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Sur la relativité & cinq dimensions et sur une interprétation
de I’équation de Schrodinger
par F. Gonseth, Berne et G. Juvet, Neuchatel.
(28. VI. 28.)

Introduction. Ce mémoire est le développement de quatre notes que nous
avons publiées I'été dernier dans les Comptes-rendus de I'’Académie des Sciences?).
Notre propos est de faire voir, d'une part, que 'expression de la force de Lorentz
conduit nécessairement a la considération d’'un déplacement paralléle dans un
espace a cinq dimensions, dont la métrique est, il est vrai, dégénérée, comme 1'est
celle de l'espace galiléo-newtonien. D’autre part, nous chercherons quelles consé-
quences on peut tirer de I'étude de cet espace lorsque nous en aurons précisé la
nature par quelques hypothéses. Nous retrouverons quelques résultats dus a
M. Karuza, relatifs aux équations de MaxwerLL?), et nous obtiendrons une inter-
prétation nouvelle de I'équation que M. ScHRODINGER a mise & la racine de sa
théorie ondulatoire de la mécanique.

Il convient de dire que c¢’est en méditant le mémoire fondamental de M. E.
CARTAN sur les variétés a connexion affine?), ceux de M. E. Vessror sur la propa-
gation par ondes?), les chapitres que M. HApAMARD a consacrés dans ses deux
grands traités®) a la théorie des caractéristiques et des bicaractéristiques, la belle
théseb) et le livre suggestif’) de M. L. pE BroGLIE, ainsi que les brillants mémoires
de M. ScHRODINGERS®), que nous avons été conduits & la synthése que nous pro-
posons. Nous ne voulons pas oublier non plus de citer M. KanLuza®) qui est le
premier & avoir interprété 1'électromagnétisme dans un espace a cinq dimensions,
non plus que M. O. KrLE1x10) et M. Fock!!) dont les travaux sur ces questions sont
pleins d’intérét. Cependant nous nous écartons de ces trois auteurs sur quelques
points; notre méthode est différente et nous parait plus conforme a la nature
des choses, et de plus, nos résultats sont plus complets et conduisent plus avant
dans la mécanique ondulatoire.

1y C. R. tome 185, p. 341, 412, 448, 535.

%) Sitzungsber. Berlin, 1921 (II), p. 966—972.

3) Annales Ecole norm. sup. (3), 40, p. 325, 41, p. 1.

1) Essai sur la propagation par ondes (Ann. Ec. norm. sup. (3) 26, p. 403).
Sur I'interprétation mécanique des transformations de contact (Bull. Soc. math.
de France, 34, p. 265).

5) Legons sur la propagation des ondes, Paris, 1903, et Lectures on Cauchy’s
Problem in linear partial Equations, New-Haven, 1923.

8) These, Paris, 1924,
Ondes et Mouvements, Paris, 1927.
Annalen der Physik, 1926, passim.
Loc. cit.
Zeitschr. f. Phys. 37, p. 895.
Zeitschr. f. Phys. 39, p. 226.
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Sans prétendre donner une bibliographie exhaustive, nous pouvons citer encore
quelques travaux de M. L. e Brocrig?), de M. Scuipror?) et de M. RosENFELD?),
parus alors que nos Notes des Comptes-rendus étaient rédigées et envoyées, ou
méme parues. De toute maniére, nous n’avons pu nous en inspirer; d'ailleurs
leurs points de vue different du nétre. Enfin M. J. Struik a avisé I'un d’entre
nous qu'un mémoire rédigé en collaboration avec M. N. WirNer allait paraitre
et qu'il traiterait de 'univers & cinq dimensions; nous avons vu ce mémoire?)
alors que notre travail était rédigé, les méthodes différent beaucoup.

On voit donc que la considération d’'un espace a cinq dimensions a fait
I'objet de plusieurs travaux; il semble bien que ce que d’aucuns croient un artifice
créé par des mathématiciens soit, au contraire, imposé ou du moins suggéré par
la nature des choses.

I. Sur les équations de I’électromagnétisme.

1. Considérons dans I'Univers [J; de MiNkKowskl un point
matériel dont la masse au repos soit m, la charge e; solent
u®, ul, u?, ud les composantes de la vitesse d’univers de ce point,
et désignons par &, & &2 & avec &' = mu' les composantes de
I'impulsion d’'univers de ce méme point. Imaginons que dans F,,
1l y ait un champ électromagnétique dont les composantes ten-
sorielles soient les fonctions Fi#*; ce champ exerce sur le point
chargé une force, la force de Lorentz, dont les composantes se
calculent au moyen des F* et des composantes s, s, s% s du
courant créé par le point mobile; les st sont données par les for-
mules:

st = eul,
La force de Lorentz p°, p!, p% p® est des lors définie par les équa-
tions:
pl = == F”"Sk =

Le point matériel chargé a une ligne d’univers dont les

équations différentielles sont:

dét = P"ds s
ds étant 1’élément d’arc de cette ligne; on sait que cet élément
est défin1 par son carré qui est une forme quadratique de
da®, dx', da?, dx® réductible & une somme de quatre carrés de
différentielles convenablement choisies; nous supposerons que ce
sont celles-c1 mémes que nous avons choisies. Remarquons de
plus que
da
ds
1) Journal de Physique, 6, p. 65—73 225—241.
%) C.R. t. 185.

3) Bull. Acad. roy. de Belgique, Classe des Sciences (5) 13, no. 6.
4) Publ. from. the Massachusetts Inst. of Technology, 2, 133, dec. 1927.

ut =
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Par conséquent, on a:
d¢i= -~ Fi &ds (i=0,1,2,3). (1)

Ces équations expriment que l'on passe du vecteur impulsion
Z:*(E", &, 82, 8 de I'E,, situé au point P (29 2!, 22, 2%) de la
ligne d’univers a laquelle il est tangent, au vecteur E, situé au
point voisin P’ (zf 4+ dxf) de cette ligne, en ajoutant & Z trans-
porté parallelement & lui-méme de P en P’ le petit vecteur dz
de composantes d&. Ce petit vecteur n’étant en général pas
nul, la ligne d’univers est courbée; elle n’est pas une droite,
c’est-a-dire une géodésique, de I'El,, et la force de Lorentz a,
par suite, une signification qui n’est pas purement géométrique
par rapport a I'F, de MINKOWSKI.

On sait que M. WEYL, pour opérer une géométrisation de
’électromagnétisme, a donné une extension nouvelle a la géo-
métrie différentielle en introduisant la notion d’étalonnage. Nous
opérerons autrement, en conservant la géométrie différentielle
classique, mais en introduisant une dimension de plus.

2. Introduisons, en effet, une coordonnée z* sans préciser
davantage la métrique de 1’'Univers E; a4 cinq dimensions
quil est constitu¢ par l'ensemble des points (z° 2!, 22, 23, x%).
Définissons simplement la différentielle dz* de la cinquiéme co-
ordonnée du point matériel que nous considérons et cela de ma-
niere que l'on puisse interpréter les équations (1) comme celles
d’'un déplacement parallele, ou si I'on veut d’un transport a la
Levi-Civita, d’un certain vecteur de l'espace Ej.

Ces desiderata sont réalisés si I'on pose:

dzt = 2 ds
m

ou ds est I'élément d’arc de la ligne d’univers E* et si 'on choisit
le vecteur dont les composantes sont £°, &, &2, & déja définies et

4
54:mdx -y

ds

Cela étant, les équations (1) s’écrivent comme les équations
d’un transport parallele dans I'Ej:

d&* = -Gy, £0dx? (a,B,y =0,1,2,8,4), (2)
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ou les Gg’, sont les composantes de la connexion affine en chaque
point de I'E5; on a:

GL=0 l
G4 - GI-L —~ ‘Fll ('1." k: l = 03 1; 2) 3)
G44: u—G4 44 - J

Les quatre premieéres équations (2) ne sont pas autre chose
que les équations (1), et la cinquitme qui s’écrit:
de =0

exprime la conservation de la charge du point mobile.

3. On peut voir que cette géométrisation s’étend immédiate-
ment au cas ou I'E,; n’est plus minkowskien, mais ou 1l est ein-
steinien, c¢’est-a-dire ou 1l est le siege d'un champ de gravitation.

Désignons par I7/, les composantes de ce champ, c¢’est-a-dire
celles de la connexion affine de I'E, einsteinien.

Le champ électromagnétique plongé dans FE, aura comme
composantes les fonctions IF# et sans qu’il soit nécessaire de
préciser davantage, nous voyons que les

pi= — Rikg,
sont les composantes de la force de Lorentz agissant sur le point
chargé.

Les équations du mouvement de ce point sont dés lors:

d2? xi Codaxk dat S
’m(“‘dsz +-Fkl_a?_a_?)=p , (7,:(),1,2’ 3), (3)

on les transforme dans les sulvantes:

ds&i”:r‘rluskdwlﬂL—Fl Erds = () (4\‘
en posant encore:
o= mut=m At
s ds
Si 'on convient que
dat = -2 ds (5)
m

TC‘

et s1 'on définit les composantes (% de la connexion affine d'un

espace Ky, par les équations:

JG}. = z'lk
G{;=G =F!; (i,k,1=0,1,2,3 6)
lpg — Giilc - Gf i Gf4 -



les équations (4) s’écrivent:

d&i+ G lé*dxf =0
et 1’équation

a5+ Gyt daf =0

est 1dentiquement satisfaite, si 'on admet l'invariabilité de la
charge. On peut donc énoncer le théoréme suivant:

St U'on attache a un point matériel de masse m, chargé de e,
mobile dans un champ électromagnétique et dans un champ gravi-
fique, le vecteur dont les composantes dans l'espace a cing dimen-
sions sont:

dz® d o1 d x? da3
m—a—,m——,m——, m——, &

ds ’ ds ’

ce vecteur se déplace parallélement a lui-méme. Icv ds est Uélément
de la projection de la ligne d’univers de U'Ey sur UH,.

Il est donc possible de cette mani¢re de définir des systéemes
inertiaux pour la gravitation et 1'¢lectromagnétisme a la fois.

4. Nous n’avons pas pour autant constitué une relativité a
cinq dimensions, car les considérations précédentes, et le fait
que nous ne connaissons pas de phénomeénes ou intervienne une
variation de la charge nous obligent & ne considérer que des
changements de variables

pour lesquels:

[ (Zg, ¥y, X4, T3) soient des fonctions des seuls (r,, z;, 25, T3)
| et T4 soit fonction de x* seulement,

(7)

et 4 admettre que les fonctions qui interviennent dans nos raison-
nements ne dépendent pas d’zt. C’est d’ailleurs seulement dans
ces conditions que les équations (5) présentent quelque caractére
d’invariance.

En effet, le calcul montre aisément que si 'on fait un change-
ment de variables (7) les composantes de la connexion affine
G4, de I'E; rapporté aux z% s’expriment au moyen des compo-
santes de la connexion affine I% et du champ Fi* par les équa-
tions sulvantes:
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identiques aux équations (6) a la barre pres qui indique que les
fonctions surlignées sont relatives aux nouvelles coordonnées.

Ce calcul est fondé sur les formules de transformation des
composantes de la connexion affine; celles-ci ne constituant
pas un tenseur; l'on a au contraire:

dx* 0z Ox“ 0%z® Oz~

GE =G —— —— o e
f}' 0.’1.7‘3 OJ.';; OIE(, ()-L'lﬁ‘ 0-'1:}1 03:0

le dernier groupe de termes des seconds membres montrant bien
ce fait. Or si dans ces seconds membres, on introduit les hypo-
theses (7) et les valeurs (6) et s1 'on tient compte des formules:

- ox’ 0x® Oux'! 0 x* or!
]w‘l — !'t [ ) %,, et e
ik *8 Q&; Oy 0 oOx;0x, 0x,

A
e kT @ 0(1',- O-L']l.

on obtient le résultat annoncé.

II. Sur la métrique de I'E;.

5. Nous avons done va que dans 'Univers [Y; que nous
avons défini, les coordonnées (2% 2!, 2%, 2% sont encore séparées
d’z? et nous avons en particulier:

Gllk_: ]"11’” (’L: k: | = 05 1» 2' 3)

ot les '}, sont les symboles de Christoffel de deuxitme espéce
du ds* de I'E, (2° 2!, 22, 2%). Dans ces conditions, la loi de trans-
formation des G.7; dans Ej; exige simplement que les I'}; se trans-
forment comme les composantes d’'une connexion affine d'un E,
et les F%;. comme celles d’un tenseur dans le méme K,.

Une telle connexion posséde un groupe fondamental & 15
parameétres. Ce groupe joue vis-a-vis du groupe de Lorentz des
déplacements dans F,, le méme role que joue le groupe de la
cinématique galiléenne de la mécanique classique vis-a-vis du
groupe des déplacements dans un I;. Or le groupe de la ciné-
matique galiléenne ne peut étre caractérisé par un ds* & quatre
dimensions non-dégénéré. La fusion ne s’opére que grice au
groupe de Lorentz. Dans notre I/, il en sera de méme; le groupe
a 15 paramétres ne peut pas étre caractérisé par un ds* non-
dégénéré de I'Ej;.
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Nous allons cependant déterminer un ds® qui nous fournira
a pew prés la méme connexion; c’est-a-dire que nous allons opérer
une réunion de la cinquieme coordonnée aux autres, analogue &
celle qu’on opeére quand on fond le temps et l'espace dans la
synthéese minkowskienne, ou si 'on veut, semblable & celle qui
fait passer du groupe de cinématique galiléenne classique au
groupe de Lorentz.

Mais de méme qu'on abandonne la mécanique et la ciné-
matique classiques lorsqu’on passe de l'espace et du temps ab-
solus & I'Univers de Minkowskr, de méme, nous abandonnerons
I'électromagnétisme de MINKOwSKI — et par suite nous modi-
fierons l'expression de la force donnée par LoRENTZ — en passant
de I'Univers de MinkowskI-EinsTeIN, & I'Univers Fij.

6. Supposons tout d’abord que pour 1, k=0,1,2,3 les
g solent ceux de I'E, einsteinien, on aura:

vl )
G =TI
Les équations:
. t 1l
G =G =T
donnent alors:
Gy,i=Gry,: =Ty, (8)
car on a bien:
f _ r 4 __ nre
Gy i= 9.G0 4 940Gy = 9., F ., =T,

puisque F,; = ¢;, F7; 4+ g;4 F*; et que F'*; n’a pas de sens par
lul-méme.

Tant que les fonctions que nous considérons ne dépendent
pas d’a*, — on voit I'analogie avec le cas statique de la relativité, —
les équations (8) s’écrivent, en rappelant que:

oxt oz

UL PR YR
0xt Tt

- _Q__‘Pi 0 @e

0zt 0x?
Nous les résoudrons en posant:?)
- - gu=2¢,.

1) On pourrait poser plus généralement:

02
9 =29+ 0z,

/ étant une fonction de z° z!, z2, z3.
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On aurait dés lors:
Giga=00u0 + 9,65 =29, F
G44, i= 901Gl + .G =0
done d’une part:

0 (44 :
Sotal 4 1;‘ l M
0zx; Pl
et d’autre part:
0 G4
—===0.
0x,;

Il est donc impossible de conserver la connexion introduite
tout d’abord d’aprés l'électromagnétisme classique.

7. C’est pourquoi nous définirons un ds* & cinq dimensions
arbitrairement. Ce sera ce ds* qui déterminera deés lors la con-
nexion affine. Cependant D'arbitraire dont nous userons sera
modéré par les considérations précédentes. Nous poserons:

Jag = @°
ou ¢ est une fonction de a° x!, a2, 23 et le ds* que proposons deés
lors de mettre a la racine d’'une nouvelle forme de Uélectromagné-
tisme est:

ds?=g;rdzidz* + 4 p;dxidxt + p2dxtdax? (9)

les g (1, k=0,1,2,3) sont des fonctions de z° x!, 2%, 2 qui
en U'absence d’un champ électromagnétique, se réduisent aux coeffi-
cients du ds* einstevmien relatif aw champ gravifique donné.

Les gy =2¢;, (1 =0,1,2,3) sont, au facteur 2 prés les
composantes du potentiel électromagnétique.

Le coefficient y? est le carré d’une fonction de af, x*, a?, 3.

Les lignes d’'uniwers (dans UL;) d'un point matériel chargé
sont les géodésiques de ce ds.

Nous pourrions postuler 1’équation:

dx? e

ds  m
ou I'équation:

dx? e

do m

do étant I’élément linéaire dans I'E,, z* = const. Elles définissent
toutes les deux un rapport ~}% variable. On peut se demander

des lors comment 1l faut répartir cette variabilité sur e et sur m
respectivement.
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III. Sur la méeanique ondulatoire.

8. 81 'on rapproche les mémoires de M. VEssror!), parti-
culierement celui du Bulletin de la Société mathématique de
France (t. XXXIV) sur l'interprétation mécanique des trans-
formations de contact, et tout spécialement la fin de ce mémoire,
des analyses de M. IHIADAMARD sur les bicaractéristiques attachées
a une équation de propagation?), 1l est possible d’exprimer les
principes de la mécanique ondulatoire d’'une maniére trés simple.

Etant donnée une équation (0) aux dérivées partielles du
second ordre, linéaire par rapport aux dérivées secondes, on
peut définir des multiplicités caractéristiques attachées a (0), au
moyen d'une équation aux dérivées partielles du premier ordre
(J), et des courbes, les bicaractéristiques, de (0), qui sont les carac-
téristiques de (oJ).

C’est par des procédés réguliers de calcul que l'on arrive &
I’équation (J) a partir de I’équation (0); il suffit de chercher les
multiplicités pour lesquelles le probleme de Cauchy relatif a
(0) est indéterminé. On passe de (J) aux bicaractéristiques par
la méme condition pour le probleme de Cauchy relatif a (J).

S1 'on identifie (/) avec I'équation de Jacobi du mouvement
d’un point matériel, les trajectoires de ce point matériel sont
les bicaractéristiques de certaines équations aux dérivées par-
tielles du second ordre (0) parmi lesquelles se trouve 1'équation
de Schrodinger. On peut distinguer celle-ci des autres, dans un
certain nombre de cas, par des raisons d’invariance.

Nous allons montrer que dans une relativité a cinq dimen-
sions, il est aisé de donner un sens trés précis a ’équation de
Schrodinger, et de plus, nous pourrons faire voir que cette équation
s’obtient d’'une maniére trés naturelle.

9. La théorie de la relativité & cing dimensions que nous
proposons Ici est une théorie de I'invariance dans I’E;; mais elle
est de plus, comme la gravifique d’Einstein, une théorie physique
qui permet de définir les coefficients du ds* au moyen des masses
et des charges.

Pour commencer, nous traiterons le mouvement d’un point
matériel, en supposant qu’il n’y a pas de champ électromagné-
tique; les potentiels sont tous nuls.

1) Loec. cit. note 4.

?) Loc. cit. note 5. '
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Le ds? de I'E; a deés lors des coefficients dont le tableau
suivant donne l'aspect:

900 Y901 Yoz Yos
910 911 Y12 Y13
920 Y21 Y22 Yas
930 Ys1 Y32 Yss
0 0 0 0 2

Les g4 (1, k = 0,1, 2,3) sont déterminés dans la théorie d’Ein-
stein par les équations:

Rip=0(i,k=0,1,2, 8 (11)

dans les régions de I'lJ; ol ne se trouvent pas de masses; les R,
sont les composantes du tenseur de Riemann contracté, relatif
au ds* de I'E,.

Nous supposerons que les g, et w? sont déterminés en dehors
des masses par les équations:

Besg=0 (0,8=0,1,23,4) (12)

ou les R, ;sont les composantes du tenseur de Riemann contracté,
relatif cette fois au ds* de I'E,,.

Il est clair que les équations (12) difféerent des équations (11),
car pour obtenir le tableau (10) nous avons modifié la connexion
impliquée par les équations (11). Cette modification sera tres

(10)

L i o (i e Y o)

G 5 wrw oy ;

faible si I'on suppose que les dérivées y, = — 57 sont trés petites
’ s 2 Y 2 ()( A :

et négligeables vis-a-vis des -()J:;l’f et que toutes les fonctions g,

et v ont des dérivées par rapport & a* plus petites encore.
Le calcul est deés lors trés simple qui permet de trouver les
R.s. On trouve que les ¢quations:
Rz‘k — 0 (‘i‘} k = 01 1a 25 8)
sont précisément les équations d’Einstein qui déterminent les
Jir du ds* de U'E, einsteinien. Les équations
Ri4'—“—‘0 (??-——-0, 1, 2, 3)
sont identiquement satisfaites et ’équation
Ry =0
17 b
s éerit:

0 (gh vy, .
V’“"(%wh_w+ri’fra‘l’9'k?l)k=0

»
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ou
2

g2y S 0ghi\ Oy
hi S h i R —
g oxtoxh T (P”‘g T 0.:1:") 0xt L ©)

équation aux dérivées partielles du second ordre en v, linéaire
par rapport aux dérivées secondes.

10. Cherchons les caractéristiques de cette équation. Puis-
que les coefficients g,; sont des fonctions des 2% z', 2%, 23 et qu'ils
ne contiennent pas la fonction inconnue, ni ses dérivées premieres,
les caractéristiques ne sont pas déterminées a l'aide d’une inté-
grale choisie de (0), elles sont déterminées par I'équation (0)
seulement?).

Ces caractéristiques sont des multiplicités,

2
S ($0’ $1, x"‘, $3) = O ’
définies par I'équation aux dérivées partielles du premier ordre?):

0S 08

oxi 0xk

ik

=0, ()

Cette équation (J) a des caractéristiques elle aussi, qui sont
des courbes. Ces courbes sont donc les bicaractéristiques de (0);
leurs équations sont:

7d r“ d xl dx? dx?

ox 08 0S 0S ,os
I gxe T g

§ Pkl 2k 3k
T 0xr 97 oz
0S S
d( ()w"u) : ( 01,1)
1 ogit [0S\ [ 905 1 ogit
2 0x° \ 0xt oxh 2 oat 03:% Or"
0S
1(55) a(55)

1 0gi* {08\ [08) 1 0gi" (08 ( 3\
g dz® \oxt/\dzh 2 0xy \oxi/\ozh
Or on sait que ces équations définissent les géodésiques du
ds* de 'Ey, le rapport commun a pour valeur la moitié de 1'élé-
ment d’arc de ladite géodésique.

Mais il est connu que dans I'E, einsteinien, les trajectoires
d un point matériel sont les géodésiques du ds? de I'H,.

1) Cf. Hapamarp, Propagation, p. 315.
?) Habamarp, loc. cit., p. 271.
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On voit donc que ces trajectoires ne sont pas autre chose
que les bicaractéristiques de (0).

11. Cependant avec nos hypotheéses, nous avons négligé la
variabilité des fonctions ¢; et y par rapport a z*, cela revient
a considérer dans I'E;, les variétés a* = const. Nous avons donc
le résultat suivant:

Sv Uon considére un Unwvers ewnsteinien E, comme une section
x* = const. d'un Univers FE; a cing dimensions (a° z', 2%, 23, 1%)
dont le ds* a pour coefficients les fonctions du tableaw (10), les
équations de la gravitation sont les équations R, = 0(i,k=0,1,2,3)
relatives a ce ds* et les trajectoires d'un point matériel, de masse
assez petite pour ne pas modifier le champ gravifique d’une maniére
sensible, sont les bicaractéristiques de 'équation Ry = 0, quu déter-
mine y lorsque les gi* sont connus.

I’équation R, = 0 régit une propagation d’ondes; on peut
la prendre pour ’équation de Schriodinger de la mécanique ondu-
latoire du point matériel.

Si le champ gravifique est nul, I'équation (0) est tout simple-
ment l'équation de d’Alembert, ou si 'on veut, I'équation de
Laplace de I'E,; ses bicaractéristiques sont les droites de I'E,
qui portent des vecteurs de temps, c’est-a-dire les lignes d’Univers
d'un point matériel libre.

IV. Retour aux équations de D’électromagnétisme. Les équations du

champ et ’équation de Schridinger.

12. Nous avons obtenu la gravifique einsteinienne comme
approximation d’une relativité & cinq dimensions en partant
d'une forme de ds* définie par 'équation (9), ou 'on a supposé
les ¢ nuls.

Si on tient compte des ¢, c’est-a-dire si I'on cherche & établir
les équations du champ définissant les ¢,,, les ¢; et v on est
conduit a des équations compliquées, dont nous donnerons une
approximation en supposant encore que les fonctions susdites
ont des dérivées par rapport & z* qui sont négligeables; nous ad-
mettrons de plus que les ¢; et les F'*¥ ne sont pas considérables,
nous les négligerons vis-a-vis de y. On voit donc que nous intro-
duirons les potentiels électromagnétiques avec une prudence
bien calculée, afin de ne pas brusquer le jeu des approximations.

Avec ces hypotheses, les composantes de la connexion affine
de I'E; sont:

Gh =T} (,k=01,28)
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ot les I'}}; sont les symboles de Christoffel de deuxiéme espéce
attachés au ds® de I'E, einsteinien (z°, z!, 2%, z8);

T R AT 2
G =Gy =1

ou l'indice ! a été élevé au moyen des ¢gi* de I'E,:

L
Gi44 —
. L
Gy=—vwpy'
GL—0.

Il faut bien entendre ici que les GJ; sont des symboles de
Christoffel de deuxiéme espéce du ds* de I'F,, mais nos hypo-
théses nous permettent de distinguer les symboles de Christoffel
du ds* de I'E,, car dans le calcul du déterminant des g, (a, f =
0,1,2,3,4) et de ses mineurs, on néglige les ¢; et leurs dérivées
vis-a-vis de .

13. Cela étant, on calcule aisément:

0Gi; 0G],
0x? 0P
¢t I'on a les résultats suivants:
les R;(1, k = 0,1, 2,3) sont ceux d’Einstein;
les R;,(2 = 0,1, 2, 3) sont les divergences du champ électro-
magnétique, prises par rapport au ds? de I'H,!):

Re g= e Ga?ﬂ G;?d o Gaé Gﬁyé

4

0OF*";
Ry = Ox"; _I’ith?z'+FhrrF{ti.:F{zi'/h;
enfin:
0 (g7t ’ )
Ry=-v "—(ogmr—w)'*“rili Y -

Il n’y a la aucune difficulté, c’est du calcul algébrique tres
simple.

14. Nous ne pouvons plus écrire R,z = 0 pour déterminer
les coefficients du ds® de I'Ej, car la présence du champ nous
force & considérer un tenseur d’énergie. Dans un FE, einsteinien,
on pose, comme on sait:

R = = (Tik—%gik T (,k=0,1,238)

) Cf. Kavuza, loc. cit.
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ou T, est le tenseur d’énergie et de quantité de mouvement
et » une constante de 'ordre de 10-47 C. G. S. Or,
. dxt
Tiw=mu, s, et T = m'u,-'u‘('u’ == "da") :
Nous prendrons alors comme équations du champ dans E; les

équations:

1
Rep = (Lo gup T) 13)

avec Tz = muguy, T = mu, u, p étant une constante qui doit

se confondre avec » s1 I'on ne tient pas compte des variations d’z%,
Cela admis, pour a,f = 0,1, 2, 3 les équations (13) redonnent

les ¢équations d’Einstein, a 'approximation que nous avons adiise.
Pour a =0,1,2,3, et =4 on aura:

1
F'.’l;','h == i (mu,- c Uy — 2 Gai T)

ou
Fh = pum(u; uy— @; Ua u%) .
Or
d.x? daxt
Uy = u¢= 9@, —— - i S
1= Jaa ¥Yi gs Ty A
et
o U = Qg U Uf =1 ,
. wt oL
Par conséquent, en négligeant gpi,d;;‘, et ¢; devant ¥* %MC ce
qui est conforme & nos hypotheses, il vient:
dx?

.1

he , 2
F o MU PR =
Or nous avons posé plus haut:

€
dxt = —do
m

nous admettrons que dans un F; il faut poser:
e
da* = —ds
m

et s1 'on pose encore ewu, = s,, les s, seront les composantes du
courant dans Fj, s, sy, 89, S3 se réduisant aux composantes du
courant dans E,, si ¢, = const. On voit que:

Flin=pv* s



Or les équations de Maxwell s’écrivent dans un Univers

einsteinien quelconque:
Bl e gy

Admettons donc que u y?* est trés voisin de 'unité, ce qui donne
I'ordre de grandeur de u puisque w est de 'ordre de x, les équa-
tions (18) pour a = 0,1, 2, 3, # = 4 redonnent avec nos approxi-
mations 'un des groupes des équations de Maxwell. M. Kavruza
a montré que l'autre groupe résulte d’'une identité a laquelle
satisfont les symboles de Christoffel du ds2.1)

Enfin I'équation (13) pour laquelle a = f = 4 §’écrit:

0 (gri W1')
oxr

9
-

e
m

+ Iy pi=-py*-

’

avec les approximations permises, et apreés division par .
Or s1 puy* est voisin de l'unité, on aura:

0(gri i ) el
e LD I ) o)
C’est une équation aux dérivées partielles du second ordre qui
définit y lorsque les ¢;. sont connus. Les bicaractéristiques de
(0,) sont encore les géodésiques du ds* de I'E,, et par conséquent,
les trajectoires d’'un point matériel, si le champ électromagnétique
est négligeable vis-a-vis du champ gravifique; c’est une équation
de Schrodinger.

S1 on néglige le champ de gravitation, ou plutot si I'on néglige
la courbure de l'espace, cette équation se réduit a:

e2
Oy +-—-y=0.

Les solutions périodiques de la forme

y =9z, y, 2) gemiv]
sont telles que

c? m

72 2 2
A(p_l_(él’zv +e )y)z().

C’est I'équation méme de Schriodinger avec le terme —f);— y en plus.

Or pour les fréquences » qui intéressent la physique de I'atome, *

e? T ca e 4 1?2 . .
., est négligeable vis-a-vis de —7;2”‘ . Notre approximation est

donc bonne.

1) Loec. cit.
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15. Les hypotheéses simplificatrices qui nous ont permis de
négliger le potentiel électromagnétique vis-a-vis du potentiel
gravifique et de y? qu’on pourrait appeler le potentiel des ondes,
nous ont donné la mécanique einsteinienne comme premiere
approximation, et les équations du champ électromagnétique.
De plus, en généralisant la théorie de la relativité par une extension
a I, nous avons pu donner une interprétation nouvelle de
I’équation de Schrodinger.

Le maniement des équations (13) lorsqu’on tient compte de
tous les facteurs est beaucoup plus compliqué. La relation entre
les bicaractéristiques de I’équation (13) ou a = f = 4 et les géo-
désiques de I'E; est moins simple que nous ne I'avions cru tout
d’abord.?) |

Cependant le fait que nous pouvons retrouver les équations
du champ et celles du mouvement données par les théories de
I'E, dans le cadre d’une nouvelle relativité dans un E;, et qu’en
plus de cela nous obtenons une interprétation de l'équation de
Schrodinger, nous encourage a poursuivre notre tentative.

S1 le champ électromagnétique devient prédominant, les
méthodes d’approximation doivent étre transformées de bout
en bout. Ce que nous avons fait jusqu’ici c’est de la mécanique
ondulatoire macroscopique; pour retrouver les lois des phéno-
menes atomiques dans leurs détails, il faut faire de la mécanique
ondulatoire microscopique.

1) (Cf. notre quatriéme note, in fine.
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