
Zeitschrift: Helvetica Physica Acta

Band: 3 (1930)

Heft: II

Artikel: Die graphischen Methoden der Bewegungslehre (Kinematik). II. Teil

Autor: Brandenberger, H.

DOI: https://doi.org/10.5169/seals-109800

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-109800
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


— 134

Die graphischen Methoden der Bewegungslehre (Kinematik)
von Dr. Ing. H. Brandenberger, Zürich.

(21. 1. 30.)

II. TEIL.

Die höheren Beschleunigungen.

a) Die vektoriellen Beziehungen zwischen den Beschleunigungen und

den Krümmungen der Bahn eines eben bewegten Punktes.

Die Differentialrechnung nimmt an, dass die Differentiale
der unabhängig Variabein (dt) einander gleich und konstant
sind, während die Differentiale der abhängig Variabein (dslt
ds2 dsx — d2s) in elen aufeinanderfolgenden gleichen Zeitelementen

sich voneinander unterscheiden. In den nachfolgenden
Ableitungen wird von elieser Eigenschaft in weitgehendem Masse
Gebrauch gemacht.

Wir definieren die Bahnnormale in den einzelnen Lagen eines

bewegten Punktes als die Senkrechte auf das vorangehende
Wegelement, so dass man aus den Lagen A. Au A., der Bahn
des Punktes, Fig. 8, die Lagen A'. Ax'. A2' als Punkte der
ersten Evolute der Kurve, daraus die Punkte A", AX', A2",
der zweiten Evolute usw. bestimmen kann. Stets bestimmen n
Lagen eines Punktes, n — 1 Lagen auf der ersten Evolute, n — 2

Lagen auf eler zweiten Evolute usw. Wir bezeichnen die in den
gleichen aufeinander folgenden Zeitelementen zurückgelegten Wegen
des Punktes A der Reibe nach mit ds,, ds2, ds3, die des
Punktes A' mit dsx', ds2', ds3 die eles Punktes A" mit
dsX'.dso" usw. Ferner bezeichnen wir die von den Bahn-
normalen in den gleichen aufeinander folgenden Zeitelementen dt
zurückgelegten Winkeln mit dcpx, dcp2, dcp3 und elie

Krümmungsradien der Kurve bezw. der ihrer Evoluten der Reihe nach
mit rx, r2,r3

Die Bewegung de^ Punktes .-1 nach .4X (dsx) kann als eine

Drehung eler Bahnnormalen A' A rx um den Winkel dcpi auf-
gefasst werden. Dementsprechend ist

dsi i\- dcpx.
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Ebenso kann die Bewegung des Punktes .4, nach A2 als eine

Drehung der Bahnnormalen Ax' — Ax (vektoriell gleich rx + dsx —

dsx') um den Winkel dcp2 angesehen werden. Es ist daher

ds2 (rt — dSi — dsx') ¦ dcp2.
Ebenso ist

ds3 (rx + dsx — ds2 — dsx' — ds2) ¦ dcp3 usw.

rf*

lf,
5 >

A"

tf

y
*

^sc—r r, Ar

äsy

&/
Js, «y.

Fia. 8.

Da die Bewegung des Punktes A' nach Ax' durch eine Drehung
eleu- Strecke A" — A' um den Winkel d^ erzeugt werden kann, ist

Feiner

Ebenso ist

dsx' r2 ¦ dcpi.

ds2' (>'2 — dsx' — dsx") • dtp2 usw.

dsx" (j • dc/i usw.
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Setzen wir die einzelnen Werte in den vorhergehenden Gleichungen
ein, so erbalten wir:

dSi

ds2

depo

dtpi - '>

r, (1 — dcpA — r2- d</2

ds3

dc/3 r, (1 -f dc/i +d<p2 -rdclx dtf2) — r.1(dqi - dchl-± dq>idcp2)

— r3 dt/i dc/2 usw.

Wir definieren die Geschwindigkeit des Punktes A während
des ersten Zeitelementes, also beim Zurückle-gen de-s Wegelementes
dsx durch

d Sj

dt '

o'j

Fig. 9.

die Geschwindigkeit während des zweiten Wegelementes d.s2 durch

d So

dt '

ebenso

d s3

,lt

Ahnlieh wie wir elen Vektor dsx erklären können als Differenz
eler Vektoren e/2 — r/j, Fig. d.s., a3 — a2 usw., und
dementsprechend setzen können

ct., — a.
i"i di

cu — a.,
''2 MM' usw"
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das ist die erste Beschleunigung, definieren durch
können wir die Änelerungsgeschwindigkeit eler Geschwindigkeit,

inigung, definieren

i\ — i'i d So — d .->j
01 'dt ~~dJ2

''., Vo (I s„ — d «2
62 - ä/ "=--v--,,sw-

Ebenso erhält man die Änderungsgeschwindigkeit eler ersten
Beschleunigung, das ist die zweite Beschleunigung aus

b2 — bj ds3 — 2 d.s., - dsx
'- dt " dt3

b~ — bo ds, — 2 ds, ds.
62 -"dt - ~ dii ' "*«'

Die dritte Beschleunigung ist:

hX — 1>X d.s-4 — :(1/.S3 3 ds2 - ds,

Mr SF~
Wir definieren die Winkelgeschwindigkeit während eles ersten
Zeitelementes

w -~M(<1 _ d*

während des zweiten Zeitelementes

w2
dcp2

dt
ebenso

da,
3 dt

Almlieh wie bei der Beschleunigung eines Punktes erhält man elie

Änderungsgeschwindigkeit der Winkelgeschwindigkeit, das ist die
erste Winkelbeschleunigung aus

ic, — iüj di/o — dcfi
1 ~~dt 'dt2

w3 — w2 dq3 — dt,o
Ao - —7; j-, U»W.

dt dt-

Ebenso elie zweite Winkelbeschleunigung

/.., — X, dq„ — 2 depo — da,
?- -'dt-— dM usw"
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Unter Berücksichtigung der bisher aufgestellten Gleichungen
erhalten wir:

ds, der.
r*= "dT =?v dt 'v"v

Woraus die allgemeine Formel folgt:

r >v u' (1)

Es ergibt sich

ds2 — d-Si i\{\ dcpXfdq., r2 • dq tlq., i'jdir,M 2eV2 r//2 dt2 df'

dtp2 — dcp^ dcfi-dq2 dcfjtlqo
~ ^""rfF" " ''- df* ''2MM T ri -

+ r, h-j U"2 - r» irl w2

Setzen wir für ?n - X und für u\ /c2 «;, was zulässig ist, ela

jetzt nicht mehr die Differenzen der Winkelgeschwindigkeiten
berücksichtigt werden müssen, so ist allgemein:

b Cj /. rx n'1 - r., ir2 (2)

Ebenso erhält man

ds, — 2 d.s., ds, 1 -der, — dff., - e/a, da.>

'V- £M ='i ^ ¦ •''?>

de/, - tlq., - 2 f/7, df/., dr/, df/)2 d^.,
-ra Alt3 ~~'d(ps "" ''3 dM

2 (1 - dy,) de/a 0 de/t da, df/t- b* "
rffs

" - 2 d<3
- 'i df3

d i/ 3 — 2d e/, d q d 7 i d 7 3 — 2 dcridf2 - dg2dq3
-ri" dr3 ' * dr3

d9 d7., e/73 ilq ylq., - 2 dq\ dq., ¦ dq., dq
''' dM"

" ""''¦¦'" " MM~
2 d 7 d 7 2

d 7 3 d 7 e/ 7 2
e? 7 3

""dl3 " ';! df3

df/, dcp3 — dcf2 dcp3 — dcpi dc/2

'M/r' M/- dM mm '''"•>"¦¦"'¦:.

do, dqp3 — dcp2 dq., -depi dq., >(:l dl - dt2 ,it2- "' dl < ' r J"

'V, ' "'l "Vs ¦
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Da

so ist

dcf3 — dcfi
_

dcf3 — dq2 dcf2 — dcpj
_

dt2 dt2 dt2 -Mr'-1,

l>X ryXX -- rxWiXi — rxw2(Xx — X2) — riWiic2w3 — r2u\X2

— r2w2(Xx — X.A — 2 r2wxw2w3 — r2wxw2w3.

Aus den gleichen Gründen wie bei der Gleichung (2) kann
allgemein gesetzt werden:

b' )\X' - 3 wX (r, — r.,) - ic3 (r 9 >¦ — (3)

r7.-\ -v-* r,. es-

P
K ar - {'- <^

K «A

J7 -1

K. uf \

\.£
M

-K. ctf-

1hnM77
t /

K. «r

Fig. 10.

Kennt man von einem bewegten Punkte den Krümmungsradius
der Bahn eines Punktes bzw. die ihrer Evoluten (rx, r2, r3
ferner die Winkelgeschwindigkeit w — tg ö und die
Winkelbeschleunigungen /. tg y, X' tg y', usw. eler Bahntangente,
so erhält zunächst die Geschwindigkeit v rxw rx • tg d als
Kathete eines rechtwinkeligen Dreieckes. Die Beschleunigung
b rxX + rxw2 — r2w2 ergibt sich als die Vektorsumme dreier
Beschleunigungen (siehe Fig. 10). Ebenso kann man die zweite
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Beschleunigung b' mit Hilfe der Gleichung (3) graphisch leicht
ermitteln.

Die Ausrechnung der höheren Beschleunigungen nach der
hier entwickelten Methode ist verhältnismässig umständlich,
weshalb ein schneller zum Ziele führendes Verfahren angegeben
werden möge:

In Fig. 11 bedeuten wieder i\. r2. r3 die Krümmungs-

66» S.*

M«A

Fig. 11.

radien der Bahn bezw. der Evoluten der Babn de^ Punktes. Es ist

r=r1.w.... (1)

d wdr d (i'i - w) dr,
=~"

Alt " ~~dT" "-Xü""' dt

~Yf ist die Änderungsgeschwindigkeit des Krümmungsradius r,
welche sich zusammensetzt (siehe Fig. 12) aus eler Geschwindigkeit
des Punktes A unel der Geschwindigkeit eles Punktes Ä'. Es ist

vA rx ¦ ic

Da der Geschwindigkeitsvektor rA nicht am Ende des Vektors z-,

sondern an seinein Anfang angesetzt erscheint, ist er mit negativen
\ orzeichen einzuführen, so dass

dt
r-, • w — r« • ic
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Unter Berücksichtigung, dass —j— X ist, ergibt sich

b r,/. — i-iir2 — r2M?2

Die zweite Beschleunigung V ist

V
db dr, dz dr
ST IT" L + r -J-u--r ü*1 df df 2 df

dr., o d(w2)
ar'K—r* sr

*x

>t\ q-~-i9'
4*

(2)

Ay
Fig. 12.

Aus den gleichen Gründen wie oben ergibt sich:

dr. ii'/.
)", • K — )\ - W 7.

dt 2 3 ' df
womit

b' (/-jir — r2M') ¦ X + ti?.' — (rxiv — r2w) ¦ w2 + 2 rxwX.

— (''_>"' — ''3"') '"'"' — 2 r.yrX
oder geordnet:

V r,/.' • (rx — r.2) ¦ 3 wX + (rx — 2 r2 - r3) • ir3 (3)

Ebenso erhält man
b" r,/." + 4 (,-i - r2) wX' + 3 (rx - r2) ¦ X2 + 6 (r. - 2 r2 + r3)

* "^- + "-'4 (rx - 3 r2 - 3 rs - r4) (4)

6'" r, /.'" -f- 5 (rx — r2) ¦ wX" + 10 (r, — r2) • /./.'

- 10 (,-i - 2 r2 + r,) • w2 A' + 15 (rx - 2 r2 + r3) wA2

-f 10 (r, — 3 r2 -f 3 r3 — r4) ¦ w3 ¦ X

- (r, - 4 r2 - 6 r3 - 4 r4 + rs) ¦ w* (5)
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b""=r1r" + 6(r1- WA 15 (>'!— r2) AA" - 10 (/'! — rt) "/.'

-15(1-1*
20 (rx -

2 r2 + r3) • if2A" - 60 (rx 2 r., — r3) wX?.'

3 r.} 3r5 r. IC3*' - 15 (f! 2 r2 - r3) X3

lo i-. 3 r2 + 3 r3 — r4

>2

w2X2 + 15 (r, — 4 r2 — 6 r3-

,3 r6)

4r,
<r4 • A + (r, -- 5 r2 + 10 r3 — 10 r4 - ö r5 — r6) • w« (6)

b) Die vektoriellen Beziehungen zwischen den Polbahnen

und den Polwechselbeschleunigungen.

Jede Bewegung eines ebenen Systems kann aufgefasst werden
als eine Rollung einer mit dem beweglichen System verbundenen
Kurve (bewegliche Polbahn) auf einer mit dem festen System
verbundenen Kurve (feste Polbahn). In Fig. 13 seien qx, g2, q3 —

M'.-¦¦

Fig. IH.

die Krümmungsradien einer festen Polbahn, rlt r2, r3, die
Krümmungsradion einer beweglichen Polbahn. Wir erteilen dem
System der beweglichen Polbahn eine Bewegung (w, X, X'.

und wollen die Bewegung des Momentanzentrums 0 (r0, b0, bX¦ ¦ ¦ ¦)

feststellen. Während der Bewegung des Systems wandert der
Berührungspunkt 0 längs der festem Polbahn weiter (0,0,, 02,
Die in den gleichen aufeinander folgenden Zeitelementen df
zurückgelegten Wege längs der festen Polbahn (döi,do2l sind ihrer
Länge nach den Wegelementen gleich, die der Berührungspunkt 0

relativ auf eler beweglichen Polbahn zurücklegt (dslt ds2.
Es müssen elaher die tangentialen Komponenten der Geschwindigkeiten

und der Beschleunigungen beider Bewegungen einander
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gleich sein. Wir bezeichnen die Bewegungsgrössen, die die Normalstrahlen

q bezw. r auf ihren Systemen ausführen mit wg, XQ. A '.
bezw. w,..Xr,XX Für die Bewegung des Systems selbst ist
w we — w,, X X„ — Xr, ?.' Xg' — XX, usw.

Die Polwechselbewegung ist nach den Gleichungen 1 usw.
bestimmt durch

ro 6i ¦ "',c
(Si — Qz) ¦ U'A2Jo — t'l

V= öiV - (qi - qX) • 3 wQxQ + (Qi — 2 e.2 - es) • wq3

usw.

Die zu lösende Aufgabe bestellt somit darin, die Winkel-
grössen ivg, XQ, A0', usw. zu ermitteln. Hierzu ziehen wir einerseits

die Bedingungen der Gleichheit eler tangentialen Komponenten

der Geschwindigkeiten und Beschleunigungen eler Bewegung

des Momentanpoles längs eler Polbahnen und andererseits
die bereits angegebenen Beziehungen der Winkelgrössen beider
Normalstrahlen auf ihren Systemen zu den Winkelgrössen des

Systems selbst heran.

Es ist
o gl •

Wq fi ¦ wr

WQ — wr w

Aus ihnen erhält man

w • i\ w ¦ Qi |

w„ =— und w, - -— (i)
ri - Qi ri ~ Si I

Aus denselben Gründen ist

bt Qi • 7, — Q2 • M -"i * K — ''2' "V2

xQ - x, X

Daraus ergibt sich

r, A - r2 ic,2 — o., • icv2

ti- /. -- r2 ¦ tcr- — Oo ¦ we-
/.,. =/„ — / —

'"] — ßi

Ebenso erbält man aus

(8)

W Qi ¦ V - 3 Q-i * "", * K - 0i * "'„3 - Cs we
¦ 3

/-, • XX — 3 r2 w, X, — rx w3 r3 w, 3

V - '-A ''¦'¦
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'(''i — Qil — 7' * i\ — 3 Q2wQXe + i^ir3 CV',,3 3 r2iürXr
— (i"i + 'Mv*

' (''i — ßi) •*•' * 2i — $ Q-2>r,,'-n + (Qi Ga) U'X — $ 'V Ä
-(¦''i + >'a) * M-

O»)

Auch die Auflösungen der entsprechenden Gleichungen für die
nächst höheren Beschleunigungen bieten keinerlei Schwierigkeiten.
Die Werte we, Xn, in die Gleichungen für v0, b0, eingesetzt,

ergeben die Geschwindigkeit und die Beschleunigungen der
Polwechselbewegung.' r-1

c) Die Polwechselbeschleunigungen und die Beschleunigungen des

mit dem Momentanpol zusammen fallenden Systempunktes.

Ist elie ebene Bewegung eines starren Systems durch das
Abrollen der beweglichen Polbahn auf der festen bekannt, und
hat man die erste und die höhere Beschleunigung eines Punktes
aufzusuchen, so muss man zuerst die Beschleunigungen des mit
dem Momentanpol zusammenfallenden Systempunktes S ermitteln
und zu dieser die Beschleunigungen addieren, die sich aus der
Bewegung des Punktes A um den Punkt S ergeben.

Da der Punkt A um den Punkt S eine einfache Drehung
ausführt, so sind in den Gleichungen 1 usw. eles Kapitels 3a die
Radien r, SA r. r., r3 r4 0 zu setzen. Sind die
Beschleunigungen des mit dem Momentanpol zusammenfallenden
Systempunktes der Reihe nach mit bs, bs', b,", ¦ ('', 0)
bezeichnet unel ist die Bewegung eles Systems bestimmt durch
w.X, A', so kann man sehreiben:

w

+ r(X + iv2)
' y r(X' + 3 wX + w3)
" + r(X" -- 4 wX' - 3 A2 + 6 w2X + w4)
'" + r(X"' + 5wX" |-10AA'H 10m'2A' - 15wX2

+ 10ic3X -'- u-5)

bA"" bX'" + r(X"" i 6 wX'" + 10 A'2 - 15 AA" - 15 w2X"

+ 60 w XX' + 20 w3X' + 15 A3 + 45 w2X2 -f 15 ;c4/ + w6).

In den Fig. 14—18 sind die aufeinanderfolgenden Lagen eler

festen und beweglichen Polbahn zu Beginn der einzelnen
Zeitelemente dargestellt. Während das Momentanzentruni seine Lage
längs der festen Polbalm ändert (0,0X, 02, führt der im
ersten Augenblick mit elem Momentanpol zusammenfallende
Systempunkt S eine Bewegung senkrecht zur festen Polbalm

'",1 r
/>., b

KX b

bA" b

bA" b
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ius (S, Si, S2, Wir bezeichnen die Wegelemente, elie der
Punkt 0 ausführt, der Reihe nach mit dolt do2, die des
Punktes S mit dgx, dg2, die Winkel, um die sich das System
in elen einzelnen Zeitelementen verdreht, mit, dcpx, dcp2, Auf
Grund der Fig. 14—18 können unmittelbar folgende Gleichungen
aufgestellt werden:

dgx =0
d<72 — dox - dcp2

dg3 (— da, — dcr2 + dg2) ¦ dcp3

d94 (— dai — da2 ~ do3 + dg2 + dg3) ¦ dcPi.

y

Fig. 14—18.

Ähnlich wie im Kapitel 3 a kann man daraus die Bewegung des
Punktes S bestimmen:

(±9i
dt»*.i=-3r o vs o.. (10)

bs,i
dg2 — dgx —dax- dcp2

dt2 dt2

bs,i

-v0,i-w2; bs -v0 -w... (11)

dg3 — 2 dg2 + dgx
dt3

— dox • dcp3 — do2 • dcp3 — dat • dcp2 • dq>3 -- 2 der, dq2
dl3~

da d7r3 A2 ¦ dt2 + dcp2, so ist

da
dt dt
doi dcp3 — dcp2 do2- X2-dt2

os,i -h,i "2 ^3— yrr —in ^/^3"
da2 — dax

~ d?2 jjä — ?'o,i • w2 • w3 — v0A ¦ X2 — r0,2 • z2 — »o,i * "'2df3
bX — v0 • w2 — 2 vQ • X — b0 - w.. (12)

10
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Ebenso ergibt sich aus
d<74 — 3 dg3 + 3 d,g2 — dgx

b,,t - ätr
bs" — r0 • iü3 — 4 r0wX — fr0i<;2 — 3 v0X' — 3 b0A — bn' ¦ tc (13)

Wie man aus elen Gleichungen entnehmen kann, ist die
Geschwindigkeit des mit dem Momentanpol zusammenfallenden
Punktes (weil gleich Null) unabhängig von der Winkelgeschwindigkeit

des Systems, ehe erste Beschleunigung unabhängig von
der ersten Winkelbeschleunigung, die zweite Bese-hh-unigung dieses
Punktes unabhängig von der zweiten Winkelbeschleunigung usw.
Dieser Punkt ist der einzige Punkt eles Systems bei dem das

zutrifft, die Beschleunigungen aller anderen Punkte hängen ab
von der gleich hohen Winkelbeschleunigung, welche man dem
System erteilt.

d) Die höheren Coriolisbeschleunigungen.

Wenn sich ein Punkt A auf einem System / bewegt (Relativ-
bewegung vr, /;,., bX, während das System I selbst sich gegen
ein festes Bezugssystem 0 bloss parallel zu sich verschiebt (Füh-
rungsbewegung vf, bt, bX, Winkelgeschwindigkeit und
Winkelbeschleunigungen gleich Null), so erhält man die Gesamtbeweguno
des Punktes A durch einfaches Addieren der Relativ- und
Führungsbewegung. Es ist

v rr + V/
b br + bf
b' br' + bX usw.

Führt dagegen System I gegen System 0 noch eine Drehung au*
(w, X./.',.. so sind, um die Gesamtbewegung des Punktes A

zu ermitteln, noch zusätzliche Beschleunigungen (Coriolisbeschleunigungen)

hinzu zu fügen.
Die einzelnen aufeinanderfolgenden Wegelemente der Relativ

bewegung eles Punktes A auf dem System I (siehe Fig. 19) seiei
mit drlt dr2, drs, bezeichnet, die Wegeleniente der
Führungsbewegung mit dfi, df2, die \\ nike-lelemente der Drehung des

Systems I gegen 0 mit d<plt dtp2, Die Wegeleniente dei

Gesamtbewegung eles Punktes A ermittelt sich gemäss Fig. 19 aus

dSi dfi + drx + drx- dtpi
dSi + ds2 dfi + df2 + di-i + dr2 + (dr, + dr2) (dcpx + dq-,)
dsx + ds2 + ds3 dfx + df2 + df3 + drx + dr2 + dr3

+ (drx + dr2 + dr3) (dcpx + depo + dep3)

Z\ds £i*df + Zi*dr + I^dr ¦ Z^dep usw.
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Somit ist

ds2 df2 + dr2 + dfi • dcp., + dr2(d<px + dq2)
ds3 d/3 r dr3 -[- (drx + dr2) ¦ dcp3 + dr3(dcpi + dcp2 — dcp3)

ds4 df4 + drt ¦'-- (drx + dr2 -1- dr3) ¦ depi f drt(dcpi
+ dep2 + dcp3 + depX) usw.

Daraus kann man die Bewegung des Punktes A folgendermassen
berechnen:

_ ds, dfi dr,
' *

rig^
1 "dT MF df : rf'v df ='M iViMr,-«-,.

=f^

*>-.

---äc--^

w-

Fig. 19.

Da drx- •<-, eine unendlich kleine Grösse ist, kann gesetzt werden:

v vf + rT (14)

Ferner ist

_ds2 — dsx df2 — dfi dr2 — drx dcp2 — dcpx

°1~~~dtr~ ~~dtT df^~ "' Tl dU
dr2 dtp. + depo

+ rr * X =bfi + bfi + d>i ¦ Xi + vr, (wx - w2)dt dt

Somit
b bf + br + 2 iv rr (15)
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bx> *».-gffi+d*i bfi> + K< + dfiV + dfiV

2 df3 ^" 3 "" df3

dT», dy, -)- dcp2 + dq:3 dcfi dr3 — dr2
3 dr9 -vTw- + dr.2 dt3

' 3 df3
~ "

df df2

_ jr dXP2 + dcp3
__

2dr2dcf]
1 a'3 df3 dt3 •

Es ist

und

so dass

br.
d r3 — dr2

dt2

dr3 K, -dt2 + dr2,

/ N
dcp3 — dcpi dcf., — depi

a te, • 6r, + 6r, (w2 - jt-j) + r,, rf^ + rr, rf-2-

Somit

&i' ty' + br' + drxXx' - dr2 ¦ XX ~ br • (ir, + "'2 ~r w3)

+ vri(X2 + Xi)+vr2-Xi
b' bf' + bX + 3 wbr — 3 Xi\ (16)

Ebenso ergibt sich aus

d.s., — 3ds3 + 3ds2-d.s, „ „6,"= -j^t ö>. + b'i r «Mi

j„ » 2 „ dr2d<-5, dr3d7?2 dr3- depj
+ dr2?n +dr3X2 +A ^ -b ^ - -j—-—

+ -^4- (dfi + d<p2 + dffa + d7?4)

nach einigen Umformungen

V M + M' + (dr, + dr2 + dr3) ¦ A," -- &,/(«;
+ "'3 + "'4) i- b,t(-iX2 + 2X3) - vu(SXx+ XX)

b" =bf" + br" + AwbX r(JXbr+AvrX' (17

e) Anwendungen.

Die abgeleiteten vektoriellen Gleichungen stellen wohl dii
einfachste Form dar, in welcher die Beziehungen der einzelnei
Grössen untereinander ausgedrückt werden können. Es ist nich
notwendig, dass die Ermittlung der einzelnen Grössen zeich
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nerisch erfolgt, es ist ohne weiteres möglich, dass dieselbe
rechnerisch vorgenommen wird. Es möge dies an einem Beispiel
gezeigt werden:

I. Aufgabe: Von der Bewegung eines Punktes (Fig. 20)
sind die Geschwindigkeit v und die 1., 2., 3. Beschleunigung
(b, b', b", bekannt. Es sind die Krümmungsradienrx, r2,r3,
der Bahn des Punktes und der ihrer Evoluten, sowie die Winkel-

V

+n

+t
w

Fig. 20.

geschwindigkeit w und die Winkelbeschleunigungen X, A', A",
der Bahnnormalen aufzusuchen.

Die einzelnen Bewegungsgrössen seien gegeben durch ihre
in die Tangentenrichtung (f) und in die Normalenrichtung (n)
fallenden Komponenten (Werte in mm). Durch Heranziehen der
Gleichungen des Kapitels 3 a können diese Grössen gleichgesetzt
werden:

v 40 +' rx • w (18)

bn 27"" rx- w2 (19)

bt 10-f rx- A — r2- w2 (20)

bn' 36 + " 3 rx - w ¦ X — 2 r2 ¦ w3 (21)

b,' 18,15 -« r, • A' — 3 r, ¦ wX + rx - w3 + r3 ¦ w3 (22)

36,8"" 4 rx wX' - 3 rxX2 — 12 r2w2X + rx w* - 3r3w4 (23)

b," 25 -« rxX" - 4 r2 wX' - 3 r2 X2 + 6 (r, + r3) w2X

-3(r2 + r4) u- (24)
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27""
--,=0,675-;

Aus (18) und (19) ergibt sich

v AO

r 40+'
v — _ — — d vH

1 " w 0,675+ ~° 'ö

Aus (20) und (21):

rxX — r2w2 =bt 10-'

b ' 36+"
3 r, A - 2 r2 w2 -" - ^L— 53,3*-!

r, A 33,3"'; X

iv 0,675+

33,3-'
59,3+"

23,3^
(0..675+)2

0,561*

r2-w2 23,3"'; r2 ,~;" 51,2+'

T'V-

\

\
\
\
\

/ ///
t//

7
Fig. 21.

Aus (22) und (23):

rx X' + r3 iv3 bt' + 3 r2 w X - ?-, u-3 58,1+'

4 r, A' + 3 r3 1c3 (b„" — 3 r, A2 |- 12 r2 w2X — r, w4): w* 222+'

47,7-*'
r, A' 222+'— 174,3+' 47,7"; A'

r, • -(;• 58,1+' — 47.7+' 10,4+'; r£

59,3+«

10,4+'
(0,675+)

0,803*!

33,8-"

Die Winkelgrössen sind in Fig. 21. die Bahn des Punktes
in Fig. 22 dargestellt.

Trägt man von einem Punkte die 1., 2., 3., Beschleunigungen

eler Punkte eines bewegten Systems auf, so erhält man
den L, 2., 3 Beschleunigungsplan. Die Beschleunigungspläne



— 151

sind dem bewegten System ähnlich. Kennt man daher elie

Beschleunigungen zweier Punkte, so kann man mit Hilfe der

Beschleunigungspläne die Beschleunigungen eines jeden dritten
Punktes und weiters auch die Bahn des Punktes bestimmen.

II. Aufgabe. Von der festen und beweglichen Polbahn eines

eben bewegten starren Systems sind die Krümmungsradien der
Bahnen (gXl rx) und die ihrer Evoluten (q2, q3, .; r2

J
-)

ri i

i.i /A /

Fig. 22.

bekannt. Für einen Punkt A des bewegten Systems sollen die

Krümmungsmittelpunkte A', A", A'", bestimmt werden.

Die Angaben (Werte in mm) seien (siehe Fig. 23):

e, 54 + "

Ö2 35+'

e3 30-«

rx 50-"
r2 32-'
r, 24,5+".

Man erteilt dem beweglichen System eine beliebige Bewegung
(w, X, X', und sucht für diese Bewegung zunächst die Pol-
wechselgrössen v0, b0, b0', Die beliebig angenommene Bewegung

sei:
w 1,2 +

X 1,0-
X' 0,8 +
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Die Polwechselgrössen ergeben sich laut den Gleichungen des

Kapitels 3b aus:
iv ¦ r,wo — 0,577+

1-1 — gl

w, ive — IV 0,623-
vo er u:o 31,1-'.

n
r-nj

v* r ¦

t"«-V

-V-

Ebenso erhält man

AQ

Fig. 23.

A r, 4- r2 ?fr2 — g2 ¦ iro2

i"i — ei
0.71-

AT Xe - X 0,29+

'&„ ei*s - e2V 26M-
"&0 erV =18-".

Ferner ist

^e'(ri — ei) =A'r1 — 3ß2u'eAe ¦ (Qi | q3)-w3 3r2wirAr

Ae' =0.9.5 +Ae'(50-"-54 + ") =98,8-'
+V ei V — 3 e2 '<-'e * A„ + i>, w,3 + q3 • u\3 --- 3,7+'

» V - qx • 3 we A6 - 3 «2"<'s3 52.9 - «.

Allgemein ist die «te Beschleunigung eles Punktes -4 gleich
der nten Beschleunigung des mit dem Momentanpol zusammenfallenden

Systempunktes S, vermehrt um die »te Beschleunigung
des Punktes A um diesen Punkt S.

b In) _ I. (re) /, (rei
UA US ' ".I um S •
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Laut der Ableitung des Kapitels 3 c ist

'\ =0
ba — v0 ¦ w
>>X — "o ' ",2 — 2 ro ' * ™ K ¦ w

Somit ist
b, 37,3 + «

'b,' —v0- w2-"b0- w 66,4 + '

»6,' -2c0- X — %- w 94,2 ".

Die Lage eles Punktes A sei durch 0.4 o 50 + " (siehe Fig. 23)
gegeben.

Die Gleichungen für die Bewegung des Punktes A um S

ergeben sich aus den Gleichungen der allgemeinen Bewegung des
Punktes (Gleich. 1 usw.), wenn man die Krümmungsradien der
Evoluten gleich Null setzt. So ist:

.1 um S - ii ¦ w 60 •""
">>a „m n a ¦ w2 - 72 "

Min,,,* a-X -=50 ""
"//., m„.s, 3a<uA 180 ;"

""'¦'.l ums a/' + ""'3 lG>ß ""¦

Um von den Beschleunigungen b3, b,', die in die Richtung a
bezw. normal zu a (na) fallenden Komponenten aufzusuchen,
kann entweder eine rechnerische oder graphische Ausmittlung
herangezogen werden. Eine letztere (siehe Fig. 24) ergibt:

abs 28+a
r-abs =-24,5 + «"
"1>X 115 -"

•"'/>/ 12,5 -"a.
Da allgemein

/,(») — M») .1 /, («)
"^ ",S ' UA um S

ist, so ergibt sich:
(i — ah _(_ tt Ij — 11-«".I °S I °J um S - "«all n a h I na/i — O "* ", na".I "s r O^ „in ,S - -'V'

Ebenso erhält man
ah ' — ah ' _j_ a/, ' _ ßK+tt".1 °5 ' °-4 um S — 0,)

n a 1, ' — n a J, ' _J_ n a h ' — KO 1 - n a°A °S UA um S — 0,M

Man könnte nun die Bewegungsgrössen des Punktes A allein
benutzen, um elie Krümmungsmittelpunkte der Bahn eles Punktes
und der ihrer Evoluten aufzusuchen. Zieht man jedoch die
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Bewegung des Monientanpoles heran, so kann man bereits aus
der Beschleunigung eles Punktes den Krümmungsmittelpunkt der
Evolute der Bahn des Punktes ermitteln. Dieser letztere Weg,
die Ausdehnung der Hartmann'schen Konstruktion zur Bestimmung

des Krümniungsmittelpunktes auf die Beschleunigungen,
möge nun beschritten werden.

Da wir die Bewegung der ßahnnormalen n im Punkte .1

heranziehen, und diese Bahnnormale auch stets die Vcrbindungs-

(,•

y\"•<? \
• *. 3-.'f

i <

\-n

Fig. 2t.

gerade des bewegten Punktes A mit dem jeweiligen Momentanpol

0 ist, so mögen vorerst auf Grund einer z. B. graphischen
Ausmittlung (siehe Fig. 21) die Komponenten der Pohvechsol-
beschleunigunge-n in Richtung n und na bestimmt werelen. Es

ergibt sich
"vn 20,5-"

nav0 24 + "" "h ' 37.5 + "

°b0 4,3 '" nah ' 38+""
na], — -iO — nau0 - ''-'

Ist A' der auf n liegende Punkt, der zu Beginn eler Bewegung
mit 0 zusammenfällt, so ist allgemein die nie Beschleunigung von A

b_<"> - XX I) {")
"A um .V
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Da elie Gerade a als Bahnnormale stets durch den Punkt 0

hindurchgeht, so ist:
/,(«) _ h (n) i /, («) 4. /, (n) Coriolis
"0 — °.V r "o auf «

I u0 auf a

Daher ergibt sich

I, (m) __ /, (») h 00 /, (n) Cor. 1 L («)
".-1 ~ "0 "0 auf ,1 "0 auf 11

> "vi 11111 .V ¦

Die Bestimmungsgleichung der raten Winkelbeschleunigung A0(n) der
Bahnnormalen a lautet somit:

11 ni, 00 _ « tih 00 /, («) Cor. 1 « au (n)
".1 "0 ü0 auf a T Ww um v

.1., ii'ihOO — „.,.] n «I, (») Cor. i, («) Cor. :.11,1 ÜU auf « " """ u0 auf « "0 auf « lHl'-

Fig. 25.

Diese Gleichungen angewendet auf die Geschwindigkeitsverhält-
nisse (n) — 0 (Ilartmann'sche Konstruktion) ergeben):

''"''.1 ""<'„-(> ¦ n- ir„
» 60 •¦" 21 : "" 5t)'"- wa; wa 0.72 '-

".i
r i /-., • -/'„; r, 83,4

Die obigen Gleichungen angewendet auf elie Beschleunigungs-
verhältnisse (n) — 1 ergeben:

*'bA nab0-2-°vQ- wa + a-X„
25,5-"" 32-"a — 2 ¦ 20,5-" • 0,72 f :- 50",a • Aa

A„ 0,46-
""bA rfl-Aa-?-0' • i<a2;
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°

ah — ah I a i,
u.4 — "iV r u.i nun A

da°Oa 0; soist«b0amfn »&0-«6A. 22>4+«.

Die obigen Gleichungen angewendet auf die zweiten Be-

schleunigungsverhältnisse («) 2 ergeben

«ab> na^' _ 3 ,,.q {,0 auf „ :j Xar0„llf „ «V aw,a

"M' M/ - :: '' ' ' '
l;

Das Ergebnis ist somit:

7X - 0,038-
¦ :-> trJ-a ''„' - 1

ro' 0.6+"

y,X
tt

83. 1 "

24,7 '"
0,6 "'.


	Die graphischen Methoden der Bewegungslehre (Kinematik). II. Teil

