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Die Zerstreuung von Röntgenstrahlen an Gasen I
von G. Herzog.

(22. V. 29.)

Zusammenfassung: Es wird eine neue Methode zur Messung der
Winkelabhängigkeit der Röntgenstreustrahlung an Gasen angegeben und ihre Brauchbarkeit

nachgewiesen. Die Messungen der Streufunktion für Argon ergeben
einen monotonen Abfall mit wachsendem Streuwinkel.

§ 1. Einleitung.

Röntgenstrahlen werden beim Durchgang durch Materie in
ihrer Intensität geschwächt; man spricht von einer Absorption
der Strahlen. Die Intensitätsabnahme auf dem Wegelement ds
kann angesetzt werden in der Form:

dl —plds, (1)

wo I die Intensität bedeutet. Die Konstante p wird als
Absorptionskoeffizient bezeichnet; sie gibt die Grösse der Intensitätsabnahme

für die Längeneinheit des Weges an. Durch Integration
erhält man aus Gl. (1):

I, I0e-t". (2)

I0 bezeichnet die ungeschwächte Intensität für s 0.
Die Ursache der Energieabsorption1) ist eine mehrfache.

Zunächst kann Energie der Röntgenstrahlung durch Auslösung von
Elektronen (Photoeffekt) verbraucht werden. Eine zweite
Möglichkeit des Energieverlustes ist die Anregung der Fluoreszenz-
strahlung. Man versteht darunter das Auftreten von Sckundär-
strahlung deren Wellenlänge unabhängig von der Frequenz der
erregenden Strahlung ist. Sie wird nur durch die Art der
absorbierenden Atome bestimmt. (Charakteristische Strahlung.)
Die dritte Erscheinung ist die Streuung. Die Primärenergic
wird wieder als Röntgenlicht nach allen Richtungen gestreut.
Dabei bleibt die Frequenz der einstrahlenden Energie erhalten.
Es handelt sich also wesentlich um eine Richtungsänderung

J) Eine ausführliche Übersicht siehe bei J. A. Stratton, Helv. Phys. Acta,
I, 1928, 47.
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der Primärstrahlung. Schliesslich hat man von dieser

Streustrahlung die nach ihrem Entdecker genannte Compton-Strahlung
zu unterscheiden. Ihre Wellenlänge ist im Vergleich zur
einstrahlenden etwas vergrössert, wobei der Grössenunterschied vom
Winkel zwischen Primärstrahl und der Beobachtungsrichtung
abhängt.

Zweck der vorliegenden Arbeit ist die Untersuchung der

eigentlichen Streustrahlung, der sog. kohärenten Strahlung. Im
voraus muss betont werden, dass es dabei nicht möglich ist, die

Compton- oder inkohärente Strahlung ausser Acht zu lassen, da

sich die beiden Strahlungen oft nur in ihrer Summenwirkung
beobachten lassen.

Die Bedeutung der Untersuchung des Streuvorgangs liegt
darin, dass man durch ihn Aufschluss über die Anordnung der

Elektronen im Atom und über die Abstände der Atome im Molekül
erhalten kann; dies sollen die folgenden Erörterungen zeigen.

Das Problem der Streuung von Röntgenstrahlen an einem

einzelnen schwach gebundenen Elektron wurde von J. J. Thomson1)

behandelt. Ein Elektron von der Masse m und der Ladung e

befinde sich in einem elektromagnetischen Felde, dessen Intensität

J0 sei. Durch die elektrische Kraft E erfährt das Elektron
eine Beschleunigung und wird dadurch selbst der Ausgangspunkt

neuer Strahlung, deren Intensität vom Winkel & zwischen

primärer und Streustrahlrichtung abhängt. Bedeutet c die

Lichtgeschwindigkeit und r den Abstand des Punktes vom Elektron,
wo die Streuintensität Is gemessen wird, so ergibt sich für diese

W. 3^(1+.«,.¦*). (3)

Der Faktor (1 ± cos2#) tritt auf, weil die primäre Strahlung
unpolarisiert angenommen wurde. Man nennt ihn daher auch

„Polarisationsfaktor''.
Für n unabhängig voneinander streuende Elektronen wird

die Intensität der Streustrahlung nmal so gross:

Is n 0
^°e42T(l + cos^). (4)

2r2 m2 c4

Durch Integration von Is über alle Richtungen erhält man
die von den n Elektronen im ganzen gestreute Energie TUS. Das

Verhältnis von TUS zur einfallenden Primärenergie I nennt man

"•) J. J. Thomson, Conduetion througb. Gases, p. 325.
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den „Streukoeffizienten" o. Sind n unabhängig streuende

Elektronen im cm3, so wird

Ws 8 Tte4 /«
ff -r nT^M- (5)

Der Ausdruck für den Streukoeffizienten enthält die Grösse

der Wellenlänge der Primärstrahlung nicht. Gl. (5) sagt also

aus, dass der Streukoeffizient unabhängig von der Wellenlänge

ist
'

Diese Anschauung deckte sich völlig mit den alten

Messungen von Barkla1), der experimentell für leichte Elemente

die Beziehung aufstellte (q bedeutet die Dichte der Streusubstanz)

:

M 0,2 (6)
Q

Aus dieser Beziehung konnte Barkla unter Zuhilfenahme von

Gl (5) die Anzahl Elektronen pro Atom bestimmen. Er fand

bei leichten Elementen für die Elektronenzahl die richtige Grösse,

was Gl. (5) zu bestätigen schien. Bei schweren Elementen ist

-?- jedoch wesentlich grösser als 0,2, ein Zeichen dafür, dass

die klassische Theorie wohl nur einen Grenzfall darstellt.

Diese Abweichungen vom Werte der THOMSON'schen Formel

lassen sich erklären, wenn man die Annahme fallen lässt, dass

die Elektronen unabhängig streuen. Am deutlichsten kann man

dies zeigen, wenn man die Z streuenden Elektronen des Atoms

auf so kleinen Raum zusammengebracht denkt, dass sie als em

einziges grosses" Elektron mit Z-iacher elektrischer Elementarladung

und Z-facher Elektronen-Masse betrachtet werden können.

Man erhält in diesem Falle aus Gl. (3)

IX I. Z". (7)

Für Z unabhängig streuende Elektronen ergab sich:

L=MM (8)

wo

^ -ö4m~t(1 + cos2^
2 r2 mL c*

bedeutet.
Die beiden Ausdrücke Gl. (7) und (8) unterscheiden sich um

einen Faktor Z. Keiner dieser beiden Fälle wird m Wirklichkeit

genau realisiert sein. Je nach Anordnung der Elektronen

Barkla, Phil. Mag. 648, 1911, 22.
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im Atom und je nach der verwendeten Wellenlänge haben die
Streuwellen, die sich unter dem Winkel d- gegen die
Einfallsrichtung fortpflanzen, verschiedene charakteristische
Phasendifferenzen gegeneinander. Daher finden wir für jede Elektronen -

anordnung einen typischen Intensitätsverlauf der Streustrahlung.
Die Variabein treten in der Verbindung -^— — auf, wo a die

als konstant angenommenen Elektronenabstände bezeichnet. Die
Abweichungen vom Thomson'sehen Gesetz werden somit als
Interferenzen aufgefasst und müssen Schlüsse über die
Elektronenanordnung im Atom zulassen.

Die in Gl. (7) und (8) betrachteten Grenzfälle werden erhalten,
wenn einmal die Wellenlänge sehr gross gegenüber den Elck-
tronenabständen, das andere Mal sehr klein gegen a gewählt
wird. Im ersten Falle sind die Amplituden der Einzelwellen zu
addieren, im zweiten Falle die Intensitäten.

Kohlrauscii und Hewlett zeigten bei Absorptionsmessungen
von y-Strahlen (X ~ 0,02 A.-E.) an Kohlenstoff, dass der WTert

von — hier viel kleiner als der BARKLA'sche Wert wurde. Diese
Q

Unterschreitungen des TiiOMSON'schen a-Wertes lassen sich
selbstverständlich nicht durch Interferenzen von Sekundärwellen
erklären, die von punktförmigen Elektronen ausgesandt werden.
Es ist — grob gesprochen — eine weitere räumliche Auflösung
des Elektrons nötig, um diesen Effekt zu erklären. Der erste
Versuch in dieser Hinsicht stammt von Compton,1) der die Ladung
des Elektrons ad hoc auf einen Ring von etwa 10_1° cm Durchmesser

verteilte. Eine noch weitere Auflösung gibt die
Wellenmechanik, wo die negative Elektrizität im Atom räumlich
kontinuierlich ausgebreitet ist. Es kommen dann zwischen den
Streuwellen die von den einzelnen Teilen des Elektrons ausgehen
neuerdings Interferenzen zustande, die die Intensität weitgehend
herunterdrücken können.

Der Intensitätsverlauf kann experimentell nach zwei
Richtungen untersucht werden. Zunächst kann festgestellt werden,
ob sich bei der Streuung von Röntgenstrahlen eine Wellenlängen-
abhängigkeit finden lässt. Sie sollte ja nach Gl. (5) nicht auftreten.
Man kann zweitens die Winkelabhängigkeit der Streuintensität
beobachten. Die Intensitätsverteilung sollte nach Gl. (3) durch
den Polarisationsfaktor (1 + cos2 &) darstellbar sein. Auch in
der Winkelverteilung mussten sich Interferenzeffekte zeigen.

A. H. CoiirTox, Phys. Rev. 14, 1919, 20 und 247.
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Interferenzerscheinungen sind weiter beim Zusammenwirken
der Streuung einzelner Atome eines mehratomigen Moleküls
vorauszusehen. Auch diese Erscheinung muss sich bei der
Beobachtung der Winkel- oder Wellenlängenabhängigkeit der
Streuintensität erfassen lassen.

Schliesslich ist nach Debve1) bei dichten Gasen ein sogen,
„äusserer" Interferenzeffekt zu erwarten, der seine Ursache in
der undurchdringlichen Wirkungssphäre der einzelnen Moleküle hat.

Die weitaus grösste Anwendung dieser Überlegungen zur
Erforschung des Atombaus wurde bisher bei der LTntersuchung
von festen Körpern in kristalliner Form gemacht.

Lässt man nach dem Vorschlag von Bragg Röntgenlicht einer
Wellenlänge auf einen Kristall fallen, so wird das Licht bei
geeigneter Richtung zwischen auffallendem Strahl und den
Netzebenen des Kristalls reflektiert. Die Bedingung der Reflexion
sagt aus, dass die Gangunterschiede der Streuwege zwischen den
Atomen verschiedener Netzebenen ganzzahlige Vielfache n der
auffallenden Wellenlänge X sein müssen. Das Bragg'sehe Gesetz
lautot:

nX 2asin& (9)

(a Netzebenenabstand, i? Reflexionswinkel, n Ordnung der
Reflexion.)

Über die Intensität der Reflexion sagt diese Gleichung nichts
aus. Dieselbe hängt zunächst von der Anordnung ab, in welcher
der Reflexionsversuch gemacht wird. Auf die verschiedenen
möglichen Anordnungen soll hier nicht eingetreten werden. Eine aus
führliche Darstellung findet man im Buche von Compton.2)
Das Wesentliche kann man am Beispiel der Anordnung ersehen,
die in der Bragg'schen Schule verwendet wird: durch ein
geeignetes Blendcnsystem fällt die monochromatisierte Strahlung
auf den Kristall. Die Intensität der reflektierten Strahlung wird
mit einer Ionisationskammer gemessen. Der Kristall selbst wird
während der Bestimmung langsam um die Reflexionslage gedreht.
Man erhält so die sogen, integrale Reflexion o („integrated
reflection"):

1 l + cos2# (Ne2 V X3 _iM*= 27" ^~ "UM F) ™A¥e • m
Darin bedeuten: p den „effektiven" Absorptionskoeffizienten,
AT die Anzahl der streuenden Atome in der Volumeneinheit, e

') P. Debye, Phys. Zsch. 28, 1927, 135.
2) A. H. Compton, X-Rays and Electrons.
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und m die Konstanten für das Elektron, c die Lichtgeschwindigkeit,
F den sogen. Strukturfaktor und e~2M den Temperatur-

faktor. Auf die Diskussion der einzelnen Grössen soll nunmehr
eingegangen werden.

In dem Faktor (1 + cos2 &) erkennt man den früher
eingeführten Polarisationsfaktor. & bedeutet den Winkel zwischen
Primär- und reflektiertem Strahl (Streuwinkel).

Bei der Ilerleitung von Gl. (10) wird die äusserst wesentliche
Annahme gemacht, dass der reflektierende Kristall ein „Mosaik-
kristall" sein soll. Bei genauer Untersuchung eines Kristalls
(besonders durch die Röntgenforschung) erkennt man, dass er
im allgemeinen nicht den regelmässigen Aufbau zeigt, der mit
dem Worte Kristallgitter verbunden ist. In dem Kristall treten
Verwerfungen auf, so dass er aus einzelnen Mikrokristallen
aufgebaut erscheint, die erst die vollständige Regelmässigkeit des
Gitterbaues zeigen. Wie Darwin1) und Ewald2) auf verschiedenen
Wegen zeigten, ist die reflektierte Intensität am „idealen" Kristall
eine andere als am Mosaikkristall. Beim idealen Kristall zeigen
alle kleinsten Teile gleichzeitig die richtige Reflexionsstellung zum
einfallenden Strahl. Dieser wird beim Eindringen stärker
geschwächt, als dem normalen Absorptionskoeffizienten entspricht,
weil dem einfallenden Strahl Energie durch die Reflexion an den
oberen Kristallschichten entzogen wird. Beim Mosaikkristall tritt
die gleiche Erscheinung an den kleinen Teilkristallen auf. Dieser
Effekt der sogen, ersten Extinktion (primary extinetion) kann
jedoch klein gemaebt werden, wenn die Teilkristalle klein genug
sind. Man erreicht das bei den „Pulvermethoden", wo möglichst
feines Kristallpulver zur Reflexion verwendet wird. Bei
Untersuchungen verwendet man Kristalle, die mögliehst nahe an die
eine der beiden Idealformen herankommen. Die Benützung des

Mosaikkristalls bringt eine weitere Erscheinung mit sich: die
zweite Extinktion (secondary extinetion). Sie besteht in dem
Abschirmen der unteren Elementarkristalle durch obere, die in
der richtigen Reflexionsstellung stehen. Da die verwendeten
Blenden stets einen Strahl von endlichem Öffnungswinkel
freigeben und ausserdem die Primärstrahlung eine geringe Linienbreite
zeigt, gibt es eine gewisse Unempfindlichkeit in der Lage der
Einzelkristalle, innerhalb welcher diese noch auf die Reflexion
ansprechen. So ist es zu erklären, dass die reflektierte Intensität
beim Mosaikkristall vielmals grösser als beim Idealkristall ist,

1) C. G. Darwin, Phil. Mag. 27, 315 und G75, 1914.
2) P. P. Ewald, Ann. d. Phys. 54, 519, 1918.
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da im ersten Falle auch noch „sciiief" gestellte Kriställchen
reflektieren.

Bragg, James und Bosanquet1) zeigten, wie die zweite
Extinktion bestimmt, werden kann, während die erste Extinktion
nicht direkt messbar ist. Brentano2) hat sie durch Verwendung
von äusserst feinem NaCl-Pulver zu vermindern versucht. Der
in Gl. (10) eingeführte „effektive" Absorptionskoeffizient soll die
normale Absorption sowie auch die erste und zweite Extinktion
in sich schliessen.

Die Grösse e-2 M rührt von der Wärmebewegung der Atome
her. Die Wärmebewegung bewirkt eine Verminderung der
reflektierten Intensitäten, da mit steigender Temperatur die
Abstände der Elektronen von den Atommittellagen zunehmen.
Theoretisch wurde das Problem des Einflusses der
Wärmebewegung auf die gemessene Intensität von Debye3) und von
Waller4) erfasst; aber erst durch die neuen Versuche von James
und Firtii5) und James und Brindley6) ist es ermöglicht worden,
die Temperaturkorrektur experimentell richtig festzulegen. Diese
Verfasser haben die Streuintensitäten am Steinsalz und Sylvin
von der Temperatur der flüssigen Luft bis 900 Grad absolut
gemessen. Bei tiefen Temperaturen gibt die Formel nach Waller
gute Übereinstimmung mit dem Experiment, während sie bei
höheren Temperaturen von etwa 600° absolut an zu kleine
Intensitätsverminderungen erwarten lässt.

Aus diesen Erklärungen ersieht man Schwierigkeiten mit
denen zu kämpfen ist, wenn man über die Intensitätsverhältnisse
an Kristallen Messungen durchführt; denn für den Idealkristall
würde die gestreute Intensität dem Strukturfaktor direkt proportional,

während beim Mosaikkristall das Quadrat von F eingeht.
In Gleichung (10) können alle Grössen ausser F im

Experiment direkt gemessen und also der Strukturfaktor damit
berechnet werden. Solche Versuche wurden bisher in grosser
Zahl ausgeführt. Dabei verwendete man als Kristall vorzüglich

NaCl, das dem Mosaiktypus nahe kommt. Man wird
versuchen, aus den gemessenen F-Werten die Elektronenverteilung
zu bestimmen. Dazu können zwei Wege eingeschlagen werden.
Der eine, bisher mehr verwendete, wurde von W. H. Bragg7)

') W. L. Bragg, James und Bosanquet, Phil. Mag. 41, 309, 1921.
2) J. Brentano, Phil. Mag. 4, 620, 1928.
3) P. Debye, Ann. d. Phys. 43, 49, 1914.
4) L.Waller, Z. f. Phys. 17, 398, 1923.
5) R. W. James und E. M. Firth, Proc. Roy. Soc. 117, 62, 1927.
6) R.W.James und G. W. Brindley, Proc. Roy. Soc. 121, 155, 1928.

') W. H. Bragg, Phil. Trans. Roy. Soc. 215, 253, 1915.
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angegeben, von Duane1) ausgearbeitet und von Havighurst2)
verwendet. Es ist dies die Methode der Fourier-Zerlegung.
Sie beruht auf folgenden Überlegungen: Da die Atome gegenüber
der einfallenden Strahlung von endlicher Grösse sind, hat man
zu berücksichtigen, dass nicht alle Elektronen eines Atoms in
einer Netzebene liegen. Es bedeute p (z) die Wahrscheinlichkeit,
dass sich ein Elektron im Abstände zwischen z und z + dz
von der Netzebene befindet und a den Abstand zweier
Netzebenen. Enthält das Atom im ganzen Z Elektronen, so ist die
gesamte Streuamplitude, die einem Atom entspricht:

+ a

F Z I p(z)cos[-7A-sin^rjdz. (11)/ p (z) cos I

Das Integral
-¦ ii

Jp (z) dz
-a

hat den Wert 1, da es die Sicherheit ausdrückt, dass ein Elektron
zwischen den beiden Netzebenen liegt, die die betrachtete
Atomschicht einschliessen. Für kleine Winkel &J2, also streifend
einfallende Primärstrahlung, geht damit F in den Wert Z über.
Schreibt man für die Elektronenverteilung p (z) im Abstände z
von der Netzebene eine Fourier-Reihe an, so lässt sich zeigen,
dass die Koeffizienten dieser Reihe durch die Strukturfaktoren
Fn darstellbar sind. Dabei bedeutet Fn den Strukturfaktor, der aus
Gl. (10) bei der Reflexion n-ter Ordnung an denjenigen Netzebenen
auftritt, von denen aus z gemessen wird. Bei der genauen Analyse
nach dieser Zerlegungsmethode ist es nötig, auch die F-Werte
für hohe Ordnungen zu messen. Das scheitert gewöhnlich an der
geringen Intensität dieser Reflexionen, so dass man auf eine
Extrapolation angewiesen ist. Bei einer anderen Anwendung
dieser Methode nach Compton3) tritt dieser Mangel noch
gewichtiger in Erscheinung. Es wird hier die radiale Verteilung
der Elektronen um den Atomkern bestimmt. Dabei treten in
der Fourier-Reihe die Werte Fn mit der Ordnungszahl n
multipliziert auf. Bei der Unsicherheit, der Strukturwerte für hohe
Ordnungen werden die Fehler noch mit den grossen n-Werten
multipliziert.

"¦) W. Duane, Proc. Nat. Acad. il, 489, 1925.
2) R. J. Havighurst, Proc. Nat. Acad. II, 502, 1925.
3) A. H. Compton, X-Rays and Electrons, S. 163.
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Eine weitere Schwierigkeit ist die Beschränktheit der Zahl
der möglichen Ordnungen wegen der Bedingung sin &< 1. Diese
Anzahl wächst zwar bei Verwendung kleiner Primärwellenlänge,
dafür treten dann andere Schwierigkeiten auf (Compton-Prozess).

Diese Zerlegungsmethoden geben kontinuierliche Elektrizitätsverteilungen

um den Atomkern.

Die zweite Möglichkeit für die Auswertung der F-Kurven
besteht darin, dass man geeignete Atommodelle so anzunehmen
sucht, dass die daraus gerechneten F-Werte mit den gemessenen
möglichst gut übereinstimmen. Hier kann auch von unstetigen
Ladungsverteilungen, also eigentlichen zentralisierten Elektrizitätsmengen,

ausgegangen werden.1)

Aus all den erwähnten Einflüssen: Ideal- oder Mosaikkristall,
erste und zweite Extinktion, Temperaturbewegung, Beschränktheit

der möglichen Reflexe und geringe Intensität bei hohen
Ordnungen ersieht man, dass die Verwendung von Kristallen
zur Erforschung der Atomstruktur grosse Schwierigkeiten bringt.2)

Die Diagramme, welche bei der Zerstreuung von Röntgenstrahlen

an Flüssigkeiten entstehen, sind bisher nicht einwandfrei

erklärt. Es scheint, dass die Moleküle in Flüssigkeiten nicht
völlig ivillkürlich angeordnet sind, sondern eine gewisse Schwarm-
bildung anstreben3). Drucker4) gibt eine Zusammenstellung der
bisherigen Messergebnisse.

Günstiger liegen die Verhältnisse, wenn man sich die
Aufgabe stellt, die Zerstreuung von Röntgenstrahlen an Gasen zu
untersuchen. Darauf machte erstmalig Ehrenfest5) aufmerksam.

Ausführlichere Rechnungen findet man bei Debye. In einer
ersten Abhandlung6) berechnet er die Zerstreuung von Röntgenstrahlen

durch regellos im Raum liegende Atome. Über die
Anordnung der Elektronen im Atom wird die Annahme getroffen,
dass diese auf einem King verteilt sind. In dem Ausdruck für

P. Debye, Ann. d. Phys. 46, 809, 1915; P. Debye und P. Scherrer,
Phys. Zsch. 19, 482, 1918; G. A. Schott, Proc. Roy. Soc. 96, 695, 1920; Glocker
und Kaupf, Ann. d. Phys. 64, 541, 1921.

2) Weitere Literatur darüber: H. Ott, Handbuch der Experimentalphysik,
Bd. VII/2; P.P. Ewald, Handbuch der Physik, Bd. XXIV; M. W. L. Bragg,
Vortrag am 5. Solvay-Kongress, 1927; J. Waller und R. W. James, Proc. Roy.
Soc 117. 214, 1927;' R.W.James, J.Waller und D. R. Hartree, Proc. Roy.
S .c. 118, 334, 1928; G. W. Brindley und R. G. Woon, Phil. Mag. 43, 616, 1929.

3) Katz, Zsch. f. Phys. 45, 97, 1927.

') Drucker, Phvs. Zsch. 29, 273, 1928.
5) P. Ehrenfest, Proc. Akad. Amsterdam 17, 1184, 1915.
6) P. Debye, Ann. Phys. 46, 809, 1915.

12
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die Streuintensität tritt das Verhältnis vom Elektronenring-
radius a zur auffallenden Wellenlänge X auf. Für die beiden
Extreme

X » a und X « a

ergeben sich die früher erwähnten Grenzfälle Gl. (7) u. (8). Für
zwischenliegende Grössen zeigt das Verhältnis von gestreuter zu
primärer Intensität als Funktion des Streuwinkels Maxima.
In der zweiten Arbeit1) untersucht er den Einfluss der äusseren
oder intermolekularen Interferenzen für mehratomige Gase.
Darnach treten Maxima und Minima in der Intensitätskurve auf,
aus deren Lage auf die Atomabstände im einzelnen Molekül
geschlossen werden kann.

Über bisher ausgeführte Messungen der Streuung von Röntgenstrahlen

ist zu berichten, dass Untersuchungen an Gasen von
Crowtiier bei festem Streuwinkel und von Mark u. Schocken,
Barett, sowie Scherrer und Stäger bei fester Wellenlänge
und veränderlichem Streuwinkel gemacht wurden. Darüber soll
später im Zusammenhang mit den eigenen Messungen berichtet
werden.

Bei der Auswertung der F-Kurven, die an Gasen oder
Kristallen erhalten werden, hat man auch die Compton-Strahlung zu
berücksichtigen. Die Theorie des Compton-Prozesses wurde von
Compton2) und Debye3) aufgestellt. Darnach besteht der
Compton-Prozess darin, dass durch die einfallende Energie ein
Elektron aus dem Atom gelöst wird und als „Rückstosselektron"
frei wird. Die Energie, die zur Überwindung der Bindung und
zur Erteilung der Geschwindigkeit an das Elektron nötig ist,
wird dem einfallenden Lichtquant entzogen und daher die Energie
des gestreuten Ouants um diesen Betrag kleiner. Über das
Intensitätsverhältnis zwischen verschobener und unverschobener
Linie sagen diese Theorien nichts aus. Wie aus Versuchen*)
und späteren theoretischen Erörterungen5) hervorgeht, kann man
über diese Intensitätsverteilung folgendes sagen: Unabhängig

') P. Debye, Phys. Zsch. 28, 135, 1927.
2) A. H. Compton, Phys. Rev. 21, 483, 1923.
3) P. Debye, Phys. Zsch. 24, 161, 1923.
4) Y. H. Woo, Phys. Rev. 27, 119, 1926.
6) O. Klein, Zsch. f. Phys. 41, 407, 1927; G. E. M. Jauncey, Phys. Rev.

29, 757, 1927; G. E. M. Jauncey und W.D.Claus, Phys. Rev. 31, 717, 1928;
W. Gordon, Zsch. f. Phys. 40, 117, 1927; ('. Wentzel, Zsch. f. Phys. 40, 574, 1927
und 43, 1 u. 779, 1927; "j. Waller, Nature 120, 155, 1927, Zsch. f. Phys. 51, 513,
1928, Phil. Mag. 4, 1228, 1928.
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von der einfallenden Wellenlänge wird für sehr kleine
Streuwinkel & die kohärente Linie vorherrschend sein. Geht man mit
dem einfallenden Lieht von kleinen zu grösseren Frequenzen, so

ist zunächst die unverschobenc Linie vorhanden. In dem Masse,
wie die Energie h v des einfallenden Quants die Bindungsenergie
übersteigt, wächst der Anteil der verschobenen Linie, bis schliesslich

für sehr kleine Wellenlängen die ganze Streustrahlung aus
ler verschobenen Frequenz besteht. Wie Waller und Wentzel

(loc. eit.) aus der Behandlung des Problems nach der
Wellenmechanik zeigen, bleibt für die Summe aus kohärenter und
inkohärenter Strahlung das klassische Gesetz von Thomson
bestehen, mit einer Einschränkung für die kurzwelligen y-Strahlen.
Aus diesen Überlegungen wird auch verständlich, dass für die
leichten Elemente die Compton-Strahlung stärker auftritt als
für die schwereren.

Fm nun aus den an Gasen gemessenen 7y1-Kurven Schlüsse
auf die Elektronenverteilung ziehen zu können, wird man vorteilhaft

von angenommenen Atommodellen ausgehend die
zugehörigen F-Kurven theoretisch bestimmen. Ein Vergleich mit
den Werten des Experimentes gibt dann Aufschluss über die
Richtigkeit des angenommenen Modells. Auf Grund der
Wellenmechanik wurden von verschiedenen Seiten1) Methoden zur
Verteilung der Elektronendichte im Atom gegeben. Aus dieser
Dichteverteilung wird dann nacb der klassischen Formel die
F-Verteilung bestimmt.2)

Das Ziel der vorliegenden Untersuchungen ist das Vorhandensein

von Interferenzen bei Streuung von Röntgenstrahlen an
Gasen nachzuweisen. Die erste Arbeit soll die Möglichkeit der
Bestimmung der Winkelabhängigkeit der Streustrahlung nacb
einer neuen Messanordnung zeigen. Im zweiton Teil wird die
Streuintensität unter festem Winkel bei veränderlicher Wellenlänge

beobachtet. Um das Vorhandensein der Interferenzen
zwischen den Atomen eines Moleküls zu prüfen, werden Gase
untersucht deren mehratomige Moleküle die gleichen Atome in
verschiedener Binduno; enthalten.

D.R. Hartree, Phil. Mag. 50, 289, 1925; J. A. Stratton, Helv. Phys.
Acta I, 68, 1928; D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 89 und 111, 1928;
Gaunt, Proc. Cambridge Phil. Soc. 24, 328, 1928; L. Pai i.ing, Proc. Roy. Soc.

114, 181, 1927.

2) z. B. R. W. James, J. Waller und D. R. Hartree, Proc. Roy. Soc.

118, 334, 1928.
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Brstiiiiiniiiuj der \\ inkoliililiiingigkeit der Strciistralihiny.

§ 2. Bisherige Messungen.

Um die Winkelabhängigkeit der Streuintensität von Röntgenstrahlen

an Gasen zu beobachten, sind verschiedene
Versuchsanordnungen möglich. Die nächstliegende Methode ist die folgende:

Das zu untersuchende Gas wird in ein Gefäss eingeschlossen;
es sind Fenster für den Primärstrahleneintritt und Ausgang, sowie
für die Beobachtung der Sekundärstrahlung vorgesehen. Nach
diesem Prinzip haben erstmals II. Mark und K. Schocken1)
die Streuung von Argon und Kohlensäure gemessen. Die Intensi-
tätsmessung erfolgte nach der Ionisationsmethode. Das zylinderförmige

Streugefäss war mit der Ionisationskammer starr
verbunden und das ganze System relativ zum Primärstrahlenbündel
drehbar. Gemessen wurde der Winkelbereich von 30° bis 150°.
Die Messpunkte lassen sich durch die klassische TiiOMSON'sche
Formel darstellen.

Ebenfalls ionometrische Messungen macht C. S. Barett2).
Er lässt die ausgeblendeten Primärstrahlen längs eines
Durchmessers durch ein zylindrisches mit Gas gefülltes Gefäss streichen,
das am Umfang ein Zelluloidfenster trägt. Parallel dem Primärstrahl

teilt eine Wand das Gefäss in zwei Hälften. Die Wand
besitzt eine Öffnung, die als Blende für die Sekundärstrahlung
dient. Die Ionisationskammer ist gegenüber dem festen System
von Röntgenröhre und Zerstreuungskammer drehbar. Der
Messbereich beträgt 19° bis 20°. Mit dieser Anordnung wird nur die
Streuung von einem kleinen Volumen des Gases beobachtet. Man
erkennt leicht, dass beim Drehen der Ionisationskammer das durch
die Blende ausgesonderte Streuvolumen sich ändert. Barett
verwendet einen Kunstgriff, um sich über die Grösse dieser Änderung

des streuenden Volumens Klarheit zu verschaffen. Als
Primärstrahlung wird die Strahlung einer Molybdänantikathode mit
Strontium- und Zirkonfiltern verwendet, die eine gut
monochromatische MoK„-Strahlung gibt. Mit rein monochromatischem
Licht von 0,71 A.-E. werden keine wesentlichen Abweichungen
gegenüber dem gefilterten Licht gefunden. Barett erhält für
Sauerstoff und Kohlensäure ähnliche Kurven, während der
Charakter der Kurve von Wasserstoff von beiden verschieden ist.
Der Unterschied wird dadurch erklärt, dass bei dem leichten
Element H2 die inkohärente ComptonStrahlung stärker hervortritt,

bei C02 und 02 dagegen die kohärente. In keinem Falle

') H.Mark und K. Schocken, Die Naturwissenschaften 139, 1927, 15.
2) C. S. Barett, Phys. Rev. 32, 1928, 22.
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findet man aber die in der Einleitung erwähnten Interferenzen,
die von Elektronen stammen sollen, welche sich auf Kugel-
schalen befinden. Die Kurven lassen sich aber auch nicht durch
die Thomson-Foimel darstellen. Sie zeigen gegen kleine Winkel
einen starken Anstieg (sogen. Excess-Scattering).

Beiden bisher erwähnten Versuchsanordnungen haftet der
Nachteil an, dass auch bei evakuierter Zerstreuungskammer ein
Ionisationsstrom auftritt. Er entspricht der .Wandstrahlung der
Gefässe. Allgemein wird die Messgenauigkeit schlecht, wenn der
eigentlich zu messende Effekt (Gasstrahlung) von der gleichen
Grössenordnung ist wie die auftretenden Störungen
(Wandstrahlung). Daran ändert auch die Berücksichtigung von Leer-
aufnahmen nichts.

Einen neuen Weg haben 1'. Scherrer und A. Stäger1)
eingeschlagen. Es wird die Streuung der gefilterten
Kupferstrahlung an Quecksilberdampf gemessen. Ein Quecksilberdampfstrahl

aus einer Düse durchquert in vertikaler Richtung das gut
ausgeblendete Primärstrahlenbündel. Der Hg-Strabl bildet die
Achse einer zylindrischen Kamera, auf deren Innenwand ein
lichtempfindlicher Film angebracht ist. Der Röntgenstrahl tritt
radial ein. Als Streuvolumen kommt das Durchsetzungsvolumen
vom Dampf- und Röntgenstrahl in Frage; es betrug etwa 1 mm3.
Der Schwärzungsverlauf am Film in der Ebene, die den Primärstrahl

enthält und senkrecht auf dem Dampfstrahl steht, stellt
den Intensitätsverlauf als Abhängige des Streuwinkels dar. Ein
grosser Vorteil dei- Methode hegt in dem kleinen Streuvolumen.
Die Absorption der Primär- und Streustrahlung im Gas kommt
dadurch nicht in Betracht. Der Einfluss der Streuung der Luft,
welche im Gefäss den Dampfstrahl umgibt, wurde durch
Leeraufnahmen ohne Quecksilber bestimmt. Die Streukurve zeigt
bei kleinen Winkeln einen starken Abfall, wird gegen 90° flacher,
um von 120° bis 160° wieder etwas anzusteigen.2)

') P. Scherrer und A. Stäger, Helv. Phys. Acta 1, 1928, 518.
2) Nach Niederschrift der vorliegenden Arbeit erschien eine Mitteilung

von P. Debye, L. Bewilogue und F. Ehrhardt, Phys. Zsch. 30, 84, 1929. Durch
eine dosenförmige Zelle von 2 cm Höhe wird ein kreisförmig ausgeblendeter Strahl
gesandt. Die Zelle enthält das zu untersuchende Gas und kann elektrisch geheizt
werden. Beim Strahlaustritt ist die Zelle durch ein Aluminiumfenster abgeschlossen.
Auf einem Film, der in einer wassergekühlten Kassette ausserhalb der Zelle liegt,
wird die Streuschwärzung bis ca. 30° beobachtet. Für Stickstoff finden die Autoren
einen monotonen Schwärzungsverlauf. Für Kohlenstofftetrachlorid zeigt der
Film einen Interferenzring. Vernachlässigt man im CC14 die Streuung durch das
Kohlenstoffatom und setzt die Chloratomc in die vier Ecken eines Tetraeders,
so ergibt sieh nach der Theorie von Ehrenfest und Debve ein Interferenzring.
Die Dimensionen der Versuchsanordnung und der Durchmesser des Ringes lassen
darnach auf einen Abstand der Chloratomc von 3,5 Ä.-E. schliessen. Auch bei
Chloroformdampf wurde ein Interferenzmaximum beobachtet.
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§ 3. Die neue Messmethode.

Denkt man daran, nach dieser Methode auch Gase, besonders
mit leichtem Atomgewicht, zu untersuchen, so stösst man auf
Schwierigkeiten. Eine erste ist der grosse Gasverbrauch, um den
freien Strahl zu unterhalten. Viel wichtiger ist aber, dass bei
dem kleinen streuenden Volumen der beschriebenen Apparatur
die nötigen Expositionszeiten (sie waren bei Hg etwa 20 Stunden)
sehr lange werden. Man kommt so auf den Gedanken, das streuende

Volumen zu vergrössern. Dadurch wird jedoch die
Definition des Streuwinkels unscharf. Der nächste Schritt ist daher,

B

dV

Sf

Fig. 1.

auf das punktförmige Volumen gänzlich zu verzichten. Man füllt
ein Gefäss mit dem zu untersuchenden Gas und sendet einen gut
ausgeblendeten Röntgenstrahl hindurch. In das Gafäss bringt
man einen photographischen Film oder eine Platte. Auf dieser
wird sich ein Schwärzungsverlauf zeigen. Die Frage entsteht.
ob aus diesem Verlauf die Winkelabhängigkeit der Streustrahlung
gefunden werden kann. Es sei vorweg der weiteren Erläuterungen
mitgeteilt, dass dies möglich ist.

Die Anregung zu dieser Art der Bestimmung der
Streustrahlung verdanke ich meinem sehr verehrten Lehrer, Herrn
Prof. Dr. P. Scherrer.

In Fig. 1 ist der schematisierte Schnitt durch die
Gaskamera K gezeichnet. Beim Röntgenstrahleintritt ist das Blenden-
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System B angedeutet. Die Blenden sind kreisförmig und sollen ein
möglichst paralleles Röntgenbündel ausblenden. Die
photographische Platte PI ist vertikal zur Schnittebene gestellt. Sie
schneidet den Röntgenstrahl im Austrittspunkt A unter einem
Winkel cp. (Alle Winkel werden von der positiven Strahlrichtung
aus gemessen.) Die Zweckmässigkeit dieser speziellen Anordnung
wird sich bald im Verlaufe der Rechnung erweisen.

Betrachtet man einen festen Punkt der Platte PI, so erhält
er in erster Linie von jedem Volumelement des Weges, in welchem
das Gas vom Primärstrahl getroffen wird, eine gewisse Energiemenge

Streustrahlung. Dazu kommt aber, dass jedes beliebige
Volumelement dV des Gases, das nicht im direkten Röntgenstrahl

liegt, von den Gasmolekeln im Strahl St sogenannte
„primär" gestreute Energie erhält. Das Volumenelement dV wird
diese Primärstreuung nochmals „sekundär" streuen, so dass der
betrachtete Plattenpunkt auch von jedem Volumenelement dV
indirekt bestrahlt wird. Entsprechend wird diese Sekundärstrahlung

wieder durch andere Volumenelemente tertiär gestreut
usw. Weiter kann der Plattenpunkt Streuintensität vom Ein-
und Austrittsfenster F1 und F2 für die Primärstrahlung sowie
von den Blenden erhalten.

Vorläufig sei angenommen, dass sich die ganze Kamera in
einem evakuierten Gefäss G befinde. Dadurch wird verhindert,
dass in äusserem Gas entstehende Streustrahlung durch das
Eintritts- und Austrittsfenster die Platte schwärzen kann. Man
erreicht durch diese Beschränkung, dass der primär streuende
Gasstrahl eine fest definierte Grösse erhält. Seine Länge ist durch
die Ausdehnung der Kamera vom Eintritts- bis zum Austrittsfenster

gegeben.
Im folgenden soll der Schwärzungsverlauf der photographischen

Platte längs der sogen. Registriergeraden berechnet werden.
Es ist dies die Schnittlinie der Schichtebene der photographischen
Platte mit einer Ebene, die vertikal zu ihr steht und den Primärstrahl

enthält. Dabei seien zunächst einige einschränkende
Annahmen gemacht.

1. Das primäre Röntgenstrahlenbündel soll so eng
ausgeblendet sein, dass in der Rechnung von seiner endlichen
Ausdehnung senkrecht zur Strahlenrichtung abgesehen werden darf.
Der Gasstrahl, welcher primär streut, darf also als unendlich
dünn betrachtet werden.

2. Die sekundär, tertiär und höheren Streustrahlungen sollen
in ihrer Intensität gegenüber der Primärstreustrahlung sehr klein
sein. Sie werden bei der Rechnung gänzlich vernachlässigt.
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3. Die Streustrahlung, hervorgerufen durch die Blenden und
Fenster, sei vernachlässigbar klein.

4. Sowohl der primäre Röntgenstrahl, wie auch die durch
Zerstreuung entstandenen Strahlen werden im Gase absorbiert
werden. Von dieser Absorption soll abgesehen werden. Es wird
also so gerechnet, wie wenn das Gas unendlich verdünnt wäre.

In wie weit diese Annahmen gerechtfertigt oder durch die
Versuchsbedingungen erfüllbar sind, soll später betrachtet werden.

<0\ ~J

l,
-St

Fie. 2.

Fig. 2 stellt den Primärstrahl St und die Platte PI. dar.
Wegen der früheren Annahmen darf so gerechnet werden, wie
wenn nur eben im Gebiet des Primärstrahles Gas vorhanden, der
übrige Raum aber evakuiert wäre. Schneidet man im Abstände x
vom Punkte A aus durch zwei unendlich benachbarte Ebenen ein
Längenelement dx des Strahles aus, so besitzt das so bestimmte
Volumenelement die Grösse

dV — q-dx, (1)

wo q den konstanten Querschnitt des Strahles bedeute. Die
Intensität des Primärstrahles sei I0. Das Volumenelement streut
nunmehr einen Teil der auffallenden Primärenergie (entsprechend
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I0) nach allen Richtungen des Raumes. Betrachtet man als
Raumelement einen Kegel von unendlich kleinem Raumöffnungswinkel
d Q, so lässt sich die Lage dieses Kegels durch die Angaben
bestimmen, dass seine Achse in der Zeichenebene liegt und mit
der positiven Primärstrahlrichtung den Winkel a einschliesst
(Fig. 2). Die Eneigie, welche vom Volumen dV im Zeitelement dt
in den Raum d Q gestreut wird, sei dE. Phänomenologisch lässt
sich aussagen, dass dE proportional ist der einfallenden Intensität
/n und der im streuenden Volumen enthaltenen Anzahl Gas-
moleküle (IN. Beträgt die Molekülzahl im em3 n, so ist

dN n-dV. (2)

Die gestreute Energie wird ferner dem Raumwinkel dQ und der
Zeit dt verhältnisgleich zu setzen sein. Schliesslich hängt dE
von der Lage des Raumelementes du, d. h. dem Streuwinkel a
ab. Die Funktion, die diese Abhängigkeit darstellt, sei xp (a).
Damit lässt sich nun die Grösse der gestreuten Energie
anschreiben. Es ist:

d E (a) n ¦ y> («) • I0 ¦ dV ¦clQ-clt. (3)

Die Funktion xp («) stellt die gesuchte Winkelabhängigkeit der
Streustrahlung vom Streuwinkel a dar. Sie hängt von der Gasart
und der Gasdichte ab.

Die Intensität dl (a,r) der Streustrahlung im Abstände r
vom Streuvolumen dV innerhalb des betrachteten Raumwinkels
d ü bedeutet die auf die Flächeneinheit in der Zeiteinheit senkrecht

auffallende Energiemenge. Die Gesamtfläche, auf die sich
die Energie dE im Abstände r verteilt, ist r2-dü. Damit wird
also die Intensität

tt/, d E (a) dV

Steht die Normale s des betrachteten Flächenelementes
(photographische Platte) unter einem Winkel b gegen die Achsenrichtung
des Raumkegels geneigt, so wird die Energie dE (a) auf eine
Fläche verteilt, die im Verhältnis von cos b grösser ist als der
zur Kegelachse senkrechte Schnitt, wie er in Gl. (4) betrachtet
wurde. Entsprechend wird demnach die Intensität auf einem
schrägen Schnitt um den Wert von cos b kleiner. Diese Intensität
wird auf der photographischen Platte als Schwärzung gemessen.
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Bezeichnet man die Helligkeit der Platte in einem geeigneten
Masse mit H, so ist

d x
d H (a, r) n xp (a) q I0—— cos b (5)

wenn für dV der Wert aus Gl. (1) eingesetzt wurde.
Der Punkt auf der Registriergeraden, dessen Helligkeit

bestimmt werden soll, kann einfacher als durch « und r durch den
Abstand a (Fig. 2) vom Durchstosspunkt A Platte—Primärstrahl
festgelegt werden. Es gilt also dann für die Streuenergie vom
Element dx aus:

d H(a)= n q I0 tp (a) —JA dx (ü)

Die Gcsamthclligkeit H (a) im Punkte a ergibt sich durch
Integration von dH (a) über die ganze wirksame Länge des
Primärstrahles. Durch die früheren Annahmen war diese aber fest
bestimmt; sie sei h genannt. Man erhält:

H (a) I nq I0 y> (a) —2— dx (7)

z 0

Zur Integration drückt man am besten alle Grössen durch die
Variable a und die Konstanten fl und cp aus. In Fig. 2 erkennt
man die folgenden Beziehungen:

r a (8)
sin n

cos b sin (cp — a) (9)

x .4P7 + P'X =¦-- —fl cos cp + r cos a (10)

Setzt man den Werl für r aus Gl. (8) in Gl. (10) ein, so erhält man

x fl (sin r/ eotg « — cos cp) (11)

Differentiert man diesen Ausdruck für x partiell nach a (der
Wert von a ist ein Parameter, der unabhängig von a ist), so ergibt
sich:

j .dadx — fl sin cp —r—r— • (12)
SUl-fl
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Unter Benützung der Gl. (8), (9) und (12) erhält man aus Gl. (7)
nach leichter Umformung:

H(a)= nqI°
xp (a) sin (a-w) da. (13)

a • sin cp J
*=o

Man hat nun noch die Integrationsgrenzen von der ursprünglichen
Variabein x auf die neue a zu übertragen. Für die untere Inte-
grationsgrenzc x 0 gilt für alle Punkte P der Platte, also für
jeden Wert des Parameters a:

für x 0 : « cp (14)

Für die obere Grenze nimmt der Winkel a den Wert

a a0 für x h (15)

an. Die Grösse von a0 hängt von dem gewählten Punkt P auf
der Platte ab. Aus Fig. 2 erkennt man, dass gilt

pp- pp- flsinytp nn — - —=- • ter«n — ^ (lb)8 ° BP' AB-AP' B ° fc + acosp

Gl. (16) ordnet jedem Plattcnpunktabstand a einen Grenzwinkel
a0 zu. In der neuen Schreibweise wird aus Gl. (13):

« «„

H (fl) nqI° / w (a) sin (a-w) da. (17)
a sm cp J

Cl — rp

Führt man nun einen Zerstreuungsversuch nach der
beschriebenen Anordnung durch, so erhält man auf der photographischen

Platte einen Schwärzungsverlauf, der die Funktion H (fl)
von Gl. (17) darstellt.

Die Schwärzung lässt sich folgendermassen finden:
Beleuchtet man ein kleines Plattenstück mit der Lichtintensität I0,
so findet man, dass diese Intensität nach Durchgang durch die
Platte auf einen Betrag I abgeschwächt wurde. Die Intensitäts-
verminderung entspricht der Energieabsorption des Lichtes an
der betreffenden Plattenstelle. Bildet man den Ausdruck

8 log -f
(gemeint ist der Brigg'sehe Logarithmus), so wird S die absolute
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Schwärzung genannt. W. Friedrich und P. P. Koch1) haben
nachgewiesen, dass die so definierte absolute Schwärzung der
Intensität der Röntgenstrahlen proportional ist, welche die
Schwärzung erzeugen. Der Proportionalitätsfaktor hängt von
der Wellenlänge des bestrahlenden Röntgenlichtes ab.

Durch Ausmessen der absoluten Schwärzung der Platte PI
mit einem Photometer2) erhält man also ein Mass für die Intensität

der Streustrahlung längs der Registriergeraden.
Durch den Versuch ist demnach die linke Seite von Gl. (17)

bestimmt. Man kann jetzt für jeden Punkt der Registriergeraden
auf der Platte das Produkt aus Helligkeit H (a) und Abstand «
berechnen. Dieses Produkt a ¦ H (a) ergebe als Funktion des

aHtoi

ijäf/iai]
Ja

Fig. 3.

zugehörigen Winkels a0 aufgetragen eine Kurve, wie sie in Fig. 3

angedeutet ist. Legt man in einem beliebigen Punkt der Kurve
die Tangente, so ist deren Neigung durch den Ausdruck

d \a ¦ Hup)
da0

gegeben. Diese Neigung lässt sich einmal aus der experimentell
gefundenen Kurve messen, ein zweites Mal aus Gl. (17) berechnen.
Die beiden Werte müssen einander für jeden Punkt, der durch a0

charakterisiert ist, gleich sein.
Differentiert man Gl. (17) partiell nach a0, so ergibt sich:

sin cp d\a ¦ H(l,)]

nql0 dan da0
xp (a) sin (a - cp) da (18)

Die Differentiation der rechten Seite kann ausgeführt werden,
da der Parameter a0 nur in den Grenzen des Integrals, nicht aber

') W. Friedrich und P. P. Koch, Ann. d. Phys. 45, 899, 1915.

'-) P. P. Koch, Ann. d. Phys. 39, 705, 191:1.
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im Integranden vorkommt. Die Ausführung der in Gl. (18) rechts
stehenden Integration ergibt:

«—«„

Jxp (a) sin (a-w) da F (a0. cp) -F (cp) (19)

« — rp

wobei die so eingeführte Funktion F von der Form von y> (a)

abhängt. Das Integral soll jetzt nach a0 differenziert werden.
Aus Gl. (19) ersiebt man:

d f '. dF(a0,w) dF(cp)•
xp (a) sm (a - cp) da --—" -r— - > (20)

und

da0Jr r da0 0a0

dF,{y^ =xp(a0)sul(a0-w) (21)
u a0

d F (cp)

da0
0 (22)

da F (cp) eine Konstante ist. Gl. (18) lässt sich unter Benützung
von Gl. (19) bis (22) schreiben:

sin cp d [a • fl(a)l ,9q,nql -±J^r±- W^o)^(a0-w). (23)

Schliesslich berechnet man aus dieser letzten Gleichung die
unbekannte Funktion

W«oM-Sin? / dlaAH^. (24)
n q I0 sm (a0 - cp) d a0

Das gestellte Problem ist damit gelöst.
Alan findet zu einem beliebigen Streu ici nl:el a0 die zugehörige

Streufunktion xp (a0) im ivesentlichen also durch Differentiation der

gemessenen Intensitätsverteilu ng.
Zunächst soll gezeigt werden, worin der Vorteil der speziellen

Anordnung nach Fig. 1 besteht. Von vorneherein wird man
nicht auf die Notwendigkeit aufmerksam, die photographische
empfindliche Schicht (Platte oder Film) eben zu wählen und ausserdem

die Plattenebenc so zu legen, dass sie durch den einen
Endpunkt des primär streuenden Gasstrahles geht. Man könnte
vielmehr auch daran denken, ähnlich wie bei dem Versuch von
P. Scherrer und A. Stäger (loc. eit.), den Röntgenstrahl radial
durch eine zylindrische Kamera zu senden und einen photogra-
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phisehen Film auf den Zylindermantel zu legen (Fig. 4). Um
die Helligkeit in einem Punkt P des Filmes zu rechnen, betrachtet
man, entsprechend der früheren Rechnung, ein Elementar-
volumen dV des Röntgenstrahles. Der Aufpunkt P wird am
einfachsten durch den Zentriwinkel y (früher der Abstand a)
festgelegt. Man erhält für H (y) einen Ausdruck, wie in Gl. (7).
Wieder lassen sich r, cos b und dx durch y und a ausdrücken
und Gl. (7) ergibt eine zu Gl. (13) entsprechende Formel. Hier
enthält nun aber, wie eine einfache Rechnung ergibt, der Inte-

"*U .* s\

ht-
WT

Fim

ist

Fig. 4.

grand der rechten Seite auch den Parameter y in der Form
cos (a — y). (Bei der erstbesprochenen Anordnung konnte der
Parameter « vor das Integral gezogen werden, da er nur als Faktor
auftrat.) Damit wird die Differentiation, die nun folgen soll,
nicht mehr so einfach. Man erhält durch Differentieren eine
Summe, deren erster Summand die gesuchte Funktion tp (a0)

enthält; der zweite Summand besteht wieder aus einem Integral
über ip (fl). Die Versuchsanordnung gestattet also nicht, die
Funktion tp (a) selbst zu berechnen.

Eine dritte Anordnung besteht darin, eine photographische
Platte parallel dem Primärstrahl zu stellen. Die
Rechnungsdurchführung zeigt, dass die untere Integrationsgrenze in Gl. 18
keine Konstante für alle Plattenpunkte mehr bleibt; sie hängt
vielmehr, wie die obere Grenze, auch von dem besonders be-
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trachteten Aufpunkt ab. Bei der späteren Differentiation erhält
man daher zwei Glieder, die beide die Streufunktion xp als Faktor
enthalten; das Argument der Funktion xp ist in den beiden
Summanden verschieden, so dass auch bei dieser dritten Anordnung
eine Unbestimmtheit in der Berechnung der gesuchten Streu-
funktion tp verbleibt.

Kehren wir also wieder zu der ursprünglichen Anordnung
mit der schief zum Primärstrahl gestellten Platte zurück. Die
Fig. 1 lässt erkennen, dass die möglichen Winkel a0, für die

U

A
*

Fig. 5.

die Schwärzung der Platte eine Berechnung gestattet, den
Bereich von 0° bis 90° bedecken, wobei 0° dem Punkte A der Platte,
90° dem Punkte C entspricht. Man erhält also nur die Funktion
y> (a0) für die erwähnten Werte des Argumentes. Um auch die
Winkelabhängigkeit für Streuwerte von 90° bis 180° zu bestimmen,
stellt man eine zweite Platte in die Kamera, deren Bildebene durch
den Eintrittspunkt D der Kamera geht und mit dem Primär-
strahl einen Winkel % einsehliessen möge.

Für diese zweite Platte lässt sich die Schwärzung ganz
analog wie für die erste berechnen. Mit den Bezeichnungen der
Fig. 5 erhält man:

r a
sin a

(25)
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cos b sin (a - y) (26)

x fl cos X + r cos (n - a) « (cos z - sin % eotg a). (27)

dx m sin y —r-=— • (28)
sin2 a

Setzt man diese Werte in Gl. (7) ein, so entsteht

X h

H (0) Si z
7V (a) Sin (ö ~ Z) d " • (29)

1 0

oder

und

sin /
n q I0

[a • H(0)] hp (a) sin (a - #) da (30)

tg/?0= -flS1"^_. (31)8 P0 Ti - a cos / v

Das Produkt a ¦ H( a) wird aus dem experimentell gefundenen
Schwärzungsverlauf als Funktion von ß0 berechnet. Durch
Differentiation von Gl. (31) erhält man:

V ^ ~ ^qXl- vn(ß,-X) ' -TßT ~ • (32)

Der Wertebereich von ß0 liegt zwischen 180° und 90°.
Es kann nunmehr durch gleichzeitige Aufnahmen auf beiden
Platten die Streufunktion in ihrem ganzen Verlauf bestimmt
werden. 0° und 180° selbst sind nicht messbar, da sonst die Platten
an den Durchstosspunktcn mit dem Primärstrahl durch den
direkten Strahl geschwärzt würden.

Die Gl. (24) und (32) kömien dadurch vereinfacht werden,
dass bei den bisherigen Messungen beide Platten unter 45° gegen
den Primärstrahl geneigt waren, d. h. es war

cp 135° und X 45°.

Damit wird

y, (aA ---1- 1 d[a;Hw] für 0 < a0 < n/2 (33)
n q 10 (sin a0 + cos aQ) 0 a0

V (ß0) -Ay- ——J——- • d[fl;f(")] für.T/2 <ß0<n. (34)
n q I0 (sm ß0 - cos ß0) d ß0
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Ein grosser Vorteil der photographischen Bestimmung der
Streuintensität liegt darin, dass für alle Werte des Argumentes
der Streufunktion von 0 bis n die Intensität gleichzeitig gemessen
wird. Schwankungen der Intensität der Strahlenquelle sind auf
die Ergebnisse ohne Einfluss. Musste dieser Gesichtspunkt der
Konstanz der Primärstrahlung nicht berücksichtigt werden, so
wäre auch ein direktes Abtasten der berechneten Streuintensitäten
mit der Ionisationskammer möglich.

§ 4. Die Apparatur.

Die bisher beschriebene Kamera hat zwei besondere
Eigenschaften, die für ihre Konstruktion wegweisend sind. Sie muss

SJ
SrJM SgSSg

Fig. fi.

erstens lichtdicht sein, da vorgesehen war, die Platten uneinge-
packt zu verwenden; zweitens soll sie vakuumdicht sein, um die
Gase bei verschiedenen Drucken messen zu können. Diesen

Forderungen wurde entsprochen, indem die eigentliche Kamera
nur lichtdicht gemacht wurde. Sie selbst wurde in ein vakuumdichtes

Glasgefäss mit aufgcschliffenem Deckel gestellt. Für den
Strahleneintritt besitzt das Glasgefäss eine Bohrung, die durch
eine dünne Aluminiumfolie verschlossen ist.

Einen Schnitt durch die Kamera zeigt die Fig. 6. Die Röntgenstrahlen

treten bei dem Fenster Fx durch das dreifache Blenden-
13
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System B in die Kamera K beim Fenster F2 ein. Durch das Fenster
F3 verlassen sie die Kamera, kommen in das Austrittsgefäss A
und schliesslich durch das Fenster F4 wieder ins Freie. Ursprünglich

war vorgesehen, das Blendensystem B und das Austrittsgefäss

A möglichst gut zu evakuieren. Es sollte dadurch erreicht
werden, dass keine Streustrahlung von äusserem Gas in die
Kamera dringt, was in Fig. 1 durch das evakuierte Gefäss G
erfüllt war.

Nachdem die Kamera auf Lichtdichtheit geprüft war, sollte
die Annahme 3, die der früheren Berechnung zugrunde gelegt

,,/y

", n
tf

A
mk ¦%77

\st

Fig. 7.

worden war, geprüft werden. Es war also nachzuweisen, dass
die Streustrahlung durch Blenden und Fenster vernachlässigbar
klein ist. Die Kamera wurde evakuiert und eine mehrstündige
Aufnahme bei Bestrahlung mit Röntgenlicht gemacht. Das
Resultat dieser Aufnahme war völlig negativ. Die Platten wurden
stark geschwärzt und zeigten auch Interferenzlinien der Streuung
an den Aluminiumfolien, aus denen die Fenster F3 und F4
bestanden. Es wurde nun versucht, die Fenster aus allen
möglichen Substanzen herzustellen, um diese Schwärzung der
Leeraufnahmen zu vermindern. Selbst die Verwendung von schwarzem,
mit Schellack bestrichenem Papier brachte keinen genügenden
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Erfolg. Schliesslich wurde die durchgreifendste Methode
eingeschlagen: die Fenster F2 und F3 wurden ganz weggelassen;
F1 und F4 aus dünnem, schwarzem, undurchsichtigem Papier
hergestellt. Damit war aber auch auf die Möglichkeit, das Blendensystem

und das Austrittsgcfäss zu evakuieren, verzichtet. Eine
Leeraufnahme mit dieser Anordnung zeigte absolut keine Schwärzung

mehr (siehe die späteren Diagramme). Die Beseitigung der
beiden Fenster wirkt aber auch auf die Rechnung zurück. Bei
der Integration über die Länge des Primärstrahls waren ganz
bestimmte Grenzen 0 und h angenommen worden. Diese fallen
jetzt dahin.

Fig. 7 stellt die neue Anordnung dar. Für einen bestimmten
Plattenbestand a eines Punktes P1 hat die Integration über x
vom Anfangspunkt A bis zu einem Punkte B zu erfolgen, dessen

Lage von dem Werte a abhängt. Der äusserste Streustrahl ist
nämlich durch die Bedingung festgelegt, dass er die Blende mit
dem Radius c1 im Punkte C eben noch berührt. Man erhält so
eine neue Definition für die obere Integrationsgrenze. Im Dreieck

C PXP" berechnet sich et,, als:

P, P" P. P' - P'P"
tg a0 -=+=- —-

P" C h-AP'
oder

asmcp-c1 Q_.tg «n i (35)b ° h + a cos cp
v

und entsprechend für die andere Platte:

tg/?o -rin*~Ca- (36)5ro h-a cos;/
v '

Die Gl. (35) und (36) ersetzen jetzt die Gl. (16) bezw. (31)
Man erkennt, dass die neuen Gleichungen für verschwindend
kleine Blendenradien in die alten übergehen. Bei dieser Berechnung

der Grenzen ist z. B. für die Platte b das streuende Volumen
innerhalb der Austrittsblende c2 vernachlässigt, das noch von
rückwärts auf die Platte strahlen könnte. Man erkennt aus Fig. 7,
dass diese Wirkung nur für sehr kleine Werte von a in Betracht
kommen kann. Der Effekt darf aber unbesorgt ausser Acht bleiben,
da das streuende Volumen in der Blende sehr klein ist und die
Streustrahlen zudem in der dicken Glasschichte der Platte durch
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Absorption sehr stark geschwächt werden bevor sie die
lichtempfindliche Schichte treffen.

Das Blendensystem besteht aus drei koaxialen kreisförmigen
Öffnungen (Fig. 6). Die ersten beiden Blenden von 2 mm Durchmesser

haben einen festen Abstand voneinander, der so gewählt ist,
dass die stets auftretende Divergenz des Strahlenbündels klein
genug bleibt. Die dritte Blende der Kamera ist gegen die zweite
verstellbar. Die Distanz der beiden wird so eingestellt, dass die
Streustrahlung, welche vom Rande der zweiten Blende ausgeht,
durch die dritte Blende auf einen möglichst engen Kegel abge-

Fig. 8.

schnitten wird. Dabei darf die dritte Blende aber das direkte
primäre Röntgenbündel nicht berühren, da sonst an ihr wieder
Streustrahlung entstehen würde. Die Distanzverstellung und
nachherige Fixierung erfolgt mit den seitlichen Schrauben (Fig. G).

Die Wirksamkeit dieser Anordnung ersieht man daraus, dass die
Leeraufnahmen auch bei dreissigstündiger Belichtungszeit keine
Schwärzung zeigen.

Die Gesamtanordnung der Kamera wird durch Fig. 8

dargestellt. Die Spirale am Deckel der Kamera bildet den
lichtdichten Weg für den Gaseintritt. Die Kamera wird gegen den
Brennfleck der Röntgenröhre möglichst gut zentriert. Evakuierung
und Gaszufuhr erfolgt durch eine Leitung mit Schliff von unten
her. Dort ist auch das Manometer zur Druckbestimmung der
Gasfüllung angeblasen.
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Die zur weiteren Berechnung nötigen Grössen der Kamera
sind:

h 6,5 cm
Cj 0,15 cm
c2 0,4 cm.

Die Plattenhalter sind so gebaut, dass die Platten von
6,5 X 9 cm mit der Schicht in Ebenen liegen, die stets durch
die Punkte A bezw. B (Fig. 2) gehen. Die Halter tragen vor
der Platte liegend, senkrecht über und unter der Registricrlinie,
zwei Marken; verbindet man auf der Aufnahme die Bilder der
beiden Marken durch eine Gerade, so erhält man einen Punkt
der Registrierkurve, dessen Wert a bestimmt ist. Von diesem
Punkt aus erfolgt die Ausmessung der Platten.

Für die äusserst sorgfältige Photometrienmg der Platten
möchte ich Hrn. Dr. Kuiilmanx von der staatl. Universität Hamburg

auch an dieser Stelle meinen besten Dank aussprechen.

§ 5. Fehlerrechnung.

Bevor die Messergebnisse mitgeteilt werden, soll die Berechtigung

der vier Annahmen diskutiert werden, die der ganzen
Rechnung zugrunde gelegt worden waren.

1. Der primäre Röntgenstrahl wurde als unendlich dünn
betrachtet. Zur Stützung dieser Annahme soll im folgenden für
die Platte (cp 135°), die die Vorwärtsstreustrahlung aufnimmt,
die Rechnung mit endlicher Strahldicke durchgeführt werden.

Fig. 9 stellt perspektivisch ein Längenelement dx des
übertrieben stark gezeichneten Primärstrahles dar, das im Abstand x
vom Durchstosspunkt Platte—Strahl liegt. Im Längenelement
greift man ein Volumenelement dV heraus: es sei begrenzt durch
zwei Ebenen, die die Strahlachse enthalten und den Winkel co

bezw. co + doj mit der Zeichenebene einschliessen. Radial liege
das Element zwischen zwei Zylindern vom Radius q bezw. q + d q.
Es gilt also

dV g deo dg dx (37)

Der Schwerpunktsabstand des Volumcnelementes dV vom Plattenpunkt

P (die Registrierlinie liegt in der Zeichenebene) sei r. Die
Streuintensität im Punkte P, herrührend vom Element dV wird
analog wie in Gl. (5):

d Hia) nxp(y) I0 —- cos d (38)
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y bedeutet den Winkel des Strahles r mit der positiven
Primärstrahlrichtung. Der Winkel der Geraden R vom Strahlmittelpunkt

0 nach P heisse a. Alle auftretenden Grössen können
durch a, q, a, co und den Plattenwinkel cp ausgedrückt werden.

:•• PIHt

•\
df

*r

Fig. 9.

Für cp sei zur Vereinfachung gleich der Wert -?- eingesetzt, also

sm<-9
V2

COS Cp

Es wird:

PP' R sin a V2
; B

V2 sina
(39)

x MP' + P'O -77=*- + Rcosa —— (1 + eotg a) (40)
V 2 x 2

dx —7=- - da (41)]/2 sin2 a

Ist in Fig. 9 D' die normale Projektion des Schwerpunktes



199

von dV auf OA, so erkennt man in den anzuführenden Dreiecken
die Beziehungen:

A (ABB): PB AB OM - P'M
a a

PB x /2 j/2 cotga

OA P'B P'P-PB i2
(1 - eotg a)

A (ABP): AP PB
a eotg a

cos tz/4

A (ODD'); (± -$: bei D'):OD' q cos co; DD' q sin co

A (OD'P): D'P2 R2 + OD'2 -2R0D' cos (n/2 -a)
a2

- h p2 cos2 (ii - y 2 fl 0 cos cj
2 sm2 a r

D'P2

A (DD'P); (x «£ bei D'):r2 DD'2 +D'P2=
2 sin2 a

+ p2-}/2 a>Q cos cu

Zl (OD^): D,42 q2+ ~ (1 - eotg a)2- ]/2 a o (1 - cotga) cos co

A (ADP): DA2 r2 + a2 cotg2a - 2 ra eotg a cos b.

Aus den beiden letzten Gleichungen setzt man die rechten
Seiten einander gleich und kann daraus mit dem berechneten
Wert von r2 nach leichter Umformung finden:

2 r cos d a (1 + eotg a) - |/2 5 cos co

und schliesslich

cos ö 1 a (1 + eotg a) - ]72~g cos co

r2
"

2 '
2 sin2 a

+ Q2 - ]/2 ap cos co

(42)

Dieser Ausdruck und der WertdF aus Gl. (37), sowie dx aus Gl. (41)
werden in Gl. (38) eingesetzt:

tu nl0 a
atl(a) - - 7= - xp (y)

2 ]/2 sin" a

(1 + eotg a) - t/2 p cos «]-,,-,_i_ a _r—^ ^fpdcodcpda.M + o2_1/2aecosco /2 (43)2sin2a

Um die Gesamthelligkeit H(a) im Punkte P zu erhalten, muss
die Summierung über alle Volumenelemente dV des Primär-
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Strahles vorgenommen werden. Man erhält also für H(a) ein
dreifaches Integral, das sich folgendermassen schreiben lässt:

u=rp 6)=0 (> 0

mit der Abkürzung

g (a, oy, q)
a(l + eotg a) - ]/2 p cos w

2 sin2 a
+ Q2—y>2 a pcos co

(45)

Die angegebenen Grenzen der drei Integrale sind nach den
früheren Bezeichnungen verständlich; A bedeutet den
Primärstrahlradius. Die folgenden Rechnungen beziehen sich auf die
Auswertung der dreifachen Integration.

Zunächst soll der Ausdruck für die Funktion g umgeformt
werden. Klammert man im Zähler a, im Nenner

>/,>

2 sin2 a

aus, so geht Gl. (45) über in:

9 (fl, o, e)
1 + eotga-f2"(|-) cos co] 2^sin3«

1 + 2sin2a - 2 ]/2 cos co sin2 a' "' V'-'

(46)

In Gl. (46) kommt p nur in der Verbindung — vor. Es sei

abkürzend gesetzt:

— z und damit do
a

a dz (47)

Für ein gut ausgeblendetes Strahlenbündel wird z schon für
massig grosse Werte von a klein werden. Man wird daher in
Gl. (46) eine Reihenentwicklung nach z vornehmen, bei der Glieder
höherer Ordnung als z3 vernachlässigt werden sollen. Diese

Reihenentwicklung behält für alle Punkte der Registrierlinie
Gültigkeit, mit Ausnahme der ganz nahe am Durchstosspunkt
mit dem Röntgenstrahl gelegenen.



— 201 —

Führt man die Entwicklung durch, so erhält man einen
Ausdruck von der Form:

21/2 sin3a .._.
g (a, co, q) —v-

-2 (a0 + a1z + a2z2 + a3z3) (48)

welcher in Gl. (44) eingesetzt ergibt:

«0 2 71 z,

ff(o)

«0 2 71 Zi

-nl0a / / ip (y) sin az (aQ + a1z-\-aiz2^azz3) dadcodz

a rp (ü=0 z 0

mit *, — • (49)
a

Um die Integration durchführen zu können, soll die Annahme
gemacht werden:

xp (y) aa v (a) (50)

Damit macht man die Annäherung, dass für alle Volumenelemente

eines Normalschnittes durch den Primärstrahl die
Abweichung der Streufunktion vom Werte für den Strahlmittelpunkt
klein angenommen wird. Da die Streufunktion einen stetigen
Verlauf hat und ausserdem der Primärstrahl eng ist, wird der
so gemachte Fehler klein sein. Die Vereinfachung ist umso mehr
gestattet, als diese Rechnung den Einfluss der endlichen Strahldicke

nur grössenordnungsmässig zu ergeben braucht.
Durch die Einführung von Gl. (50) in Gl. (49) kann die innerste

Integration über z ausgeführt werden; sie liefert

H,a) =-nInU / / („\ainr, -^M 2*<•>=¦¦ -ni0a I I tp(a)sma[-g- z,
et <p to ¦ -0

fJL^+^i+iJL^sjdadc» (51)

mit den Koeffizienten:

a0 1 + eotg a

fi*! cos o> [3y2 sin2 a (1 -j- eotg a) — *\/2]
a2 —3 sin2 a (1 + eotg a) + cos2 co[—6sin2 a + 15sin4a

(1 + eotg a)]

a3 cos co [3 -\/2 sin2 a — 15 -\ß sin4 a (1 + eotg. a)] +
-f- cos3 oj [—15 Y2 sin4 a 4- 35 y2 sin6 a (1 + eotg a)].

(52)



— 202 —

Die Koeffizienten a0 bis a3 sind nach Potenzen von cos co

geordnet. Man kann somit in Gl. (51) die Integration über co

durchführen. Dabei treten bestimmte Integrale folgender Form
auf:

2 n

(53)

/ d co 2 n
o

2 n

/ cos co d co 0
o

2»
/ cos2 co dco n
0

¦1.-1

I cos3 co dco 0

Man kann also mit Rücksicht auf die darauffolgende
Integration über co alle Summanden des Gleichungssystems (52)
weglassen, die cos co oder cos3 co als Faktor enthalten, und erhält:

H(a) - nl^anzX2 l xp (a) sin a>(1 — eotg a) +
a — rp

+ 4- *i2[5sin4a(1 + eotg a) - 2 sin2 a (2 + eotg a)]\da

Multipliziert man sin a in den Ausdruck der geschweiften Klammer
und setzt für zx ein, so ergibt sich:

g • H(a)

nI0(nA2)

«-».

- / xp (a) | (sin a cos a)
3zl2 1

[5 sin4a (sina +

+ cos et) - 2 sin2 a (2 sin a + cos a)] \da. (54)

Die Grösse (nA2) auf der linken Seite dieser Gleichung
bedeutet den Querschnitt q des Primärstrahles.

Entsprechend der Rechnung bei unendlich dünnem Strahl
soll jetzt Gl. (54) partiell nach a0 differentiert werden. Zu diesem
Zweck spaltet man das Integral der rechten Seite in die
Teilintegrale der beiden Summanden in der geschweiften Klammer.
Die Ableitung des ersten Summanden liefert wie früher

xp (a0) (sin a0 + cos Oq) (55)
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3 zl2
Der zweite Summand lautet bis auf den konstanten Faktor —^— :

a a,

— y>(a) [5 sin4 a (sin a + cos a) - 2 sin2 a (2 sin a + cos a)] da (56)
IV«
a rp

Da der Wert a eine Funktion von a0 ist, muss der Ausdruck Gl. (56)
bei der Ableitung nach a0 als Produkt behandelt werden. Man
erhält:

—2 xp (ap) [5 sin4 a,, (sin üq + cos a0) — 2 sin2 Oq (2 sin ag -j- cos a„)] —
a

2 da 7
' XX3 xixrj w ^a> ^ a (sln a + cos ^_

a tp

— 2 sin2 a (2 sin a + cos a] da (57)

a kann aus Gl. (35) berechnet werden; für den speziellen Fall

3.T

f 4

ergibt sich:

q= CiCOBOp+haina,
cos a0 + sin a0

da
_

V2"(Ä-Ci)
(59)

d a0 (cos a0 + sin a0)2

Das bestimmte Integral im zweiten Summanden des Ausdruckes
Gl. (57) wäre lösbar, wenn man die Funktion xp (a) kennen würde.
Diese Funktion soll nun aber gerade berechnet werden. Nachdem
— wie sich später zeigen wird — die Korrektur für die
Berücksichtigung der endlichen Strahldicke recht klein wird, kann man
in guter Annäherung in dem bestimmten Integral xp (a) durch
einen konstanten mittleren Wert ersetzen und vor das Integral
ziehen. Man wird den wirklichen Verhältnissen nahe kommen,
wenn man für diese Annäherung setzt:

xp (a) ~ xp (a0)

Damit wird das ausgeführte Integral in Gl. (57):

I 2 1 1

xp (a0) | sin5 a0-sin4 a0 cos a0 - y sin3 a0 - TT/fr} * (60)
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Unter Verwendung der Ausdrücke Gl. (54) bis (60) erhält
man für die Ableitung von Gl. (54) nach a0:

1 d[a-H(a)]
n ql0 d a0

~ f (ao) (sin a0 + cos aA

3 / A
+ -r-1 —) [5 sin4 a0 (sin a0 -f- cos a0) - 2 sin2 a0 (2 sin a0+ cos a0))-

2y2 a v a / (cos a0 + sin a0)2
sin5 a0- sin4 a0 cos a0 ¦

2 1

-K- sin° a0 t=3 6V2
(61)

Zum Vergleich sei die entsprechende Gl. (23) für den unendlich

dünnen Strahl mit y= ' f1 angeschrieben:

1 d [a •*/(.,]
nql0 d an

-xp (a0) (sin a0 + cos a0) (62)

Man erkennt, dass Gl. (61) für den Grenzfall A —»- 0 in Gl. (62)
übergeht. Um den Einfluss der endlichen Primärstrahldimensionen

anschaulich zu zeigen, ist in Fig. 10 einerseits der erste

<s

coiou+J/n*.

uo

0.5

J/ajX
£0' HO' 60' 60'

Fig. 10.

Summand (sin c^ + cos a0) als Funktion von a„ aufgetragen,
anderseits die beiden übrig bleibenden Summanden der
geschweiften Klammer in Gl. (61). Sie stellen die Störung S (oq)

durch die endliche Strahlendicke dar. Der Wert von A ist in der
Rechnung als 0,2 cm angenommen mit Rücksicht auf die Divergenz

des Strahlenbündels (Blendenradius 0,1 mm).
Fig. 10 zeigt, dass die Grösse der Störung S (a0) im

Ausdruck von xp0 Gl. (61) gegenüber dem Faktor in Gl. (62) schon
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bei einem Streuwinkel von 10° unter zwei Prozent liegt und für
grössere Werte a0 rasch verschwindet. Dem Winkel a0 10°

entspricht ein Plattenabstand a von ungefähr 15 Millimetern.
Näher als 15 mm kann die Platte auch deswegen nicht zum Strahl
gerückt weiden, damit sie keine direkte Belichtung erhält.

Aus diesen Berechnungen ergibt sich, dass die Vernachlässigung
der endlichen Strahldicke zulässig ist.

Die vierte Annahme, die gemacht wurde, um die
Streufunktion in Form der Gl. (33) und (34) zu erhalten, bezog sich
auf die Absorption der Primär- und Streustrahlen im Streugase
selbst. Bei der bisherigen Berechnung wurde die Absorption
vernachlässigt. Diese Annahme soll jetzt näher begründet werden.

Die Gleichung nach der die Röntgenstrahlen längs ihres
Weges absorbiert, werden, war schon in dem Einleitungsabschnitt
als Gl. (2), § 1 abgeleitet worden. Wendet man diese Gleichung
auf das vorliegende Problem an, so wird man folgendermassen

vorgehen (die Rechnung soll für die Platte cp M ausgeführt

werden):
Die Intensität der einfallenden Röntgenstrahlen sei beim

Eintritt in die Zerstreuungskammer I0. Der Gesamtweg vom
Eintrittsfenster bis zum Punkte A (Schnittpunkt Primärstrahl-
Platte in Fig. 1) sei L. Betrachtet man eine Stelle x (von A
aus gerechnet) des Primärstrahls, so ist der bis dorthin durch
die einfallende Welle zurückgelegte Weg (L—x). Die Primärinten-
sität Ix an der Stelle x ist also nach Gl. (2), (§ 1):

Ix I0e~ "«->. (63)

Diesen Wert Ix hat man an Stelle von I0 in Gl. (6)
einzusetzen. Von einem Volumenelement dV an der Stelle x (Fig. 2)
geht nun Streustrahlung aus. Deren Intensität wird längs des

Weges r um den Faktor e~'ur geschwächt. Man erhält also die
Helligkeit dH (a) an einem Plattenpunkte a, wenn man den
Ausdruck für dH (a) ohne Berücksichtigung der Absorption in
Gl. (6) mit diesem Faktor multipliziert:

d Hw nql0 e-."<£-*> xp (a) e~f" C0S/ dx

nqI0e-flLxp (a) e" <* -r) —°™ dx (64)

Die Grössen x, r, dx und cos 8 sind in Gl. (8), (9), (11) und (12)
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als Abhängige von a berechnet. Setzt man sie in Gl. (64) ein,
so ergibt sich:

a (cos a + sina-1)
dTH<aXT -Ä- (sin a + cos a) / ~W

" "^ da. (65)
nqIüe-PL a

Den Absorptionskoeffizienten /< kann man durch den
atomaren pa und die Atomzahl (bezw. Molekülzahl) n pro cm3
ausdrücken. Es ist definitionsgemäss

p n ,ua

Wählt man den Gasdruck in der Kammer hinreichend klein,
so kann man erreichen, dass n und damit /* so klein wird, dass
die Exponentialfunktion in Gl. (65) durch ihre Reihenentwicklung

angenähert werden darf, die mit dem linearen Glied
abbricht. Es wird also aus Gl. (65) bei gleichzeitiger Integration:

ii

I
4

a • H(n)

nql0e

tp (a) (sin a + cos a)

nq I0 e~PL

p fl (cos a + sin a - 1)
1 +

\[2 sin a
da. (66)

Gl. (66) zeigt einen analogen Aufbau wie Gl. (54). Das
Integral besteht aus einem Summanden der nur a enthält und
einem zweiten mit a und a. Differentiert man Gl. (66) nach üq,
so liefert der erste Summand:

xp (a„) (sin a„ + cos a,,) (67)

und der zweite, abgesehen vom Faktor ,}

(cos «„ + sin a0-l)
fl tp (a0) (sin a0 + cos a0) : —h

sin Oq

i
da f (cos a + sin a - 1)

-\—t— / tp (a) (sin a + cos a) : da (68)
0a0 J sm a

3.-T
a=

4

Das Integral in Gl. (68) lässt sich bestimmen, wenn wir w7ie früher
für f (a) den Annäherungswert xp (a0) setzen. Den Wert von a
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und da kann man Gl. (58) und (59) entnehmen. Bei der Berechnung

des Integrals führt man vorteilhaft den halben Winkel -tj-
ein und erhält aus Gl. (68):

(sin a0 + cos aQ - 1)
V2 W K) j (Ci cos a0+h sin a0)

s|n ^

+ 7 7 • ^ (2 sin a0 - 2 Z n cos "° - a0 - k) \

(cos a0 + sin a0)2 u 2 "
|

(69)

wo

/c \/2-ipi-21» cos ~-= 0,98
4 8

Der Winkel a0 durchläuft den Wertebereich von 0 bis -*-
Entwickelt man sin Oq und cos a,, für kleine Winkel a0 nach
Potenzen von a„, so erkennt man, dass für a0 0 der Faktor

sin a0 + cos a0 - 1

sin an

1

«o 0

wird.
Der Klammerausdruck in Gl. (69) verhält sich also für das

fragliche Gebiet von a0 regulär.
Durch Einfügen der erhaltenen Werte Gl. (67) bis (69) in

Gl. (66) findet man:
1 d [a • Hia)]

n q I0e~u - V (ao) (sin a0 + cos a0) +

(h - Cl)

(sin a0 + cos a0 - 1)
(f, cos a0 + « sin a„) —-—:—

sin a0

(2 sin a0-2 In cos -g- - a0- 0.98) (70)
(cos a0 + sin a0)2

Setzt man für den Ausdruck der eckigen Klammer abkürzend
/ (aA, so ergibt sich schliesslich:

- 1 1 d [a • H(-)]
r(«o)

n g i0e_" L [(sin a0 + cos a0 + p /(„o)] f) a0
(71)

Für den besonderen Wert p 0 geht Gl. (71) in den alten
Wert ohne Absorption nach Gl. (62) über.
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In Fig. 11 wurde die Grösse pf (a„) als Funktion von a0

aufgetragen. Der verwendete Wert p 0,012 entspricht dem

Absorptionskoeffizienten der Cu„-Strahlung in Argon vom Drucke
p 42 mm Hg. Im gleichen Masstab ist auch (sin a0 + cos a0)

aufgezeichnet. Man erkennt, dass in dem gerechneten Beispiel
die Störung durch Absorption im Mittel etwa 3% beträgt.

Dieser Absorptionseinfluss kann aber beliebig klein gemacht
werden, wenn die verwendeten Gasdrücke entsprechend ver-

t6

12

ao

CQM.+s/na.

0,4

fjf(o:.)_

fj-0,012

40' 60' 80' 100'

Fig. 11.

ringert werden. Eine Grenze für die Druckverringerung setzt das

gleichzeitige Abnehmen der Gesamtintensität der Streustrahlung.
Mit der Ausführung dieser Absorptionsrechnung ist die

Berechtigung der vierten Rechnungsannahme sichergestellt.

Gleichzeitig ist aber auch die zweite Annahme über die
Vernachlässigung der sekundären und höheren Streustrahlung
begründet. Nach dem Energieprinzip kann nämlich nur solche Energie
als höhere Streustrahlung auftreten, die von der Energie der
primären Streustrahlung absorbiert wurde. Von dieser Absorption
wurde aber oben gezeigt, dass sie unter geeigneten Versuchs-
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bedingungen klein gemacht werden kann. Das gleiche gilt also
auch von der Streuung höherer Ordnung.

Den Einfluss der Absorption oder der wiederholten Streuung
kann man sich qualitativ auch folgendermassen anschaulich
überlegen: die gesamte, nach allen Richtungen primär gestreute
Energie Esl wird (abgesehen von den Interferenzerscheinungen)
proportional der Primärenergie Ev und einem Volumenfaktor ksl
sein, der von der Grösse und Form des streuenden Gasstrahles
abhängt. Sie ist ferner der Atomzabl pro em3 oder anders
gesagt dem Gasdruck p verhältnisgleich; also

En knEPp. (72)

Wird nun diese Energie En zum zweiten Male gestreut, aber
diesmal im Gesamtvolumen der ganzen Kamera, so bleibt der
Streumechanismus derselbe. An Stelle von Ev tritt jetzt Esl
und an Stelle von fcal der neue Volumenfaktor ks2. Die sekundär
gestreute Energie wird also:

Es2 ks2 Enp kslks2 Evp2. (73)

Man erkennt also, dass Es2 dem Quadrate des Druckes proportional

ist, während Esl linear mit p zusammenhängt. Bei
abnehmendem Drucke kann man demnach zu Werten kommen, wo
die sekundär gestreute Energie gegenüber der primär gestreuten
vernachlässigbar klein wird.

Schliesslich bleibt noch der Beweis für die Gültigkeit der
dritten Annahme, nach der die Streuung durch die Blenden und
Fenster vernachlässigbar sein soll. Hierüber wurde schon früher
bei der Besprechung der Konstruktion der Blenden Mitteilung
gemacht. Die Berechtigung der Annahme wird vollauf durch
die später wiedergegebenen Photometrierungen der Leeraufnahmen
(p =¦= 0) gezeigt.

§ 6. Die Ergebnisse.

Die bisherigen Messungen wurden an Argon ausgeführt. Für
diese Wahl waren mehrere Gründe bestimmend. Es sollte, um
die Intensitätsschwierigkeiten gering zu halten, kein zu leichtes
Atom verwendet werden. Anderseits würde die Verwendung
eines schweren Dampfes oder Gases deswegen die Versuchs-
bedingungen erschweren, weil die Absorption der Röntgenstrahlen
mit der dritten Potenz der Ordnungszahl anwächst. Bei dem
einatomigen Argon sind ferner selbsttätig Interferenzen zwischen

14
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Atomen eines Moleküls ausgeschaltet. Die gemessene Intensität
der Streustrahlung stellt also, auf kleine Gasdrucke extrapoliert,
die Strahlung des einzelnen Atoms dar, die charakteristisch ist
für die Elektronenanordnung im Atom. Durch die Wahl von
Argon sollte weiter erreicht werden, dass die Compton-Strahlung
gegenüber der Streuung der unverschobenen Linie nicht zu stark
auftritt.

Aus dem gleichen Grunde wurde zur Bestrahlung die Cu„-
Linie verwendet. Sie wurde von einer Hadding-Röntgenröhre
mit Kupfer-Antikathode geliefert. Die Röhre war mit 35 Kilovolt
Spannung und 10 Milliampere Stromstärke betrieben. Das
Röntgenlicht wurde durch eine Nickelfolie so gefiltert, dass
die Intensität der Cu„- Linie noch 60%, die der Clip-Linie dagegen
nur 7% ihrer Werte vor dem Filter betrug. Die Strahlung kann
also angenähert als homogen betrachtet werden.

Da die einstrahlende Wellenlänge kürzer ist als die Absorptionskante

des Argons, musste mit dem Auftreten der charakteristischen
Argonstrahlung von ungefähr 4 A.-E. gerechnet werden. Um
darüber Anhaltspunkte zu gewinnen, wurde bei einer Aufnahme
eine Platte verwendet, die in Aluminiumfolie eingepackt war.
Die Folie war so gefaltet, dass die Platte an verschiedenen Stellen
mit Aluminiumstärken von 0,01 bis 0,05 mm bedeckt war. Die
Schwärzung wurde ausphotometriert und aus dem für Aluminium
bekannten Absorptionskoeffizienten die Wellenlänge der schwärzenden

Strahlung bestimmt. Es zeigte sich, dass ohne Filter
sehr starke Fluoreszenzstrahlung wirkt. Mit 0,02 mm Aluminium
konnte jedoch diese störende Strahlung auf praktisch
vernachlässigbare Werte absorbiert werden. Die Aufnahmen, von denen
weiter berichtet wird, wurden demnach sämtliche mit Platten
durchgeführt, die in 0,02 mm Aluminium eingeschlagen waren.
Eine Kontrollaufnahme mit 0,04 mm Aluminiumfilter zeigte keine
anderen Resultate, womit bewiesen war, dass die verwendeten
Filter genügten.

Die Anordnung der Platten bringt den Nachteil mit sieh,
dass für kleine Werte a (Abstand vom Primärstrahldurchstoss-
punkt mit der Platte) die Schwärzungen stark werden, während
für grosse a nur schwache Schwärzungen auftreten. Will man
diese geringen Intensitäten gegenüber dem stets vorhandenen
Plattenschleier noch gross erhalten, so muss man zu langen
Expositionszeiten übergehen. Damit wird aber die Schwärzung am
Plattenanfang so stark, dass dort, die Photometrierung versagt,
da die absolute Schwärzung die Einheit nicht übersehreiten soll.
Es wurde daher die gleiche Aufnahme zweimal mit verschiedenen
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Belichtungszeiten ausgeführt. Von jeder Platte wurde dann nur
der günstige Teil verwendet.

Fig. 12 stellt die Reproduktion der Photometerkurve einer
Argonaufnahme bei 93 mm Druck (Q.S.) und 7 Stunden
Belichtung dar. Am Rande der Platte sind mit Zahlen Helligkeits-

dfH;; •

tMHi \\\\d\ •ii
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Fig. 12.

marken angegeben, deren absolute Schwärzung bekannt ist.
Mit Hilfe dieser Marken wurde die Schwärzungskurve auf absolute
Intensitätswerte H' umgerechnet und in Fig. 13 über a
aufgetragen. An einer Stelle der Platte wurde die Schleierschwärzung

o.e.

0.6
oH

OA

072

Sclileter

afcmj

Fig. 13.

gemessen; sie ist vor den Marken in Fig. 12 mit s bezeichnet und
in Fig. 13 als Parallele zur Abszissenachse eingetragen. Die
eigentliche Schwärzung H wird durch die Differenz der H'-Werte
und dem Schleier dargestellt. Nach Gl. (33) sind diese Intensitäten

mit dein zugehörigen Abstand a zu multiplizieren. Man
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erhält so in Fig. 13 die Kurve a ¦ H. Diese Werte trägt man über
den Winkeln o„ auf, die man nach Gl. (35) aus den a-Werten
berechnen kann. Schliesslich zeichnet man Tangenten an die

«• ff-Kurve und bestimmt deren Neigungswinkel, also die Grösse

(,"—1 Bildet man das Produkt von —
da0 ii ii,

11) i 1

- - und r— — so
sin ^ + cosa0

96»77)43 -^a. ÖO30

Fie. I 1.

erbält man bis auf konstante Faktoren die gesuchten y-Werte.
(Fig. 14.)

Fig. J5a und b veranschaulichen die Photometerkurven
für eine Leeraufnahme (evakuierte Kamera) bei 26stündiger
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Fig. 15a,

Belichtung. Bild 15a eiitsjiricht den Stieuwinkeln von 0° bis 90",
Aufnahme 15b von 90° bis 180°. Aus der Marke für die Schleicr-
schwärzung erkennt man, dass die Photometerkurve in engen
Grenzen um diese Schleierschwärzung schwankt. Am Rande der
Platten ist ein kleiner Intensitätsanstieg. Er lässt sich durch
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den stets vorhandenen Randschleier erklären, der auch bei un-
beliehteten Platten nicht ganz zu vermeiden ist. Es kann also

festgestellt werden, dass die Leeraufnahmen so gut sind, dass
eine Korrektur der Gasaufnahmen nicht notwendig erscheint.

—* IT
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twf

Fig. 15b.

In Fig. 16 ist die zu Fig. 12 entsprechende Aufnahme
dargestellt, bei der die Belichtungszeit 65 Stunden betrug. Der
Argondruck war wieder 93 mm Q.S. Die Kurve wird entsprechend
umgerechnet, wie das oben angegeben wurde. Die erhaltenen

»
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Fig. 16.

xp-Werte wurden so verkleinert, dass bei «0 50° Übereinstimmung

mit dem Wert der kurzbelichteten Aufnahme eintrat, und
die Kurve in Fig. 14 eingetragen. Diese Abbildung stellt also
für die Winkel bis 50° die Ergebnisse der 7stündigen, über 50°
die der 65stündigen Aufnahme dar.
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Die entsprechenden tp-Werte der beiden zweiten Platten für
die Winkel über 90° sind in Fig. 17 eingezeichnet. Merkwürdigerweise

zeigte sich über 150° wieder ein Abfallen der y-Kurve, das
allerdings noch fraglich erscheint. Dieser Teil der Kurve wurde
daher nur punktiert eingetragen. Wegen der besseren Deutlich¬

es
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Fig. 17.

160 ISO

keit ist der Ordinatenniasstab in Fig. 17 grösser gewählt als in
Fig. 14.

Um die beiden Kurven 14 und 17 zu einer zu vereinen, wurden
die ^-Kurven beider Darstellungen bis 90° extrapoliert. Ver-
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150 180°

mindert man dann den Masstab in Fig. 17 so, dass die
extrapolierten Werte gleich werden, so erhält, man schliesslich eine
einheitliche y-Kurve für den ganzen Winkelbereich (Fig. 18).

Ein direkter Vergleich der gefundenen Werte mit den
Messungen von Barett ist wegen des starken Unterschiedes in der
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Primärwellenlänge nicht möglich. Jedoch besteht insofern
Übereinstimmung, als die F-Funktion einen flachen Verlauf ohne
Maxima und Minima zeigt.

Bei der Berechnung der y-Werte wurde der Polarisationsfaktor
1 + cos2o (s. Einleitung) nicht gesondert eingeführt. Will

\
\—\

^M * ___--

JO 60 30 a 130

Fig. 19.

150 HO'

man daher zu der •üblichen Darstellungsweise der Streuung
gelangen, so hat man die xp-Werte durch die entsprechenden Grössen
des Polarisationsfaktors zu teilen. Man erhält so die
Streuintensität, die — entsprechend den Messungen an Kristallen —
mit F2 bezeichnet sei. Die Streuamplitude F ergibt sich daraus

*

Na

^ l *
so 60 SO 120 150 160'

Fig. 20.

durch Wurzelauszieheii. Beide Kurven sind (in verschiedenem
Masstab) in Fig. 19 eingezeichnet.

Zum Vergleich mit den eigenen Messungen sind in Fig. 20
der Arbeit von Scherrer und Stäger die F-Kurve für Hg und
die F-Kurven nach James und Firtii für CI" und Na+ entnommen.
Ein Vergleich mit Fig. 19 zeigt die Ähnlichkeit des Verlaufs der
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F-Kurven, trotzdem zwei derselben durch Reflexion an Kristallen
gewonnen wurden.

Es mag noch erwähnt werden, dass beabsichtigt ist, die Kamera
so abzuändern, dass der jetzt feste Plattenwinkel veränderlich
wird. Man kann so für die Intensitätsbestimmung der grossen
a-Werte die Platten näher an den Strahl stellen, wodurch die
Flächenhelligkeit grösser, die Belichtungszeit also kleiner wird.

Herrn Prof. Dr. Scherrer möchte ich für die Anregung zu
dieser Arbeit, sowie für sein stetes Interesse am Fortgang
derselben und seine wertvolle Unterstützung und Ratschläge auch an
dieser Stelle meinen besten Dank aussprechen.
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