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Die graphischen Methoden der Bewegungslehre (Kinerrfatik)
von Dr. Ing. H. Brandenberger, Zürich.

(21. I. 30.)

III. TEIL.

Die höheren Savary'schen Gleichungen.

Unter den höheren Savary'schen Gleichungen sollen die
Beziehungsgleichungen verstanden werden, elie zwischen den
Krümmungsradien (r1; r/. /',". eler 1. und höheren Evoluten
der Kurve eines eben bewegten starren Systems und den
Krümmungsradien (r.,. r ', r./'. der 1. und höheren Evoluten eler

eingehüllten Kurve und den Durchmessern (d. d', d", der
L, 2., 3 Rückkehrkreise bestehen.

Um an die Aufstellung dieser Gleichungen herantreten zu
können, müssen zuerst andere grundlegende Probleme behandelt
werden.

a) Die Erzeugung einer Kurve als Eingehüllte einer bewegten Kurve.

Eine Aufgabe der Bewegungslehre können wir dadurch leicht
durchschauen, wenn wir den. unendlich kleinen Wegelementen
endliche Grössen geben und die in elen einzelnen Zeiteleinenten
aufeinander folgenden Lagen nebeneinander aufzeichnen. Dies
soll in den Fig. 26 bis 29 für die Erzeugung einer Kurve ß als

Eingehüllte einer bewegten Kurve oc dargestellt sein.
Die Berührungsnormale b ist ein Hilfspolsystem, auf dem elie

Evoluten der Kurven oc und ß abrollen.
Es ist

0 (O^Oa.Og. der Momentanpol eles bewegten Systems S der
Kurve a

Oi—02—03— die feste Polbahn.

A (Ai' XL.2> Äa> • • •) der jeweilige Krümmungsmittelpunkt der
Kurve oc für die Punkte und Stellungen, durch die die Hüllbahn

ß bestimmt wird.
A" (Ais, A2S, A3S, der Punkt des bewegten Systems S, der

zu Beginn der Bewegung mit dem Krümmungsmittelpunkt A
zusammenfällt.
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B (Blt B2, der jeweilige Krümmungsmittelpunkt der Hüll-
bahn ß.
Unter U1,) soll die wte Beschleunigung verstanden werden,
wobei fc<0) v, fc<>> b, 6<2) b', M3» b", usw. ist.

/.'"' ?(*e Winkelbeschleunigung des Systems S gemäss der Winkel-
elemente dfi. de/.,. dcp3,

X(n) wte Winkel Winkelbeschleunigung gemäss eler Winkelele¬
mente dy-i, dy..,.

/i/") ute Winkelbeschleunigung gemäss eler Winkelelemente dßlt
dß2,

ft
K

/>. ^^M^ / ' f M ;"

«nShft^
•i >¦' ' A..A.-A7I M,-.,

•; <

y i ,£I. /l ,.-'.

s.\» -mm

Fig. 26—29.

Es ist

^ ^o'<s) + b'"- elie »te Beschleunigung des Punktes .-P, wobei
0 (s) der in 0 gelegene Systempunkt ist. (25)

bAn) rel-s die nte Beschleunigung entsprechend eler Bewegung
eles Punktes .4 auf dem System S (längs der Evolute der
Kurve oc).

'

(26)

bAn)C0lS die nte Coriolis-Beschleunigung entsprechend der Be¬

wegung des Punktes A auf dem System S. (27)

b'XX elie nte Beschleunigung des Punktes Ab als Punkt des

Strahles b (bi. b2, b3, (28)

bAn) rel- * die nte Beschleunigung entsprechend der Bewegung
eles Punktes A auf dem Strahle b. (29)
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}(n)cor.b _ cije wt(? Coriolis-Beschleunigung entsprechend der Be¬

wegung des Punktes A_ auf dem Strahle b. (30)

Allgemein ist /<"> X£n) — A<n) da dyt dßi —dcplt
ia2 dß2 — dc/.,. ist.

Falls "6(n) die auf PAB normal stehende Komponente einer
Beschleunigung tt'0 ist, so lautet die Gleichung zur Bestimmung

von Xb{n) :

nbA<n)\aut Gleichungen (25), (26), (27) nbAn) laut Gleichungen

(28), (29). (30).

ni.(n) «;,(«) I ni, Oi) rel. s i »k (n) cor. « nu In) i J. (n) cor. b /qi\°»W '" ViimO« + ^ ¦ Ö_* ~ V+Öi (31>

da "6]M) rel-'- 0 und "6jB) cor-'- bAn) cor-b

(siehe Formeln über die höheren Coriolis-Beschleunigungen). Die
Beschleunigung eles Punktes A lässt sich somit errechnen aus:

I, ("> ;, ('0 J_ I, (n) rel. 6 i 7, («) cor. b /QO\UA — "Ab I UA ' UA ¦ KÖZ)

Die Komponente der Beschleunigung des Punktes 0
senkrecht zur Geraden b ermittelt man aus:

" \(n) =" "b$l)+ fy)"* cor'rel' "• (33)

I. Wendet man die vorstehenden Gleichungen auf die
Geschwindigkeitsverhältnisse an, so erhält man:

(n) - 0

vA8 0-V0 A-w. (25')

vf°=ri-wa. (26')

v/XT-s=0. (27')

vAi, BA-wb. (28')

M'' 'i*«V (29')

v ,-or. i 0| (30')

04-w B^-to6. (31')

S,=ß.4-tt^-}V»fl. (32')

0 A
Aus (31') ist ivb =-r=—- w;

I 0A \ OA-BA OB
Wa. U-h — IV IV -=r-: 1 =WB.-i / B.4 B.4
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Aus wb und ivd zweier Normalstrahlen b unel d kann man die
Polvvechselgeschwindigkeit v0 bestimmen. Die Komponente normal

b ist nbv0 BO- wb. (33').

II. Unter Berücksichtigung der Gleichungen des Kapitels 3
erhält man für die Verhältnisse eler ersten Beschleunigung:

(») 1

bA* — i'o ' w + 0-4 • X r 0-1 * u-2. (25")

fc.M rlA«+ 'V'M'V »M ('26")

^..= 2»^-».. (27")

6^ BA ¦ Xb + BA ¦ ivb2 - e, • w2. (28")

&ie'*6= Ma-'V M- (29")

6jor-ft= 2w»-r1- «'„. (30")

" (— ''o' w) -1- OA- X y ri wa2 + 2 w rx wa B.4 • Xb— Sl • w,
— 2«'„ r^a (31")

Daraus ist A& bestimmbar: /„ X0 — X

bA BA ¦ Xb + BA - wb2 — Qi ¦ wb2 + i-i Xa — r2 wa2

-r 2wb- ti- wa (32")

Aus Xb und Xd zweier Normalstrahlen b und d kann man elie

Polwechselbeschleunigung b0 bestimmen. Die Komponente normal

b ist:
-\ B 0 • Xb - Qi ¦ wb2 + 2 «;»• »„»'¦». (33")

III. Für die Verhältnisse der zweiten Beschleunigung ergeben
sich die Gleichungen:

(n) 2

b.i«' — »o " '"2 — 2 ro * ;- — &o • i<; - 0.4 • /.' - 0-4-3 w X

+ 0.4 • tü3. (25'")

fc/ "'- • ri ¦ V + (,-i - r2) ¦ 3 tva ;, + (r2 - 2r2 + r3) ¦ ica3. (26'")

bA' «*¦ • dw - [r, Xa + i'! 'ra2 - r2 wa2] - 3 X h wa (27'")

bAb' /L4 • A»' + (ß-4 - ei) • 3 • to» • Xb

+ (BA - 2Ql 4 g2) ¦ wX>. (28'")

Oa rd-" 'i V - ra • 8 • wa /a - (rx + r3) ¦ ira3. (29'")

ö^'cor.6 dWb. (Tj ia + riWai- r2 wa2) + 3 Xb ¦ rx- wa. (30'")
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— -2r„»-32 r, h\
- 2r0 • A — b0 ¦ w) — 0.4 • /' + 0.4 • w3 — rx ¦ 3 wa - Xa

3iü»i/o — 3ior2wy - 3/1 »'jMia ß.4 V — • %wb- Xb

(BA + g2)- »,» + 81«, r.iO + SW«.. (81'")

Daraus ist Xb' bestimmbar; XX Xb'— ?.'

b/= bAX- &/"••»+ ^'cor'* (32'")

aut Gleichungen (28"), (29"), (30").
Aus /.&' und XX zweier Normalstrahlen b und d kann man die

zweite Polwechselbeschleunigung bX bestimmen. Die Komponente

normal b ist

'%' B 0 • V - 6l • 3 • ivb ¦ Xb + (790 - gl) • w63

+ 8 w» ¦&„»•¦» r-3A6- oo1*1-». (33'")

Mithin wurden elie vektoriellen Gleichungen abgeleitet, die
bei der Anwendung eler Beschleunigungsverhältnisse auf die
Bobillier'sche Konstruktion zur Verwendung gelangen. Vorstehende

Gleichungen bilden auch elie Grundlage zur Ableitung der
höheren Savary'schen Gleichungen.

b) Die Beziehungen der höheren Rückkehrkreise zur festen und

beweglichen Polbahn.

In jedem Augenblick der ebenen Bewegung eines starren
Systems liegen elie 1., 2., 3., Krümmungsmittelpunkte aller

-0/Ij .10

vy ^'«M

-hyy
ZJ--

y*.

MMM ,/*M

Fig. 30—33.

Hüllbahnelemente, die augenblicklich von den Geraden des bewegten

Systems erzeugt werden, auf je einem Kreise, dem 1., 2., 3.,
Rückkehrkreis. In den Fig. 30 bis 33 bedeuten t1} t2, usw.
elie aufeinanderfolgenden Lagen einer mit dem System S
verbundenen Geraden t, dcplt äcf2, die Verdrehungswinkel des
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Systems in den einzelnen Zeitelementen. Der Krümmungsmittel-
punkt JX der Hüllbahn der Geraden t liegt auf dem Kreise mit
dem Durchmesser 0X Jx (1. Rückkehrkreis), ela von ihm aus das
Polbahnelement OjOa unter dem Winkel dcpx (ebenso wie von
dem 1. Rückkehrpol aus) gesehen wird. Ebenso liegt RX auf dem
Kreise mit dem Durchmesser JxRi usw. Die Normalen in den
nten Krümmungsmittelpunkten an die entsprechenden nten
Evoluten gehen alle durch einen Punkt, den «ten Rückkehrpol.
Der nullte Rückkehrpol fällt mit dem Momentanpol der Bewegung
zusammen.

Jeder Pol führt mit der Winkelgeschwindigkeit eles Systems
eine Drehung um den nächst höheren Pol aus. Dementsprechend
sind die aufeinanderfolgenden Lagen des «ten Poles die feste
Polbahn für die Bewegung des n—lten Poles. Durch m Lagen
des nten Poles sind m—1 Lagen des « — lten Poles bestimmt.
Der 1., 2., 3.,— Rückkehrpol bestimmt 2, 3, 4, .benachbarte
Lagen des Momentanpoles.

Durch die Bewegung des Momentanpoles (Polwechselbewegung

[v0,b0,b0', .]) und die Winkelgrössen eles bewegten
Systems (w. X, X.', ist die Bewegung eles Systems festgelegt
(siehe Gleichungen (10)—(13)). Es ist daher folgende Aufgabe
lösbar:

Aus dem 2., 3., 4 • Rückkehrpol sollen die 1., 2., 3.,
Krümmungsmittelpunkte der festen und beweglichen Polbalm
bestimmt werden.

Der Weg der Lösung ist folgender:
Man sucht die nte Polwechselbeschleunigung V"' des

Momentanpoles 0 und die nte Polwechselbeschleunigung b/n) des ersten
Rüekkehrpoles .7 aus den höheren Rückkelirpolen und den beliebig
angenommenen Winkelgrössen tc./.,/.' \us 1>X") unel b/ll)
bestimmt man die nte Winkelbeschleunigung XJ-") der
Polbahnnormalen a[=0J]. Die «te Polwechselbeschleunigung b0M in
Verbindung mit eler nten Winkel beschleunigung Xa(n) bestimmt
den (n + l)ten Krümmungsniittelpunkt der festen Polbalm.

Sind ict. Xb. Xb', die Winkelgrössen des Xormalstrahles
der beweglichen Polbahn relativ zum be-wegten System, so ergeben
sich die Krümmungsmittelpunkte der beweglichen Polbahn durch
Gleichsetzen der Tangentialbeschleunigung längs der festen und
der beweglichen Polbahn, unter Berücksichtigung der Beziehungen:

ivb wa — iv, Xb ).a — /. usw.

I. Gegeben seien: Der Momentanjiol 0. der 1. und 2.

Rückkehrpol J bezw. R (siehe Fig. 34).
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Die Geschwindigkeiten der Punkte J unel 0 sind:

Vj= R.J. ,c .71

r() .70- w 0 3

Die zu a senkrecht stehenden Komponenten dieser Geschwindigkeiten

sind:
"u0 - -72

«% r0 0 3

Fig. 34.

Da die Polbahnnormale die Verbindungsgerade der Punkte 0
und J ist, so erhält man ihre Winkelgeschwindigkeit aus der
Beziehungsgleichung

na,, — na.'Vj + JO • Wu

Daraus errechnet sieh

"v0 — navj 03— J 2
w„

Uli )i_ H Üy

¦JO ¦10
¦20



300

Ist, M der Krümmungsmittelpunkt der festen Polbahn, so ist

r0 M0-wa; AI 0
ir„

Den Krümmungsmittelpunkt der bewegliehen Polbahn kann
man entweder erhalten aus

»'& »'« — «" : ?'u — 7J0 • wb, NO —5-

oder einfacher, wie in Fig. 34.

V N

v,,--
/'¦',

X- f\\

--*., -A'.-

^^

fW

-','

«/,
^

C^.--iÄ-»

Fig. 35.

II. Die Aufgabe sei erweitert durch elie Angabe des 3. Rück-
kehrpoles S (siehe Fig. 35).

Die Wechselgeschwindigkeit eles Rückkehrpoles R ist :

vIt — SR-w RA. Die Wechselbeschleunigung bj ergibt sich
nach den bereits genannten Beziehungen aus:

"J — "Äsyst. J *T ';j um « ~ " °

'Äsy*t. J -»»• tt" 7? 6 - 85

&j um «
: R-FX-r RJ ¦ iv2 J7 + 78
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Ebenso erhält man die Wcc-hselbeschleunigung des
Momentanpoles:

"0 "./syst.lM "OumJ 09
Mvst.o" -i'j- "' J'6' 2'
b0nmj ¦-= J0-X + JO- w2 Ol' 1'2'.

Ist a die Polbahnnormale, die mit dem Momentanpol fest
verbunden ist, und stets durch den 1. Rückkehrpol hindurchgeht,
so ergibt sieh die zu a senkrecht stehende Komponente der
Beschleunigung /;„ zu nab0 0 4'. Die zu a senkrecht stehende Be-

sehlcunigungskoniponente des mit J zusammenfallenden Punktes
der Geraden a erhält man aus:

i ol, - nah 9 • ll rcl. « iji .70,'"./syst. a~ "j z <J M.a — «/»
Es ist

2- vjrei- "= J5'+ 5' 6'
und

2 v/']- "¦ wa 6'7'= 8'5.
Die Bestimmungsgleichung für die Winkelbeschleunigung

/„ lautet somit:
„al. _ na/, I 7(1 ¦ 1"ll 'Vsyst.il 1 d u /lo •

Daraus errechne! sich die Winkelbeschleunigung ^„ zu

^„-"«^^„ 0 4'-J9'
JO JO

Andererseits ist laut den Gleichungen (1) usf. des Kapitels 3a
die Tangentialbeschleunigung für die Bewegung eles Momentanpoles,

falls .1/' der Krümmungsmittelpunkt eler Evolute der festen
Polbalm ist:

nab0 - MO ¦ Xa - M'M ¦ u-y 0 1"+ 1"4'= 0 4'; - M'AI ¦ wa2

1"4'= M2".
AI — AI' ist daraus graphisch leicht zu bestimmen.

Der Krümmungsmittelpunkt N' der Evolute der beweglichen
Polbahn ermittelt sieh aus:

Xb Xa - A ; <¦¦% NO • Xb - N'N ¦ wb2 0 8"+ 3"4'= 0 4'

-N'N- ivb2- 3" 4'= NA"

c) Die höheren Savary'schen Gleichungen.

Um die Beziehungsgleichungen zwischen den Krümmungen
einer bewegten Kurve, der ihrer Eingehüllten und elen

Durchmessern der Rückkehrkreise aufzustellen, hat man sowohl auf
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Grund der Gleichungen des Kapitels la als auf Grund der
Beziehungen des vorigen Kapitels 4b die zur Berührungsnormalen b

der beiden Kurven oc und ß senkrecht stehenden Komponenten
der Bewegungsgrössen de-s Momentanpoles aufzustellen und diese
einander gleich zu setzen.

Entsprechend den Fig. 26 bis 29 ergeben sieh die zu b

senkrecht stehenden Komponenten der Beschleunigung des Momentanpoles

0 aus den Gleichungen (33), (33'), (33"), usw.

a:

h

Fig. 3G.

Sind in der Fig. 36 d. tl'. d", die Durehmesser des 1., 2.,
3., Rückkehrkreises, so ergibt sieh auf Grund der im vorigen
Kapitel gegebenen Erklärung elie Bewegung (v0, b0, b0',
des Momentanpoles 0 aus:

(34)

da

»0 -tl- IV

b0 bj <n) i bo im ./(ll

bj (0) -"«/ w — ll'

»j d' IV

Oo um J(0) d ¦ X + d- IV
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b0 -d' - w2 ¦ d(X + w2) (35)

"o bj (o) + b0 ümj(o)
bj\0) - - rj * «'2 - 2 ' ''.y' ;- " bJ • w ~ Vj(w2 + 2X) — bj- w

Vj d' • iv

bj =¦ — d" ¦ u:2 ¦ d' (X \ w2) [analog Gleichung (35)]

bj\0) - d' (w3 - 2 X iv) + d" - w3 - d' (X w + u?)

-d' (2w3y 3Aw) 4 ti" • iv3

''o'um./m) '/'¦' '' * :5"v. J • »'-'!- d (X'A- SwX + 't'3)

b0'= d (X' | 3«v. -r iv3) - d' (2'c3 4 8 Ate) + d" • «'3. (36)

Bezeichnen wir /,. B. unter bd die Projektion dos Vektors d
auf die Richtung b und unter " btl die Projektion des Vektors d
senkrecht zur Richtung b, so ergeben sich weiters folgende
Gleichungen:

"¦'„ "*r/- iv. (34')tv

n»po »d.a,t (34")

\ - brf' • «¦2 + '"7/ • / + *d ¦ w2. (35')

" % - " bd' ¦ iv2 - "d ¦ X + " "d ¦ w2. (35")

%' " "rf (x' i i/;3) P "rf • 3 w X — nbd'-2 w3 - "d' • 3 X w
y""d"-iv3. (36')

» %' "d (X'A- ic3) - " "d ' 3 «' /. - hd' ¦ 2 iv3 — " bd' ¦ 3 ;. tv

¦\bd"-iv3. (36")

Durch Gleichsetzen der zur Richtung b senkrecht stehenden
Komponenten der Bewegungsgrösscn des Momentanpoles 0 erhält
man für (n) 0

»v0 BO • ivb »d ¦ ivn ',,-

Unter Zuhilfenahme der Gleichungen eles Kapitels 4a ist

OA
wb -Bl ¦ w

Dieser Wert in die vorige Gleichung eingesetzt, ergibt

BO-OA
—=—r • IV "d ¦ W

BA

da ßO - -Oß und BA 0.4 -Oß ist,

1 0.4-Oß 1 1

"rf 0.4.-Oß Oß 0.4
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und somit
1 1 1

",d 0.4 Oß (87)

die vektorielle Form der Savary'schen Gleichung.
Für die Krümmungsmittelpunkte der unendlich fernen Punkte,

bezw. aller Ilüllbahnclemente, die augenblicklich von den Geraden
des bewegten Systems erzeugt werden, ist 0.4 oo, sodass .-.ich

ergibt

k y yr-jY oder 0 ß — "rf
"d OB

die Vektorgleichung des ersten Rückkehrkreisos.
Setzen wir in der Gleichung (37) für den Ortsvektor des

Punktes A OA a, für 0B 0A — BA a — r, wobei r eler

Krümmungsradius der Bahn des Punktes A ist, so ergibt sieh für
bd jetzt "d gesetzt,

1 1 1

(38)

a =ad. (39)

die Vektorgleichung eles Wendekreises. Der Krümmungsradius /•

errechnet sich aus
a

r • a
a — arl

was unmittelbar der bekannten Grübler'schen Konstruktion des

Krümmungsmittelpunktes entspricht3).
Für (n) 1 erhält man:

"bb0 B0-Xo-Qi- ivb2-\ 2wb- bv0 — nbd'- w2-{ »d-X + nbd- w2.

Der in dieser Gleichung noch unbekannte Wert Xb lässt sich mit
Hilfe der Gleichung (31") ermitteln.

Da
"" (— •¦„ • w) — "¦•„ • w — — " "d ¦ iv2

und
Oß OA

~B~ÄX'' W"~WBA

°d a a —
oder

a2
a

r
ad..

Für r oo erhält man

w„, w • -s-r ; wb w

3) Zeitschr. f. Math. u. Physik, 29. Bd. (1884), S. 310.
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i erhält man

— » h

BA
"hl OB2 OB

Ab -~\ r 3~ h ''i n jT + l ri d.( 2 + Piß.43

ir-

ß.4-
0.4

B^3 2rx
OB-04

ß^3

X

erner ist
ß.4

" bd - tv

Diese Werte, in die obige Gleichung für nbb0 eingesetzt,
rgeben nach Wegfall der Glieder mit X und Kürzung durch w2

ach einigen Umformungen die zweite Savary'sehe Gleichung:

Oß3

ß.43
O.U
ß.43

0.4 + 2-0ß" >'d X—t " bd (40)BA

^-merkenswert ist, dass die Krümmungsradien der Evoluten der
Curven a und ß nur von der Projektion eles Durchmessers des
weiten Rückkehrkreises auf die Richtung senkrecht, zur Berüh-
ungsnormalen abhängig sind, ähnlich wie die Krümmungsradien
Ut Kurven nur von der Projektion eles Durchmessers des ersten
-tückkehrkreises auf die Richtung der Berührungsnormalen ab-
üingig waren.

Setzen wir wie bei der 1. Savary'schen Gleichung für

a- "d
OA a B.4 - r

ii "rf
QB=QA - BA a-ad

erner für " "rf ""rf und " "rf' '"'rf' entsprechend der Richtung
les Ortsvektors tt, so erhält Gleichung (40) die Form:

"<l3 (a — "rf)3 a — 3 • "d
)'i h o,

v ""rf-
tt3 a3 a

' "rf' (41)

-'ür die Punktbahnen ist rt — 0 um

ad)'c

""d ¦ "d
'"'<1 — 3 - - + ""d (42)

Kür die unendlich fernen Punkte bezw. für die Ilüllbahnelemente,
He augenblicklich von den Geraden des bewegten Systems erzeugt
verden. ist a =oo, sodass sich ergibt

Ci '"d -f"arf' (43)

Unter Berücksichtigung, dass Oß —ad ist (siehe Folgerung aus
ler 1. Savary'schen Gleichung), stellt dies die Bedingungsgleichung
für elie Punkte des zweiten Rückkehrkreises vor (siehe Fig. 36).
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Für diejenigen Punkte, elie in vier unendlich benachbarter
Lagen auf einen Kreis bleiben, wirel £h 0. Wir erhalten somil
für die Kreispunkt kurve die- Gleichung

a2 [a ¦ natl — 3""rf • "d ¦ ii ¦ '"'rf'] - 0 (44

Dies ist eine Kurve dritter Ordnung mit dem Momentanpol ah
Doppelpunkt. Der Wert a errechnet sieh aus

3 • ""d ¦ "d
"" d -f- " "d' ;45)

Dieser Wert wird Null für nod 0 und "d 0, d. h. die Polbahn-

Fig. 37.

tangente und die- Polbahnnormale sind Tangenten an die
Kreispunktkurve4).

Dort wo die Kreispunktkurve den Wendekreis schneidet, ist
derjenige Punkt, der während vier unendlich benachbarter Lagen
auf einer Geraden bleibt (Ball'sche Punkt). Die Gleichung des

Wendekreises lautet a ="d. Dieser Wert in die Gleichung (45)
eingesetzt, ergibt

"</
3 ""d • "rf

n"d + '"'rf'

Daraus folgt
2"arf — ""rf' 46)

4) Siehe R. Möller, über die Krümmung der Bahnevoluten bei starren
ebenen Systemen. Zeitschr. f. Mathem. u. Physik, 36. Bd. (1891), S. 196.
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Aus dieser Bedingungsgleichung lässt sich auf einfache Weise aus
den Vektoren der Durchmesser eles ersten und zweiten Rückkehrkreises

die Richtung deri Ortsvektors des Ball'schen Punktes
bestimmen. Man trägt (Fig. 37) elen Vektor des Durchmessers
des zweiten Rückkehrkreises im ersten Rückkehrpol auf und
verbindet elen Momentanpol mit dem Halbierungspunkl dieses Vektors.

Für (n) - 2 erhall man:

"%' - BO- V :U, wt ¦ Xb (BO | g2) ¦ wb3 - 3&0re1*6 ¦ «'t,

3 Mb ¦ X„ "rf ()ü3 | ;.') 4 3 "rf • wX - 2 "d' • iv3 - 3" bd' ¦ w ¦ X

] "rf"- ui3.

Unter Heranziehung der Gleichung (31'") ergibt sieh, bei
Berücksichtigung, dass

i'„ rf ¦ ii und hn - d' ¦ w2 — d (X -\ "'2)

der Wert Xb' zu

ß.4 • Xb' - - 2 "rf ¦ ir3 - 3 » "rf wX \ bd' ¦ wA - 0.4 ¦ /.' ' 0.4 • iv3

¦ \- 3 i\ wa Xa — 2 r, • ivX i 3 r, wXa — 3 r2 iv iva2 + 8 ^ ivaX | 3ßx h^A»

— (ß.4 - e2) • iü63 — 3 >•( ujj • Xa (- 3 r2 ic,, • mj02 — 3 /'jM^/s

Da tVe1''' \ - %(b) - 6d' • iv2 f »"d • X + "rf • w2 - ßO • it'„2

so ist weiter

0U - ß A ßA
et w7. r BÄ-

cl w

BO-OA 0.4 -BO 0 BO
+ [}A

¦>¦
,,A 'Vr b3 BA •),))„•;.« "-a

9
ÖO

3 3BO 3 BO „~ ß 4
' ''2' "'" '

B 4
' "'' '':' ° BA

' ''**' lü ' "'"

i '

g -r ¦ i\ ¦ wa ¦ X \ 3 • ö! • wb • Xb — BO- wb3

BO
3 3ßO 3ßO

ß 1
' "2 ' " &' Ij I

' 'i ' U'l> ' *a "1 öXi ' ''2 ' ,(:a ' wa

3 BO

ß 4
" ' ''J' "'" ' /" ~~:iQl ' "'"' /-" ~'r ' "'"3 ' c'2' "'"3

— 3 • brf' • icö • iv2 + 3»"rf • h?s • X + 3"d • ic,, • it2 — 3 BO • ie'(,3

+ 3 '"'rf • w ¦ Xb "rf • ie>3 + "tl ¦ X' + 3 " "d • w • A - 2 6d' • ic3

-3-"''er- «>A + bä" • w3.
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Unter Berücksichtigung, elass nach eler 1. Savary'schen
Gleichung

ßO-0.4
bd

BA
ist, heben sich die Glieeler mit A' auf. Setzt man weiter für

0 ß 0.4
Wa BA

" "' ' ""» BA
' 'r '

so ergibt sich aus der bereits für Xb gefundenen Gleichm ig

Oß2
?1 BA3 + Ql BA3

OA2 nhdL_

BA
OA

K ¦ w BA

OA
W + BA 'X

7.

0.4
x =K'w2+ BA -x X.

Diese Werte in elie Doppelgleichung für ""(>„' eingesetzt, erhält
man für die Glieder mit X. auf eine Seite geschafft, den Wert
Null, wenn man die 2. Savary'sche Gleichung in der Form der
Gleichung (40) berücksichtigt.

Nach Kürzung der übrig bleibenden Glieder durch w3 erhält
man die 3. Savary'sche Gleichung

+ "d

3-0ß2 3
M J

BA2 ^ BA
(I4+30B OB4

Oß2
11 BA2
>-i - n -Qi-e-ä-s +""d

OA
BA2

OA'
BA ' BA*

' ''2 BA*
' Q2 - "rf" (47)

Wieder hängen die neuen Radien r, und g., nur von der in ihre
Richtung fallende Komponente des höchsten Rückkehrkreisdurchmessers

ab.

Für die Punkt bahnen ist rx 0 und r2 0, somit

3_0B2 _3__
ß.42

' d+ BA
" hd — Qi

OA2

BA*
OA*
BA*

' °2

+ "d'

"rf"

0.4 + 3 Oß
BA

(48)

Für die unendlich fernen Punkte bezw. für die Hüllbahnelemente,

elie augenblicklich von den Geraden des bewegten Systems
erzeugt werden, ist

0.4 Oß
0.4 oo, ß.4-oo ß.4

1.
ß.4 0.
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Setzt man diese Werte in die Gleichung (48) ein, so erhält man

'}-i bcV + "d"

las ist die Bedingungsgleichung für die Punkte des 3. Rückkehr-
kreises (siehe Fig. 36).

d) Anwendung der höheren Savary'schen Gleichungen.

Die in den Fig. 2 und 3 behandelte Aufgabe soll nun mit
Hilfe der Savary'schen Gleichung gelöst werden. In Fig. 38 sind

Cr

er'

f- n c

\-

Fig. 38.

die als positiv angenommenen Richtungen von a,b,c und von
na, nb, nc eingezeichnet. Laut Annahme (Fig. 2) ist

0.4! - 50,5"
OBj 48,5+"
0(\ 65+c

^. ^'^ 12,5 »"

rn -- BXBi=2Ay

OA, 90'
Oß, 144+"

.4,'.4, 48-'2 -™-l

h'B2gn 7i2'ß2 47,5+""
ri« C'X(\ --¦¦ 18-»'X

Die Werte 0C2 und glc C2'C2 sind zu suchen.
Mit Hilfe der 1. Savary'schen Gleichung ergibt sich

(Gleichung (37)):

1_ 1 1 1 _J_
ad~ OAi Id2 "56-Ö+" 9Ö+°~

Ebenso erhält man "rf -73"".

und "d 152+"
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Aus den Projektionen °d und "d kann man den Durchmesser d
des 1. Rückkehrkreisdurchmessers graphisch leicht ermitteln.
Denselben auf die Richtung c projiziert, ergibt

Ul 141".
Dieser Wert in die Gleichung (37) eingesetzt ergibt den gesuchten
Wert

OC, - 121"-.

Zur Anwendung der zweiten Savary'schen Gleichung
(Gleichung (40)) sind ¦/.. B. für den Normalstrahl o noch die Entfernung
A2Ai und die Projektion "ad des Rückkehrkreisdurchmessers d

auf die Richtung na erforderlieh. Laut Annahme bezw. laut der
graphischen Ausmittlung eles Rückkehrkreisdurchmessers ist

A2Ai 33,5-" " "rf 6+" °

B2Bi =---- 95,5-" ""rf - 134-""
C2Ci 56 <-' '""rf 57,5+ "c

Die Gleichung (40) erhält für den Normalstrahl a die Form:

0.4 » 0.4 3 0.4. + 2 0,1,
!¦ i_ y - »,1ri i ' z n"i'la A2A3 Qla A2A3

(l
A2Ai

Ü '

Nach Einsetzen der numerischen Werte errechnet sich

'•"rf' 31,3 + na

Ebenso erhält man für n"d' 382,48 ' ""
Mit Hilfe einer graphischen Ausmittlung lässt sieh aus den

beiden Projektionen '"'rf' und "*rf' der Durchmesser des 2.
Rückkehrkreises ermitteln. Denselben auf die Richtung nc projiziert
ergibt "frf' 174,5' "X Setzt man diesen Werl in die Gleichung
(40) ein, so errechnet sieh der gesuchte Wert gla zu gia 26,2" '"•'.

Auch elie Anwendung der 3. Savary'schen Gleichung
(Gleichung (17)) bietet bei einer Erweiterung der Aufgabe auf die nächst
höheren Krümmungsradien keine Schwierigkeiten.

Zürich, im November 1929.
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