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Die Temperaturschwankungen der Elektroden als Ursache
der Hysterese von Entladungen

von M. Wehrli und V. Hardung.
(9. IV. 1929.)

Es wird die Temperatur einer Elektrode von verschiedener Form,
Wärmeleitfähigkeit und Wärmekapazität berechnet beim Auftreffen eines periodisch
veränderliehen Energiestromes IU0.

Man erhält drei Gesetze: Die Temperaturschwankungen der Elektroden
nehmen mit steigender Grundfrequenz von I1'0 ab; bei hohen Frequenzen wird
die Elektrodentemperatur konstant. Die Temperaturschwankungen eilen sowohl
der auftreffenden als auch der abfliessenden Energie nach. Die Phasenverschiebungen

liegen im ersten Falle zwischen 0 und ti/2, im zweiten zwischen 0 und
-r/4. Sie nehmen mit steigender Frequenz zu.

Diese thermischen Beziehungen bilden die Grundlage der am häufigsten
vorkommenden Hysterese von Entladungen mit kleinem Elektrodenabstand. Es
wird eine allgemeine Methode zur Berechnung der dynamischen Charakteristiken
aufgestellt. Der Zusammenhang zwischen der Energie II'0, der Stromstärke und
der Elektrodenspannung wird dabei von der Theorie der stationären Entladungen
auf die nichtstationären ausgedehnt. Zur Ermittlung der Beziehung zwischen
Elektrodentemperatur, Stromstärke und Spannung (Charakteristische Fläche)
werden zwei experimentelle Methoden angegeben.

Unter speziellen Voraussetzungen ergibt sieh die Simon:'sehe Differentialgleichung,

deren Konstanten vollständig erklärt werden können.

§ 1. Einleitung. Eine Hysterese tritt ein, wenn zwei gekoppelte

Variable verschieden grosse Einstellzeiten haben. Nach den
grundlegenden Arbeiten von II. Simon1) und seinen Mitarbeitern
weiss man, dass es beim Lichtbogen die Elektrodentemperaturen
sind (nach II. Simon im wesentlichen die Temperatur &0 der
Kathode), welche die grossen Einstellzeiten besitzen, während sich
bei vorliegender Elektrodentemperatur die übrigen Variablen,
wie Stromstärke und Entladungsspannung, sehr rasch einstellen2).

') H. Simon, Phys. Zeitschr. 6, 297, 1905 und 7, 433, 1906.
Für weitere Literatur s.: A. Hagenbach, Der elektrische Lichtbogen, Handbuch

der Radiologie IV, 2, zweite Auflage, 1924. — A. Hagbnbacii, Der elektrische
Lichtbogen, Handbuch der Physik XIV, 324, 1927. Verlag J. Springer, Berlin.

-) Dass bei genügend raschen Strom- oder Spannungsänderungen schliesslich

auch diese kurzen Einstellzeiten zu einer Hysterese in der Entladungsbahn
führen können, ist sehr wohl möglich. Von solchen Vorgängen soll in dieser
Arbeit abgesehen werden, ebenso von der thermischen Hysterese in grösserer
Entfernung der Elektroden, s. R. Seeliger, Jahrb. d. Radioakt. 20, 353, 1923.
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Das grundlegende Problem ist deshalb, die Temperatur der
Elektroden als Funktion der Zeit zu bestimmen, eine rein thermodyna-
mische Aufgabe, die hier an die Spitze gestellt, möglichst allgemein

durchgeführt werden möge. Ferner wird der Einfluss der
Form, der Wärmeleitfähigkeit /. und der Wärmekapazität c der
Elektroden näher studiert und auf die dynamischen Charakteristiken

angewendet.

Kapitel I.

§ 2. Das thermodynautische Problem. Auf irgend eine
Elektrode treffe pro Sekunde die Energie Ib0, welche vollständig als
Wärme aufgenommen werden möge. Die Hysterese wird dann
merklich, wenn die zeitliche Änderung von W0 einen gewissen
kritischen Wert überschreitet. W0 kann eine beliebige Funktion
der Zeit / sein. Es sollen nur die zwei wichtigsten Fälle behandelt
werden, nämlich:

1. Der Abschaltvorgang, wo das H*0 von einer bestimmten
Zeit an Null ist.

2. Der periodische Fall, wobei W0 eine periodische Funktion
der Zeit, t wird und als Fourietreibe angesetzt werden kann:

"•„ ß„ y A ,„ sin (m co I I am) -j Bm cos (m co t ¦ am) (1)

Wegen der Periodizität von W0 wird auch die Temperatur des
Elektrodenfleckes eine periodische Funktion der Zeit sein und
sich ebenfalls darstellen lassen in der Form:

N

#0 ° -|- y (am sin m co t b,„ cos m co I) [2)
i

cd bedeutet dabei die Kreisfrequenz der Grundperiode, die m
sind ganze Zahlen, BQ, A,„, Bm. und b0, am, bm die konstanten
Fourierkoeffizienten von I1'0, bezw. &0. Die Energie wird im
allgemeinen gegen die Temperatur gewisse Phasenverschiebungen am
aufweisen, welche man sowohl bei der Energie, als auch bei der
Temperatur einführen könnte. Ersteres erweist sieh für die Rechnung

als einfacher.
Die Elektrode sei homogen, zylindrisch und trage am Ende

einen beliebig geformten Ansatz (s. Fig. 1), dessen Oberfläche
0 in der Sekunde die Energie TU4 abstrahlen möge.
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Der Ansatz bildet ein Wärmereservoir, das pro Sekunde
eine Wärmevermehrung Wb aufweise, der Stiel führe pro Sekunde
die Energie TU6 ab. Der Erhaltungssatz der Energie liefert die
Momentangleichung:

W0 Wt 11', w, (3)

Es möge hier ausdrücklich betont werden, dass 1I'*0 nur den in
Wärme umgewandelten Teil der auf die Elektrode auftreffenden
Energie darstellt. Hat man die Grössen 1L4, ]lr5 und We als Funktion

der Temperatur &n erhält man aus Gleichung (8)

1iiii
X 0

•Ä.Ä».•a

Fig. 1.

den gesuchten Temperaturverlauf. Vorläufig sollen nur solche
Entladungen betrachtet werden, wie sie von m<: Groot1) zuerst
studiert worden sind. Dabei ist der Kathodenfleck identisch mit
der Oberfläche 0 des Elektrodenansatzes, und die Temperatur
dieser Oberfläche nach E. Stückelberg2) konstant. Für die
abgestrahlte Energie IL4 ergibt sich in erster Näherung3) die
Beziehung:

W h, (>¦ &„ (0

wenn \ dieNEWTON'sche Abstrahlungskonstante bezeichnet. Unter
der Voraussetzung, dass im Innern des Elektrodenansatzes überall
die Temperatur &0 herrsche4), wird die Energiezunahme:

d&n

dt
11', V ¦ o ¦ (5)

T* bedeutet dabei das Volumen des Elektrodenansatzes, q seine

') W. de Groot, Physica 5, 121, 234, 1925.
-) E. Stückelberg, Helv. Phys. acta I, 75, 1928.
') t'bcr die genauere Rechnung bei der schwingenden Entladung, s. §11.
4) Diese Annahme verlangt, dass der Elektrodenansatz klein ist gegen die

Länge der eindringenden Temperaturwelle (vergl. § 3).
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Dichte und c seine spezifische Wärme. Die Differentiation der
Gleichung (2) nach der Zeit ergibt mittels Beziehung (5) für W5:

N

W5 V • q • c- co > (am cos in cot — bm sin m co t) ¦ m (6)

i
§ 3. Zur Berechnung der Wärmeabfuhr durch den Stiel dient

als Grundlage die FoußiER'sche Differentialgleichung der linearen
Wärmeleitung1):

<)&
2

ö2 &

Öi
'

d.i-2
worin:

k2= - und I,., h*'V-. (8)
g c ' q • c • q

Es bedeuten dabei: & die Temperatur längs des Stieles, X der
Wärmeleitungskoeffizient, h3 die Abstrahlungskonstante für eine
mittlere Temperatur des Stieles, p sein Umfang und q sein
Querschnitt. Die x-Achse liege in der Stielachse, so dass für x 0,
& &0 wird (s. Fig. 1). Der Stiel sei sehr lang, d. h. es gelte für

x oo, & 0 (9)

In den praktischen Fällen nimmt die Temperatur wegen der
starken seitlichen Abstrahlung sehr rasch ab und erreicht nach
wenigen cm nur noch einige Promille des Wertes #0. Die durch
den Stiel abgeführte Wärme wird:

"•--M-jfL,' <10>

Mittels Gleichung (2) als Randbedingung liefert die Differentialgleichung

(7) die Temperaturabnahme längs des Stieles zu:

b - ^"i • r. <M '»>- r [ x
& -^c L ¦ }^e '' omsin(w«wt- -f--x)

1

+ bmcos(mcot-
Ö™ -x)\- (11)

Die Grössen ym und b,„ sind dabei:

r«> \/2" \K + l/Äj + (rnco)2
und *«¦ T ym

" (12)

') Encyklopädie der math. Wissenschaften V, 4: E. W. Hobson und
H. Diesselhorst, Wärmeleitung.
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Die Summe in der Gleichung (11) stellt die gedämpfte Temperaturwelle

dar, welche sich im Stiele fortpflanzt.
Differentiert man die Beziehung (11) nacb x und setzt den

Wert in Gleichung (10) ein, so erhält man die Wärmeabfuhr des
Stieles zu:

n

II*« Cx ¦ Xq -2°- + qyX- q c J] ]/y*, + 6% ja™ sin (m <°
' + 9>J

Für Ci gilt dabei:1)

C,

6mcos (w w/ 1 <pm)\ ¦

XJh2 _ -. /h2 gj^
M" '

V X

(13)

(14)

Die xpm sind Phasenwinkel zwischen der Temperatur &0 und der
durch den Stiel abströmenden Energiewelle.

Ihre Grösse errechnet sich nach:

tg9». (15)

§ 4. Aus der Energiebilanz (3) erhält man für die auffallende
Energie 1F0, indem man darin die Werte der Gleichungen (1),
(2), (4), (6) und (13) einsetzt:

W0 — 2

N

B

¦ / Am sin (m co t + a,„) + Bm cos (m oj t + am)

(h,0 Cx-X-q)\ +

am //j • 0 sin m cot + V q cm co cos m co t

q \' X q c (y2m + bl) ¦ sin (m co t + xp,

+ bm I /i, 0 • cos m co t — V q c m co sin m oj t

l+ g ]/ X q c (y'i + b ;H) cos (m co t + tpm) (16)

') Im stationären und quasistationären Falle (vergl. §5) kann statt der
Grenzbedingung (9) auch die genauere Bedingung, für x l, 1? 0 verwendet,
werden. Man hat dann für (\ den Wert

V'i,
_

V *
Cr

fe ~. /v/r.^ni v

zu setzen.
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Die mathematische Aufgabe besteht darin, die letzte Summe in
eine Fourierreihe zusammenzuziehen und durch Koeffizientenvergleich

die Beziehungen zwischen den Am, Bm, am, und den

am und bm auszuwerten. Das Resultat dieser Rechnung ergibt
aus den stationären Gliedern:

^-=h10 + C1X-q. (17)

und für die übrigen Glieder:

a
"'
M 6™ M L'^ <•' >" "> r q |' X Q c (y'jn + df„) sin cpm]2

i *'i 0 + q \X o C (yfn r dm) cos cpm}2 ^g.

Die Phasenwinkel a,„ berechnen sich zu:

V Qcmo) + q VXqc (y;n + b'jn) sin cpm
tg am — _ — (19)

/q 0 - q VX t) c (yi — b'fn) cos rpm

Aus den Gleichungen (1), (2), (17), (18) und (19), die als
thermische Beziehungen bezeichnet werden mögen, kann aus der
gegebenen, auf die Elektrode auffallenden Energie W0 die
Temperatur &0 als Funktion der Zeit errechnet werden und umgekehrt.

Diese Rechnung hängt nur ab von der Form der Elektrode
und ihren thermischen Konstanten. Ob es sich dabei um eine
Anode oder um eine Kathode handelt, ist gleichgültig.

§5. Anwendungen. I. Der stationäre Fall. Dabei
verschwinden die Koeffizienten Am, BTO, am, bm in den Summenausdrücken

der Gleichungen (1), (2), (16), und es wird

II
*«

hl0 + ClXq
<*»

d. h. die Temperatur i?n ist um so kleiner, je grösser die Abstrahle

II. Der quasistation är e I'1 a 11.

lim co 0. (21)

Die Gleichung (12) ergibt:

Ym V''2 &m 0

Nach Beziehung (15) und (19) werden die Pha enwinkel

<Pm «m 0.
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Die Gleichung (18) lautet mittels Gleichung (14)

A m Ii t h10+ClXq. (22)
" tu o m

Die Temperatur #0 wird nach Gleichung (1), (2), (17) und (22)

&0= 2(lh<) -C\Xq)
s

ZA ,„ sin m tu i — Bm cos m co t II 0 .__.
h~Ö + ÖAXq~ bX~Ö

: C\Xq

d. h. es reihen sich einfach stationäre Zustände aneinander.

III. Der allgemeine, periodische Fall. Damit die
Hysterese eintritt, oder damit eine Abweichung vom quasistationären

Falle merkbar wird, ist notwendig, dass mindestens eine
von zwei Bedingungen erfüllt ist. Die erste Bedingung bezieht
sich auf den Stiel der Elektrode und ergibt sich aus den
Gleichungen (8), (12) und (15). Sie verlangt, dass m c» in die Grössenordnung

von h2 fällt. Je grösser also die Abstrahlkonstante h3,
der Stielumfang p, und je kleiner die Dichte q, die Wärmekapazität
c und der Stielquerschnitt q ist, bei um so höhern Frequenzen
macht sich die Hysterese bemerkbar.

Die zweite Bedingung bezieht sich auf den Elektrodenansatz
und fordert nach Gleichung (18) und (19), dass der Wert von
V q cm co neben (7q 0 + C1 Xq) merklich werden muss. Je kleiner
der Elektrodenansatz V und je grösser die Abstrahlung /q 0 ist,
desto höhere Frequenzen sind nötig, damit die Hysterese eintritt.

Hat man bestimmte Elektroden, so gibt es stets ein co, bei
dem die Hysterese eintritt; man muss das co nur gross genug
machen.

Für den Einfluss der Frequenz co ergeben sich aus den
Gleichungen (15), (18) und (19) drei Gesetze:

a) Die Amplituden am und bm der Tempcraturscbwankungen
nehmen bei endlicher auffallender Energie W0 mit steigendem
co ab und erreichen für lim co oo den Wert Null, d. h. die Elek-
trodentemperatur &0 wird für hohe Frequenzen konstant.

b) Die Temperaturschwankungen zeigen gegenüber der
auffallenden Energie Phasennacheilungen am, welche bei den höhern
Harmonischen grösser werden und im Grenzfalle <o cc den

Wert ",- erreichen.
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c) Analoge Phasenverschiebungen cpm weist die Temperatur
&0 gegen die durch den Stiel abströmende Energiewelle IF6 auf,

welche bei lim co co den Wert -'- erreichen.

Diese Gesetze bilden die Grundlage der Hysterese von
Entladungen, sie gelten an der Kathode und der Anode.

§ 6. Die Stabelektrode ergibt sich als Spezialfall der obigen
Beziehungen, wenn man das Volumen I' des Ansatzes Null setzt,
und statt der Oberfläche 0 den Querschnitt q einführt. Dabei ist
für &0 eine mittlere Grösse zu nehmen, bezogen auf den ganzen
Stabquerschnitt. Gleichung (18) lautet dann:

A IiJ* m 1Jm

tc,,, u,.,

rq}' ''¦ Q c (yl - b'i) sin2 xp,,, + (Jq | X o c (yl -.- b2„) cos cp,,,)2 (24)

und aus Gleichung (19) wird

y'X g c (yl I b;i) sin cp„,
tg «„, - z — • (25)

K + |M Q.c(yl + bl) cos cpm

Da nach den Gleichungen (12) die ym und bm mit co über alle
Massen wachsen, wird gemäss Beziehung (24) auch beim Stabe
für grosse Frequenzen die Temperatur konstant, unabhängig von
der Zeit.

Neu ist, dass für lim w co nach der Gleichung (25) die

Phasennacheihmgen am -1,- werden.

§ 7. Der Abschaltvorgang soll für den speziellen Fall eines
beträchtlichen Elektrodcnansatzes V behandelt werden, wobei aus
dem stationären Zustande zur Zeit t=o abgeschaltet «erde. Die
Energie TF0 wird von da an gleich Null. Der Wärmeabfluss durch
den Stiel sei quasistationär nach der Gleichung:

W,^-(\lq\ (26)

Mit dem Ansätze &0 - C2e~c'"' erhält man aus den Beziehungen
(4), (5) und (26) durch Einsetzen in die Energiebilanz (2):

0 h10 — V ecC3+C1Xq (27)

woraus sich das C3 berechnen lässt. Die Anfangsbedingung (20)
führt zum Temperaturverlauf:

ft, 0 + / q

*°MqMMave ^" • (28)
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Bestimmt man experimentell den Temperaturabfall des
Elektrodenfleckes nach dem Abschalten einer Gleichstromentladung,
so muss sich eine Exponentialfunktion1) ergeben. Gleichung (28)
liefert so eine direkte Methode zur Bestimmung der eine Elektrode

kennzeichnenden Grösse 'l—, ' *''
1 QC

Kapitel II.
§ 8. Das elektrische Problem. Neben die thermischen

Beziehungen (1), (2), (17), (18), (19) treten zwei elektrische Gesetze.
Das erste gibt den Zusammenhang zwischen der auf die

Elektroden auffallenden Energie W0, der Stromstärke I und der
Entladungsspannung 17. Das zweite setzt die Elektrodentempcra-
turen in Beziehung mit der Spannung und der Stromstärke. Zur
Aufstellung des ersten Gesetzes sollen die von M. Wehrli2)
aufgestellten Gleichungen verwendet werden, und zwar in ihrer
einfachsten Form, d. h. unter Vernachlässigung von chemischen
Umsetzungen, Abschmelzen, Verdampfen oder Kondensieren an den
Elektroden3). Nach der Gleichung (23) der Arbeit 1 ergibt sieh
für die gesamte an der Kathode für Wärincumsetzung zur
Verfügung stehenden Energie W2 + W3 die Gleichung:

W2 + W3 I (UA. - cp-) > W0 (29)

W2 bedeutet dabei die durch die Elektrode abgeführte Wärme,
während die Energie TF3 durch das Gas abgeleitet wird.

In wiefern das W3 bei der Hysterese eine Rolle spielt, muss
das Experiment zeigen. UK ist der Kathodenfall und cp~ die
Austrittsspannung der Elektronen aus dem Kathodenmaterial.

An der Anode erhält man aus Gleichung (3) der Arbeit 2

entsprechend
W2 + W3 7 (UA + cp-) ^ W0 (30)

UA bezeichnet dabei den Anodenfall.
Zur Einführung der gesamten Entladungsspannung U bedient

man sich der Gleichung:

U üs -I U0 h f., (31)

V,; ist der Spannungsabfall in der Entladungssäule.

') Wegen der Xewton'schen Abstrahlung darf diese Beziehung nicht für
zu grosse Temperaturintervalle benützt werden.

2) M. Wehkli, Helv. phys. acta I, 247 (Arbeit 1), 449 (Arbeit 2), 1928.
3) Diese Vorgänge können leicht berücksichtigt werden mittels der

Gleichungen (21) und (22) der Arbeit 1. Auch die Glieder 17 V I, f'rf, 1^ UT werden

wegen ihrer Kleinheit hier weggelassen.
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Gleichung (29) wird dann:

W2 I W3- I[ü -(UA : UG + cf ))^W0 (32)

was für die Kathode die gesuchte Beziehung zwischen der
auffallenden Energie und den Grössen / und II darstellt.

§ 9. Die charakteristischen Flächen. Die Beziehungen zwischen
den Elektrodentemperaturen an der Kathode, bezw. an der Anode,
der Stromstärke I und der Spannung U können theoretisch noch
nicht festgelegt werden. Dagegen gelingt es experimentell mittels
statischer Messungen, diese Funktionen, die charakteristische
Flächen genannt werden mögen, zu ermitteln. Massgebend für
die Entladung ist die Kathodentemperatur &0. tl. h. die
charakteristische Fläche der Kathode. Indem man die Anode sehr gross
wählt, künstlich abkühlt, z. B. mit Wasserkühlung, und nicht
zu grosse Stromstärken nimmt, kann man dieselbe so kühl halten,
dass ihre Temperaturänderung den Anodenfall nicht verändert1).
Es soll deshalb im weitern nur die charakteristische Fläche der
Kathode berücksichtigt werden. Fm diese zu ermitteln, verfährt
man wie folgt: Man misst für eine bestimmte Kathode die
normalen Charakteristiken und die Kathodentemperatur als Funktion

der Stromstärke /. Dann ändert man an der Elektrode
einen Parameter p, der die Elektrodentemperatur t?0 direkt beein-
flusst (¦/.. B. die Elektrodenform), und misst von neuem. Man
erhält so durch Variieren von p die zwei Kurvenscharen:

/1(ü,I,p)=0 (33)
f2(&0,I,p) =0

Die Elimination von p ergibt die gesuchte charakteristische Fläche
in der Form:

y>(U,I,&0) =0 (charakteristische Fläche). (34)

Als solcher Parameter eignet sich z. B. der Stiel-Durehmesser
einer Elektrode, die am Ende eine Kugel trägt. Der Kathodenfleck

bleibt dabei gleich der Kugeloberfläche. Eine weitere
Möglichkeit besteht in der Anwendung einer Hilfsheizung, wobei als
Parameter p die Heizstromstärke dienen kann.

¦-•

') Beim schwingenden Bogen bleibt deshalb das (UA + Ug) besonders bei
kurzer Bogenlänge in erster Näherung konstant. Ganz anders dagegen bei
Wechselstromentladungen, dabei wird die Anode zur Kathode, und es kommt bei der
Wiederzündung als Kathode sehr darauf an, wie heiss die Elektrode als Anode
gewesen ist. Man muss dann sowohl die thermischen Beziehungen an der Anode
als auch ihre charakteristische Fläche berücksichtigen.
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FL Simon (1. c.) bestimmt die charakteristische Fläche wie

folgt: Für eine bestimmte Elektrode, d.h. auf der normalen
Charakteristik, soll gelten:

U I C4 0 ¦ &0 (35)

wobei C\ eine Konstante und 0 die Grösse des Kathoden!"leckes
bedeutet. II. Simon misst dabei für eine Stromstärke die Grössen
0 und &0, und erhält aus Gleichung (35) das 0- &0 der ganzen

jooo7f

2000°ti -

W00°r1

*
UhchtetÄ

i:
¦•<¦*¦

*

U I
50 100 150 Watt

Fig. 2

Charakteristik. Gleichung (35) kann mit den Messungen von
M. Wehrli1) für die Bogenentladung an Wolfram in Stickstoff
geprüft werden.

In Fig. 2 sind die beobachteten &0-Werte (Kreise) als Funktion

der gemessenen Energien U I aufgetragen. Die Bogenlänge
war dabei 2 mm, der Druck 172 mm und die Kathode bestand
aus einer Kugel von 1.81 mm Durchmesser an einem 0,34 mm
dicken Stiele. Da der Kathodenfleck 0 bei diesen Messungen

q M. Wehrli, Helv. phys. acta I, 323, 1928.
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konstant bleibt (gleich der Kugeloberfläche), musste nach der
SiMON'schen Gleichung (35) das &0 eine lineare Beziehung von
U I sein, welche durch den Nullpunkt geht. Wie man aus Fig. 2

sieht, ist das durchaus nicht der Fall, sondern die Temperatur
steigt, wie man das aus dem Bogenmechanismus erwartet, bei
kleinen Energien viel rascher als bei grossen. Die Annahme von
tl. Simon ist zu einfach1), und man wird deshalb die Gleichung
(35) durch die experimentellen Messungen von &0 gemäss (33)
zu ersetzen haben.

Die zweite Annahme, welche II. Simon macht, besteht darin,
dass die Kurven mit konstantem Produkt 0 #„ Gerade durch
den Nullpunkt sein sollen (TF-Strahlen), d. h. es gelte

V C-J ()¦ #0 - const (3()

Kennt man das 0 ¦ #0 auf einer Charakteristik, so ist mittels
Gleichung (36) die charakteristische Fläche, d. h. die Beziehung
zwischen U,l und 0 ¦ &0 festgelegt. Wesentlich für die Theorie
sind die Kurven konstanter Temperatur, die bei unveränderlichem
Kathodenfleck 0 mit den SiMON'schen Geraden zusammenfallen.
Sie sollen Isothermen genannt werden. Einen zwingenden Grund,
dass diese Isothermen Gerade sein müssen, die durch den
Nullpunkt gehen, gibt cs kaum. Nimmt man im Gegenteil an, dass

an der Bogenkathode ähnliche Verhältnisse herrschen wie an einer
fremd geheizten Glühkathode in dichten Gasen, so erwartet man
eher gekrümmte Kurven, wie sie z. B. von II. König2) gemessen
worden sind. Diese haben eine schwache S-Forni, herrührend
von der Überlagerung der Thermionisation der Kathode und der
Ionisation im Gase, und tangieren die C-Achse. In erster Näherung

kann die SiMON'sche Annahme, besonders bei hohen
Stromstärken, zutreffen. Man wird aber besser die oben angegebene
experimentelle Bestimmungsart der charakteristischen Fläche
verwenden.

§ 10. Die dynamischen Charakteristiken. Neben den fünf
thermischen [(1), (2). (17), (18) und (19)] und den zwei elektrischen
Gleichungen (32) und (34) ist mich das KiRCHHOFF'sche Gesetz
zu berücksichtigen in der Form

E I-R U, (37)

wenn E die EMK und Ii den Widerstand des Stromkreises
bedeutet. Die dynamischen Charakteristiken sind solche Beziehungen
von / und U, welche alle acht Gleichungen erfüllen. Praktisch

') H. Simon sagt das schon selbst und verweist auf das Experiment.
-) H. König, Helv. phys. acta I, 277, 192S.
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ist gewöhnlich die EMK als Funktion der Zeit vorgegeben, und
es werden dazu passende U und I gesucht. Gibt man aber z. B.
das I vor, so sagt Gleichung (37) nichts anderes, als dass es bei
einem passend gewählten R stets ein zugehöriges E gibt. F'ür den
inneren Bogenmechanismus ist Gleichung (37) ohne Bedeutung
und kann weggelassen werden.

Die speziellen Voraussetzungen an der Anode und der Gas-
säule nach § 9 fallen dahin, wenn man statt der Gesamtspannung
V den Kathodenfall VK einführt, d. h. die dynamischen Kathodenfälle

untersucht. Der Kathodenfall ist nämlich bei konstantem /
unabhängig von der Bogenlänge und den Vorgängen an der
Anode, wie M. Wehrli (1. c.) gezeigt hat. Die dynamischen
Kathodenfälle bestimmen sich als Funktion der Stromstärke / mit
den oben verwendeten fünf thermischen Beziehungen an der
Kathode. An Stelle der zwei elektrischen Gleichungen tritt die
Relation (29) und die Fläche:

V>i(UK,I,&0) =0, (38)

wobei y>x nach dem oben angegebenen Verfahren experimentell
ermittelt werden kann. Ein ganz analoges Gleichungssystem von
sieben Gleichungen gilt an der Anode.

§ 11. Die schwingende Entladung. Bei dieser Entladung geht
der Strom I nie durch den Wert Null. d. h. die eine Elektrode
bleibt stets Kathode. Ob die Entladung von selbst schwingt,
oder ob sie durch eine äussere EMK zum Schwingen gezwungen
wird, ist für das folgende unwesentlich. Ferner ist IT0, I, V und
&0 periodisch, so dass die Voraussetzungen der Theorie zutreffen.

Für den quasistationären Fall (§ 5 II) bewegt sich die
dynamische Charakteristik auf der statischen.

Für den allgemeinen, periodischen Fall gelten die Gesetze
a), b) und c) des § 5. Aus a) und der charakteristischen Fläche (31)
folgt der allgemeine Satz:

Bei grosser Grundfrequenz co bleibt die Temperatur der
Kathode konstant, d.h. die dynamische Charakteristik bewegt sich
auf einer Isothermen. Sie ist deshalb eine Kurve, welche keine
Fläche umschreibt.

Es ergibt sich aus obigem Satze eine Methode1) zur Bestimmung

der Isothermen mittels Hochfrequenzmessungen, und zwar

') Diese Isothermenmessung führt zu einer recht vorteilhaften Bestimmung
der charakteristischen Flächen, die auch in Strombereichen geht, wo die
statische Entladung und damit die .Methode des § 9 unmöglich wird. Ermittelt man
nämlich zu den Hochfrequenzcharakteristiken noch die zugehörigen Temperaturen

&0, so ist die charakteristische Fläche gegeben.
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ganz unabhängig von der Kurvenform des Wechselstromes, wenn
nur die Grundfrequenz co gross genug ist.

Für die weitere Rechnung soll der Wechselstromanteil I.,
klein sein gegen die Gleichstromstärke Ilt d. h. es gelte

1 -- Zj - /.,, wo /2M, • (39)

In diesem speziellen Falle bestreichen die dynamischen
Charakteristiken nur kleine Flächenstücke der charakteristischen Fläche tp,
die mit genügender Näherung als eben angesehen werden dürfen,
d. h. man kann statt der charakteristischen Fläche die Tangentialebene

im Punkte 1 Ix nehmen. Die Gleichung dieser Ebene sei:

C ;• ai I a., #„ a3 0 (40)

Die Koeffizienten «,, a., und a3 können leicht experimentell
bestimmt werden. Sie ändern mit der Gleichstromkomponente Iv
Das bei hohen Frequenzen bestrichene Isothermenstück ist gerade
und ergibt sich aus Gleichung (40) durch Konstantlassen von &0.

Für hohe Frequenzen verhält sich damit die Entladung in
bezug auf den Wechselstrom wie ein Ohmscher Widerstand und
der Leistungsfaktor / wird gleich 1, ganz unabhängig von der
Kurvenform der Wechselstromkomponente.

W. Dudell1) hat gemäss Bedingung (39) den Leistungsfaktor
lies Kohlebogens mit der 3-Voltmetcrmethode, welche bekanntlich

von der Kurvenform des Wechselstroms nicht abhängt,
gemessen. Er findet obige Forderung erfüllt, d. h. der Leistungsfaktor

steigt mit wachsender Frequenz an und erreicht bei grossem
co den Wert 1.

Ein weiterer Vorteil der Bedingung (39) besteht darin, dass
bei der Abstrahlung 114 des Elektrodenansatzcs gemäss
Gleichung (4) das wirkliche Strahlungsgesetz benützt werden kann,
indem da« h1 als Funktion von &0 angenommen wird.

Man zerlegt zu diesem Zweck das 11'4 in zwei Teile, einen
stationären und einen dynamischen. Ist S (&0) das Strahlungsgesetz,

so ergibt sich statt Gleichung (4) mittels einer beim zweiten
Gliede abgebrochenen Taylorentwicklung die Gleichung:

ir, (bX \&0\ O-sfy) 0-8'(%)-AK- (41)

Für eine bestimmte Gleiehstromstärke I bleiben die Grössen

') W. Dudell, Phil. Trans. (A), 203, 305, 1904. - Siehe A. Hagexbacii,
I c. IV. 2, S. 105.
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S (-£¦) und <S" iXy) konstant, d.h. man hat in der Gleichung (16)

im stationären Glied für die Konstante /q den Wert

'" l, 's (t') (42>

zu setzen und in der Summe für h1 den Wert

**-(*&-*-'fr)- m
welcher als tangentielle Abstrahlungskonstante bezeichnet werden
soll.

Ganz analog ist mit der Abstrahlung am Stiele oder Stab
zu verfahren, wo in der Summe (Temperaturwelle) wiederum eine
mittlere tangentielle Konstante h3 statt h3 zu setzen ist (s.
Gleichung (8) und § 13).

§ 12. Die Berechnung der dynamischen Charakteristiken lässt
sich strenge durchführen, wenn man die Temperatur #0 oder die
auffallende Energie II"0 als Funktion der Zeit t vorgibt. Man
bestimmt zuerst mit den fünf thermischen Gleichungen aus &0(t)
das W0(t) oder umgekehrt. Dann setzt man das W0(t) in die

Gleichung (32) und das &0(t) in die Beziehung (34) ein und erhält
so zwei Relationen zwischen U, I, und t. Durch Elimination
von U oder I ergibt sich die dynamische Charakteristik in der
Form:

iZu%)f^^-°- (44-

Diese Rechenvorschrift gilt auch ausserhalb des Bereiches der
Bedingung (39). d. h. weder die Charakteristiken noch die
Isothermen müssen gradlinig sein. Man wird dabei den letzten Teil
der Rechnung mit Vorteil graphisch ausführen.1)

§ 13. Die numerische Rechnung soll an der in § 9 benützten
Kugelkathode einer Wolframcntladung in A72 durchgeführt werden.
Mangels an genauen experimentellen Isothermen werde Bedingung

(39) und die SiMON'sche Beziehung (36) verwendet. Die
Gleichung der Tangentialebene an die charakteristische Fläche im
Punkte I1 0,4 Ampere ergibt sich nach den Beobachtungen
von M. Wehrli (1. c.) zu:

LT - 275 • I + 0,91 &0 - 2605 0 (45)

') Bei der Berechnung eines experimentell vorliegenden Falles hat man in
i?0 soviel Fourierkoeffizienten zu nehmen, dass sich das I (') genügend genau
annähern lässt.
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Bei 0,4 Ampere und der Bogenlänge 2 mm ist die Spannung
Lq 110 Volt, die Kathodentemperatur &0 2860° K, und der
Kathodenfall UK 54 Volt. Mittels cp- 4,5 Volt erhält man
aus Gleichung (31) und (32) die Relation für die Energie UV)"

W0 I(U-W). (46)

Für die Energie im Gleichstrombogen ergibt sich daraus der
Wert W0 20 Watt. Vorausgesetzt werde nun die gesamte auf
die Kathode auf treffende Energie 1F0 bei vier verschiedenen
Kreisfrequenzen co, nach den Gleichungen:

W0 20 + 2,5 sin (co t + aA

W0 20 + 5 sin (co t + a2)

W0 20 + 10 sin (co t + u3)

W0 20 + 10 sin (co t + ct4)

co

co

io
CO

71

10 n
100.T
1000 n

(47)

d. h. in Gleichung (1) findet nur ein Fourierkoeffizient A
Berücksichtigung. Aus den thermischen Beziehungen lässt sich der
entsprechende Koeffizient a der Temperatur bezw. die Grössen
4

—, a, cp berechnen. Das Ergebnis findet sich in Tabelle 1, nebst

einigen andern Gliedern der Gleichung (18).

Tabelle 1 (Kugelkathode).

tl) rpccj \'Q f ii
.1q)/>.Qc(y+ö*) ,,-\/?.QC(y+d')

• sin tp
• cos <p u |

7t 0,0271 0.0195 0,0014 0,00366 2100' 50°53' 0,0368
10.T 0,271 0,00683 0,00754 41"50' 84026' 0,279

100,-i 2,71 0,0224 0,0226 44°40' 880.54', 2,73
1000.-T 27,1 " 0,0713 0,0713 45° 89H8' 27,1

Die verwendeten thermodynamischen Konstanten des Wolframs

sind der Arbeit von C. Zwikkkh2) entnommen, wonach:

V 0,195 bei 2860° K
h3' 0,0845 bei 2000° K

X 1,43 Wärmeleitfähigkeit
c 0,146 Wärmekapazität
q 19,1 Dichte.

Abstrahlkonstanten

q Es werde der Maximalwert, welcher dem Gleichheitszeichen entspricht,
genommen.

2) C. Zwikker, Proprietes physiques du Tungstene aux hautes Temperatures.

Dissertation, Amsterdam 1925.
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Das h2' wird 3,54 und das k2 0,513, wobei stets als Energieeinheit
das Watt genommen wird. Man erkennt aus Tabelle 1, dass für das

Verhältnis der Amplituden ' das erste Glied V q c co im
wesentlichen massgebend ist. Die Wärmeabfuhr durch den Stiel ist
nach Kolonne 4 und 5 klein. Die Temperaturschwankungen
eroeben sich daraus zu:

#0 2860 + 68 sin cot co n
&0 2860 + 17,9 sin cot co 10 n
&0 2860 + 3,66 sin cot co 100 ti
&0 2860 + 0,036 sin co t w 1000 n

(48)

2 77

Wt
3TT

Stromstärke

Hut)

3 2

UVoll

ItO
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Man sieht, dass mit wachsender Frequenz trotz der Zunahme der
Energieamplitude, die Temperaturschwankungen stark abnehmen.

Die aus den Gleichungen (45) bis (48) errechneten
Stromstärken, Spannungen und dynamischen Charakteristiken sind in
F'ig. 3 aufgetragen.

(T — T) ist die zu Grunde gelegte statische Charakteristik
(Tangentialebene), während (C C) die wahre statische Charakteristik

darstellt.
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Es ergeben sich folgende Resultate:
a) Der Elektrodenansatz (Kugel) bewirkt, dass schon bei der

Frequenz v 50 die Charakteristik eine schmale steigende Fläche
umschreibt, bei v 500 läuft sie auf der Isothermen zwischen den
Stromstärken 0,329 bis 0,457 Amp. Diese Forderung, dass der

ganze Vorgang der Hysterese bei Frequenzen kleiner als 500 vor
sich geht, kann experimentell geprüft werden. Sie enthält im
Gegensatz zur SiMON'schen Theorie keine willkürlichen Konstanten.

b) Die galvanometrischen Mittelwerte der I- und [/-Kurven
über die Periode 7':

T T

f I dt und U

0

weichen vom Berührungspunkt der tangentialeDene an.
wurden mittels eines Planimeters in der Fig. 3 ausgemessen
finden sich in Tabelle 2 eingetragen:

7
; Udt,

Tangentialebene

(49)

Sic
und

Tabelle 2

1' I Amp. 7j Amp. (• Volt Volt

0,5
5

50

0,408
0,397
0,396

0,100
112,2

110,5
109,4

110

Man erkennt, dass bei den kleinen Frequenzen der Mittelwert

höher, bei grossen Frequenzen tiefer liegt als der Berührungspunkt

auf der statischen Charakteristik (Jq 0,400 Amp., U1
110 Volt), was davon herrührt, dass im ersten Falle der Bogen
Energie an den Wechselstromkreis abgibt, im zweiten Falle
dagegen Energie vom Wechselstromkreise aufnimmt.

Es mag noch erwähnt werden, dass wegen des harmonischen
Ansatzes der Energie W0. die LT- und I-Kurven nicht harmonisch sind.

§ 14. Die Beziehungen zur SiMON'.sy/iere Theorie. Auf die zu
einfache Form der SiMON'schen Gleichungen (35) und (36) ist
bereits in § 9 hingewiesen worden. Der grosse Erfolg der Simon-
schen Theorie beruht aber nicht auf diesen zwei Annahmen,
sondern auf der SiMON'schen Differentialgleichung:

- d (O 90)

wobei:

U I cto&0

(\;

dt

oc
X

(50)

(51)
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gesetzt wird. C6 ist dabei eine willkürliche Konstante, in welcher
die Elektrodenform irgendwie enthalten ist.

Man wird fordern, dass sich aus der obigen Theorie unter
gewissen Voraussetzungen die Simon'sehe Differentialgleichung
ableiten und die Gleichung (51) sich vervollständigen lässt. Das
ist auch tatsächlich der Fall.

Dazu sind zwei Annahmen notwendig. Die erste definiert
den Zusammenhang zwischen der auffallenden Energie W0 und der
Leistung U I und muss lauten:

W0 C7 • U I, (52)

wobei C7 eine Konstante bedeutet.
Die zweite nötige Voraussetzung ist, dass die Wärmeabfuhr

W6 durch den Stiel quasistationär erfolge gemäss Gleichung (26).
Man erhält dann durch Einsetzen der Beziehungen (4), (5), (26)
und (52) in die Energiebilanz (3) die Differentialgleichung:

welche für konstanten Kathodenfleck 0 der SiMON'schen
Differentialgleichung entspricht. An Stelle von Gleichung (51) wird
damit die Konstante:

r V p c ,_..L — (54)
CyO

^ '

die im Gegensatze zu Beziehung (51) nach H. Simon die
Wärmeleitfähigkeit X nicht enthält. Diese steht samt der Abstrahlungs-
konstanten im Ausdrucke für die Konstante

KQ+CyXq
4

C70
v '

Damit ist die Einordnung der thermischen Eigenschaften der
Elektrode in die SlMON'sche Differentialgleichung vollständig
durchgeführt. Die für diese Gleichung notwendige Annahme (52),
welche aussagt, dass die Energie W0 bei konstantem Strome I
proportional mit der Entladungsspannung U ansteigt, ist nicht
vereinbar mit der entsprechenden Gleichung (29) unserer Theorie.
Die Gleichung (29) ist aber experimentell und theoretisch
begründet. Sie entspricht der Tatsache, dass die Vorgänge an der
Kathode in weitgehendem Mass von der Bogenlänge und
überhaupt von den Vorgängen in der Gassäule unabhängig sind. Sie
enthält nur den Kathodenfall UK und nicht die Gesamtspannung TJ.
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Während in der obigen Theorie gerade die Gleichung (29) die
Brücke zwischen der Theorie der statischen und der dynamischen
Entladung bildet, steht die Simon'scIic Differentialgleichung im
Widerspruch zu den Vorgängen an der Kathode einer stationären
Entladung.

Die zweite Annahme quasistationärer Wärmeableitung durch
den Stiel nach Gleichung (26) statt derjenigen nach Gleichung (13)
dürfte genügen, solange der Elektrodenansatz V gross und der
Stiel dünn ist, d. h. die Energieabfuhr durch den Stiel eine
untergeordnete Rolle spielt. Dagegen werden sich Differenzen ergeben,
sobald das Wärmereservoir und der Stielquerschnitt beträchtlich

sind.
Für das reine Stabproblem, d. h. V 0, lässt sich überhaupt

keine Differentialgleichung in der SiMON'schen Form mehr
angeben, sondern eine Hysterese ergibt sich nur nach Gleichung (13)
bezw. (24) und (25). W. Wagnkr1) hat die SiMOx'sche
Differentialgleichung neben die strenge Berechnung der Wärmeleitung im
Stabe gestellt, d. h. es soll beides gleichzeitig gelten. Er geriet
in Widersprüche mit der Rechnung von II. Simon* und mit dem
Experimente, wie nach obigem erwartet werden muss.

§ 15. Zum Schlüsse soll dieser Fall der reinen Stabelektrode
an Hand der Messungen von M. Wehrli (1. c), welche an einem
Wolframstabe von 1,7 mm in Stickstoff durchgeführt worden
sind, numerisch behandelt werden. Die Entladung möge wieder
in der Nähe der Stromstärke it 0,4 Amp. schwingen. Für die
Abstrahlkonstante 7q' wird nach C. Zwikker (1. c.) der Wert
0,174 bei 2700° K gesetzt, während die übrigen Konstanton des
§ 13 beibehalten werden. Der Stabquerschnitt q, welcher gleich
der Kathodenfleckgrösse O angenommen wird, ergibt sich zu
0,0227 cm2. In Tabelle 3 sind analog wie in Tabelle 1 die Glieder
der Gleichung (22) bezw. (24) und (25) eingetragen.

Tabelle 3 (Stabkathode;

(1) Vnro) hx'0
V'/ <P a A/if/VXoc^+d*) ii]/?.o+/+ö*)

¦ sin tp ¦ cos tp

71

10 n
100.-T

1000,-r

1°
j 0,0506 0.0634

0,00395 j
(U75 °'180
0,565 0,565
1,79 1,79

38» 40'
44»15'
45"
45°

37" 0'
43° 35'
44° 50'
45°

0.084
0,254
0,804
2,52

q W. Wagner, Der Lichtbogen als Wechselstromerzeuger. Diss.,
Göttingen 1910.
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Vergleicht man Tabelle 1 mit Tabelle 3, so erkennt man,
dass in Tabelle 3 die Glieder der Wärmeableitung (Kolonne 4
und 5) die massgebende Rolle spielen, während die Abstrahlung
(Kolonne 3) zurücktritt. Bei quasistationärer Wärmeableitung
(SiMON'sche Differentialgleichung) würden erstere nicht von co

abhängen, und deshalb zu keiner Hysterese führen. Nach der
oliigen Theorie (Tabelle 1 und 3) steigen sie aber mit wachsendem
co an, und führen so zur Hysterese. Bei der Stabkathode sind sie

es, welche allein tlie Hysterese verursachen. Das Fehlen des bei
der Kugelkathode dominierenden Gliedes V q c co in Tabelle 3

bewirkt, dass die Grösse Afa (letzte Kolonne) viel weniger rasch
mit oj ansteigt als in Tabelle 1, wo bei 1000 n der Wert 27,1

gegen 2,52 in Tabelle 1 erreicht wird. Die Temperaturamplitude
« nimmt, deshalb beim Stabe viel weniger rasch ab als bei der
Kugel, d. h. die dynamische Charakteristik bleibt bis zu viel
höhern Frequenzen eine Fläche, was den Experimenten von
II. Simon und seinen Mitarbeitern entspricht.

Antlers verhält sich beim Stabe auch der Phasenwinkel a,
der nach Tabelle 3 nur 45° erreicht gegen 90° in Tabelle 1.

Mit der Berechnung der dynamischen Charakteristiken für
die Stabelektrode soll noch gewartet werden, bis die dazu
erforderlichen charakteristischen Flächen experimentell ermittelt sind.

Basel, Physikalische Anstalt der Universität.
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Temperaturempfindlichkeit der Molekularpolarisation
von Gasen und Dämpfen

von R. Sänger und 0. Steiger.
(10. IV. 29.)

I. Methyl-, Acthyl- und Propyl-Acther.

Inhalt: Es sind die elektrischen Momente der Moleküle von Methyl-,
Aethyl- und Propyl- Aether bestimmt worden zu: /< • 1018 1,32 4- 0,02,
1,10 + 0,02, resp. 0,85 -fc 0,03. Es lässt sich demnach auf eine dreieckförmige
Struktur des Aethers sehliessen.

In früheren Arbeiten1) haben wir zeigen können, wie die
DEBYE'sche Theorie der Molekularpolarisation weitgehende
Schlüsse über den Molekülaufbau zulässt. Im besonderen haben
wir vor kurzem das elektrische Moment des Wassermoleküls
bestimmt zu: p 1,847 ± 0,01 X IO-18. Damit konnten wir zeigen,
dass aus den von den ultraroten Eigenschwingungen sich ergehenden
zwei Lösungen für die dreieckförmige Konstitution des
Wassermoleküls nur diejenige mit dem Winkel b 32° möglich ist.

Es wird nun im folgenden besonders interessant sein, das
elektrische Moment einiger Äther genau zu bestimmen, weil für
diese Moleküle vermutet werden kann, dass sie eine dem Wassermolekül

ähnliche Konstitution aufweisen, indem die beiden
Kohlenwasserstoffgruppen mit dem zentralen Sauerstoffatom einen
Winkel bilden. Wir würden also den einfachsten Normaläthern
die folgenden Strukturbilder geben:

CH Cri LH Ch.,..< 2,,5 Ch CMS"7

Die bisher vorliegenden Messungen deuten bereits schon
auf eine solche Anordnung. Die meisten dieser Messungen sind an
flüssigem Äthyläther gemacht worden; so z. B. von Williams
und Estermann2). Ersterer bestimmte das elektrische Moment aus

l) R. Sänger, Phys. Zeitschr. 27, 556, 1926. - R. Sänger und O. Steiger,

H. Phys. Acta I, 369, 1928.

-) J. W. Williams, Phys. Zeitschr. 29, 174, 1928. Estermann, Zeitschr.
phys. Chem. Bl, 134, 1928.
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