dp,)
3

+ rydg, dg, usw.

Wir definieren die Geschwindigkeit des Punktes 4 wiihrend
des ersten Zeitelementes, also beim Zuriicklegen des Wegelementes
ds, durch

d s,
Uy =
1 d?‘ ]

Fig. 9.

die Geschwindigkeit wihrend des zweiten Wegelementes ds, durch

d s,
Ng = = s
- dt
ebenso
Pa = -d .’:3- usw
Sodt
Ahnlich wie wir den Vektor ds, erkliaren konnen als Differenz
der Vektoren a,— a,, Fig. 9, ds, = a3 — a, usw., und dement-
sprechend setzen konnen

L“ p— e q-‘j = = .
. dt dt ’
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konnen wir die Anderungsgeschwindigkeit der Geschwindigkeit,
das 15t die erste Beschleunigung, definieren durch

== rl d'so ‘—(Z -\'1
hl — = - T R e P g
dt dt*
rg—10vy ds;—ds,
h-) — - == —-.3_ r USW.
} d1 dt*

Ebenso erhilt man die Anderungsgeschwindigkeit der ersten
Beschleumgung, das 1st die zweite Beschleunigung aus

b, = ..’32.~‘ hl . (I_fi_--‘ _:_2_ (l”g - d 8
! dt A3

b, == bv — by . dsy; —2ds; - ds, e
: dt 770 W,

Die dritte Beschleunigung ist:

T Rl P S 6 Tl v

! dt dti
Wir defmieren die Winkelgeschwindigkeit wihrend des ersten
Zeitelementes

dq,
1(‘1 == - — =
i
walirend des zwelten Zeitelementes
([([-2
Wa == 2
. dt
ebenso
A dgg
Vg = —5— *
dt

Ahnlich wie bei der Beschleunigung eines Punktes erhilt man die
Anderungsgeschwindigkeit der Winkelgeschwindigkeit, das 1st die
erste Winkelbeschleunigung aus

) wy — wy, de,—dg,
== 140
dt dt?
) Wy — 1wy dgs—dg,
Sy = — = = SW,
! = pIE UsW

Ebenso die zweite Winkelbeschleunigung

; Ao — 4 dgs —2dg, + d
M =Lt = ST P T NP usw.

2R ds




o138

Unter Beriicksichtigung der bisher aufgestellten Gleichungen
crhalten wir:

(1 .\'1 (I q"!
Py = s == Py = ¥y, Wy .
Yooodt * ot v
Woraus die allgemeine Formel folgt:
B o= WS, (1)
Es ergibt sich
] dsy, —ds, r (1 —dg) dg, racdpydes rydioy
) = s = —- —_— - s e —
! dt* dt* dt* dt*
dg, — dq dgy~d gy dg, dg, "
_ ,,,,L:,i),,, 1 " 1 A fa ’y k' 'z'!l‘-" = 7oy
dt? di® = dt

- Py Wy —— Vo W Wy .

Setzen wir fiir 2, — 4 und fiir w, = w, = w, was zuliissig ist, da
jetzt nicht mehr die Differenzen der Winkelgeschwindigkelten
beriicksichtigt werden miissen, so ist allgemein:

b=y = S —=rw®. .. (2)
Ebenso erhiilt man
’ dsy —2ds, - ds 1 ~dgy, -de, +deg,dg, Io
b= e T s e
de, *-des —2dg, dyg, o dypdeydeyg
—ry ds dagy 1y FICEE
20 —dg)dey 5, deydgy dgy
—h dis Y T
doy —2dqg, — dq, Cdgyvdgy—2dgydyy - dyyda,
=1y A T E
dg,dg,dq, dg,dg, —2dep,dg, — dg,dy,
" Ty — A AP Fe TR
dt? - dt?
2dg,dg,dg, dg,dg,dqg, .,
R ‘-) - SRS l -= o T ’.n .‘- - = '. /.
. dt? 9 dit3 %™

‘ (7(]1 dos, — dg, dg, —dq, d([‘,)
Py | et B S G e L
1( dt dt* dt? dt 11t

dgy —dg, dg,

dtz

- Py Wilally .

i ((1‘]‘1 ) f] Gz — _(']q,_,. B
2\ dt dt?

\

: )w D Wy Wo tl
dt | MR S



Da

dgg—dq, _ —dgy | dgy—dey _ + 2
dt T @

SO 1st

bl’ = rl ;- g = "1 “1. ;;1 SE N5 "1‘10.} (/:1 _—' ;...)) ‘_ ?'1 ?l,ll l(.g l(‘a — 1’21612.2
— raWsy (A + Ay) — 2 vy wewy + rawy Waty .

Aus den gleichen Griinden wie bei der Gleichung (2) kann all-
gemein gesetzt werden:

b =nr2 +=3wi(rp—ry) +wd(r;—2r, 15 .. .. (3)

Fig. 10.

o

Kennt man von einem bewegten Punkte den Kriimmungsradius
der Bahn eines Punktes bzw. die ithrer Evoluten (r, r,, r5.. ... b
ferner die Winkelgeschwindigkeit w = tgd und die Winkel-
beschleunigungen 72 = tgy, 2" = tgy’, usw. der Bahntangente,
so erhélt zunichst die Geschwindigkeit v = rjw = ry-tgo als
Kathete eines rechtwinkeligen Dreieckes. Die Beschleunigung
b =rd 4+ rpw?—ryw? ergibt sich als die Vektorsumme dreier
Beschleunigungen (siehe Fig. 10). Ebenso kann man die zweite
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Beschleunigung b mit Hilfe der Gleichung (3) graphisch leicht
ermitteln.

Die Ausrechnung der hoheren Beschleunigungen nach der
hier entwickelten Methode ist verhdltnismissig umstandlich,
weshalb ein schneller zum Ziele filirendes Vertahren angegeben
werden maoge :

In Fig. 11 bedeuten wieder ry, ro, ry. . ... die Kritmmungs-

%
&-&
?3
N“,—\\/ -
Fig. 11.

radien der Bahn bezw. der Evoluten der Bahn des Punktes. Es 1st

D =F W (1)
b = dj = _(z_(_’l__l_l)_ s d’_l Wy aw
di dt dt i

dr, . . L. . . .

~i; 15t die Anderungsgeschwindigkeit des Kriimmungsradius
welche sich zusammensetzt (siche Fig. 12) aus der Geschwindigkeit
des Punktes 4 und der Geschwindigkeit des Punktes A’. Es ist

Da der Geschwindigkeitsvektor v,” nicht am Ende des Vektors »,
sondern an seinem Anfang angesetzt erscheint, ist er mit negativen
Vorzeichen einzufiihren, so dass

dry

== W — Pyt W
Jt 1 2



. . . : dawe .. . .
Unter Berticksichtigung, dass g1 = 4 1st, ergibt sich

b = Pl == Po® = ry® ;. .,

Die-zweite Beschleunigung b’ ist
o 86 _dn o d2 dn o, d(w?)
dt — dt 7t dt T dt Yoot
a7y R (I(H“l
—— gty
dt 7
Ao
g "
"L/} Tooat
i iy
A % A’ /
./.
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| & 7
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Fig. 12,

Aus den gleichen Grinden wie oben ergibt sich:

dry S dz »
qp =T, —e =2
womit
b' = (ryw —ryw) - 4+ rd + (rqw—raw) - w2 4+ 2, wi
— (r2 w —ryu :) w2 — 2 7o WA
oder geordnet
b =r 2 - (ry—ry) BwA+ (=20, - 1ry) w3,

Ebenso erhilt man

b =1 A+ Ay — 1) WA+ B(ry— 1) A2 6(r, — 27

(ry — 21y —13)
. ”/22 _T__ 1(/.4 ("1 _— 3 7'2 -+ 3 1'8 L ’-4,‘; PP ;
b”’ i i’] .,” "— ') (’l “/A "i_ 1(, (rl - }12) " /‘\./‘u’

i F e / N 1 i A | e . ApD
e(\),—412~;~6r3—4r4—15) .
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b= A 6 (ry—rg) s wA" = 15 (rp—1y) AL 10 (ry — 1) A2
+ 15 (r; — 21y + rg) - w?i” 460 (ry — 271, + ry) WAL
+20(r; —3ry + 3rg—ry) w3 + 15 (r; — 271, 1+ 1rg) A®
L 45 (r; —8ry+ 31—y w22+ 15(ry —4ry +61r3—4ry + 15)
cwt A+ (=81, + 101, — 100, - 5r;—rg-wb.... (6)

h) Die vektoriellen Beziehungen zwischen den Polbahnen
und den Polwechselbeschleunigungen.

Jede Bewegung eines ebenen Systems kann aufgefasst werden
als eine Rollung einer mit dem beweglichen System verbundenen
Kurve (bewegliche Polbahn) auf cmer mit dem festen System
verbundenen Kurve (feste Polbahn). In Fig. 13 seien g,, 05, 05....

IFig. 13.

die Kriimmungsradien einer festen Polbahn, ry,ry, vy, ... die
Kriimmungsradien ciner beweglhchen Polbahn.,  Wir erteilen dem
System der beweglichen Polbahn cine Bewegung (w, 4,4, ...)
und wollen die Bewegung des Momentanzentrums 0 (vg, by, by, . . )
feststellen. Wihrend der Bewegung des Systems wandert der
Bertihrungspunkt 0 lings der festen Polbahn weiter (0, 0y, 05, . . ).
Die in den gleichen aufemander folgenden Zeitelementen dt zuriick-
gelegten Wege lings der festen Polbahn (do,, do,....) sind ihrer
Lénge nach den Wegelementen gleich, die der Beriihrungspunkt 0
relativ auf der beweglichen Polbahn zuricklegt (ds,,ds,....).
Es miissen daher die tangentialen Komponenten der Geschwindig-
keiten und der Beschleunigungen beider Bewegungen einander
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gleich sein. Wir bezeichnen die Bewegungsgrossen, die die Normal-
strahlen g bezw. r auf ihren Systemen ausfithren mit w,, 4,, 4", . . .

bezw. w,, Z,, 4/, . ... Fir die Bewegung des Systems selbst 1st
Ww=w,—w,, A=~ —~4, A =21"—4i" ... usw.

Die Polwechselbewegung ist nach den Gleichungen 1 usw.
bestimmt durch

o = 01° W,

by = 014, + (07— 04) " 10

b= 014, + (61— 02) "3 w, 4, — (61— 26, + g3) " 10,
USwW.

Die zu losende Aufgabe besteht somit darin, die Winkel-
grossen w,, 4,,4,", ... usw. zu ermitteln. IHierzu ziehen wir einer-
seits die Bedingungen der Gleichheit der tangentialen Kompo-
nenten der Geschwindigkeiten und Beschleunigungen der Bewe-
gung des Momentanpoles lings der Polbahnen und andererseits
die bereits angegebenen Beziehungen der Winkelgrissen beider
Normalstrahlen auf ihren Systemen zu den Winkelgrossen des
Systems selbst heran.

Es 1st

V=g, W, =Ty W0,
w, — W, = W,

Aus 1hnen erhilt man

wer w:- o -
w, =——-3=— und w, = .- | . (1)
L6 T '3 r— o)

Aus denselben Griinden i1st

y g s s o, 2
bt o Qlo/.'gmgzouyg = )1 ).”—)2 I(,

Ay— 4 = 4.
Daraus ergibt sich
ry 2 ro 0,2 — 0y W,2 ]
- j L 2 1 2 0
o = = e
0 , ,
1= 0 )
; g* & + Tx® WP — g W,
by = Ag— A = — — -2
'y — 01

Ebenso erhidlt man aus

— = . T | ] cae 3L . 3
=r A —8rw A+ rywd+ rgw?

F A7 At

— A =1
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02W, 2y + 01,2 < gz, 31w, A,
q* i* P, / 5 3
A'(ri—oy) =4 0 —3 0w, A, + (0, — 0z w0, + 3 32u, A,

— (1 + 1) - w,3.

()

Auch die Auflosungen der entsprechenden Gleichungen fiir dic
nichst hoheren Beschleunigungen bieten kemerlel S(:hwieriqkeiteu
Die Werte w,,2,,... 1n die Gleichungen fiir v, b,.... einge-
setzt, Orgel)en (he G(‘\Ch\\'ln(ll(’l\t?lf und die Beschleunigungen der
Polwechselbewegung.

¢) Die Polwechselbeschleunigungen wnd die Beschleunigungen des
mit dem Momentanpol zusammenfallenden Systempunktes.

Ist die ebene Bewegung cines starren Systems durch das
Abrollen der beweglichen Polbahn aut der festen bekannt, und
hat man die erste und die hohere Beschleunigung eines Punktes
aufzusuchen, so muss man zuerst die Beschleunigungen des mit
dem Momentanpol zusammenfallenden Systempunktes S ermitteln
und zu dieser die Beschleunigungen addieren, die sich aus der
Bewegung des Punktes 4 um den Punkt S ergeben.

Da der Punkt 4 um den Punkt S eine einfache Drehung
ausfiithrt, so sind i den Gleichungen 1 usw. des Kapitels 3a die
Radien r; =S4 =, ry, = ry = r* = ... = 0 zu setzen. Sind die
Beschleunigungen des mit dem Momentanpol zusammenfallenden
Svstempunktes der Rethe nach mat b, 0, b, ... (r, = 0) be-
zeichnet und 1st die Bewegung des Systems bestimmt durch

2, 2. ..., =0 kann man schreiben:

(] = 7r-w

by =b,+r(A+ w?

bA’ = bs’ 4 P (/1' + 3wl + ,w:])

b, =b/" +r(A" + 4wd - 322+ 6wl + wY

[)AW E= bsw ~+ 7 (Zm ~+ Swl’ |- 1024 g 10wz} - 072

- 10 w4 + w?)
l}{lf’l b reve )("Ilﬂf ol G ”./“Ifl _;_ 1() /“12 1 1‘5}}!/ __1_ 1 ri “;2/“‘_.11
+ 60 wii 4+ 20w3A" — 1543 + 45 w222 + 15 wii + wh) .

In den Tig. 14—18 sind die a.ufvimtml(rrfolgenden Lagen der
festen und beweglichen Polbahn zu Beginn der einzelnen Zeit-
elemente dargestellt. Wiahrend das Momentanzentrum seine Lage
lings der festen Polbahn #ndert (0,0, 0,,...), fithrt der im
ersten  Augenblick mit dem ;\IOLn()ntanpul zusammentallende
Systempunkt S eine Bewegung senkrecht zur festen Polbahn



s (S,5:,8,,...). Wir bezeichnen die Wegelemente, die der
Punkt 0 ausfithrt, der Reihe nach mit do,,da,, ..., die des
Punktes S mit dg,, dg,, . .., die Winkel, um die sich das System
in den einzelnen Zeitelementen verdreht, mit de,, dg,,.... Auf
Grund der Fig. 14—18 konnen unmittelbar folgende Gleichungen
aufgestellt werden:

dgg = (—doy,—doy, + dg,) - doy
dgy = (—doy—doy, —dog + dg, + dgy) - dgg.

Fig. 14—18.

Ahnlich wie im Kapitel 8a kann man daraus die Bewegung des
Punktes S bestimmen:

dg,

vS,l = —dt—— = O TS — U .. (10)
dg, — d —do, - d
bsy = g2dt2 h dlt2 %:—vg,l-wg; bs = —vy-w... (11)
, dg, —2dg, + dg,
bsa” = dt3 ’
—doy-dp; —doy-degs —do, - dey-de; — 2do; dg,
B dt3

da dgg = 2, dt? + dg,, so ist
doy des—de, doy-4,-dt?

bs) = — Vg1 Wy - Wy — :
5 b - Fx o EE T di? dt3
. do, —dao
2 1 . \ o e ] . w s i s
” d(p2 di3 —= = Yy ® Wy * Wy — By ® by — o2 * fo — b(],l (i
bs'—_——-vu'w2—2’vo'a_b0'w..- (12)

10
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Ebenso ergibt sich aus
dg; —8dgy + 8dgs—dg,

l y e T o
8,1 dtt

by = — vy w3 — 4 vywld— byw? — 3 vy —3byA—bycw... (13)

Wie man aus den Gleichungen entnehmen kann, ist die
Geschwindigkeit des mit dem Momentanpol zusammentallenden
Punktes (weil gleich Null) unabhiingie von der Winkelgeschwin-
digkeit des Systems, die erste Beschleumgung unabhingig von
der ersten Winkelbeschleunigung, die zweite Beschleunigung dieses
Punktes unabhingig von der zweiten Winkelbeschleunigung usw.
Dieser Punkt 1st der einzige Punkt des Systems ber dem das
rutrifft, die Beschleunigungen aller anderen Punkte hiangen ab
von der gleich hohen Winkelbeschleunigung, welche man dem
System  erteilt.

d) Die hiheren Coriolisbeschleunigungen.

Wenn sich ein Punkt 4 auf einem System I bewegt (Relativ-
bewegung v,, b, b, ...), wihrend das System I selbst sich gegen
ein festes Bezugssystem 0 bloss parallel zu sich verschiebt (Fih-
rungsbewegung v,, by, b,', . .., Winkelgeschwindigkeit und Winkel-
beschleunigungen gleich Null), so erhilt man die Gesamtbewegung
des Punktes A durch einfaches Addieren der Relativ- und Fiih-
rungsbewegung. Es 1st

V= 0, + U
b =b, 4+ by

b' = b, 4+ b, usw.

Fithrt dagegen System I gegen System 0 noch eine Drehung aus
(w,24,2',...), so smd, um die Gesamtbewegung des Punktes .4
zu ermitteln, noch zusitzliche Beschleunigungen (Coriolisbeschleu
nigungen) hinzu zu fiigen.

Die einzelnen aufeinanderfolgenden Wegelemente der Relativ
bewegung des Punktes A auf dem System I (siehe Ifig. 19) seler
mit dry, dry, drg, ... bezeichnet, die Wegelemente der IFihrungs
bewegung mit df,, df,, ..., die Winkelelemente der Drehung des
Systems I gegen 0 mit d¢,,de,,.... Die Wegelemente del
Gesamtbewegung des Punktes 4 ermittelt sich gemiss Fig. 19 aus

dsy, =df, +dry +dry-de,
dsy + dsy = dfy + dfy + dry + dry + (dry + dry) (doy + dgy)

-

ds, + dsy, +dsg =df, +dfs + dfs +dry + dry + drg
+(dry 4 dry + drg) (dgy + de, 4 dy)
24hds = X Adf + 2y4dr + 2i4dr- Zitde usw.
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Somit 1st
ds, = dfy, + dry + dry- de, 4 dry(de, + deg,)
dsg = dfy + dry + (dry + dvy) - deg + dry(de, + de, + de,)
dsy, = dfy + dry + (dry + dry + dry) - dey + dry(de,
+ do, + de; + de,) usw.
Daraus kann man die Bewegung des Punktes A folgendermassen
berechnen:
s d"'ld N df, 1 Py
dt dt dt

Fig. 19.

Da dr; - w, eine unendlich kleine Grosse ist, kann gesetzt werden:
v =0+, (14)

[erner 1st

[l_SE:dfl _ dfy—djf, 5 dry—dr, o deg, — d‘fl
dee T de der T e

4 ‘de . dg, “}" d‘Pz_

by =

"t T = bf by dry sy (e )

Somit
b==b+0b,+2wr, (15)



o IR ==

ds; — 2 ds, + ds,

by = PIE =bfy" + bry +dr i} + dryd)
. de dp, + do, + d¢
— 3 d:rz dt31 + drr3 —I—_di.gz__.__ 3 s
_ Cdey o de +dey +—dgy  de,  drg—dr,
@ =—3dry g5 +drs T R T T
P dw ‘?j?z + d(P:; 2 dry de,
S A i
Es st
_dry—dr,
b= e
und
drg = b, - di® 4 dr,
so dass
‘ } I de, —dg do,—dg
@ =uw b, + b, (w,+ wy) + v, - 3(1#‘3 ke vy, — )dtz !
Somit

by = b+ b, +drd +dry- A + by, (wy + wy T wy)
+ 'ng(}uz “f ;Ll) JT* F"'.’ = }.1

b =b' + b’ +3wb, + 3 1v,. (16)
Ebenso ergibt sich aus

sy —3dsy + 3ds,— ds

by = I TS o= b) b A dr A
. 50 o dry dep, drgdey,  drg-dg,
T*d*t}r( $1 T OGPy T dFg =A@,y
nach emigen Umformungen
by =b," + b, + (dry+ dry 4 drg) - 24" + b, (wy + 1wy
—+ wg + wy) + b, (44, 4+ 2 44) - v, (34, + 4y)
b’ =b," + b/ +4wb, + 61b, 4+ 40,4 (17

e) Anwendungen.

Die abgeleiteten vektoriellen Gleichungen stellen wohl du
einfachste Form dar, in welcher die Beziehungen der einzelner
Grossen untereinander ausgedriickt werden kénnen. Es 1st nich
notwendig, dass die Ermittlung der einzelnen Grossen zeich
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nerisch erfolgt, es 1st ohne weiteres moglich, dass dieselbe rech-
nerisch vorgenommen wird. Es moge dies an einem Beispiel
gezelgt werden:

I. Aufgabe: Von der Bewegung eines Punktes (Fig. 20)
sind die Geschwindigkeit » und die 1., 2., 3. ... Beschleunigung
(b,b',b"”,...) bekannt. Es sind die Kriimmungsradien r, r5, 73, ...
der Bahn des Punktes und der ihrer Evoluten, sowie die Winkel-

...............

- Tecccecmc o e rranane

Qv

cecercrrrecea

Fig. 20.

geschwindigkeit w und die Winkelbeschleunigungen 4, ', ", . ..
der Bahnnormalen aufzusuchen.

Die einzelnen Bewegungsgrossen seien gegeben durch ihre
i die Tangentenrichtung () und in die Normalenrichtung (n)
fallenden Komponenten (Werte in mm). Durch Heranziehen der
Gleichungen des Kapitels 3a konnen diese Grossen gleichgesetzt
werden:

v o= 40+ =y (18)
by = 87" = p; ~w* (19)
by =10t =9, 41— ry- w? (20)

b, =36F" =3r,-w-41—2r, wd (21)
b = 1815t =r - A —3ry-wld 4+ r;-wd + rg-w?®  (22)
3)

b, =368-"=4rywi +3ri2—12r,w2l + ryw* + 3ryw? (23

b =25-t =r 2" —drgwd’ —3ry A2+ 6(r; + ry) - w22
— 3(ryg + ry) - wt (24)
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Aus (18) und (19) ergibt sich

b, 20-n

W= —= " = (0675
T 40+f #
a9 )+t

ML UMy e
w 0,675+ ’

Aus (20) und (21):
r A —ryw? = b, = 10!
b, _ 36
w 06757
%5
04,88

ros w2 = 23.8-t: p, — - 23"};‘_ = 51 .9+t
? T (0,675)2

Sry A —2r,w? = -

53,3

7y A== 884" 4= = (,561-

~
A

Fig. 21.
Aus (22) und (23):

rA +rgwd =056+ 3rywid—rywd = 581+

v, 2 4+ 3rgwd = (b, —8ry 2% 4- 129, w2 — ryw?): w = 222+

. g, me Tl o ‘
ry A= 222+t — 174,83+ = 47,7+, }' = _,(,];%_1;!,‘ = (,803+
e at :
10,4+¢ N
rys w3 = 58,1+t — 47,7+t = 10,4+; rq = ((T(TTF)? = BA Brib

Die Winkelgrossen sind i Fig. 21, die Bahn des Punktes
in Iig. 22 dargestellt.

Triagt man von emem Punkte die 1., 2., 3.,... Beschleuni-
gungen der Punkte eines bewegten Systems auf, so erhilt man
den 1., 2., 3., . .. Beschleunigungsplan. Die Beschleunigungspléane
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sind dem bewegten System #hnlich., Kennt man daher die
Beschleunigungen zweler Punkte, so kann man mit Iilfe der
Beschleunigungspline die Beschleunigungen ecines jeden dritten
Punktes und weiters auch die Bahn des Punktes bestimmen.

II. Aufgabe. Von der festen und beweglichen Polbahn eines
eben bewegten starren Systems sind die Kriimmungsradien der
Bahnen (g, 1) und die ihrer Evoluten (g5, 05, ...; ra,73,...)

Fig. 22,

o

bekannt. Fir einen Punkt A4 des bewegten Systems sollen die
Krimmungsmittelpunkte A, 4", 4", ... bestimmt werden.

Die Angaben (Werte in mm) seien (siche Fig. 23):

0, = H4+n r, = 60-"
0, = 35+ Py = GB=}
03 = 307 ry = 24,5+",

Man erteilt dem beweglichen System eine beliebige Bewegung
(w, 2,2,...) und sucht fiir diese Bewegung zunichst die Pol-
wechselgrossen vy, by, by', . ... Die beliebig angenommene Bewe-
gung sel:

w =12+

A = 1.0

A =08+
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Die Polwechselgrossen ergeben sich laut den Gleichungen des
Kapitels 3b aus:

w' 7 o P ]
wp = 2T _ 0,577+
T — 0
w, = w, —w = 0,623~
y b = e i
1/0 ——— Ql ’N_,e o 3],1 .
72 )
+na ) i
A7 J |
y l,, | 3
\'a |
N | 1
N |5 -’
AN a ?
\\ 3?*71 . \"
\\. j
S
!
¢ ’

Ferner ist

’ " - I',’ ‘ 5 Jm / | 3 i . . SR
2o (ry—gy) = A1, —38gw, 4, + (g1 1 0y) w,® - Brato, 2y
(b 1) w0

2y (B0 ~m —54+m) — 98 B¢ i, = 0,95+

0 e
thy =01 A — B 02 Wy Ay + 07 10,% 4 pg - 1,5 = 3, T+

”bol = 0,3 w, )‘0 —3 92”"'93 = 52,0+,

Allgemein 1st die nte Beschleunigung des Punktes 4 gleich
der mten Beschleunigung des mit dem Momentanpol zusammen-
fallenden Systempunktes S, vermehrt um die nte Beschleunigung
des Punktes 4 um diesen Punkt S.

b = b ™

) um S *
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Laut der Ableitune des Kapitels 3¢ 1st
ban}

-'?s == ()
by = — 5w

' i S Y
by = — vy w2 —20vy+ A —by-w.

Somit 1st
b, =87 S+
thy = — vy W2 —"byr w = 66,4“
nbs' = — 3 Uy = A — tbu W = ()4.2 "

Die Lage des Punktes A sel durch 04 = a = 50+ (siehe IFig. 23)
gegeben.

Die Gleichungen fir die Bewegung des Punktes 4 um S
ergeben sich aus den Gleichungen der allgemeinen Bewegung des
Punktes (Gleich. 1 usw.), wenn man die Kriimmungsradien der
Evoluten gleich Null setzt. So 1st:

Djums = AW = GO+ — Py
“Dyums = @" w2 = T2-¢

i h.-l aum s - A — 5()—nea

a[)"[ um S Saws — 180 +»

w9l um s al + awd? = 46,6 -9,

’

Um von den Beschleunigungen b, b/, ... die in die Richtung a
bezw. normal zu a (na) fallenden Komponenten aufzusuchen,
kann entweder eine rechnerische oder graphische Ausmittlung
herangezogen werden. Eine letztere (siche Fig, 24) ergibt:
%, = B be
naph, =24 5+na
oh ! =115
6ol = 1P 5-98
Da allgemein
b{{n) o b.én) | b,-l("u)m S
1st, so ergibt sich:
ab_l =aby + by, ums = 44°°
iy, = MO, Rl
Ebenso erhilt man

' ! £ 5+
b, = by + by ymg =657

"abA’ — nabs’ LL ﬂab‘i’um 5 == 55),1— na.

Aum S 2'-)9‘) "

Man konnte nun die Bewegungsgrossen des Punktes A allein
bentitzen, um die Krimmungsmittelpunkte der Bahn des Punktes
und der ihrer Evoluten aufzusuchen. Zieht man jedoch die



Bewegung des Momentanpoles heran, o kann man bereits aus
der Beschleunigung des Punktes den Krimmungsmittelpunkt der
Evolute der Bahn des Punktes crmitteln. Dieser letztere Weg,
die Ausdehnung der IHartmann’schen Konstruktion zur Bestim-
mung des Krimmungsmittelpunktes auf die Beschleunigungen,
moge nun beschritten werden.
Da wir die Bewecune der Balmnormalen ¢ mm Punkte
heranziehen, und diese Bahnnormale auch stets die Verhimdungs-
z

a

Fig. 24,

gerade des bewegten Punktes A mit dem jeweiligen Momentan-
pol 0 ist, so mogen vorerst aul Grund emner z B. graphischen
Ausmittlung (siche Fig. 24) die Komponenten der Polwechsel-
beschleunigungen i Richtung « und na bestimmt werden.  Es
ergibt sich

o, = BO5 2

na By == 21 +na a bt)’ — 37’5 +a
a b(] - 4,3 +a na b(}’ — 38t na
na h" — 3P —-na

Ist N der aul a legende Punkt, der zu Beginn der Bewegung
mit 0 zusammenfillt, <o 15t allgemein die nte Beschleunigung von A

(n) (n) (n)
h.l b.\' ‘ h.l um N



Da die Gerade a als Bahnnormale stets durch den Punkt 0 hin-
durchgeht, so 1st:

)y _ pn) | 1,00 _ 1, (n) Coriolis
bO - bA' T bO auf a + bO auf a .

Daher ergibt sich

n) __ p(n) __ (0 __ 1) Cor. ; 1 ()
bA T bU bO auf a bO auf ¢ | b.»l um N *

Die Bestimmuneseleichune der nten Winkelbeschleunicune 2. der
] B = a
Bahnnormalen a lautet somit:
nap (n) __nap(n)___p(n) Cor. | nap, (n)
b b, b )

Oaut e ! Aum N
o nap, (n) _ nwial, (n)y Cor, __ 1, (n) Cor, ;.
‘]‘] b() ani « ) lllI(] b() ant « bl) ant « 15t.

Fig. 25.

-

Diese Gleichungen angewendet auf die Geschwindigkeitsverhiilt-
nisse (n) = 0 (IHartmann’sche Konstruktion) ergeben):

; & e Mg l o s
By 2= 0y — L) 4 A% 10,
’ GO#6e = Q4tnk L GE+E: g ; w, = (L72
U4 ‘
L Py Wl Ty . B34t ,
",

Die obigen Gleichungen angewendet auf die Beschleunigungs-
verhiiltnisse (n) = 1 ergeben:
noa b_l — na l)u — 2 . a ru . uqd f a- 2“
25,5-n0 = 3§2-ne —2.90,5-2-0,72+ 4 50+12- 4,
7 — 0.46-

n”b.»l =7, Ay — "a, . ”‘02;
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R ST
(I

ot

{
(l

ﬂb{ == & b;’\‘ %’ “ bA mm N

a b.-‘V —_a bA __a b.{

apCor. __ (V. an jot @
da by, = 0; so st b,

18,1

wm .y s

1 o —— D) g
awf « [’n !’,\' LERTT,

Die obigen Gleichungen ancewendet auf die zweiten
) b r
schleunigungsverhiiltnisse (n) 2 ergeben

nah ' =m0ht — B W by gura — B Aetoaura +— (Aa -+ a3
4, = 1,038
nah =y — B wadyr, + orac s oy 2w
= () e
Das Ergebnis 1st somit:

o — B34t

r, = 24,7 +re

rg'! = 0,6t

Be-
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