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Sur la dégénérescence
du paramagneétisme aux températures élevées
par A. Schidlof, Geneve.
(15. X. 28.)

Sommaire: En partant d’'une hypothése simple sur le mouvement des
électrons paramagnétiques, et en y appliquant le principe de la dégénérescence
quantique, on obtient une théorie interprétant d'une fagon satisfaisante les lois
expérimentales du paramagnétisme aux températures élevées jusqu’au voisinage
de la température d’apparition des phénoménes ferromagnétiques (point de Curie).

On arrive ainsi a l'interprétation du théoréme des états magnétiques cor-
respondants (chapitre VII) et de la loi de Curie-Weiss (chapitre VIII), ainsi qu’a
la définition quantique du point de Curie (chapitre 1X). Au point de Curie la
susceptibilité paramagnétique est nulle. Le ferromagnétisme qui se manifeste
a des températures inférieures au point de Curie reste en dehors des limites de
validité des présentes considérations (chapitre X).

En calculant, selon cette théorie, les rayons des trajectoires électroniques,
on trouve des valeurs admissibles.

1. Introduection.

Cette étude est une premiére tentative, ayant pour but de
comprendre le phénoméne du paramagnétisme du point de vue
de la théorie des quanta. Pour y arriver, nous avons entrepris
des recherches sur la degénérescence de certains degrés de liberté
intérieurs des atomes, aux températures élevées.

A quelques égards, nos considérations se rapprochent des
recherches, déja anciennes, de Oosrtreruuis!), de Kregesom?), et
d’autres qui ne pouvaient pas aboutir au résultat visé, parce que
le paramagnétisme n’est certainement pas en relation avec la
rotation des atomes dans leur ensemble. lLes éclaircissements
récents des 1dées théoriques sur la constitution des atomes suggerent
actuellement 1'idée d’examiner ce qui se passe dans les couches
d’électrons périphériques de 'atome paramagnétique.

1) E. Oosteruauis, Comm. phys. Labor. Leiden, Suppl. No. 31; Versl. Amst.
Akad., Juni 1913, p. 217.

2) W. H. Keesom, Comm. phys. Labor. Leiden, Suppl. No. 32a et 32b;
Versl. Amst. Akad., 1913, p. 476 et 490. Voir aussi Marx, Handbuch der Radio-
logie. Theorie der elektrischen und magnetischen Molekulareigenschaften, Artikel
P. DeByEe 1925, p. 597 a 790.
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En ce qu concerne 'étude de la dégénérescence, nous nous
servons des méthodes utilisées dans beaucoup de travaux récents.
Deux théories de la dégénérescence, permettant de suivre le
passage graduel des lois statistiques classiques aux lois quantiques,
ont pendant ces dernitres années retenu ’attention des physiciens:
la théorie de Bose-EinstTeiN, et la théorie de FermI-Pauwr,

La théorie de Bosg!) a eu pour principal succes la déduction
complete, par un procédé purement statistique, de la lo1 du rayonne-
ment de PLaNck, et 1l est probable que cette méme théorie, comme
le suppose EinsTEIN?), s'applique aussi & la dégénérescence des gaz,
quolque les prévisions qu’on en tire ne solent pas encore suscep-
tibles d’une vérification expérimentale.

La méthode de Fermi3), a permis & W. Pauvrr jr.4) l'inter-
prétation du paramagnétisme des métaux alcalins et, plus ré-
cemment encore, A. SOMMERFELD?) s’est servi de cette méthode
pour perfectionner la théorie électronique de la propagation du
courant électrique dans les métaux.

On verra que le point de départ de nos recherches s’écarte
beaucoup de celul des travaux mentionnés.

11. La théorie statistique de Bose-Einstein.

Quoique les principes sur lesquels repose la théorie de Bose-
EinsTEIN®) puissent étre considérés comme bien connus, il me
semble utile de donner, en premier lieu, une courte déduction des
théorémes jouant un réle important dans la suite de ces considé-
rations.

La mécanique statistique classique était basée sur 1'idée
que I'état d’un systéme de I degrés de liberté peut étre représenté
par un «point de phase» quelconque pris au hasard a l'intérieur
du «volume de phase»

V= [[...[dp, ... dp. dg,...dq (1)

délimité en vertu des conditions extérieures imposées au systéme
en question.

1) 8. N. Bosg, Zeitschr. f. Phys. 26 (1924) p. 178.

2) A. EinsrteIN, Berl. Ber, 1924, p. 261, 1925, p. 3.

3) E. FErmi, Zur Quantelung des idealen einatomigen Gases. Zeitschr.
f. Phys. 36 (1926), p. 902 a 912,

#) W. PauLr jr. Uber Gasentartung und Paramagnetismus. Zeitschr. f.
Phys. 41 (1927) p. 81 a 102.

5) A. SomMmeERfFELD, Zur Elektronentheorie der Metalle auf Grund der
Fermi’schen Statistik. Zeitschr. f. Phys. 47 (1928) p. 1 & 32.

6) S. N. Bosg, L. ¢., A. EixsteIN L. c.
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Selon la théorie des quanta, le méme systeme ne peut prendre
que certains états bien définis situés dans le méme volume de
phase et caractérisés par des nombres entiers ou demi-entiers
qu’on appelle les nombres des quanta. D’apres le principe de corres-
pondance, les deux théories conduisent aux mémes résultats
observables, s1 le nombre des états quantisés compatibles avec
les conditions extérieures est énorme. Dans ce cas, pour passer
de la théorie classique a la théorie des quanta, on n’a qu’a diviser
le volume de phase classique V' en cellules de phase de grandeur
h', on

h=6,525-10"27¢c-g-s
est la constante de Pranck. Le nombre des cellules

4 = V
= 3
indique alors le nombre d’états quantisés qu’il s’agit de répartir
sur un trés grand nombre N de systémes tous pareils. On trouve
ainsi ’équivalent de la densité ou de la probabilité d'une répartition
en phase classique.

Le nombre des cellules de phase n’est d’ailleurs pas nécessaire-
ment égal au nombre des états quantisés. Dans certains cas une
méme cellule peut contenir deux ou plusieurs états quantisés.
Il convient donc de multiplier le rapport

‘Lf
hl
par un nombre G qu'on appelle le poids statistique. L’expression
générale du nombre des états quantisés est donc
GV
A= ®)

Les 4 états quantisés étant répartis d'une fagon quelconque
sur les N systémes considérés, il y aura, parmi les états quantisés,
un certain nombre, 4%, auxquels correspond une énergie comprise
entre les limites

e et & Lde.
La probabilité d’une répartition donnée de tous les états

quantisés sur les N systémes, définie par le nombre des complexions
de cette répartition, est

As!

=[] FiFraL
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fi étant le nombre des cellules vides, respectivement des états
quantisés non employés, f* le nombre de cellules ou d’états aux-
quels correspond un seul systeme, f5 le nombre d’états auxquels
correspondent deux systémes, et ainsi de suite.

La condition de probabilité maximum caractérisant 1'état
stationnaire, c’est-a-dire I’état d’équilibre thermodynamique d'un
systeme physique comprenant N systémes moléculaires tous
pareils peut donc étre mise sous la forme suivante:

SXofi(1+mfr)=0. (3)

Les varations 8f5 doivent, de plus, satisfaire aux conditions
sulvantes
NN s ff B
S 2nef =k, (4)

LI
v signifiant I'énergie totale.

NN'nf? =N, (5)
P (7 | n
& n

ou N est le nombre total des systémes considérés.

n

D (6)
—_—
n
A% étant le nombre des cellules de phase ou des états quantisés
dont I'énergie est comprise entre les limites

e et & -+ de*,

En supposant les grandeurs K, N et 4°® données d’avance
et, par suite, invariables, on a les trois conditions accessolres
YWY e O A% s Y s __
SSéfine =0, SSéfin=0, Séf =0.

& i n

—
S n ?

Introduisons des multiplicateurs de LAGRANGE f, p et A°
ou f et o sont des constantes et A* une fonction de s. On obtient
I'équation

A1 & 8 s | . ry
SN ofe(l+Infi+nBeto+2)=0 ™
5 N
dans laquelle les of, peuvent étre considérées comme arbitraires.
On en déduit
8 :
Inf =In B*-n (Be + o)
ou:

In B =1+ A%
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et, par suite
fz = Bse-7 (B8 + 0) . (8)

L’équation (6) permet d’exprimer le coefficient B* en fonction
de la donnée A*. On obtient

By — Ax(1—e @1 0)

d’ou
CO ; (8 &f _ 728
fh ,7A*(1—p (B¢ o))e n(@& o0y (9)

Le nombre des molécules N* dont I'énergie est comprise entre
les limites & et & 4 de* se dédwt alors de I'équation

T _(?'\'_i_" Y _ 38 o
N& — As(] —e (B4 9)) ,\'H(’ n (3 £S5 4 ) .
On trouve ainsi
-(3 g% 4
Ase (e @

N e -

Des considérations thermodynamiques et mécanostatistiques per-
mettent d’interpréter physiquement les «multiplicateurs de La-
grange» f# et 0. On trouve?)

1
B = i (11)
ou k est la constante de BontTzMANN
. R
=g

R = constante des gaz parfaits, L. = nombre d’Avocabpro.
¢ a la signification d’une certaine fonction caractéristique
qu'on obtient en divisant par RT le potentiel thermodvnamique

de Gibbs.

III. La théorie statistique de Fermi.

Voyons maintenant de quelle fagon s’exprime le méme nombre
N¢ suivant la théorie de 'ermI. Cette théorie repose sur un principe
énoncé par W. PauvwLr jr.?), et appelé par cet auteur le «principe
d’équivalence». Selon ce principe, aucun état quantisé bien défini
ne peut se trouver réalisé par plus d'un seul systéme moléculaire.

1) Voir M. Praxck, Theorie der Warmestrahlung. — A. ScHipror, Arch.
des sc. phys. et nat. (5) vol. 6, p. 381392, 1924,
2) W. Pavir jr. L c.
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Avec les symboles utilisés précédemment., le principe de
Pavrr s’exprime par 'équation

fh+fi=4.

En effet, les seules valeurs admissibles du nombre n sont,
en vertu du principe d’équivalence,

n=0etn=1.

Grace & cette supposition, le calcul se simplifie. On a, en
effet, maintenant

ofe(t+mfe) ofi(tmfi)=0. a2

A =f +f dou . ofs+ of, =0. (18)
E =X dou  Xeof,=0. (14)
N=2>f dou D ofi=0. (15)

En éliminant les df; et en introduisant les multiplicateurs
de LAGRANGE B et p on obtient 1'équation

Zéﬂ (lnf;g —lnfg—i—ﬁe*—i— g) == {] 4
8
D’ont on tire

s fs —(B&5 £ Q)
f.l ”“fo” ’

f 4
Jo = » %’;‘:.";;;;“::; ' (16)

On en déduit

et, par suite

s, @0
fx = j_\fv'“ = - —[—4-— P ----------- - (17)

1 1__; e‘(&")’éx’:'(’)

La valeur de N* ainsi obtenue différe de celle qui découle
de la statistique de Bose-EINsTEIN uniquement par le signe
de la fonction exponentielle au dénominateur. Aussi, les consé-
quences auxquelles conduisent les deux théories présentent-
elles une grande analogie. Elles différent cependant par les signes
des termes caractérisant la dégénérescence.
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A la place de la grandeur p nous introduirons une quantité

=i

ey

= e

(18)

que nous appellerons la «variable de dégénérescencen.

Elle mesure en quelque sorte le degré de dégénérescence
du systéeme. Cette quantité est négative selon EINSTEIN, et positive
selon FErMm1. Dans la suite de ces considérations, 1l nous sera
loisible de ne prendre aucune décision en faveur de I'une ou de
I'autre de ces deux théories, pour pouvoir discuter les conséquences
qui découlent de chacune d’elles.

Nous mettrons done désormais l'expression de N* sous la
forme

Fr s =l : (19)

&y

1+ &e RT

En passant a la limite & = 0, on obtient la théorie classique.
Lles quanta se manifestent done, suivant la théorie adoptée, par
une valeur de N°* supérieure ou inférieure a la valeur classique.
Il en est de méme pour I’énergie K*.

1V. Application des théories de la dégénérescence au phénoméne du
paramagnétisme,

Le principe de correspondance suggére 'idée qu’'a une tempé-
rature extrémement élevée, les électrons de la couche extérieure,
magnétiquement non équilibrée, d’'un atome paramagnétique,
pourraient satisfaire au principe d’équipartition de |énergie.

Cette 1dée est confirmée par les chaleurs atomiques relativement.
grandes des corps paramagnétiques. Ainsi, par exemple, a 1000
degrés déja, le fer a une chaleur atomique qui est le double de
celle qu’il devrait avoir selon la lo1 de DuLone et PETIT.

Nous supposerons donc qu’a une température de plusieurs
milliers de degrés, les électrons extérieurs d’un atome paramagne-
tique, ont une énergie cinétique dépendant de la température
absolue du corps, selon le principe de la théorie cinétique classique,
tout en restant attachés au noyau par la force d’attraction de
CourLowmB. Il est évident que, en réalité, les phénomeénes doivent
étre beaucoup plus compliqués.

L’hypothése admise a pour but de permettre 1'étude théorique
du paramagnétisme, envisagé comme 1nfluencé par la dégénéres-
cence, a toutes les températures accessibles & ’étude expérimentale.
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Considérons en premier lieu le cas le plus simple, ou le para-
magnétisme de ’atome est dit & un seul électron tournant autour
du noyau.

I’électron en question étant considéré comme un point
mateériel de masse m, décrivant une trajectoire circulaire de
rayon @, nous utiliserons, pour la représentation du mouvement
de I’électron, des coordonnées sphériques p et &, p étant la longitude
comptée a partir de la ligne des noeuds et # le complément de la
latitude.

Si on introduit des coordonnées rectangulaires, en prenant
I'axe polaire comme axe des 2, et la ligne des noeuds comme axe
des x, les trols composantes de I'impulsion de I’électron sont
exprimées par

p: =pcCos¢g l
Pz = P SIN @ COS Y - (20)
Py = P SIn @ sin g l

on

p=m, o a: (20")
est le moment de I'impulsion totale de l'électron, o signifiant

sa vitesse angulaire. ¢ est I'angle entre la direction de l'axe du
moment d’impulsion p et celle de I'axe des z.

I’énergie cinétique de 1’électron étant

- 2 g 2
£ = 'n02a0 (19.2 + Sin2 '9 ,';‘)2) _— m()aé) 0)“ (20”)
ou
=-smegcosy-w
et
o Snpsing

sin & cos &

on trouve pour les composantes ps et p,, du moment d’impulsion
les expressions

Py = 25 m, a;zﬁ* = —p sIn @ COs ¥ (21)

Py = 3—;— = My al p = p cos ¢ - (22)

Désignons par

do=[[[[dpsdp,dddy
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la portion du volume de phase qui contient la trajectoire de
I’électron, on a évidemment

Aw = g§ Py dd 95]){_,, dy .

Or, selon I'équation (22) on a

¢Pl,,d‘l’ =2ap,=2apcosg.

Puisque d’autre part, dans un champ coulombien quelconque,
on a la relation

2 edt—\ gﬁp dq;

0

ou v signifie la période du mouvement, 1l vient

56 pedd =2m (p - pw) =2ap (1--cosg).
D’ou
Ao = 472 p?cos ¢ (1 —cos ¢) . (23)
Envisageons un trés grand nombre N de rotateurs tous

pareils dont les axes d’impulsion ont des orientations uniformément
réparties dans l'espace, 1l v aura

2
rotateurs dont les axes d’impulsion forment avec 'axe des z un
angle compris entre les limites

, . N
-singd @ = — r d (cos @)

¢ et ¢ +dg.

Le volume de phase contenant I'ensemble des états possibles
des N rotateurs sera donc

V =- l; ZA o d (cos @) =

+1 +
2 N
,“EI, 21\ p® fcos ¢ d (cos ¢) - /(?082 @ d (cos @)
-1 -1

On obtient ainsi I'expression

47 Np*

V == 3
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Or on a selon (20°) et (20")
2 ___ 2 4 2 2
p? = m;a, w®> =2m,a; ¢ .

Désignons par dV* la portion du volume de phase comprenant
les points de phase des rotateurs dont I'énergie a une valeur com-
prise entre les limites ¢ et ¢ 4 de, et dont I’axe d'impulsion forme
avec 'axe des z un angle compris entre les limites ¢ et ¢ + dg.
Cette portion étant manifestement proportionnelle a d(cos ¢)
on trouve

2

* Nded (cos ¢) . (25)

472 m,a

Vs =
d 3

Le nombre des états quantisés des rotateurs de l'espéce
considérée (espece s) est donc exprimé par
G dVs 472G m,a;

.~ 00 Nded(cosg) . (26)

A4 =5 32

Nous supposerons, dans la suite, que le poids statistique
(i* des cellules de phase est indépendant de s, et nous poserons
pour abréger I’écriture

2 (3 2
472G m,a;

37,2 = M. (27)
cos @ = . (277

Il vient done
dA* = My Ndedzx . (28)

Le nombre de rotateurs ou d’atomes paramagnétiques de
I'espece s est done selon les formules (10) et (19) des chapitres
(IT) et (III)

NMyée *Tdedur

i

gV == (29)

14+&e w7

V. Dégénérescence du mouvement de rotation des éleetrons.

Supposons les atomes paramagnétiques placés dans un champ
magnétique uniforme d’intensité H. Comme 1’on sait, I’orientation
des moments atomiques n’est nullement modifiée par l'effet du
champ qui produit seulement la rotation des axes magnétiques
autour des lignes de force (précession de LARMOR).
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Le moment magnétique p étant une propriété spécifique de
I'atome paramagnétique en question, 1l ne peut y avoir aucune
relation entre la grandeur de u et celle du moment d’impulsion p.
Nous supposerons, par contre, que I'axe magnétique de I'atome
est toujours orienté paralléelement & I’'axe du moment d’impulsion p,
en vertu de la loil des quanta. Il en résulte qu'en tournant autour
des lignes de force magnétiques le moment magnétique entraine
axe du moment d’impulsion.

Etudions d’abord la révolution des électrons en l'absence
de tout champ magnétique. Il vient alors, d’apres (29)

l».l‘
st _ ;\ 1] 63 ] __d_(;:_(li )

£

liSe kT

v*u./d,f “'-"“ - N .
11+&e— '-"T‘

On en déduit

D’on

+2MkTIn(1 £ &) =1. (30)
Posons pour abréger
MykT =M . (307}
Il vient
]. " ’

Selon la théorie de Frrmi-Pauri, nous devons adopter le
signe -}-, et nous trouvons alors

= g0, pour I = 0.

Selon Bosk-EinsTeIN, par contre, en adoptant le signe -
on obtient
E=1, pour T = 0.

I’énergie moyenne de I’électron est

+1 ) P
-—-:.Mojd.r/ Ee kTacis
1+ &e 7
- 0
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On trouve, par un développement en série,

£ £3
e=2MKk*T2¢F 4+ 5 F...).
4 g
En posant )
£2 3 "
= 571_ L] _‘f(_’ ... e I ({_.) :'/:IIIA(}H‘__‘E:: 5) df (31)
: . S
0
on obtient, d’apres (30") et (30"),
I A2l Iﬂ (5) . ’
e =kl Y] (31°)

Quelle que soit la théorie adoptée, le rapport des deux fonc-
tions de & qui interviennent dans l'équation (31°), tend vers 1
lorsqu’on a

§K L

Aux températures élevées le théoréeme d’équipartition s’ap-
plique & l’énergie cinétique de révolution des électrons, et nous
pouvons écrire

A s ) - 2 m
=2myage =2myai kT .

Ceci admis, nous pouvons étudier la dégénérescence du para-
magnétisme sans tenir compte, en premiére approximation, de la
dégénérescence du mouvement de révolution des électrons.

VI. Action d’un champ magnétique sur le corps paramagnétique.

En vertu du principe de la précession de LARMOR et en admettant
le parallélisme de l'axe d’impulsion et de 1’axe magnétique de
I’électron paramagnétique, on trouve que, dans un champ magné-
tique d’intensité H, l'électron subit un accroissement d’énergie
cinétique exprimé par

Ae = u Hcos ¢ = pH .

Pour éviter toute confusion, nous désignerons par &, la variable
de dégénérescence de l'orientation paramagnétique. On a alors,
selon (29) et (30"

_BE
NMée %7 dzx

wH

14 & e *kr”

dN* =
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Nous poserons désormais pour abréger I'écriture

wH

IFT = da . (3] )

En vertu des équations (5) ou (15) 1l vient

M f —ef’i'— — 1. (32)

De plus, 'aimantation ¢ que prend le systeme de N aimants
atomiques sous I'influence du champ magnétisant d'intensité H est

+1 + 1
6 =- f prdN =-NMu |- %lﬁ"}d{' : (33)
i ';'1
-1 -1

Pour &, = 0, on a la théorie classique. Dans ce cas, en ¢élimi-
nant la variable &, entre les deux derniéres équations, on trouve
simplement

41
fe"”;cd:r,

N, b .
o=-Np-—
/e—(lxdm
-1
Or on a
-1
43 — (1
. e’ —e sha
f “Tdr=——"— = 9 - ,
a
-1
- 1
g g e e e —e " cha sha
e " "rdr=-—— — ——— =2|—— e | #
7 > 7 a
-1
Il vient done
1 .,
c=Nulctha-—]) - (34)
a

On trouve ainsi la lol bien connue de LANGEVIN, lo1 & laquelle
doit aboutir toute théorie générale lorsqu’on passe a la limite

151:0.
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En effet, par une déduction rigoureuse basée sur les principes
de la mécanique ondulatoire, L. BriLLouvin?) a établi la formule
exacte du moment magnétique atomique, et 11 a montré qu’elle se
rameéne nécessairement a la loi classique de LaxgEvIN, dans le cas
ou le nombre des quanta tend vers infini.

Sans vouloir discuter en détail les propriétés bien connues
de la fonction de LANGEVIN

1 -
A(a) =ctha- " (35)
a
rappelons que cette fonction tend, pour des petites valeurs de la
variable «, vers la limite

a

lim A (a) = 3

Pour obtenir l'expression du moment magnétique mole-
culaire ¢, du corps paramagnétique, 1l faut poser

N=L.
Il vient alors s1 'on suppose
a1
g o bptH  LPpr  H
" 3kT 3R T

La susceptibilité moléculaire du corps paramagnétique s’ex-
prime donc par la formule:

Am = 5 :v ('—3’6)

: L2 pu? ¢ igs
s1 'on remplace —;f‘—{ par C, ce symbole signifiant la «constante

de Curie» de la substance en question. En effet, la théorie de
LaNGeEVIN aboutit a cette loi expérimentale du paramagnétisme
vérifiée, avec une trés grande approximation du moins, aux
températures élevées. De notre point de vue actuel, cela signifie,
qu’aux températures élevées le paramagnétisme des corps gazeux,
liquides ou solides est trés faiblement dégénéré et que 1'énergie
cinétique des électrons de la couche extérieure de ’atome para-
magnétique satisfait avec une certaine approximation au principe
de I’équipartition de I’énergie des degrés de liberté extérieurs.

1) L. BrirrLoulN, Les moments de rotation et la magnétisme dans la mé-
canique ondulatoire, Journ. de Phys. T. 8 (1927), p. 74—8]1.
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VII. La dégénérescence du paramagnétisme.

L’expérience montre toutefois que la loi de Curie n’est rigou-
reusement vrale pour aucun corps paramagnétique, aux tempé-
ratures pratiquement atteintes dans les mesures magnétiques.

Pour interpréter ce fait du point de vue de la présente théorie
il faut, avant tout, tirer de I’équation (32) I'expression de la variable
de dégénérescence &, en fonction de la température T. Or on a

+1
d: 1
Jf=ﬁ1£~fm- (37)
'* + &

-1

[’évaluation de I'intégrale J, fournit

Eg

[ &ePdx | n LT é e
- s T o A
1 1 Zt 51 o 1 i ‘El e—u
On obtient donc I'équation
plEhe o (38)
14§ e ‘ M
D’olt on tire
b e m .
T oM T em
e —e
— 39
‘51 G a1—2—(—lM —(a;o—“;f) ( )
e —e -

résultat qu'on peut aussi présenter sous la forme suivante
shs5
sh( ZF 5 M)

La quantité M ayant les dimensions d’une température dont

(39")

1=

la valeur numérique dépend uniquement des propriétés spécifiques
des atomes paramagnétiques considérés, introduisons une tempé-
rature
T
6 = M (40)
caractéristique pour le degré de dégénérescence du corps para-
magnétique. Il vient en effet

= g (41
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Les valeurs de a pratiquement réalisées dans les plus forts
champs magnétiques des électro-aimants les plus puissants sont
tres petites, & moins qu'on n'opére a des températures absolues
extrémement basses. En excluant ce cas, on peut supposer

a &1

e rapport des deux simus hyperboliques peut alors &tre
remplacé, sans erreur sensible, par le rapport des arguments.
I vient donc
a——— 9 . s
1T T 6 (42)

e

La formule (42) exprime une espeéce de théorcme d'états
magneétiques correspondants, selon lequel la dégénérescence du para-
magnétisme atteint le méme degré pour n’importe quel corps, si le
rapport T|© présente la meme valeur.

['existence de ce fait a frappé l'attention des physiciens
gqui ont étudié le paramagnétisme, et a été signalée en particulier
par P. Weiss?). La présente théorie conduit immédiatement a ce
théoreme selon lequel la variable de dégénérescence &, présente une
valeur définie quel que soit le corps paramagnétique considére, si
le rapport T'/@ est défini.

VIII. La loi de Curie-Weiss.

Si la variable de dégénérescence &, présente une valeur diffé-
rente de zéro, on observe des écarts de la lo1 de Curie, écarts
d’autant plus sensibles que &, est plus grand. On peut interpréter
ces Gcarts au moyen de I'équation générale (33) qui dans le cas

, =0

Uy

conduit a la loi de LaxceEviN, L'intégrale qui intervient dans
cette équation peut &tre mise sous la forme suivante

+ 1 + 1

J f & @ dx _ Ee “adr (43)
Sy 5= Bflx:f‘—_fl 1 i Ele—llz
~1 -1
1) P. Wgiss, Journ. de Phys. (4) T. 6 (1907), p. 661. Voir aussi Handbuch de
Makx, Vol. 6, l'art. de P. DEByE,

38
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et on a
0= ~-MNu.,. (44)
Supposons
£, 1
S1 <<
On peut alors néglger & devant e**, et 1l vient
41
e sha cha
ey = fe Yrde=2¢ (—A-—% -] 45
2 = &1 L\ a2 a =2

-1

Introduisons dans I'équation (45) & la place de & 'expression
(42) affectée du signe - qui correspond a la théorie de Frrwr,
et calculons ¢ selon la formule générale (44) dans laquelle 1l con-
vient de remplacer M par T/2 @, on trouve, pour de tres petites
valeurs de a,

Nua T ;
= - TS 16
T8 T-6 (46
et, par suite, pour la susceptibilité moléculaire
C -
Am = T_@ '’ (47)

(' étant la constante de Curie.

La formule obtenue n’est autre chose que la lo1 de Curik-
Waxiss, trouvée par P. WErss?) dans ses recherches expérimentales
sur le para- et le ferromagnétisme, et interprétée par ce savant
au moyen de I’hypothése du champ moléculaire. Comme nous le
voyons, la température @ n’est autre chose que la manifestation
de la dégénérescence du paramagnétisme qui a lieu conformément
au principe d’équivalence de PauLr

La température @ a été appelée par P. Wriss, dans le cas
des corps ferromagnétiques, le point de CuRrik, et assimilée a la
température de disparition du ferromagnétisme. Selon I'équation
(47) la susceptibilité x,, tend vers infini, si I'on pose

I'=06.

En réalité, la présente théorie ne saurait s’appliquer a ce cas,
car d'une part la supposition

R &«
) P. Werss, L e.
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est absolument mcompatible avec 'égalité

T =@

’

d’autre part on ne peut plus calculer, dans ce cas, la valeur de &,
au moven de l'équation simplifiée (42).

La température @ qu intervient dans expression de la
susceptibilité paramagnétique n’est pas toujours positive. Dans
certains cas la lo1 expérimentale de Curie-Wreiss affecte la forme

Cl
Am = T Jf-—Q : (48)

O signifie alors une température additionnelle, en quelque
sorte négative, puisque le repére thermométrique correspondant
se trouverait au-dessous du zéro absolu.

On peut interpréter les températures additionnelles négatives,
en supposant que, dans certains cas, la dégénérescence du para-
magnétisme a lieu selon la théorie de Bose-Einstein., Je crois
en effet que cette explication s’applique aux treés grandes valeurs
négatives de la température critique 6, telles que celle du fer y.
Pour les petites valeurs de @, telles que la valeur de la tempé-
rature critique de 'oxygeéne, il v a une autre interprétation pos-
sible qui sera donnée dans une prochaine publication.

Utilisons en effet la formule (42) en attribuant a @ le signe -
correspondant a la théorie de Bosk-EinstriN. On trouve d’apres
(43) et (44)

=9 M Npga € Npua T
3 T+ 6 3 T+ 6
ot 'on déduit I'expression (48) de la susceptibilité moléculaire.

Nous constatons done que la dégénérescence du paramagné-
tisme aux températures élevées ne satisfait pas nécessairement
au principe d’équivalence de Pauri. Sous certaines conditions
dont la définition précise serait intéressante & rechercher, la
théorie de Bosge-EixsTrEIN semble y jouer un role.

IX. Signification du point de Curie selon la théorie des quanta.

De l'équation (40), définissant la température critique O,
on peut déduire la signification du point de CurIE des corps para-
magnétiques selon la théorie des quanta. En effet, d’aprés les
formules (6), (26) et (27), le nombre total d’états quantisés que
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peut prendre un systeme composé de N ammants moléculaires est

Z=2A"=MN[de=2MN. (49)

§ -1

La densité de la répartition des états quantisés sur les N
aimants moléculaires est, par conséquent,

V4 T |

— o 2 J[ s . (")(”

A e ‘
Cette densité devient ¢égale a 1 pour 1" = 6.

Le pownt de Curik est done la température a laguelle le nombre
total des états quantisés est précisément éqal an nombre des aimants
molécularres.

A cette température, selon le principe de Paver, qu seul
peut entrer en ligne de compte dans ce cas, 1l n'yv a plus aucune
liberté d’échange des ¢tats quantisés, et le nombre des complexions
possibles se réduit a 1. L’état magnétique est done complétement
défini par la théorie des quanta.

Dans ces conditions, du pomnt de vue de la statistique de
Frrmi-Pavwr, la dégénérescence est complete, et 1l faut attribuer
a la varable & la valeur

;':1 = &L

qui résulte d’ailleurs directement de la formule (41), si on utilisc
cette équation avec le signe correspondant a la théorie de Frrmi-
PavuLr

Le point de Curir est donc la température a laquelle la
dégénérescence du paramagnétisme atteint sa valeur limite, comme
nous 'avons remarqué du reste déja au chapitre précédent.

(Cest en méme temps, d’apres P. Weiss, la température au-
dessous de laquelle les phénomeénes du ferromagnétisme font
leur apparition; mais il est manifeste que ces phénoménes mémes
ne rentrent plus dans le cadre de la présente theéorie.

X. Cas d’une trés forte dégénérescence du paramagnétisme.

Examinons encore, a la lumiere de la formule (43), le cas d'une
trées forte dégénérescence. La variable de dégénérescence qui
intervient au dénominateur de la fonction & intégrer de I'intégrale
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Jy doit ctre alors affectée du signe +—. En effet, la théorie de
Bose-EixstriN, selon laquelle on a nécessairement

Tre

]\].'

-

ne permet pas dattribuer a & des valeurs supérieures a 1.
Selon  Furmi-Pavwir, par contre, nous pouvons examiner
ce qui se passe a la hmite

Dans ce cas, T'unite est a neghger devant le terme & e "%,
Nous trouvons done

1
oy = / rdr=0,
=
et 1l vient
g — 0.

Comme on le voit, on trouve dans ce cas une annantation nulle.
Ce résultat paradoxal est d@ uniquement a la supposition

K1
Cette supposition est en effet en contradiction avec
by = 00 .

En réalité, comme nous le montrerons dans un prochain
mémoire, on a au point de CURIE

E=1718 —e—1.

Au voismage, et a plus forte raison au-dessous du point
de Curig, la présente théorie perd toute signification. L’aiman-
tation du corps est alors due a des causes qui n'ont pas été prises
en considération jusqu’ici, causes qui seront étudiées dans le
mémoire annonce.

e fait que l'imtégrale J, s’annule au point de Curik peut
¢tre interprété, du point de vue de la théorie actuelle et selon
les 1dées de P. Wriss, en admettant que le paramagnétisme cesse
d’exister au voisinage du point de CURIE. A sa place, apparaissent
("autres phénomeénes magnétiques qu'il faut étudier & part.
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XI. Controle quantitatii de la théorie.

Sile nombre d’électrons extérieurs de l'atome paramagné-
tique est z au lieu d’étre 1, les considérations des derniers chapitres
n'en sont nullement affectées, mais 'expression de M donnée
par 'équation (27) est & modifier. En effet, le nombre de rotateurs
contenus dans le systéme de N aimants moléculaires est alors 2z
fois plus grand que dans le cas considéré jusqu’a présent, et,
par suite, le nombre d’états quantisés est augmenté dans la méme
proportion.

Par conséquent, s1 la couche extérieure magnétiquement
non équilibrée de 'atome paramagnétique comprend z électrons,
1l faut exprimer la quantité M par la formule

v 4xGzmyay kT (51)
iVE — e T e ;)
3 h?

Cette expression va nous permettre un controle quantitatif
de la théorie exposée. Appliquons en effet les considérations proé-
cédentes au point de Curie du fer

O — 2730 + T74° = 1047° abs.
Selon I'équation (40) 1l vient
0 T 3 h?
- 2M 8a2Gzm,azk

On peut en déduire la valeur numérique du rayon moyen des
trajectoires électroniques

hv' 3 (52)

O =
Y 2a4/2G:m kO

D’aprés W. Pauvrr jr.!) on a, pour I'électron, G = 2.
Nous poserons de plus, pour le fer,

2 =18, my =9,02-10-28 Lk = 1,37-10 18,
Lle caleul numérique fournit alors
ay = 2,8-10-8 em

Le nombre trouvé est du méme ordre de grandeur que la
distance des centres des atomes dans le réseau cristallin du fer

H W, Pavu jr., L c.
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a ou B. Les trajectoires des électrons extérieurs des atomes
du fer devront donc en général s’entrecroiser ce qui justifie d'une
part ’hypotheése d’'une tendance vers l'équipartition de I'énergie
cinétique des électrons extérieurs aux températures élevées,
maiz indique d’autre part l'existence de conditions bien compli-
quées que la présente théorie simplifiée et schématique doit né-
cessairement ignorer. |

XII. Coneclusions.

Apres avorr établ les limites de validité de la présente théorie
du paramagnétisme qu sera complétée, dans une prochaine
publication, par des considérations relatives aux plus basses
températures, 11 me reste a4 résumer les résultats provisoirement
acquIs,

1° En admettant qu'aux températures élevées, les électrons
de la couche extérieure magnétiquement non équilibrée de I'atome
paramagnétique, satisfont, en ce qui concerne leur énergie cinétique,
au principe d’équipartition de 1'énergie, on peut interpréter
théoriquement les lois expérimentales du paramagnétisme mani-
festant la deégénérescence progressive, aux températures plus
basses, de I'effet d’orientation des moments magnétiques atomiques.

29 Cette conception fournit comme loi limite du paramagné-
tisme applicable aux températures élevées la loi de Curik-
[LANGEVIN,

3% L’étude de la dégénérescence du paramagnétisme con-
dwmt a un théoreme d’états magnétiques correspondants, selon
lequel le degré de dégénérescence du paramagnétisme est fonction
du rapport entre la température considérée et une certaine tem-
pérature critique @ qui est une constante spécifique du corps
paramagnétique en question.

4% De la découle en premiére approximation, pour de faibles
dégénérescences, la lo1 de Curie-WEerss, faisant intervenir la
température additionnelle @, positive, si on applique la théorie
de Fermi-Pauvwl, et négative, si on applique la théorie de Bosk-
EixstriN, La température critique @ est donc identique au point
de Curie de la substance considérée, selon la terminologie de
P. Wriss.

5% Le point de Curie @ d'un corps paramagnétique est
la température a laquelle le nombre d’états quantisés a répartir
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sur les aimants atomiques devient égal au nombre de ces aimants.
A cette température, le svstéme d’atomes paramagnétiques est
complétement dégénéré au sens de la théorie de Frrmi-Patwi,
et sa susceptibilité paramagnétique est nulle. Disons cependant,
pour ¢viter tout malentendu, que l'aimantation du corps consi-
déré est différente de zéro a cette température, comme nous le
montrerons dans un prochain mémoire.

6° Le calcul du rayon moven des trajectoires ¢lectroniques
de I'atome de fer basé sur ces conceptions conduit a un résultat

numeérique satisfaisant.

(rencve, Laboratoire de phvsique de 'Universite,
, . {
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