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Streuung von Röntgenstrahlen an Wasser
und an wässerigen Salzlösungen

von William Good.

(5. V. 30,)

I. Kinleiiiiini und Übersicht der bestehenden Theorien.

Wird ein eine dünne Flüssigkeitsschicht elurchdringendes
schmales Bünelel homogener Röntgenstrahlen auf einer
photographischen Platte aufgefangen, so findet man bei genügend
langer Beleuchtung einen Beugungsring, der den vom unabge-
lenkten Bündel erzeugten Flecken umgibt. Diese Beobachtung
wurde schon von Debye unel Scherrer (Lit. 1) im Verlaufe ihrer

S
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Fig. la

Untersuchungen über die Beugung von Röntgenstrahlen gemacht.
Später kam Hewlett (Lit. 2) an Hand von Untersuchungen mit
der Ionisationsmethode zum selben Resultat, unel im gleichen
Jahre gelang es dann Keesom und Smeut (Lit. 3) mit der
photographischen Methode bei einigen Flüssigkeiten einen zweiten
Beugungsring, ausserhalb des ersten, nachzuweisen; in einigen
wenigen Fällen ist sogar die Andeutung eines dritten Ringes
vorhanden. Seither ist diese Erscheinung von verschiedenen
Autoren (Lit. 4—11) eingehend studiert worden. Im allgemeinen
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ergaben alle diese Beobachtungen, ausgeführt mit monochromatischem

Röntgenlicht in der üblichen Debye-Scherrerschen
Anordnung, den in Figur la dargestellten typischen Verlauf der
Intensität als Funktion eles Beugungswinkels. Bisweilen ist das
Hauptmaximum (A) von einigen Nebenmaxima (B, C) begleitet.
Von besonderer Bedeutung ist auch elie geringe Intensität der
gestreuten Strahlen bei kleinen Streuwinkeln.

Schon die ersten Untersuchungen zeigten die Proportionalität
des Sinus des halben Beugungswinkels mit der Wellenlänge der
Strahlung, was offensichtlich auf Interferenzerscheinung gedeutet
werden muss. In Übereinstimmung mit unseren modernen
Gesichtspunkten muss die Ursache dieser Interferenzerscheinung in
einer mehr oder weniger regelmässigen Anordnung der Elektronen

S
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in der Flüssigkeit liegen; für diese Anordnung sind drei Dinge
massgebend:

1. Die Anordnung eler Elektronen im Atom.
2. Die Anordnung der Atome im .Molekül.
3. Die Anordnung der Moleküle gegeneinander.

1. Eine regelmässige Anordnung der Elektronen im Atom
führt an sich schon zu einem Beugungseffekt, welcher in seiner

Abhängigkeit vom Beugungswinkel mit dem Verlaufe eler F-Kurven
bei den Kristallen identisch ist. Diese F-Kurven haben die in
Figur 2 a dargestellte typische Form.

2. Die Wirkung einer bestimmten Anordnung von Atomen
im Molekül wurde erstmals von Ehrenfest (Lit. 12) theoretisch
erörtert und zwar für den Fall eines zweiatomigen Moleküls.
Betrachtet man die beiden Atome dieses Moleküls als zwei streuende



207

Punkte im festen Abstände gegeneinander, so folgt nach Ehrenfest

für die Abhängigkeit der Intensität I vom Winkel 0

I (6) konst 1 +
-in (ksa)

(k s a)
(1 cos- &), (1)

wobei k -^- s 2 sin und a den Abstand eler beiden

Atome bedeutet. Figur 3a stellt die durch Gleichung (1) geforderte
Intensitätsverteilung dar. Dass diese mit eler Erfahrung nicht
übereinstimmt, zeigt sofort e-in Vergleich mit Figur la. Zudem

ISO0°
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Fig. 3a.

wissen wir nach den Beobachtungen von Keesom und Smedt
(loc. eit.), dass auch einatomige Flüssigkeiten Beugungsbilder
ergeben, die sich nur wenig von jenen der anderen Flüssigkeiten
unterscheiden.

3. Die oben gegebene Funktion (1) zeigt maximale Werte für
ksa 0,0; 7,72; 14,07 usw. Demnach befindet sich das erste
Maximum bei & 0°, und die Lage eles zweiten Maximums würde
sich aus der Gleichung

2(0,812«) sin
Ö

(-2)

sofort berechnen.
Die Gleichung (2), elie die Lage eles zweiten Maximums festlegt,

ist schon von mehreren Forschern für den Fall von Flüssigkeiten

angewandt worden. So hat Keesom als erster gefunden,
dass sich der Beugungswinkel des Ringes von grösster Intensität
— bei vielen Flüssigkeiten tritt scheinbar nur ein einziger Ring-
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auf — aus dem mittleren Abstand a zweier benachbarter Moleküle

genau mit der oben gegebenen Formel berechnen lässt. Den
Abstand a ermittelte er aus dem Molvolumen unter der Annahme
einer dichtesten Kugelpackung:

a l,88j/^
31 Molekulargewicht; d Dichte.

Später haben dann Sogani (Lit. 8) und etwas ausführlicher
Katz (Lit. 9) zeigen können, elass die Keesomsche Beziehung (2)
nur für jene Flüssigkeiten zutrifft, hei welchen das Flüssigkeitsmolekül

der Kugelsymmetrie nahekommt. Als Beispiele für solche
Flüssigkeiten gelten Quecksilber, flüssiges Argon, Wasser und
Flüssigkeiten mit ringförmig gebauten Molekülen. Für Substanzen,
deren Moleküle nach ihrem chemischen Aufbau nicht mehr als
kugelförmig angesehen werden können, treten zwischen den aus
den Gleichungen (2) und (3) hergeleiteten Werten von a
Differenzen auf, die ausserhalb eler Messgenauigkeit liegen. Ist die
Abweichung der Moleküle von eler Kugelform sehr gross, so kann
überhaupt nicht mehr von einer Übereinstimmung eler Werte von
a gesprochen werden.

Der Haupteinwand gegen elie Keesomsche Auffassung liegt
vor allem in der Vorstellung von voneinander unabhängigen
Paaren von Streuzentren. Weiter muss aber auch erwähnt werden,
dass die scheinbare Übereinstimmung bei den oben erwähnten
Flüssigkeiten nur so erreicht wird, dass von dem bei 0 0°
auftretenden viel grösseren Beugungsmaximum ohne jede
Erörterung schlechthin nicht Notiz genommen wird. Der vorhin
gegebenen Deutung der Gleichung (2) darf deshalb nicht zu viel
Gewicht gegeben werden. Wir werden im Verlaufe eler Diskussion
eler vorliegenden Arbeit wiederum darauf zurückkommen.

Offenbar muss die Behandlung des Problems dahin erweitert
werden, dass wir jetzt nicht mehr zwei Moleküle ins Auge fassen,
sondern nun elas Zusammenwirken von mehr als zwei Molekülen
studieren.

Raman und Ramanathan (Lit. 13) konnten zeigen, dass eine
Erklärung für die Streuung von Röntgenstrahlen bei kleinen
Winkeln auf Grund eler von Smoluchowski und Einstein
entwickelten statistisch-thermodynamischen Theorie der Lichtstreu-
ung gegeben werden kann. Der Kern dieser Theorie liegt in der
Vorstellung lokaler thermischer Dichteschwankungen, die einem
bestimmten Wahrscheinlichkeitsgesetz (zeitlich unel räumlich) gehorchen

und durch ihre Existenz eine Streuung der Strahlung verur-
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sachen. Für Benzol zum Beispiel wäre bei einer Wellenlänge von
),71 A und einem Streuwinkel 0 10' die Dicke einer einem Weg-
jnterschied von entsprechenden Flüssigkeitsschicht 239 A; es

zeigt sich daher, dass elie gefundene Schichtdicke genügend viele
Moleküle enthält, elass eine statistische Behandlung zulässig ist.
Wir kommen damit zur selben Darstellung der Streuung, wie sie
in der gewöhnlichen Optik üblich ist. So wird, wie in eler Optik,
die Streuung an einer Flüssigkeit bedeutend geringer sein als an
einem Gas bei gleicher Zahl von Molekülen, weil bekanntermassen
die Kompressibilität einer Flüssigkeit, verglichen mit jener eines
Gases, sehr klein ist. Zurückkommend auf unser oben angeführtes
Beispiel Hesse sich leicht zeigen, dass die Intensität eler Streuung
an flüssigem Benzol ungefähr ein Vierzigstel von jener des
Benzoldampfes ausmacht. In der weiteren theoretischen Erörterung
gelang es Raman und Ramanathan zu zeigen, dass mit zunehmendem

Streuwinkel die Intensität der Streuung bis zu einem Maximum

zunimmt. Die Lage dieses Maximums liegt bei einem
Winkel 0, der der Gleichung

0
7. 2 /.,, sin -y

genügt, worin z0 den mittleren Abstand benachbarter Moleküle
bedeutet.

Der vollständige Ausdruck für die Intensität der Streuung
lautet nach Raman und Ramanathan

I= konst |exp
1

•
N

•? 3( i ¦'"'
16 RTß ° l - -

(4)

darin bedeuten A7 die Anzahl Moleküle pro 1 cm3, R die
Gaskonstante, ß die isotherme Kompressibilität, ?.0 den mittleren
Abstand der Moleküle und Xx eine Grösse, die durch die Gleichung
X 2 Aj sin—- bestimmt ist. So lange man vom Bestehen weiterer

Streumaxima absieht, ist der durch (4) vorgezeichnete Verlauf für
die Intensitätsverteilung den bei den Flüssigkeiten experimentell
gefundenen Verlaufen sehr ähnlich und erhält dadurch eine gewisse
Bedeutung. Das Auftreten weiterer Maxima bei bestimmten
Flüssigkeiten suchten die Autoren darauf zurückzuführen, dass

gewisse Eigenschaften eler Röntgenbilder, aufgenommen im festen
Zustande nach dem Debye-Scherrerschen Verfahren, „survive and
find their counterpart in the liquid pattern, though diffused and
modified by the expansion or contraction which takes place on
melting".

ii
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Trotzdem die von Raman unel Ramanathan gegebene Theorie,
wenigstens solange nicht das Auftreten weiterer Maxima in
Betracht gezogen wird, die Streuung zu erklären vermag, ist doch
daran festzuhalten, elass die Anwendung der für ein Kontinuum
entwickelten Wahrscheinlichkeitsbeziehungen auf diskrete
Teilehen, deren gegenseitige Abstände von der Grössenordnung der
Dicke der Flüssigkeitsschicht (für grosses 0) sind, unzulässig ist.

Wäre es experimentell möglich, die Streuung an verdünnten
Gasen hinreichend genau zu studieren, so könnte man in Erfahrung
bringen, wie weit elie Beugung vom einzelnen Molekül als Ganzes,
und wie weit von den einzelnen Atomen, die das Molekül auf¬

's

0'
Beugungscuhfse/

Fig. 4 a.

160

bauen, erfolgt. Auf diese Weise wäre es dann möglich, durch
Untersuchung der Streuung in ihrer Abhängigkeit von der Dichte
den intermolekularen Effekt herauszuschälen. Diese Methode
wurde erstmals von Debye (Lit. 14) in Erwägung gezogen.
Ausgehend von Molekülen, die als voneinander unabhängige, starre
Kugeln betrachtet werden, fand er die folgende Streufunktion:

I konst tf 1 --rr® (2ksa) Co)

/orin k s 2 sin
&

und a Kugelradius bedeutet und

0(u) eine Funktion, die durch die Gleichung

0 (u) —3 [sin u — u cos w]
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ii
gegeben ist. Der Quotient ~ stellt das Verhältnis des

Gesamtvolumens der Wirkungssphären aller Moleküle zum Gesamtvolumen
des Gases dar, wobei der Wirkungsradius gleich 2 x genommen
wird. Im weiteren bedeutet ip elen Streufaktor, welcher im Fall
eines einfachen Resonnators bei unpolarisiertem Licht proportioneil

dem Ausdruck t/1 ~*f cos2 0 ist.

Für den besonderen Fall, wo X 0,7 Ä, 2 a 2, lA und

-—= — nimmt die Streufunktion den in Figur 4a dargestellten

Verlauf an. Dieser Kurve sind aber jene Interferenzen, welche
von den das Molekül aufbauenden, einzelnen Atomen herrühren,
noch überlagert. Weil der intermolekulare Effekt eine Funktion
der Dichte ist, so muss man durch Untersuchungen der Streuung

i

Bougungswinhal

Fig. 5a.

ISO

bei verschiedenen aber kleinen Gaselrucken zu einer Reihe von
Messresultaten gelangen, von welchen jedes die Summe des

dichteunabhängigen oder also konstanten .,innermolekularen" Effektes
und des dichteabhängigen „äusseren" molekularen Effektes
darstellt. Extrapoliert man nun auf Dichte Null, so erhält man den
Effekt für die Atome allein. So verschwindet zum Beispiel für
ein zweiatomiges Molekül bei einer Abnahme der Dichte bis zur
Dichte Null das erste dem ..äusseren" Effekt entsprechende
Maximum der Intensitätskurve nach und nach, während das zweite
Maximum, das dem „inneren" Effekt zukommt, unverändert
bleibt. Diese Verhältnisse sind in Figur 5 a für verschiedene Werte

von -y veranschaulicht, und zwar sind als abgrenzende Werte
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ü
genommen worden -y =0, was schlechthin einem idealen Gas

entspricht, nnd ~. - ~, was ungefähr einer tatsächlichen Flüssigkeit

zukommt.
Obwohl die Methode für Flüssigkeiten nur eine sehr grobe

Näherung bedeutet, gibt sie eloch wenigstens eine vernünftige
Vorstellung von der Wirkung wachsender Dichte auf den
Streuvorgang. Eine vollständige Anordnung der Moleküle besteht
allerdings in Wirklichkeit nie. Denkt man sich aber vielleicht die
Moleküle einer Flüssigkeit im zeitlichen Mittel in zwei Klassen
getrennt, nämlich in eine erste Klasse von Molekülen, elie mehr
oder weniger regelmässig geordnet sind, und eine zweite Klasse
von Molekülen, deren Anordnung als vollkommen regellos
betrachtet werden kann, so wird für eine Bestimmung des Beitrages
eler regellos verteilten Moleküle der von Debye vorgeschlagene
Weg am ehesten Erfolg zeigen.

Um die gegenseitige Anordnung der Moleküle zu
berücksichtigen, haben Zernike und Prins eine Verteilungsfunktion
eingeführt, mit welcher es dann möglich wird, die Phasenbeziehungen
zwischen den Streuwellen benachbarter Moleküle in Rechnung zu
bringen und so den Intensitätsverlauf des Beugungsbildes als
Funktion des Streuwinkels zu bestimmen, oder auch im
umgekehrten Sinne aus dem experimentell bestimmten Verlaufe der
Intensität elie Verteilungsfunktion zu ermitteln. Die beiden
Verfasser gelangen dabei zu folgender Darstellung der Streuung:

X

2-"MM) Jds-s-i (s) sin (sr). (6)
o

Es bedeutet darin, r elen Abstand eines Punktes von einem
beliebig gewählten Molekül, g0(r) die Wahrscheinlichkeitsverteilungsfunktion

eler übrigen Moleküle um das gewählte Molekül und
4,71 &

s —j- sin -. ; ferner ist elie Funktion % (s) durch die Gleichung

I (0)-±NA2i (s)
\ NA2

definiert, wobei N die Anzahl der betrachteten Moleküle, A die
Streuamplitude jedes dieser Moleküle und schliesslich 1(0) die
bei einem Winkel 0 auftretende wirkliche Streuintensität
darstellt. Zuerst wird die Verteilung der Moleküle auf einer Geraden
betrachtet und die Beziehungen für elie freie Weglänge in der
kinetischen Gastheorie auf die von Molekülen unbesetzten Teil-
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stücke der Geraden angewandt. Ausgehend von diesem linearen
Gitter finden die beiden Verfasser schliesslich einen Ausdruck
für 1(0). Da die räumliche Verteilungsfunktion g(r) nicht bekannt
ist, wird die für den Fall des eindimensionalen Problemes ermittelte
Form der Gleichung (6) schlechthin auf den drei-dimensionalen
Fall übernommen. Auf diese Weise gelingt es den Autoren zu
zeigen, dass bei sehr kleinen Beugungswinkeln oder bei grossen
Wellenlängen die Streuintensitäten einer Flüssigkeit und eines
Gases bei gleicher Anzahl von Molekülen sich wie ihre
Kompressibilitäten verhalten. Gerade darin stimmt nun die von
Zernike und Prins hervorgebrachte Theorie mit den Folgerungen
aus der Raman und Ramanathanschen Theorie überein. Wie die
Behandlung des Problems als ein rein dimensionales zeigt, bei
welcher die Verteilung der molekülfieien Strecken streng durch
die oben gegebene Funktion geschieht, nähert sich bei grossen
Winkeln 0 elie Intensität dem Werte J NA2, also demselben
Werte, den wir bei der Berechnung von vollständig voneinander
unabhängigen, molekularen Streuzentren erhalten. Bei kleinen
Beugungswinkeln dagegen nähert sich die Intensität dem Werte
1 NA2]'1
-j1 w (l mittlerer Zwischenraum der Moleküle, a Mole-

küldurchmesser). Es zeigt sich also, dass bei kleinen Winkeln
die Intensität bei relativ kleinem Spielraum gering wird.

Auf Grund dieser Theorie versuchte Prins (Lit. 16) unter
vereinfachenden Voraussetzungen für die Bestimmung der g-Funk-
tion das Beugungsbild für flüssiges Quecksilber zu berechnen und
erhielt auch, hinsichtlich der Lage der Beugungsmaxima, gute
Übereinstimmung mit dem experimentell gefundenen Resultat.

Das Wesentliche der Theorie liegt vor allem darin, elass sie uns
eine Methode verschafft, um gegebenenfalls die Verteilungsfunktion
zu bestimmen. Das Verfahren scheint allerdings nicht besonders
handlich zu sein, abgesehen vom Nachteil eler eindimensionalen
Behandlung des Problems. Dann wird auch die stillschweigend
vorausgesetzte Annahme einer in r symmetrischen Vertedungs-
funktion g(r) im allgemeinen nicht der Wirklichkeit entsprechen.

Stewart und seine Mitarbeiter haben in einer Reihe von
Mitteilungen (Lit. 11) die Ansicht vertreten, dass jede Flüssigkeit
aus einer sehr grossen Zahl kleinerer Molekülgruppen besteht, die
trotz ihres kristallinen Charakters weder vollkommen in ihrer
Gestalt noch dauerhaft sind; diese Erscheinung wird als „Kybo-
taxis" bezeichnet. Die durch ein solches Gebilde hervorgerufene
Beugung von Röntgenstrahlen kann weder die Eigenschaften der
Beugungsbilder von Kristallpulvern noch diejenigen vollkommen
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ungeordneter Moleküle, wie sie elie Raman und Ramanathansche
Theorie oder die Debyesche Theorie in ihrem ersten Teil
verlangt, zeigen. Allerdings werden wir annehmen können, dass die
für ein Kristallpulver charakteristischen Bilder wenigstens eine
erste Näherung für unser Gebilde darstellen. Dann muss aber elas

Braggsche Gesetz für die Beugungsmaxiina Gültigkeit besitzen.
In dieser Weise gelangt Stewart zu einer einfachen Erklärung
der geringen Intensitäten bei sehr kleinen Winkeln 0, der
experimentell gefundenen, charakteristischen Breite der einzelnen Beu-
gnngsmaxima und auch der bei grösseren Winkeln auftretenden,
raschen Abnahme der Intensität der Maxima mit zunehmendem
Winkel.

Die Auffassung von kristallartigen Molekülgruppierungen
innerhalb einer Flüssigkeit stützt sich auf eine grosse Anzahl von
Untersuchungen, ausgeführt an elen verschieelenen Gliedern ganzer,
homologener Reihen von Alkoholen, gesättigten Fettsäuren und
Paraffinen. Dabei zeigen elie Glieder der beiden erstgenannten
Reihen zwei amorphe Ringe, während die Glieder eler letzten
Reihe nur einen Ring aufweisen. Berechnet man nach dem Bragg-
schen Gesetz elie elen beiden Ringen zugehörigen Abstände der
Streuzentren, so findet man, elass der eine der beiden gefundenen
Werte nahezu für alle Glieder einer Reihe konstant ist, während
eler andere der beiden Werte mit der Länge der Kohlenstoffkette
zunimmt. So lag es nahe, elie gefundenen Abstände mit der
Länge und Breite eles von den einzelnen Molekülen beanspruchten
Raumes zu identifizieren; dafür scheint auch unter anderem die

gute Übereinstimmung eler gefundenen Werte mit elen an elen

festen Stoffen ermittelten Gitterkonstanten zu sprechen. Dass im
besonderen die Paraffine nur einen Interferenziing aufweisen,
kann zusammenhängen mit dem Fehlen einer polaren Endgruppe
am Schlüsse der Kette, wodurch es den Ketten ermöglicht wird,
beliebige seitliche Verschiebungen auszuführen.

Beim gegenwärtigen Stande der Untersuchungen ist es immer
noch unmöglich mit Bestimmtheit zu sagen, welche der vorgelegten

Theorien über die Streuung von Röntgenstrahlen an Flüssigkeiten

elie richtige ist. Wir dürfen in Anbetracht der komplizierten

Vorgänge in Flüssigkeiten nicht übersehen, dass jede
bisherige Theorie bestenfalls immer nur eine Näherung an den
tatsächlichen Verlauf des Streuprozesses bedeutet. Dann aber
macht sich auch eler Mangel an quantitativen Messungen, die
den genauen Verlauf der Intensität in seiner Abhängigkeit vom
Streuwinkel festlegen, für eine Entscheidung besonders nachteilig

bemerkbar.
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Bis heute liegen hauptsächlich nur quantitative Messungen
vor, von Hewlett (Lit. 2), Wyckoff (Lit. 4) unel Stewart
(Lit 11) mit seinen Mitarbeitern. Von diesen aufgezählten
Beobachtern scheint aber meines Wissens Hewlett der einzige zu
sein, der in der Auswertung seiner Ergebnisse elie im streuenden
Medium auftretende Absorption der primären und der gestreuten
Strahlen in Rechnung gezogen hat. Wie wir aber später sehen
werden, ist diese Korrektur für die Bestimmung des wahren
Beugungsbildes im allgemeinen unumgänglich und deshalb für die

Erforschung der Natur des flüssigen Aggregatzustaneles von
Beeleutung.

Die vorliegende Arbeit, die sich hauptsächlich mit
Untersuchungen an Wasser und Salzlösungen befasst, soll einen weiteren
Beitrag darstellen zur quantitativen Erforschung eler Streuung
an Flüssigkeiten, auch in eler Hoffnung, dass durch elie Erörterung
der Ergebnisse weitere Einsieht in die Struktur des flüssigen
Zustaneles gewonnen wird.

II. Bisherige Untersuchungen an Wasser und Salzlösungen.
•

Es wird vernünftig sein, noch eine kurze Übersicht zu geben
von den bis heute vorliegenden Messungen an Wasser und
Salzlösungen. Für eine quantitative Betrachtung kommen allerdings
nur die Intensitätsmessungen von Wyckoff (loc. eit.), ausgeführt
an reinem Wasser und wässeriger Kaliumchlorid-Lösung, in Frage.
Immerhin sind seiner eigenen Aussage nach die Messungen nur
bedingt genau; er findet auch keinen Unterschied zwischen der
Streukurve, aufgenommen an Wasser unel jener an einer wässerigen
KCl-Lösung.

Keesom unel Smedt (loc. eit.) fanden bei ihren Untersuchungen
der Streuung an Wasser drei Beugungsringe, deren Intensitäten
aber nicht genauer bestimmt wurden.

Prins und Krishnamurti (loc. eit.) untersuchten Wasser und
Salzlösungen, haben aber den durch die Beugimgsbilder vorgezeichneten

Intensitätsverlauf nur näherungsweise abgeschätzt. Im besonderen

hat Prins (Lit. 16) bei schweren Ionen beträchtliche
Abweichungen der Bengungsbileler von jenen des Wassers gefunden.

Anschliessenel muss aber gesagt werden, dass sowohl für
Wasser, wie auch für alle anderen untersuchten Flüssigkeiten
schon in der Zahl eler nach der Debye-Scherrerschen Methode
gefundenen Beugungsringe keine Übereinstimmung besteht; es ist
sogar von versehieelener Seite behauptet worden, dass elie von
einigen Verfassern beobachteten Ringe in Wirklichkeit nur einen
einzigen Ring darstellen, dessen Schärfe von innen nach aussen
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abnimmt. Die gefundenen experimentellen Unstimmigkeiten haben
voraussichtlich ihre Ursache nicht nur in den verwendeten
unterschiedlichen Versuchsanordnungen, sondern, wie schon erwähnt,
auch in der Vernachlässigung der in der untersuchten Flüssigkeit
auftretenden Absorption primärer und sekundärer Strahlung. So

wird z. B. bei Vernachlässigung der Absorption das Beugungsbild
ein und derselben Flüssigkeit je nach der Gestalt eler vom Strahl
getroffenen Flüssigkeitsmenge verschieden ausfallen.

III. Die Apparatur.

Die in dieser Arbeit vorgelegten Messungen sind auf
photographischem Wege gemacht worden. Ein paralleles Bündel von
Röntgenstrahlen fällt auf elie zu untersuchende Flüssigkeit, und
ein in kleinem Abstand hinter der Flüssigkeit aufgestellter photo-
graphischer Film wird zum Nachweis der Streuung verwendet.

Es schien von Anfang an ratsam, ohne Flüssigkeitsbehälter
zu arbeiten. Die einzigen bis heute vorliegenden derartigen
Untersuchungen sind jene von Debye und Scherrer (loc. eit.), bei
welchen die Flüssigkeit aus einer kurzen Glaskapillare ins Freie
tritt und dort vom Röntgenlicht getroffen wird, so dass der
Flüssigkeitsstrahl an eler beleuchteten Stelle einen runden Quei-
schnitt aufweist. Es zeigt sich aber bald, dass die Verwendung
eines zylinderförmigen Flüssigkeitsstrahles in der nachherigen
Auswertung der photographischen Aufnahmen zu grossen Schwierigkeiten

führt (Hewlett, loc. eit.). Um bei der Auswertung der
Filme diese Schwierigkeiten zu umgehen und dabei auch keine
allfälligen unerlaubten Näherungen einzuführen, schien es
angebracht, an Stelle eines runden Flüssigkeitsstrahles eine
Flüssigkeitsschicht zu verwenden.

Zur Erreichung einer gleichmassigen, im beleuchteten Gebiet
überall gleich dicken Flüssigkeitsschicht wurde nach einigen
anfänglichen vergeblichen Versuchen die folgende einfache
Anordnung gewählt. Ein zu einem U-förmigen Rahmen gebogenes
Glasröhrchen (Figur 6 und 3) von 1,5 mm äusserem Durchmesser
und 10 cm Länge wird mit einem kleinen Gummiband an der
zum Flüssigkeitsbehälter führenden Glasröhre (äusserer Durchmesser

7 mm) befestigt. Lässt, man die Flüssigkeit durch die
Röhre hinunterfliessen, so erhält man auf diese Weise eine den
Rahmen überspannende Flüssigkeitshaut. Die Dicke dieser Haut
war, abgesehen von den Randgebieten, praktisch überall gleich
gross und konnte durch Regulierung eler Abflussgeschwindigkeit
der Flüssigkeit mittels eines an eler Zuführungsröhre angebrachten
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Hahnes bis zu einem gewissen Grad verändert werden. Gewöhnlich

wurde mit einer Flüssigkeitsschicht von ungefähr 0,4 mm
gearbeitet. Um ein ruhiges Abfliessen der Flüssigkeit zu erreichen,
wurde ein hakenförmiges Glasstäbchen unten an den Rahmen

:£

z

Fie

gehängt; das Ende des Glasstäbchens ragt in die trichterförmige
Öffnung der Abflussröhre hinein.

Die Konstruktion der Kamera ist aus Figur 1, 2, 3 und 4
ersichtlich. Unmittelbar vor dem U-förmigen Rahmen befindet
sich das Ende der in Figur 5 abgebildeten Blende. Der Durch-
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messer der Blende beträgt 1 mm. Das Blendenstück P wird so
weit aufgeschraubt, bis die wirksame Blendenlänge 4 cm beträgt.
Auf diese Weise gelingt es, ein Strahlenbündel von sehr kleiner

Wasserstrahlpumpe

jy L

r^

Fig. 6.

Divergenz zu formen, so dass die Strahlen als parallel angesehen
werden können. Der Abstand der Zusatzblende P' (2 mm
Lichtweite) vom Blendenstück P wurde so gewählt, dass alle von P
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reflektierten oder gestreuten Strahlen möglichst vollständig
ausgeblendet wurden, ohne selber zu solchen Strahlen weiter
Veranlassung zu geben. Die Blende lässt sich ihrerseits in eine Hülse
einschrauben und diese kann von der Seite her in die an der
Kamera angebrachten Gleitbahnen s eingesetzt werden. Auf diese
Weise gelingt es, ohne an der Apparatur irgendwelche Veränderungen

vorzunehmen, die Blende mitsamt der Hülse zu entfernen
und durch eine zur Messung der Dicke eler Flüssigkeitsschicht
hergestellte Mikrometervorrichtung (Figur 4) zu ersetzen. So ist
es möglich, die Messung der Dicke der Flüssigkeitsschicht gerade
an der Stelle auszuführen, wo die Röntgenstrahlen auf die Schicht
trafen (Figur 2 zeigt das in die Kamera eingesetzte Mikrometer).

Bequemlichkeitshalber sind Zufluss- unel Abflussrohr um etwa
1,5 cm in Richtung des Röntgenstrahlenbündels verschiebbar.

Blei

iS Röntgenstrahlen

Fig. 7.

Die Messung der Schichtdicke geschieht auf folgende Weise.
Zunächst wird die Spitze einer der beiden Mikrometerschrauben
so weit vorgetrieben, bis dieselbe die Flüssigkeitsoberfläche
berührt, was durch eine leicht zu beobachtende Störung in der
glatten Oberfläche sofort ersichtlich ist. Durch eine zweckmässig
angebrachte Teilung wird dann elie Lage der Spitze in dieser
Stellung genau ermittelt. Hierauf wird die Schraube wieder
zurückgedreht und dasselbe mit der zweiten Mikrometerschraube
von der anderen Seite her wiederholt. Die beiden auf diese Weise
bestimmten Grenzlagen der Schraubenspitzen ergeben sofort die
Schichtelicke mit einer Genauigkeit von Vioo mm-

Die Kassette für Platten oder Filme wird in einen Träger
(siehe Figur 1 und 2) eingesetzt. Der Träger selber lässt s'ch mittels
einer Schraube AI innerhalb eines grossen Bereiches parallel zu
sich selbst verschieben. Dadurch ist es zum Beispiel möglich,
bei einer allfälligen verschiedenen Lage der Flüssigkeitsschicht
zweier Versuche den Abstand zwischen Platte und Flüssigkeit
genau gleich einzuhalten (in unserem Falle 4 cm). Die Vorderseite

der Kassette ist mit einem lichtdichten schwarzen Papier
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überzogen, hinter welchem eine dünne Aluminiumfolie von 0,03 mm
Dicke angebracht ist, um die Intensität der Eigenstrahlung der
Flüssigkeit auf praktisch vernachlässigbare Werte zu reduzieren
(siehe später). Unmittelbar hinter der Aluminiumfolie befindet sich
der photographische Film. Verwendet wurden doppelseitig
begossene Agfa-Röntgenfilme. 9 X 12 cm. Um den Primärstrahl
aufzufangen, ;st an der betreffenden Stelle auf dem schwarzen
Papier ein kleines zylinderförmiges Bleistückchen aufgeklebt (Figur

7).
In Figur 6 ist die Vorrichtung zu sehen, die zur Erzielung

eines kontinuierlichen Flüssigkeitsstromes verwendet wurde.
Arbeitet die Wasserstrahlpumpe genügend schnell und fliesst durch
das Aufsteigrohr t genügend Luft mit, so strömt die Flüssigkeit
in der in eler Figur 6 angedeuteten Richtung: dabei bildet sich
im Rahmen 8 die gewünschte Flüssigkeitssehicht. Auch nach
zwölfst ündigem Betrieb konnte keine merkliche Konzentrationsänderung

der Lösung festgestellt werden.
Als Quelle des Röntgenstrahles diente eine Haddingröhre mit

einer Kupferantikathode. Die Spannung von ungefähr 35 KV
wurde von einem Transformator mit Ventilröhrengleichrichtung
geliefert; die Stromstärke betrug ca. 9 mA. Infolge der relativ
niedrig angelegten Spannung und der Verwendung einer
Kupferantikathode (kleines Atomgewicht) ist der Anteil der Brems-
Strahlung verhältnismässig klein. Wird zudem noch die Cu-K-/?-
Strahlung, wie dies in den Untersuchungen gemacht wurde, durch
ein vor der Blende angebrachtes Nickelfilter von 20 p, Dicke
sozusagen vollständig ausgeschieden, so können wir die Strahlung
praktisch als monochromatisch ansehen.

Die Belichtungszeiten betrugen je nach der untersuchten
Lösung 4—8 Stunden. Die erhaltenen Negative sind im
Physikalischen Staatsinstitut der Universität Hamburg von Herrn Dr.
Kuhlmann ausphotometriert worden.

IV. Grundlagen zur Auswertung der "Messungen.

In Figur 8 bezeichnet d den Durchmesser des zylindrischen
Röntgenstrahlenbündels, welches aus einer zu einer Achse senkrecht
stehenden Schicht eler zu untersuchenden Flüssigkeit den Zylinder
ABCD herausschneidet. Im Abstand L von dieser Schicht
befindet sich die photographische Platte, die ebenfalls senkrecht
zum Röntgenstrahl steht.

Um die Grösse der Schwärzung der photographischen Platte
zu berechnen, die durch die gestreuten Strahlen verursacht wird,
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hat man daran zu denken, dass neben elem in der Flüssigkeit
direkt gestreuten Röntgenlicht (Primärstrahlung) auch indirekt

OA

hl

\a

A A

gestreute Strahlen (Mehrfachstreuung) die Platte treffen. Für die
folgenden Rechnungen wollen wir die Mehrfach- gegenüber der
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Primärstreuung vernachlässigen. Den Beweis für elie Berechtigung
dieser Annahme werden wir später erbringen.

Im Flüssigkeitszylinder ABCD sei dV ein Volumenelement,
dessen Lage durch die Zylinderkoordinaten x, r und ß bestimmt
ist (Figur 8). Dabei wird ß von einer Null-Lage aus gerechnet,
elie mit der Lage des Aufpunktes P auf dem photographischen
Film gemäss der Konstruktion in Figur 8 zusammenhängt. In
der Zeit dt werde vom Volumenelement dV die Energie dE in
einen Kegel mit dem Raumöffnungswinkel d co gesandt.
Offensichtlich ist dE proportional der an der Stelle x herrschenden
primären Röntgenintensität I0 e~'iX, wo /u den Absorptionskoeffizienten

in der Flüssigkeit bedeutet, ferner der Anzahl der streuenden

Teilchen dN in dV, elem Öffnungswinkel d co unel der Zeit dt.
Ausserdem hängt elie gestreute Energie vom Winkel a zwischen
Kegelachse und der primären Röntgenstrahlenrichtnng ab. Die
Funktion, welche diese Abhängigkeit darstellt, heisst Streu-
funktion ip(«.). Damit ergibt sich die unter dem Winkel a
gestreute Energie zu

dE(a) f (a) I0e-"xdNdco dt. (1)

Ist N die Anzahl eler streuenden Zentren in der Volumeneinheit,
so ist

d N =--NdV. (2)

Auf dem Wege vom Streuvolumen zur photographischen Platte
erleidet die Energie eine Abschwächung durch Absorption in der

T-x
Flüssigkeitsschicht und der umgebenden Luft und zwar um e ''ms«

L
bzw. e ^cosa Dabei bedeuten T die Dicke der Flüssigke'tsschicht

und u. den Absorptionskoeffizienten in Luft; ist der Ab-r s r cos a
sorptionsweg in der Luft. Die im Punkte P mit dem Abstand
vom Volumenelement d V auffallende Energie ist also

T-x _
L

dE(aR) ip (a) i"0 e-i,x ¦ e-'1 cos« e '*' cos o • N dV d co dt. (3)

Diese Energ-'e verteilt sich auf der Platte auf ein Flächenelement

von der Grösse —. Wir erhalten also für die Intensität d I(am
cos a '¦"">

der Streustrahlung im Punkte P:

Energie
ati„n) — t-,... tt-{"R) Fläche • Zeit

^(«10dE,aR) ,T cos a nxNI0 tp (a) 7, er ¦ e~ cos a • er ms" d V. (A)
^AüL-dt orv * R*
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Aus Figur 8 erkennt man die Beziehungen

d V rdßdxdr

L+ T-x
und

B
cos y.

(5)

(6)

und daher wird

dI(aii)=NI0y>(c7)
eos cc"

(L + T-x)2

T~x L
_

e
/,r eMos a g- -"-cos«~ ¦ rdrdxdß. (7)

Die Summierung über alle Volumenelemente des Zylinders ABCD
liefert die Gesamtintensität in P zu:

x=T r

I(aR) NI0j J j
1=0 r 0 /3 0

0 2 .-i

V>(«)
cos0 a

(L+T-as)
T-x I,ur it - u. _-' e- cosa. g-^-'cosa. rdrdxdß. (8

Nach Figur 8 berechnet sieh der Streuwinkel a aus

tang a
]/p2 -h r2 — 2 r o cos,

L+ T — x

worin fj den Abstand eles Punktes P vom Durchstosspunkt des
Primärstrahles mit der photographischen Platte bedeutet. Die
dreifache Integration in Gleichung (8) kann durchgeführt werden,
wenn wir einige vereinfachende Annahmen treffen, deren
Berechtigung später erörtert werden soll. Hierzu führt man vorteilhaft

elen Winkel 0 zwischen eler Primärstrahlrichtung und der
Verbindungsgeraden vom .Mittelpunkt eles Streuzylinders nach P
ein. Da in den Versuchen T und <( klein gegenüber L, (j anderseits

gross gegenüber d war, kann man a durch 0 ersetzen. Es
ist bekannt, dass die Streufunktion einen stetigen Verlauf hat,
so elass wir für yi(x) auch ip(0) schreiben dürfen. Schliesslich
gilt angenähert L -j- T — x L -f T. Damit wird aus
Gleichung (8):

d „x=T

COs36> - "¦
Ie NI0ip(&).T ZL.e ™«

(L+T)2

L
Ps cosa ,IX\

x- 0 r-ü fl 0

oder

Ie NIoip(0)
nd2 ~Ps

4 (L + T)2
cose C0S3 Q

e -e cos s

" i —v, — 1
,cos t)

rdrdxdß (IC

(11)
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Die Schwärzung H der photographischen Platte ist der Intensität

I der auffallenden Röntgenstrahlen und eler Zeit proportional
(P. P. Koch [Lit. 17]), d. h.

H0 ktle. (12)

Die Konstante k hängt vom Plattenmaterial, von der Entwicklung

usw. ab. Für das Verhältnis der Schwärzungen unter den
beielen Streuwinkeln 0 und 0X errechnet man mit Hilfe von
Gleichung (11) und (12):

Ho
~Ho,

y_(0)
ip(0i)

L
"s cose

e ''" cos e,

cos3 0
cos3 0i

e-"T-e- yr_
cosO

** \ cos» -1)

e-"T-e- cT
cos e,

__
' \cos6, i

(13)

Aus den experimentell gefundenen Photometerkurven für den
Schwärzungsverlauf können wir für einen angenommenen Wert

das Verhältnis -g— für alle Werte 0 entnehmen. Gleichung (13)

liefert dann die zugehörigen gesuchten Verhältniswerte.
In Figur 9 ist für u. 36,8 unel T 0,036 der Faktor

cos3 0
-,,T EL

e — e coso

H
l

cos ö

aus Gleichung (11) in Funktion von q gezeichnet. Aus dem
Kurvenverlauf erkennt man, dass die Berücksichtigung dieser
Korrektur für die Beurteilung der Resultate sehr wichtig ist, und
daher nicht vernachlässigt werden darf, wie das beinahe in allen
bisherigen Zerstreuungsmessungen geschah. Vergleicht man diesen
Kurvenverlauf mit demjenigen von cos3 0, so sieht man, inwieweit

die Absorption der primären und gestreuten Strahlen in der
L

Flüssigkeit der Gesamtkorrektur beiträgt. Der Faktor e^coss
spielt eine sehr geringe Rolle.

Im folgenden soll gezeigt werden, inwieweit die gemachte
Annahme a 0 die Ergebnisse beeinflusst. Für die Intensität
I(aR) nach Gleichung (8) bleibt bis auf konstante Faktoren zu
berechnen:

--T r=

x=0 r=0 0=0

COS3 0
(L + T-a rA'

(II—-1COS a / Ps
e 'toso- rdrdxdß. (14)
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Setzen wir oc 0 -f r\ (15), wo n eine Meine Grösse ist, so findet
man leicht den Zusammenhang

1 1

COS 7. cos 0
(1 + ij ta.ng 0)

Durch Entwicklung von tanga nach der Grösse // in einer Tay-
lorschen Reihe erhält man

1

tang a tang 0 + n -^-q
WO

60

60

Fff) io*

4*0

20

\\
\

\
Nv

2

17)

f(cml

Fig. 9.

Weil in der benutzten Kamera q gross gegen /• und x klein
gegen L ist, gilt

y'o2 + r2—2g r cosß o(l ~
'

cos ß) (18)



— 227

und

^Il+Mrl- (19)L+T-x L+T\ L+T

Aus Gleichungen (9), (18) und (19) ergibt sich

o gx r cos ß ,_n.tang « T^-T + {L ^-TT¥ ¦ (20)

In Figur 8 erkennt man elie Beziehung

tang 0 - M_7/_

Bei den Versuchen war elie Dicke T der Flüssigkeitsschicht sehr
klein im Verhältnis zum Filmabstand L, so dass im Nenner von

T
tang 0 T an Stelle von -,.,- geschrieben werden darf. Mit
Gleichungen (17) und (20) bekommen wir somit:

sin3 0 sin2©
?/tang© yr- rcosß 21)

Q COS 0 Q

und schliesslich für Gleie-hung (16):

1 1 / sin3 0 sin2 0
v, 1 + pr- r cos |8 22)

cos y. cos fc/\ o cos 0 o '

Für den Ausdruck

(L+T-x)2

in Gleichung (14) finden wir unter Benutzung von Gleichungen
(19) und (22)

(L+ T-x)2
cos3 0 I /sin3© 2 \ sin3© öl OQ.1lTW\1~^V^0~l^t)x + s M /'cos'9}' (23)

wobei in der Reihen-Entwicklung von cos3 a aus Gleichung (22)

nur elie linearen Glieder in x und r beibehalten wurden.
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Zur Berechnung des in Gleichung (14) auftretenden

Exponenten führt man den Wert von - — aus Gleichung (22) ein und
cos y. o \ /

erhält

fix cos a

+ fix2

fiT

1
," ,L

cos a

sin3©
cos a

fiX _1_
cos 0'

1 ,t x T
sin3 0

o e-os2. 0

„ sin2 0 sin2 0
2/o ' /"'-' " „cosß — fixr tt cospgcosz© o cos 0 o cos ©

/'.- L
cos © cos 0

r sin3©
¦fisLx — 2n7ft,Lr „cos/?. (24)

p COS- fo* ci eos f->

sin2 0
o cos 0

Darin dürfen wir Glieder mit // a:2, // a: T, // .r r und // r T gegenüber

solchen mit /i x vernachlässigen, zumal eler ganze Ausdruck
(24) im Exponenten von e steht. Ausserdem ist /ts L nur wenige
Prozente von fi T. Deshalb können ebenfalls Summanden mit
jtigLx unel usLr weggelassen werden. Es wird also

+ ftx (-L--1).
\COS a / cos a cos a -flX\ COS Ö • e

vT
cos e cos ö

(25)

Zusammen mit Gleichung (23) erhalten wir für die Grösse (14)

n a2 cos3 0
4 (L + T)2

e cos o 1 aT -, L sin3© 2

a l g cos 0 L+T
worin

Te"
eaT- 1 1

(26)

a ./< »s©
1

gesetzt wurde.
Um die Gültigkeit eler Annahme a 0 zu zeigen, ist der

genauer berechnete Wert des Absorptionseinflusses nach (26) mit
der Grösse

i<t -\

ti a2 cos3 0
~A~' '(L+W /_1

y \cos

e cos o

1
<->

(27)

aus Gleichung (11) zu vergleichen. Die beiden Ausdrücke
unterscheiden sich nur durch den zweiten Summanden der eckigen
Klammer in (26). Zur besseren Übersicht sind in Tabelle 1 elie

numerischen Werte des ersten Summanden

„ii T -1
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und die des zweiten

L sin3©
11= 3

yT 1Te^-M1
q cos 0 L+T

für das in Betracht kommende Intervall als Funktion von 0
eingetragen. Die Rechnung ist mit den Konstanten /.t 30,
T 0,05 und L 4 durchgeführt.

Tabelle J.

Grad 1 11

60

30

5

3,500
0,260
0,00570

0,008
—0,002
—0,00014

Die angegebenen Zahlen erweisen ohne weiteres die Gültigkeit
eler vereinfachten Rechnung mit der Annahme a 0.

Eine weitere Voraussetzung für die Berechnung der
Streuintensität bildete elie Annahme, dass die Sekundär- unel höheren
Streustrahlungen gegenüber der primären zu vernachlässigen sind.
Man sieht dies folgendennassen ein. Bedeutet E0 die einfallende
Primärenergie und o- den Streukoeffizienten pro Volumeneinheit,
so ist die im Volumen v primär gestreute Energie

E, L'0 a v.

Das Streuvolumen v ist bei den vorliegenden Versuchen ungefähr
0,15 cm3. Nehmen wir nun elen ungünstigen Fall an, dass diese

ganze Energie Ev nochmals sekundär in der Flüssigkeit gestreut
werde. Wir erhalten dann die Sekundärstreuenergie

y<;s. L>u.
Einen Anhaltspunkt für die Grösse eles Sekundärstreuvolumens

V erhält man aus der Überlegung, wie weit die
Primärstreustrahlung in der Flüssigkeitsschicht senkrecht zur Röntgen-
strahlrichtung kommt, bis sie durch Absorption auf einen praktisch

verschwindenden Betrag, etwa 1%, reduziert worden ist.
Diese Strecke ist r ¦ —. Das Volumen V ist ein Zylinder von
der Höhe der Flüssigkeitsschicht T 0,09 cm und einer
kreisförmigen Grundfläche mit elem Radius r, d. h.

100 V
U 0,09.-Mgn

/<
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Damit wird
Es nn„ / lgn 100 \2
M 0,09 tt -2 a
EP \ (x

In Wasser ist für eine Wellenlänge X 1,5 A a 0,2 und // 8,7
oder

4-) °'°2 •

Im allgemeinen ist ii proportional Z4 (Z Atomnummer) und er

ungefähr proportional Z, d. h.

_ konst-^--

Nachdem oben gezeigt ist, dass schon für Wasser dieses Verhältnis
recht klein ist, wird also um so mehr für schwerere Flüssigkeiten
die Sekundär- gegenüber der Primärstreustrahlung vernachlässig-
bar sein. Das gleiche gilt entsprechend für die Streustrahlungen
höherer Ordnung.

Bisher haben wir die Tatsache ausser Betracht gelassen, dass
die Luftsäule zwischen der Flüssigkeit und dem photographischen
Film, welche vom Röntgenbündel durchsetzt wird, ebenfalls durch
Streuung zur Schwärzung des Filmes beiträgt. Um diesen
Einfluss abzuschätzen, könnte man zu jeder Aufnahme mit Flüssigkeit

eine entsprechende Leeraufnahme machen, wobei die Intensität

des primären Röntgenbündels möglichst gleich sein soll.
Dieses Verfahren ist jedoch recht zeitraubend; im folgenden wird
eine Methode gezeigt, nach welcher man mit einer einzigen Leer-
aufnahme für alle untersuchton Flüssigkeiten auskommt.

Bei der Photometrierung des Röntgenbildes einer Flüssigkeit

(') seien die Schwärzungen Se' bzw. S6i' unter elen
Streuwinkeln 0 bzw. 0i gefunden worden. Diese Gesamtschwärzung
rührt von der Streuintensität der Flüssigkeit He' bzw. He' unel

derjenigen der Luftsäule /ia' bzw. h0' her. Es gilt also:

Sd' =HX+ K (28)

V He; + V (29)

Mit den Abkürzungen
So

SeX

hX_
ho.'

V (30)

9' (31)
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und
By
he;

findet man leicht aus (28) unel (29)

HJ
Ho.' P

(32)

(33)

Besitzen wir zu dieser Aufnahme mit Flüssigkeit eine zugehörige
Leeraufnahme, so können aus elen beiden Schwärzungskurven elie

Werte q' und c' entnommen werden. Gleichung (33) liefert, dann

5—7und damit das gesuchte Streuverhältnis—r^-r- [Gleichung (13)]

der reinen Flüssigkeitsstreuung.
Für eine zweite Flüssigkeit (") haben wir entsprechend

Ho"
Jf-rr P
Bo,

q — p (34)

Die Grösse q bedeutet das Verhältnis eler Luftstreuung für zwei
bestimmte Winkel. Sie hängt also nur von der Streufunktion für
Luft ab und ist demnach unabhängig von der zu untersuchenden
Flüssigkeit. Deshalb darf man in Gleichung (34) q" durch den
aus der einen Leeraufnahme bekannten Wert q' ersetzen, p"
erhält man aus der Photometrierung für die neue Flüssigkeitsaufnahme.

Wir haben nun noch c" in Gleichung (34) zu berechnen,
wozu die folgenden Überlegungen dienen.

Für das Verhältnis

Ho,' hp"
HoA' ^e,

(35)

worin sich alle Grössen auf den gleichen Winkel 0X jedoch bei
zwei verschiedenen Flüssigkeiten beziehen, ergibt sich mit der
Abkürzung

F (n T 0) cos3 0

und Gleichungen (11) und (12)

-ß~ ——Xe — e cos 0

P cos (7)

(36)

_c^_ V V N' IX (L + T")2 ip' (0j) F (fi' T 6A_

c" ~ k"t"N"I0" IL + T')2 ip" (0X F (ft" T" 0,)
he"
hoA

(37)
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Entsprechend dein Ansatz, wie er für die Flüssigkeitsstreuung
früher diskutiert worden war, kann die Plattenschwärzung he,
die von eler Luftsäule herrührt, geschrieben werden als:

h0 ktIoer"T A 0(0). (38)

k bezeichnet elie gleiche Konstante, die in Gleichung (12)
auftritt, t die Expositionszeit. I0e'',T ist die durch die Absorption in
eler Flüssigkeitsschicht geschwächte Primärintensität. 0(0) soll
die Streufunktion der Luft bedeuten; die Konstante A hängt nur
von den Dimensionen eler streuenden Luftsäule ab.

Setzen wir die Werte h0' und h0" naeh Gleichung (38)
in (37) ein, so finden wir

NX_ V (gi) F(ft'T 0j) eri'"T' (L+T")2
N"

'
tp" (©,)"' F (/t" T" 0X

'
e-»rT'

'

(L+T)2 (39)

Die durch Photometrierung erhaltenen ip-Werte sind relative
Grössen, die also gegenüber ihrem absoluten Werte nur bis auf
einen konstanten aber unbekannten Faktor festgelegt sind. Um
elie Streukurven verschiedener Flüssigkeiten vergleichen zu können,
wollen wir daher willkürlich die yi-Werte für den Winkel 0X
einander gleichsetzen, d.h. \p'(0{) y"(0i) machen.

Wie aus Beobachtungen eles Reflexionsvermögens an Kristallen
hervorgeht, sind die Elektronen und nicht etwa elie Schwerpunkte
der Atome die Streuzentren. Wir haben also für N' bzw. N"
in Gleichung (39) elie Elektronenzahl pro Kubikzentimeter zu
setzen. Somit kann aus Gleichung (39) als einzige Unbekannte c"
bestimmt werelen. Gleichung (34) in Verbindung mit (13) ergibt
dann elen Verlauf eler ^-Funktion für die zweite Flüssigkeit, ohne
dass hierfür" eine neue Leeraufnahme nötig war.

Die Luftsäule zwischen dem Ende eles Blendensystems und der
Flüssigkeitsschicht gibt wegen ihrer kleinen Länge eine sehr
geringe Streuung. Diese Streuinteuisität wird zudem beim Durchtritt

durch die Flüssigkeit geschwächt, so dass ihre Einwirkung
auf dem photographischen Film vernachlässigt worelen ist.

Y. Die Ergebnisse.

In Figur 10 ist als Beispiel die Photometerkurve des Beugungs-
bildes einer Aufnahme von LiCl-Lösung abgebildet. Für alle
Aufnahmen wurde das Beugungsbild in drei verschiedenen Richtungen
vom Durchstosspunkt q — 0 an ausphotometriert. Mit Hilfe eler
links angebrachten Schwärzungsmarken, deren absolute Schwär-
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zung bekannt ist, kann aus den Photometerkurven der
Schwärzungsverlauf berechnet werden. Als endgültige Werte (»S-Kurven)
wurden die Mittelwerte von je drei zusammengehörigen Photo-
meterkurven verwendet. Die Schleierschwärzung wurde dort
gemessen, wo der Film durch das Bleistück abgedeckt war.

Als Beispiel sei im folgenden die Berechnung der yi-Kurve für
Wasser durchgeführt. Figur 11 zeigt elie »S-Kurve entsprechend

Ö

Oft \ /\J
0-4-

03

Schleiei

n<i
0 1 2 3 + 567f (Cm)

Fig. 11.

einer vierstündigen Aufnahme an Wasser bei einer Schichtdicke
von 0,093 cm, einer Betriebsspannung der Röntgenröhre von
35 KV und einer Stromstärke von 9 mA.

Die Absorptionskoeffizienten aller untersuchten Substanzen für
X 1,54 A wurden nach der Glockerschen Formel berechnet unter

Zugrundelegung der von Winghard (Lit. 20) für -.- (6 Dichte)
experimentell gefundenen Werte bei /. 0,71 A. Für Wasser fand

Winghard -y 1,0. Nach Glocker (Lit. 19) ergibt sich also

für 1,54 A

fi 1,542.?
1

0,712-8

mit (5 1 wird dann ft 8,7.
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Die »S-Kurve der unter möglichst gleichen Bedingungen
gemachten zugehörigen Leeraufnahme ist in Figur 12 aufgetragen.
Die Ordinaten dieser Kurve müssen gemäss Gleichung (38) mit dem
Faktor e~''T e-^-7-0-093) multipliziert werden. 0X wurde
entsprechend o 5 cm gewählt. Somit wird nach Gleichung (28)
und (32)

c 35.

HeDaraus berechnet man nun H - aus Gleichung (33) und erhält

06

S 0-4-

I

0-2

00

\

Schleier

3 «¦

f (cm)

Fis;. 12.

so die Kurve, welche die Streuung der Flüssigkeitsschicht angibt
(Figur 13). Die reine Streukurve dev Flüssigkeit, d. h. der ip-Verlauf,
wird dann durch Benützung der Gleichung (13) ausgerechnet und
ist in Figur 14 gezeichnet. Ein Vergleich der Figuren 13 und 14

zeigt sofort, elass bei Berücksichtigung des Korrekturfaktors
(Seite 24) eine Streukurve (Figur 14) entsteht, die wesentlich von
der in Figur 13 gezeichneten verschieden ist, welche im
allgemeinen in den bisherigen Arbeiten als die wirkliche Streukurve
angesehen wurde.

Analoge Rechnungen ergeben die yi-Kurven für die Lösungen,
c wird in diesem Falle gemäss Gleichung (39) berechnet. Die
Streukurven der Lösungen sind im nächsten Abschnitt dargestellt.
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VI. Diskussion der Ergebnisse.

Wir haben gesehen, dass bei Berücksichtigung des Korrekturfaktors

eine Streufunktion entsteht, elie z. B. für Wasser wesentlich
von derjenigen verschieden ist, welche frühere Forscher erhielten.
Diese vernachlässigten das ausserhalb des sogenannten Wasserringes

Hegende Maximum (Figur 14) wegen der scheinbar geringen
Intensität nnd haben daher ihre Diskussion fast gänzlich auf
die Deutung des ersten Wasserringes beschränkt. Ein Blick auf
Figur 14 zeigt jedoch, elass dem zweiten Maximum ebensoviel

fi

0 7 2 3*567f tem)

Fig. 13a.

Bedeutung wie dem ersten beigelegt werden muss. Ausserdem
wird durch die Einbeziehung des Korrekturfaktors meistens auch
die Lage der Intensitätsmaxima verschoben, für Wasser z. B.
um etwa 7%.

Will man elie Wasserstreukurve mit den allgemeinen Resultaten

der Debyeschen Theorie über elie Streuung von Röntgenstrahlen

an Flüssigkeiten (Physikalische Zeitschrift 28, 1927)
vergleichen, so könnte man folgendes annehmen: Das Hauptmaximum
wird durch die gegenseitige Wirkung der Moleküle hervorgebracht
(äusserer Effekt); elas zweite Maximum ist die Folge der
Interferenzen der Streuwellen der einzelnen Atome eines Moleküls
(innerer Effekt). Nach der Methode von Debye wollen wir die
Intensität I der Streuung als Funktion des Streuwinkels 0 be-
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rechnen. Für das Wassermolekül sollen der Rechnung die zwei

wahrscheinlichsten Modelle zugrunde gelegt werden: Die zwei

Wasserstoffkerne Hegen in einem Abstand a — 1,3 A vom Sauerstoff

kern entfernt und bilden mit diesem einmal einen Winkel

von 140°, das andere Mal von 60°.

1-5

10

1

05

n

ßeugungsio/n/caJ

Fig. 14.

Das erste Modell gibt:

I konst (1 + cos2©

00

sm[ksa] sin [fr « (1,88 a)]
"

[ksa] [ks (1,88 a)]

wo

fr

-4- 0 (2 k s R) (1 + 4 Si°[ na] + 4 ™I*££l
I [ [ksa] \ [ksa]

2 ti © 3
-; X= l,54A;a=l)3A;S 2sin y;9?0<) ^ ^m u_u cosU)X

bedeuten. Der Radius R des Moleküls wurde gleich a gesetzt.
Q ist das Gesamtvolumen der W"irkungssphären aller Moleküle
im Volumen V, wobei eler Radius jeder Wirkungssphäre gleich
dem Durchmesser eines Medeküles ist.
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In Figur 15 sind elie so berechneten Intensitätswerte als

Funktion von 0 aufgetragen unel zwar für -^ -^- und -= -.
Das zweite Wassermodell würde einen ähnlichen Verlauf ergeben.

Diese Kurve zeigt nur ein Maximum, welches elen „äusseren"
Interferenzen entspricht. Es stimmt aber in seiner Lage nicht
mit dem experimentell gefundenen Hauptmaximum überein. Ein
Zusammenfallen des theoretisch und experimentell gefundenen
Maximums könnte wohl aber elurch entsprechende Abänderung
der Modelldimensionen erreicht werden. Nach den Messungen von

Sänger (Lit. 18) sollte a eher gleich 1 Ä sein; elie Kurve für -y =-
"

w

v 2/~^

v T

i

20

0
Fig. 15.

10 60'

wird dann etwa wie in Figur 18. Alan sieht, dass aber auch hier
kein zweites Maximum auftritt, so dass jedenfalls das zweite
Maximum eles Experimentes durch die Debvesche Theorie nicht
erklärt werden kann.

Wenden wir jetzt die Theorie von Zernike und Prins (siehe
Einleitung) an, und zwar in ähnlicher Weise wie eliese Autoren
es für Quecksilber (Lit. 16) getan haben, so finden wir in der Streukurve

ein Maximum bei einem Winkel von ungefähr 29° und das
nächste bei 65°. Die Kurve hat dieselbe Form wie für Queck-

o
4 7t sm —

silber (Figur 16) (s —-—- und ö mittlere Entfernung benachbarter

Moleküle, im Fall Hg 3,25 A). Obwohl also gute
Übereinstimmung in den Lagen des theoretischen Maximums (29°) und
des experimentellen (30,5°) besteht, bleibt eine Erklärnug des
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zweiten Wasscrringes (41°) immer noch aus. Wir wollen deshalb
versuchen, dafür eine Erklärung zu geben, bevor wir weitere
Bemerkungen über diese Theorie machen.

Vor allem zeigt eine einfache Rechnung, dass das zweite
Maximum im Sinne der Braggschen Beziehung nicht die zweite
Ordnung des ersten sein kann: Wir finden nämlich für die Grösse,
die bei festen Körpern dem Netzebenenabstand bedeutet, aus dem
ersten Maximum 2,2 A, während das zweite 2,9 A ergibt.

Öfters ist schon die Auffassung vertreten worden, dass die
Moleküle einer Flüssigkeit in kleinen Gruppen angeordnet sind,
wobei jede Gruppe einem Kristall ähnlich ist. Ein gewisser
molekularer Abstand spielt dann die Rolle einer Gitterkonstanten.

2 -

1 -

2010

Fig. 16.

Diese Vorstellung kann als eine Verallgemeinerung des Keesom-
schen Gedankens angesehen werden, nach welchem ein solcher
„Flüssigkeitskristall" nur aus zwei Molekülen besteht. Die
Tatsache, dass die Streuintensität bei kleinen Winkeln dem Werte
Null zustrebt, scheint für diese Auffassung kleiner kristallmoleku-
larer Gruppen zu sprechen. Unter elem Namen „Kybotaxis" haben
auch Stuart und Mokrow (loc. eit.) eine mildere Form dieser
Auffassung eingeführt, indem „Kybotaxis" als ein Zustand
definiert wird, welcher Mobilität, aber nicht regellose Bewegung der
Moleküle erlaubt, und welcher der Substanz eigen ist.

Für den Fall des Wassers können wir uns auf Grund der
eibigen Ideen das folgende Bild der Vorgänge machen, welche in
diesem flüssigen Medium vor sich gehen. Zu einer gewissen Zeit
sind in einem kleinen Volumenelement der Flüssigkeit die Moleküle
ganz beliebig orientiert. Allmählich nehmen sie jedoch zueinander
bestimmte Lagen an, um schliesslich während einer kurzen Zeit
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in einer Konfiguration zu existieren, die der festen Phase (Eis)
entspricht. An verschiedenen Stellen der Flüssigkeit besteht
gleichzeitig entweder der Zustand der „Eiskriställchen" oder auch
der der vollständigen Unordnung, und es wird sich schliesslich ein
Zustand einstellen, indem ein Teil des Wassers aus kleinen
Eiskriställchen zusammengesetzt ist, während der Rest ganz unregelmässig

angeordnete Moleküle enthält.
Das Beugungsbild eines solchen Mediums können wir also als

Superposition einer DEBYE-SciiERRER-Aufnahme von Eis und dem
Beugungsbild von völlig ungeordneten Wassermolekülen auffassen.

Die folgenden Werte eler Intensitäten der Interferenzlinien
einer solchen DBBYE-ScHERRER-Aufnahme von Eis wurden von

io

20'

Baugung5uj/nKd

Fig 17.

60" 60'

Dennison (Physieal Review 17, 20, 1921) erhalten; die Stellen der
Linien wurden für X 1,54 A umgerechnet:

Linien bei 0° 22,6 24,5
Intensität 1 10

25,8 133,6 39,8
2 1,5

|
1

43,8 47

5 1

,6 61,3
1

68,8 72,9 | 76 83

1,5 2 0,25 0,25 0,5

Weil die „Eiskriställchen" ausserordentlich klein und zudem sicherlich

mit Gitterfehlern behaftet sind, werden die Eislinien so
ineinander verschmiert sein, dass im wesentlichen nur die
Intensitätsunterschiede der beiden stärksten Linien sichtbar bleiben (Intensitäten

10 und 5). Es wird sich also für elie Beugung an den
„Eiskriställchen" ein Intensitätsverlauf ergeben, wie er etwa in
Figur 17 dargestellt ist. Die Eislinien sind als Gerade eingezeichnet,
deren Länge der Intensität der einzelnen Linien entspricht.
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Diesem Beugungsbild muss nun der Intensitätsverlauf der

Streuung für gänzlich ungeordnete Moleküle überlagert werden, wie

es sich aus der Debvesehen Theorie ergibt:

I konst (1 - cos2 0)
Q _ I. ti a 0

1-yr* (S-jr «n-j

Mit o 1 A und "V X wurde so elie Kurve AI (Figur 18) er-

halten. Das Maximum liegt ungefähr bei © 35°, also zwischen

den Maxima der Streukurve für das Eis. Nach den allgemeinen
Schlüssen der Theorie von Zernike und Prins hat die Kurve M
jedoch ein bedeutend schärferes Maximum als in Figur 18

auftritt. Auf jeden Fall ist es klar, elass man eine passende
Überlagerung zweier solcher Kurven (Figur 17 und 18) finden kann,

I
•

0* to' 10° 30* w' SO' 00° 70°

Beugungsw/nhd
Fig. 18.

die mit dem experimentellen Befund in gutem Einklang stehen
würde. Durch die Zusammensetzung der beiden Kurven werden
die Lagen der beiden Interferenzmaxima für die Eiskriställchen
verschoben und zwar das innere nach aussen und das äussere

nach innen.
Diese Überlegungen scheinen dem Verfasser einen auffallenden

Zusammenhang mit dem bisher unerklärten Befund zu haben,
den Herzog und Jancke (Zeitschrift für Physik 45, 194, 1927)

so formulierten: „Liegen amorphe Ringe in der Nähe des Durch-
stosspunktes, so sind sie gegen die Kristallinterferenzen nach aussen,

liegen sie an der Peripherie, relativ nach innen verschoben.''
16
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Wenn man von elem Verhältnis der Intensitäten eler beiden
Maxima in Figur 17 und demjenigen eler beiden experimentell
gefundenen Maxima in Figur 14 ausgeht, so gibt eine einfache
Rechnung, elass 85% von Wasser nach eler Kurve M streuen, oder
mit anderen Worten, dass 15% aus „Eiskriställchen" zusammengesetzt

sind. Dies ist natürlich eine sehr grobe Annäherung. Auch
aus anderen Gebieten (Spezifische Wärme. Wärme-Ausdehnung
usw.) ist schon öfters auf das Vorhandensein von sehr kleinen
Eiskriställchen im Wasser geschlossen worden; Piccard (Lit. 21)
hat aus seinen magnetischen Messungen an Wasser den Eisgehalt
bei 0° C zu etwa 24% angegeben, bei Zimmertemperatur zu 18%.
Man kann erwarten, dass mit steigender Temperatur die Tendenz
zur Bildung von Kristallenen vermindert wird unel elamit auch
ihre Grösse, woraus eine Verschmierung oder Verbreiterung der
Maxima im Beugungsbild entsteht. Eine Temperaturzunahme ist
ebenfalls von einer Abnahme von — begleitet. Obwohl diese

finden flüssigen Zustand klein ist, weist die Debyesche Theorie
(Figur 15) auf eine Intensitätszunahme bei kleinen Winkeln hin.
Diese Zunahme dürfte wahrscheinlich naeh dieser Theorie im
Vergleich zum Experiment zu klein sein, trotzdem ist es
interessant, dass eine Änderung im richtigen Sinne auftritt, wie die
Versuche von Ramasubramanyan (Ind. Journ. Phys. III, 137,
1928) zeigen. Dieser Autor findet auch eine Verbreiterung des

Hauptmaximums bei steigender Temperatur. Weiter fand er mit
steigender Temperatur eine Verschiebung der Lage des Maximums
(er hat nur ein Maximum beobachtet) gegen den Durchstosspunkt
hin. Im Gegensatz dazu fand Onken (Dissertation Hamburg 1928)
eine Vergrösserung des Streiiwinkels für elas Maximum. Wegen
der Vorsichtigkeit und Genauigkeit der Messungen scheinen die
Versuche von Onken zuverlässiger zu sein. Dieser Autor weist
nach, dass die Ursache der Erscheinung nicht in einer
Dichteänderung eles Wassers liegt. Er vermutet den Grund in eler Depoly-
merisation bei steigender Temperatur, nimmt also implizit an,
dass das Beugungsmaximum mit der Polymerisation zusammenhängt.

Dem entspricht ganz unsere Erklärung der Maxima mit
den „Eiskriställchen".

(9
Nach Keesom gilt die Beziehung X 2 (0,814 a) sin -ö-, wo a

den durchschnittlichen Abstand zwischen zwei Molekülen bedeutet.
Setzen wir nun den Wert © 30,5° ein, so erhalten wir a 3,6 A.

Für elie dichteste Kugelpackung ist a 1,33 ~|V—, für Wasser

demnach gleich 3,6 A. Die Keesomsche Beziehung bestätigt sich
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also für Wasser. Jedoch ist schon in der Einleitung gezeigt worden,
dass dieser Zusammenhang zufällig ist, weil er nur zutrifft, solange
die Gestalt der Moleküle kugelförmig ist. Nichtsdestoweniger kann
man durch Änderung des Zahlenfaktors in eler Keesomschen Formel
für alle Flüssigkeiten auskommen. Im Zusammenhang mit der
Erklärung für die zwei Wassermaxima ist es interessant zu
erwähnen, dass die Unterschiede des Zahlenfaktors mit den Unter-

15

1 0

Intensität

0.5

I

i /II
ff

0.0
0° 30' 60°

Buigungswinkal

Fig. 19.

schieden in der Kristallstruktur des bezüglichen festen Körpers
anscheinend Hand in Hand gehen.

Die vorhergehenden Überlegungen zeigen, dass sich die
Streufunktion von Wasser aus der Annahme erklären lässt, dass in
demselben immer von neuem zerstörte und sich wieder neubildende
Eiskriställchen enthalten sind.

Es ist kaum nötig anzuführen, dass auch aus chemischen
Gründen wohl bekannt ist, dass in Wasser unzweifelhaft (I!20)n
besteht, wo n gleich 1, 2, 3 oder 4 unel vielleicht noch grösser ist.

Figur 19: I stellt die erhaltene Streukurve für eine Lithium-
Chlorid-Lösung (27,4 g pro 100 cm3 II20; fi [gerechnet] =28,4)
dar. Die zwei Wassermaxima sind hier verschwunden. Dies lässt
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sich dadurch erklären, dass die Bildung eler Eiskriställchen durch
die bekannte sehr starke Hydration der Lithiumionen fast
vollkommen verhindert wird. Infolgedessen sollte elie Streukurve
einer fast gänzlich regellosen Anordnung von Molekülen
entsprechen. An eine solche Unordnung der Moleküle in einer
Flüssigkeit kann man aber deswegen nicht glauben, weil man sich
die Moleküle einigermassen gepackt zu denken hat. Es ist darum
zu erwarten, dass die Form der wirklichen Streukurve irgendwo
zwischen derjenigen nach Debye und der nach Prins liegt, d. h.
zwischen der Form der Kurve für vollständige Unordnung
(Figur 18) und derjenigen für die geometrisch dichteste Kugel-

\\ I

"\\

V

0° 30'
BeugungbiDinhaJ

Fig. 20.

60

packung eler Moleküle (Figur 16). Ein Vergleich der Kurven
(Figur 6, 18 und 19, I) zeigt, dass dies der Fall zu sein scheint.

Eine Calcium-Chlorid-Lösung (26,5 g pro 100 cm3 H20;
//[gerechnet] =40,5) ergibt eine Streukurve (Figur 19, II), bei

der die beiden Wassermaxima eben noch sichtbar sind. Diese

Lösung zeigt also, wenn auch in vermindertem Masse, ebenso wie

die Lithium-Chlorid-Lösung, Auslöschungen der Wassermaxima.

Das merkwürdige Auftreten eines neuen Maximums bei etwa
0 15" und die auffallende Verschärfung des ersten
Wassermaximums im Fall von Ammonium-Sulfat-Lösungen, Figur 20, I
(24,5%;// [gerechnet] 1 1.5) und II (43,5%; // [gerechnet] 19,0)

erfordert eine Erklärung, die bis jetzt nicht gegeben werden kann.
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Jedoch scheint eler beste Weg zu einer Aufklärung dieser
Erscheinung darin zu liegen, dass Komplexe von Wassermolekülen
nnd NH4+ gebildet werden, vielleicht auch mit gleichzeitiger
Änderung der Struktur der Eiskriställchen. Der neue innere Ring
wurde auch schon von Krishnamurti (Lit. 10) bei Ammonium-
Nitrat-Lösungen gefunden. Dieser Autor vermutet die Ursache
in einer Assoziation, diskutiert aber elie Sache nicht weiter. Eine

I

600 30
ßaagungiwinkaJ

Fig. 21.

Lösung von Kalium-Carbonat zeigt dieselbe Tendenz zur Bildung
eines inneren Ringes und zur Verschärfung eles ersten
Wassermaximums.

Die Kurve (Figur 21) für Kalium-Chlorid-Lösung (26 g pro
100 cm3 H20; /< [gerechnet] 36,8) ist der Wasserkurve sehr
ähnlich, wie auch aus dem Verhalten des Salzes in Wasser zu
erwarten ist. Jedoch merkt man eine kleine Verschärfung und
Erhöhung des ersten Wasserringes, wie auch den Einfluss der
schwereren Ionen (siehe später).
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Im Fall eines einfachen aber schweren Ions (sagen wir J~),
wo man vom Beitrag des Wassers zur Gesamtstreuung im
Vergleich zu demjenigen der J-Ionen annähernd absehen kann, hat
Prins (loc eit.) die g-Funktion der Ionen unmittelbar der Abhandlung

von Debye und HüCkel (Physikalische Zeitschrift 24, 185,
1923) entnommen, indem er den Innendurchmesser vernachlässigt
und so das theoretische Beugungsbild berechnet. Prins fand dabei
im wesentlichen, dass der Verlauf für die Streuintensität der Ionen
bei kleinen Winkeln stark ansteigt und bei grossen Winkeln immer

10

fe

•5

0-5

^1

Im—,

m/

30°
ßeugungswinAal

Fig. 22.

60'

flacher wird. Für Lösungen von Kaliumbromid, Kaliumjodid und
Bariurnchlorid

Figur 22:
I. KBr 30%; // (gerechnet) 49,3,

II. KJ 20 g pro 100 cm3 ILO: /, (gerechnet) 64,5;
III. KJ 40 g pro 100 cm3 ILO; /< (gerechnet) 116;

Figur 23:

n'| BäGl2 29,7 g pro 100 ein3 ILO: // (gerechnet) 95,5.

wurde dies auch experimentell gefunden: selbst bei KCl- und
GaCl2-Lösungen zeigt sich dieser Einfluss. wenn auch viel weniger
stark.
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Die Absorption bei KBr-, KJ- und BaCl2-Lösungen ist natürlich

sehr gross; infolgedessen war die Schwärzung trotz längerer
Expositionszeit verhältnismässig klein, so dass elie »S-Kurven die

Intensität der Schleierschwärzung von etwa 0 40° nur wenig
überragten. Zur Kontrolle der Berechnungen der Streukurve nach
Abschnitt IV wurde für BaCU-Lösung eine zweite Aufnahme
hergestellt. Dabei war vor allein die Schichtdicke der Flüssigkeit,
ilaneben aber auch die Expositionszeit, geänelert worden. Die
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Fig. 23.

Wahl von BaCl2-Lösung erfolgte, weil bei dieser Lösung (mit
grossem Absorptionskoeffizienten) eine Änderung der Schichtdicke
eine starke Änderung der Absorption mit sich bringt. Die
erhaltenen zwei Streukurven (Figur 23, I und II) zeigen einen ganz
entsprechenden Verlauf, was wohl für die Richtigkeit der Be-

reehnungsmethode spricht.
Zusammenfassend kann gezeigt werden, dass die vorliegenden

Untersuchungen die sogenannte kybotactische Auffassung einer
Flüssigkeit unterstützen. Sie deuten aber auch auf die teilweise
Anwendbarkeit eler Theorie von Debye und derjenigen von Zernike
und Prins hin.
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