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Über Luftkräfte bei sehr grossen Geschwindigkeiten
insbesondere bei ebenen Strömungen

von J. Ackeret, Zürich.
(4. VI. 28.)

Zusammenfassung. Es werden die Luftkräfte auf eine schwach gekrümmte
Fläche in Abhängigkeit von der Geschwindigkeit untersucht und insbesondere
die charakteristischen Unterschiede bei Unter- und Überschallgeschwindigkeit
diskutiert. Im Anhang wird die Stabilität von Trennungsflächen untersucht.

1. Übersicht.

Die Strömungskräfte bei sehr grossen Geschwindigkeiten
haben schon früh Interesse erweckt im Zusammenhang mit ballistischen

Aufgaben. Eine starke Förderung erfuhren dann weiterhin
unsere Kenntnisse durch die Erfahrungen an Dampfturbinen, in
welchen zum erstenmal Geschwindigkeiten der strömenden Mittel
auftraten, die die Schallgeschwindigkeit erreichten oder
überstiegen. Ganz neuerdings nun tauchen im Gebiet der Flugtechnik
gasdynamische Fragen auf, indem die Luftschrauben am äusseren
Umfang nicht selten mit Schallgeschwindigkeit sich bewegen;
und auch bei sehr raschen Flugzeugen der Einfluss der endlichen
Grösse der Kompressibilität der Luft, die dynamisch durch die
Grösse der Schallgeschwindigkeit gemessen wird, sich allmählich
bemerklich macht. Aber auch abgesehen von jeder Anwendung
ist es von hohem Interesse, die Strömungsvorgänge auch dann
zu untersuchen, wenn eine wesentliche Voraussetzung der klassischen

Hydrodynamik, die Inkompressibilität des strömenden
Mittels wegfällt. Naturgemäss sind die formalen Schwierigkeiten
hier ganz besonders gross, indem die z. T. hochentwickelten Methoden

der Hydrodynamik (konforme Abbildung, Quellen usw.)
versagen. Demgemäss ist der bisher erzielte Fortschritt nicht
sehr gross, obwohl einige viel versprechende Ansätze vorliegen.

Diese Arbeit setzt sich das Ziel, möglichst anschaulich die
charakteristischen Unterschiede zwischen Strömungskräften bei
Unter- und Überschallgeschwindigkeit darzustellen. Völlig
allgemein lässt sich das nicht durchführen; ich habe deshalb einen
Fall als Beispiel gewählt, der sich noch verhältnismässig einfach
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behandeln lässt. Es bedürfte also noch einer besonderen
Untersuchung, um zu entscheiden, wie weit die aufgestellten Beziehungen
auch allgemeinere Geltung beanspruchen können; immerhin hat
es den Anschein, als ob die nachfolgenden Betrachtungen doch
einige typische Züge zutage gefördert haben. Es liegt in der Natur
der bisherigen Methoden, dass sie im Gebiet der Schallgeschwindigkeit

selbst unbrauchbar werden. Die massgebende Differentialgleichung

ändert dort ihren Charakter völlig. Aus diesem Grunde
ist es auch noch nicht gelungen, die nachfolgenden Betrachtungen
so auszubauen, dass sie den in Wirklichkeit brüsken, aber immerhin
noch kontinuierlichen Übergang von Unter- zu Überschallgebiet
exakt beschreiben; die Theorie ergibt dort ein singuläres
Verhalten. Unsere Betrachtungen ruhen auf rein rationeller Basis,
d. h. sie gehen von den Strömungsgleichungen direkt aus, ohne
Benützung von Beiwerten, die erst aus Versuchen entnommen
werden müssen.

2. Die Differentialgleichung der ebenen, wirbelfreien, stationären,

reibungsfreien, komprcssiblcn Gas-Strömungen.

In der Hydro-Dynamik inkompressibler Medien wird gezeigt,
dass die Bewegung wirbelfrei bleibt, wenn sie unter der Wirkung
konservativer Kräfte aus der Ruhe entsteht. Die Dynamik der
Gase ergibt das gleiche Resultat, aber nur unter der Voraussetzung,
dass die Dichte q eine eindeutige Funktion des Druckes p ist.
Das ist praktisch sehr oft der Fall; die Meteorologie aber kennt
ein Beispiel, wo gerade das Nichteintreten dieser Einschränkung
von grösster Bedeutung ist. (Auftreten atmosphärischer
Zirkulation, wenn q bei gleichem p an zwei Orten verschieden ist.)
Für unsere Zwecke können wir unbedenklich wirbelfreio Strömung
annehmen, ebenso vernachlässigen wir die Reibung, da es uns
hier weniger auf Verluste und Wirkungsgrade, als im Wesentlichen
auf Strömungsformen und Strömungskräfte ankommt. Wir setzen
also ein skalares Potential 0 an, aus dem sich die Geschwindigkeiten

u und v in x- bezw. y-Richtung berechnen:

d0 d&
u ; —— v (1)dx ' dy

Die Kontinuitätsgleichung lautet

d(^± iM.O; (2)dx dy '
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die Bewegungsgleichungen in Euler'scher Form:

du du 1 dp |

dx + v
dy Q dx

dv dv 1 dp
dx + v

dy Q Ttf
(3)

Berücksichtigen wir noch die Beziehungen:

dg dq dp _ dg dg dp
dx

dp dp dg
—,— -—- und -~-dp dx dy dp dy

und führen wir ferner mit

a
dp
d q

(4)

den bekannten Ausdruck für die Schallgeschwindigkeit ein, so
folgt für die Kontinuitätsgleichung:

d20
IXx2'

1 +
d20

1
1-2 2uv d20

dxd y
o (5a)

bezw.

d20(
dx2 \

Ö0\2\
d x d_0l+ dy*\

d0V\
JhA
a2

0 ö0 d0
A-o~17^J d20

a' dxdy
¦¦ 0 (5b)

ein recht komplizierter, nicht linearer Ausdruck der für g con-
stant, a oo übergeht in die wohlbekannte Laplace'sche
Gleichung :

d20
dx2

d20
0 (6)

Es ist begreiflich, dass die Kompliziertheit der Gleichungen 5

abgeschreckt hat und vielleicht aus diesem Grunde hat eine sehr
wertvolle Arbeit von Prandtl und Steichen über diesen Gegenstand

nicht die Beachtung gefunden, die sie verdient1).

J) A. Steichen, Dissert. Göttingen 1909; s, a. den Artikel „Gasdynamik"
im Geiger-Scheel'schen Handb. der Phys., Bd. VII, insbes. S. 315.
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3. Strömung über eine schwach gewellte Fläche.

a) Unterschallgebiet.

Einen ganz einfachen Fall erhalten wir, wenn wir die Strömung
über ein schwach gewölbtes Wellblech (quer zu den Wellen)
betrachten. Die Einfachheit besteht darin, dass die Bewegung
in erster Näherung eine Translation mit konstanter Geschwindigkeit

ist und dass die Wellen eine kleine Störung hereinbringen,

Fig. 1. Zu untersuchende Kontur.

deren Quadrate und höhere Potenzen vernachlässigt werden
können (siehe Fig. 1). Wir setzen das Potential folgendermassen
an:

^. tt a l I2n x0 =Ux + An sm -=— | e
2n \ l

•Inu
(7)

wo U die ungestörte Geschwindigkeit im Unendlichen (x beliebig;
y + co) bedeutet.

Nehmen wir vorläufig inkompressible Strömung an, so ist
die Laplace'sche Gleichung, wie man sich leicht überzeugt, erfüllt.
Es ist nämlich:

d0
dx
d0
dy

tt a 2nx -
u U + A cos —y— e

2ti x -
v - A sin —-—e

2 n u

;ny
(8)

und
d20 d20
dx2 d y2

Übrigens existiert dann auch eine Stromfunktion f,
d \p

dy
u

d f
d x

v
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nämlich:

/ 2n x ny
tp=Uy-A-^—cos—:—e l (9)

a Tl l

und es gilt
d2 xp d2 w

O x* Oyl

Geben wir xp einen konstanten Wert z. B. 0, so erhalten wir die
Gleichung einer Stromlinie:

l 2nx iny
0 Uy-A -g— cos —j- e l ¦

Nun setzen wir
A
U

dann ist:

«1,

2nyÄ l 2nx i ,10,y ir^nC0S^-e l ; (10)

näherungsweise:
7 2n x

y h cos —-.— •

indem für kleine Ausschläge y das exponentielle Glied im Bereich
des Wellbleches konstant (~ 1) gesetzt werden kann.

Die Stromlinie ist also eine Sinuslinie. Wir wählen sie als
Kontur unseres Wellbleches. Die anderen Stromlinien (y > 0)

gehen mit zunehmendem y in Gerade über, da der Faktor e \—
sehr rasch kleiner wird.

Es ist nicht schwer, mit Hilfe der Bernoulli'schen Gleichung
die Drücke auf die gewellte Fläche zu berechnen; in erster
Näherung ist:

p — p0 - g U A cos —-.— (11)

Die Drücke sind so verteilt, dass an den konvexen Stellen
der tiefste, an den konkaven der höchste Druck herrscht, würde
das Wellblech nachgiebig sein, so würden durch die Drücke die
Wellungen verstärkt (vergl. Anhang).

¦2(1
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Nun gehen wir über zur kompressiblen Strömung. Die
Gleichung 5 kann auch jetzt nicht streng gelöst werden; für sehr
kleine Wellenhöhen aber kann eine Näherungslösung angegeben
werden, die einige wesentliche Züge der wahren Lösung deutlich
zeigt.

Um die vereinfachte Gleichung zu finden, gehen wir so vor,
dass wir in die exakte Gleichung die Ausdrücke 8 für die
Geschwindigkeiten einsetzen und nun sehen, welche Glieder die
grösste Abweichung bedingen; diese sind dann für das Weitere
wesentlich und müssen beibehalten werden.

Zunächst können wir das Glied

d20 d20
dx2 dy2

weglassen, da es nach Voraussetzung ja 0 ist.

Es bleiben:

d2 0 u2 d2 0 v2 2uv d2 0
d x2 a2 d y2 a2 a2 dx dy

Für die Beurteilung des Gewichtes der obenstehenden
einzelnen Glieder ist die Grösse der Schallgeschwindigkeit zunächst
nicht von Bedeutung.

Wir vergleichen also die Ausdrücke

d2 0 „ d2 0 d2 0
u2 ; —r—5- v2 ; 2 tt v

dx2 ' dy2 ' dxdy'

12 3

Glied 2 verhält sich zu Glied 1 wie:

v2 d20 d2 0
5" da na —r r- t r-u2 J d x2 dy2

oder mit Benützung der Ausdrücke (8) wie:

_ *_ _
A2^2{^77)e-~T

Ur 2jij 4 ny
U2 + 2UA cos ßTL^Aj e f~ + A2 cos2 (-2 n} -J e ~

Nehmen wir etwa das Maximum des Zählers (sin 1), womit
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wir sehr annähernd den Höchstwert des Ausdruckes erhalten,
so wird:

— +11 &

A2
U2

Bezeichnen wir die grösste Erhebung des Bleches mit h so ist
gemäss Gleichung (10)

i, All
also

2nhA u~
und der obige Ausdruck

V2 An2h2
u2 l2

Denken wir etwa an

2 h 1

l 100
'

so wird
V2

H2
"~ 0,001

so dass demnach für schwach gewölbte Platten das zweite Glied
gegenüber dem ersten vernachlässigt werden darf. Für das dritte
Glied ergibt sich, verglichen mit dem ersten:

d20
V dx dy
ll d2 0(3) : (1) 2

~
dx2

Setzen wir wiederum die Werte für u und v ein, so ergibt sich:

_ 2tty
- 2 A cos —j— e l

(3) : (1) - — '
2 n iiIn xU + A cos —y— e l

oder mit genügender Näherung, abgesehen vom Vorzeichen

IA Anh
~u~ ~T~'
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in unserem Beispiel also:
T

0,063
50

d2 0 d20 u2 d2 0
dx2 dx2 +a2 du2

Das ist ein Betrag, den man fast nicht mehr vernachlässigen darf,
tun wir dies dennoch, so müssen wir darauf gefasst sein, dass

unsere Näherungsgleichung nur die gröberen Züge wiedergibt.
Wir berücksichtigen nur 1 und schreiben die Hauptgleichung:

0

Man sieht, dass das mittlere Glied von der Grössenordnung ^+
verglichen mit den beiden andern ist, und wir haben zunächst

durchaus keinen Anhaltspunkt, bis zu welchen — die

Näherungsbetrachtung mit inkompressibler Hauptströmung noch gültig
ist. Immerhin wissen wir aus der Erfahrung an Propellern und

Dampfturbinen, dass bis — 0,6 kein sehr grosser Einfluss der

Kompressibilität vorhanden ist. Nur eine weitere Annäherung
kann da allerdings endgültig entscheiden.

Setzen wir an Stelle des schwach veränderlichen u die
konstante Geschwindigkeit U; setzen wir ferner die gleichfalls wenig
veränderliche Schallgeschwindigkeit a konstant, so ergibt sich
die Näherungsgleichung1):

d2 0 I U2\ d2 0'* *
0 (12)

dx2 \ a2 J dy

Der Klammerausdruck ist eine Konstante, so dass durch eine
einfache Koordinatentransformation leicht Lösungen gefunden
werden können.

Wir setzen:

und erhalten:

* *; y]/i--£ y/»-i fl»)

ß - ]/M <14>

d2 0 d2 0
_

df2 ' dv2

d. h. die gewöhnliche Laplace'sche Gleichung.

l) Diese Gleichung ist Prof. Prandtl schon vor längerer Zeit bekannt
gewesen und von ihm verwendet worden.
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Für das Potential finden wir jetzt:

0 U f + A tt— sin —+- e l
2tc l

oder in x und y geschrieben:

0 =- Ux +A-^-sin^AAAAe l
• (15)

231 / '

Um die Stromlinien zu erhalten, schreiben wir

dy v Aß 2nx M*y£
sm —;— e ;dx n U l

und für kleine y:

Aßl 2n x
y "2MTT cos -J- • (16)

Schreiben wir nun, um die Kontur zu wahren, wieder eine Sinuslinie

mit der Amplitude h vor, so ist also:

Alß 2nh-Uh -^—+r und A —2n U ß-l
Damit wird schliesslich:

0 Ux+ U — S[n ±AXAL
e l (17)

ß -

das Potential oberhalb der Kontur

2.T x
y — h cos

/

Für den Druck gilt die Beziehung (verallgemeinerte Bernoulli'-
sche Gleichung):

— iv d w
Q

wo w der Betrag der Geschwindigkeit ist. Man sieht leicht, dass
bei schwacher Wellung

h
1T«1
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diese Gleichung auch geschrieben werden kann:

dp TT— — TJ • du
e

und da bei kleinen ö u die Dichte g sich nicht wesentlich ändert:

V Po " 6 (" " V) • TJ

Mit dem obenstehenden Potential finden wir

V

u
d 0
dx

2tt h U2 2 n x
p0 - Q j j COS

/ /
(18)

was für ß =- 1 in den früher erhaltenen Ausdruck (11) übergeht.
Diskutieren wir nun die Ergebnisse, indem wir ß allmählich

abnehmen lassen. Die zuletzt stehende Formel zeigt uns unmittel-

w
0"«

Fig. 2. Auf u- bezogener Luftwiderstand eines Spitzgeschosses nach Cranz
und Becker.

bar, dass alle Druckdifferenzen, ferner die damit direkt zusammenhängenden

Auftriebs-Beiwerte von Tragflügeln usw. mit

VM
wachsen. Ähnlich wie in der Relativitätstheorie, erscheint hier
eine Grenzgeschwindigkeit, die Schallgeschwindigkeit zu deren
Erreichung unendlich grosse Kräfte nötig sind. Nun ist es allerdings

ja nicht so in der Natur, indem wir ohne weiteres die
Schallgeschwindigkeit überschreiten können; die Näherungs-Gleichung
bricht zusammen und sie muss dann eben durch die stets gültige
Gleichung 5 ersetzt werden, aber qualitativ wissen wir schon seit
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längerer Zeit, und neuerdings sehr genau, dass tatsächlich die Luft
kräfte relativ (d. h. bezogen auf den Staudruck q -|- Z72)

hyperbelartig anwachsen in der Nähe der Schallgeschwindigkeit, dort ein
Maximum erreichen und dann unter Umständen ganz erheblich

wabfallen. Fig. 2 zeigt die —» Kurve des Widerstandes W eines

Spitzgeschosses für verschiedene — die durchaus diesen Charakter

aufweist. Auch deuten Messungen an Luftschrauben auf solche
Einflüsse hin.

H. Lorenz hat schon vor längerer Zeit versucht, eine Theorie
dieses Buckels in der Widerstandskurve zu geben1), indem er ihn
als Resonanzeffekt auffasst; was zunächst sehr ansprechend
erscheint. Jedoch muss er im Verlauf seiner Rechnungen drei
unabhängige empirische Konstanten einführen, über deren Grösse

man a priori keinerlei Aussagen machen kann. So wreit ich die
Literatur kenne, hat man noch keine Weiterbildung dieser
phänomenologischen Ansätze versucht.

Wir wollen nun versuchen, für den zweidimensionalen Fall
eine anschauliche Deutung dieses Anstieges zu geben und ziehen
dazu die Stromliniengleichung heran:

2*yß
2 ti x 7

y const + h cos —;— e '

Hier sehen wir, dass die Wellung der Stromlinien nach aussen
hin exponentiell abnimmt, aber das Abklingen ist durch den
Faktor ß < 1 verzögert.

Im Grenzfall ß 0 ist der Exponent selbst 0, die Stromlinien

haben bis ins Unendliche dieselbe Form.
Es ist nicht schwer, zu zeigen, dass die Kraftwirkung in

diesem Falle unendlich gross wird.
Betrachten wir etwa das nach oben konvexe Stück A—B der

gewellten Fläche Fig. 3. Links und in der Mitte sind (schematisch)
Stromlinien gezeichnet, die nach einer e-Funktion in ihrer Wellung
abklingen. Ziehen wir jetzt die ins Unendliche reichende Kontrollfläche,

bestehend aus dem Stück A—B den Vertikalen in A und B
und einer horizontalen Verbindungslinie in sehr grosser Entfernung
(im Unendlichen) so ergibt der Impulssatz die Aussage, dass eine
nach oben gerichtete Kraft auf die Oberseite des Wellbleches
wirkt. Alles in die Kontrollfläche strömende Gas hat nämlich

>) H. Lorenz. Phys. Z. S. Bd. 18, 1917. S. 209.
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Aufwärts-, alles ausströmende Abwärtsimpuls. Die Drücke auf die
Vertikalen A—H und B—H geben keinen Beitrag, im Unendlichen
ist der Druck gleich dem der ungestörten Potential-Strömung.
Man überzeugt sich durch die nachfolgende Rechnung, dass die
so erhaltene Kraft übereinstimmt mit dem Integral des Druckes
gemäss Gleichung 18.

Starkes Abklingen

H H

Schwaches Abklingen. Kein Abklingen.

'»»»>»»Jf^>^

p« 1

U«a

o<p<1
o<U<a

Fig. 3. Stromlinien bei verschiedenem

B - 0

U-a

Der vertikale Impulsstrom durch A—H ist angenähert:
oo

J g U • v dy
o

Aus Gleichung 17 finden wir:

v —
d0
dy

Inyß
sin

Damit wird:

T,, 2nh 2n x \ ~
J - g UA —:— sm —=— / e

2nyß
p U2h 2 ti x

y=~fl—Sm_l~
Die Kraft auf ein beliebiges Stück A—B ist also:

g U2 h I 2 ti xs 2 ti xA
(Jb ~Ja) - ~ä (sin i - sin j



— 313 —

Im Grenzfall, wo xB - xA sehr klein wird, haben wir

2n g U2 h 2n x 2ti g U2 ydJ pdx -0 r cos —;— dx -r ~ dx
ß I l ß l

in Übereinstimmung mit Gleichung (18).
Lassen wir nun ß gegen 0 abnehmen, U also der

Schallgeschwindigkeit sich nähern, so erkennt man ohne Rechnung,
dass die Drücke auf die Fläche wachsen, deshalb weil der tangentiale

(nach oben bezw. unten gerichtete Impulsstrom durch A—H
bezw. B—H immer stärker wächst. Im Grenzfall Flg. 3 rechts
sind alle Stromlinien kongruent, die Fläche lenkt gewissermassen
die ganze über ihr strömende Gasmasse gleichmässig ab und
da deren Menge unendlich gross ist, muss die Flächenkraft
unendlich gross werden.

Dieses Ergebnis entspricht einer ersten Näherung;
selbstverständlich kommt damit nur die Tendenz und nicht das wirkliche
Verhalten der Gasströmung bei Annäherung an die
Schallgeschwindigkeit zutage, aber wir verstehen jetzt das Anwachsen der
Strömungskräfte: Die Kompressibilität zwingt die ferner liegenden
Gasteile zu stärkerer Ablenkung.

b) Überschallgebiet.

Nun tritt die Frage an uns heran: Was geschieht, wenn wir
weiter die Geschwindigkeit steigern? Dass wir das überhaupt
können, hängt damit zusammen, dass bei Berücksichtigung der
vernachlässigten Glieder die Luftkraft nicht unendlich wird.

Wir überspringen das gefährliche Gebiet der Schallgeschwindigkeit
und schreiben unsere Grundgleichung wieder hin:

d2 0 lA u2 \ d2 0 {
_

v*\
_ 2uv_ d2 0

d x2 \ a2 I d y2 \ a2 J a2 dxdy
Setzen wir auch jetzt wieder ganz kleine v-Geschwindigkeiten
voraus, so gilt approximativ:

d2 0 I TJ- \ d201--At-) + ~ 0 (19)
dx2 \ a2 I dy

bezw.

d20(U2 \ d20
-d^[^~l)=Ty^- (19a)

Vergleichen wir Gleichung (19) mit Gleichung (12), so ist der
einzige Unterschied das geänderte Vorzeichen des ersten Gliedes,
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da jetzt U > a; dies gibt aber den Lösungen einen völlig anderen
Charakter, Gleichung (12) ist vom sog. elliptischen Typ.
Gleichung (19) dagegen vom hyperbolischen.

Wie früher (Gleichung 13) führen wir neue unabhängige
Variable ein:

* £; yy^r-^v, (20)

mit denen sich unsere vereinfachte Gleichung (19) nunmehr
schreibt:

d- 0 d20
SW' T^ °- (21)

Diese sehr bekannte Differentialgleichung beschreibt einen
Wellenvorgang, den wir nun näher betrachten wollen. Die Lösung
von Gleichung (21) lautet bekanntlich:

0 F, (| - n) + f2 (<? + rj), (22)

wo Fj und F2 zwei weitgehend willkürliche Funktionen
darstellen.

Setzen wir zunächst F2 — 01), so ist 0 demnach konstant
auf der Geraden »; £ oder in den Koordinaten x, y auf den
Geraden

y

n2

1

Da aber der Anfangspunkt x 0, y — 0 beliebig gewählt werden
kann, ist 0 auf jeder unter dem Winkel

tgo=
'

IM
geneigten Geraden konstant.

Für sin a ergibt sich

tg xx a ,_„,sm a ft - (23)
Vi + tg2 a TJ

a ist also der Mach-Doppler'sehe Winkel, der in der Überschall-
dynamik eine so grosse Rolle spielt.

') Eine nähere Diskussion zeigt, dass F., für unsere Betrachtung tatsächlich
nicht in Frage kommt.
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Nun sind wir so weit, uns ein anschauliches Bild zu machen,
,wie die Strömung bei Überschallgeschwindigkeit aussehen wird.

Da 0 auf jeder Mach'schen Linie konstant ist, und (in unserer
Näherung) alle Mach'schen Linien parallel liegen, so sind alle
Stromlinien identisch, entstehen auseinander durch Verschiebung
schräg nach oben längs Geraden mit der Steigung tg a. Ein
exponentielles Abklingen ist jetzt nicht mehr vorhanden.

Für — 1, wo freilich unsere Näherung versagt, ist a 90°,

die Stromlinien entstehen durch Verschiebung unserer Kontur
nach der ?y-Achse. Trotz des Näherungscharakters unserer
Rechnungen erhalten wir also den richtigen Übergang zu unseren
Betrachtungen bei Unterschallgeschwindigkeit. Es ist jetzt leicht
möglich, auch die Kräfte zu berechnen, die auf ein Stück des

H

£
Fig. 4. Mach'sche Störungslinien bei TJ > a.

Wellblechs wirken. Wir wenden dazu den Impulssatz in gleicher
Weise wie früher an.

In Fig. 4 ist das System der Störungswellen nach Mach-
Doppler für die erste Näherung gezeichnet; alle Geraden sind
parallel. Ziehen wir nun die gestrichelte Kontrollfläche über zwei
beliebigen Punkten A und B und bestimmen Drücke und Impulsströme,

so sehen wir zunächst: Die Drücke auf A—H bezw. B—H
tragen nichts zum Auftrieb bei. Durch D—E fliesst genau der
gleiche Impulsstrom, wie durch G—F, wenn E und F bezw. D
und G auf derselben Mach'schen Geraden liegen. Zu jedem Linien-
element von A—H können wir offenbar ein entsprechendes auf
B—H finden; der Beitrag durch die Impulsströme ist also Null,
ausgenommen den nicht kompensierten Impulsstrom durch B—C.
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Jedoch muss das Verhalten im Unendlichen (H) noch näher
betrachtet werden, um die Kraft auf A—B berechnen zu können.
Ist die gewellte Fläche unendlich ausgedehnt, so ist Druck und
Impulsstrom im Unendlichen tatsächlich unbestimmt, in der
Art etwa, wie sin cc unbestimmt ist. Diese Schwierigkeit kann man
auf folgende Weise umgehen: Wir nehmen zuerst an, das Wellblech
beginne irgendwo weit links J, aber immerhin noch in endlicher
Entfernung. Es gibt dann eine erste Mach'sche Welle: JKN.
Ziehen wir nun die Kontrollfläche nach der gestrichelten Linie
in den von Störungen freien Raum, wo der normale Luftdruck
(wir können ihn hier etwa gleich Null setzen, da es nur auf
Druckdifferenzen ankommt) herrschen soll, so sieht man, dass L—M
keinen Beitrag zum Druck liefert, K—L und N M ebenso keinen
Beitrag zum Impulsstrom. Es bleibt also schliesslich nur der
Impulsstrom durch B—C übrig, der sich in erster Näherung
ganz einfach rechnen lässt. Wie weit links J liegt, ist offenbar
belanglos. Nun entspricht jedem Element d x auf A—B ein
Element, d h auf B—C. Durch dh strömt in erster Näherung-
sekundlich die Masse oü dh mit der Aufwärts-, bezw.

Abwärtsgeschwindigkeit -X- ¦ U, indem ja alle Geschwindigkeitsrichtungen
auf einer Mach'schen Welle gleich sind, also gleich der
Wandneigung am Ursprung der Welle bei dx. Mit dh — tg et • dX wird
also der vertikale Impulsstrom durch B—C

c B

J =fe U* \lj) dh f9 U2{ddUx) ^a-dx^gU2 tg a (yB - y,)
B A (24)

ein ausserordentlich einfaches Ergebnis, das umso interessanter
ist, als offenbar gar nicht besondere Annahmen über die Form
der Wellen nötig sind. Auch die Periodizität der Kontur ist nicht
vorauszusetzen; die Formel gilt ganz allgemein für jede Kontur,
sofern die Mach'schen Wellen streng parallel bleiben1). Auf die
Längeneinheit dx. wirkt der Druck p:

pdx= + dJ g U2tgady und p g U2j^--tga (25)

bei negativem dy als Auftrieb; bei positivem entsprechend nach
unten drückend.

-) Damit werden, wie hier nicht näher begründet werden soll, sog. Ver-
dichtungsstösse ausgeschlossen. Vergl. Ackeret Z. f. Flugt. 1925, S. 72.
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Mit zunehmender Geschwindigkeit wird

tga
1

fP 1

immer kleiner; die Impulsbetrachtung zeigt, dass gleichzeitig
der Impulsstrom durch B—C bezogen auf g ^-, den Staudruck,

abnimmt;.hieraus ergibt sich eine anschauliche Deutung der
allgemein beobachteten Abnahme der Luftkraftbeiwerte.

In Fig. 5 ist für die Oberseite der Wellblechfläche der Druck-
verlauf angegeben für U « a; U 0,87 a und TJ — 1,45 a

gemäss Gleichung (18) und Gleichung (25). Es zeigt sich nach

LI

"""X

U«3

o<U<a

-U>a

Fig. 5. Druckverteilungen bei drei verschiedenen Geschwindigkeiten.

Überschreiten der Schallgeschwindigkeit ein eigenartiger Phasensprung,

indem die {j^™nria} des Druckes nicht mehr mit den

Wellentälern1 zusammenfallen, sondern den Wendepunkten alsI
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Orten grösster Neigung gegenüber der ungestörten Stromrichtern^
zugeordnet sind. Beziehen wir die Drücke wie in der Aerodynamik
üblich auf den Staudruck q „-U2, so ergibt sich also:

für TJ <a AE-

9

für U > a At.
1

h 2ti x 1
An —r- cos —-. -l l ,/ TP

t
h ¦Atz —r- sm

V1
2n x 1

/ fx 1

(Unter p wie stets vorher die Druckdifferenz verstanden). Die
Drücke sind ihrem Betrage nach von der Geschwindigkeit il-
hängig gemäss:

U\ 1

F bezw.

yM X/lX: i

uFig. 6 gibt den Verlauf dieser Faktoren F i-'-\ und zeigt nun

sehr deutlich den schon von Lorenz betonten Charakter der

F 4 ti

to

1.5-

o.i-

Fie. 6. Funktion F Cr)-

-%

Resonanzkurve, obwohl wir gerade aus unseren Betrachtungen
ersehen können, dass von einer Resonanz (bei Schallgeschwindigkeit)

im üblichen Sinne kaum gesprochen werden kann.
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4. ANHANG.

Bemerkung über die Stabiütät von Trennungsflachen.1)

L. Prandtl hat gesprächsweise die Vermutung geäussert, dass
die sog. Trennungsflächen beispielsweise die Berührungsflächen
zweier verschieden schnell bewegter Gasströme bei sehr grosser
Geschwindigkeit stabil sein könnten.

Bei Unterschallgeschwindigkeit weiss man seit Helmholtz und
Kelvin, dass solche Flächen die man auch als Wirbelschichten
auffassen kann, labil sind, d. h. sich mehr oder weniger rasch
überschlagen und in einzelne Wirbel aufrollen2).

Wir wollen immer im Bereich unserer Näherung bleibend
zeigen, dass mindestens in einem sehr einfach gewählten Falle die
Prancltl'sche Vermutung zutrifft.

Betrachten wir die Wirbelfläche, die sich zwischen den zwei

Fig. 7. Trennungsfläche.

Gasströmen abrollt (ebenes Problem). Sei U± die Geschwindigkeit
des ersten, U2 die des andern, so ist

ü. u, + u.

die mittlere Fortschreitungsgeschwindigkeit eines einzelnen Wirbels
der Fläche. Dieser Fläche geben wir, um ihre Stabilität zu
untersuchen, eine kleine Deformation. Vergrössert sich diese unter dem
Einfluss der Strömungskräfte, so ist Labilität vorhanden, A^er-

kleinert sie sich, so ist die Bewegung absolut stabil, haben wir
Indifferenz, so können wir ohne auf höhere Näherungen
einzugehen, immerhin sagen, dass für praktisch in Betracht kommende
Zeiten und Längen die Trennungsfläche erhalten bleibt.

Als Deformation nehmen wir der Einfachheit halber eine

Verbiegung nach einer Sinuslinie an, wobei diese Form nicht
wesentlich ist. Fig. 7. Unser Koordinatensystem soll sich mit

:) Ich gehe auf dieses interessante Thema hier kurz ein, weil die
vorangehenden Betrachtungen alle wesentlichen Vorbereitungen enthalten.

-) Vergl. Fuchs-Hopf Aerodynamik S. 156.
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der Geschwindigkeit Um, also mit der Diskontinuitätsfläche
bewegen. Dann strömt etwa oben das Gas mit der Geschwindigkeit

U1-U2 U

nach rechts über die Fläche, unten mit derselben Geschwindigkeit
in entgegengesetzter Richtung.

Denken wir uns für einen Augenblick die Fläche erstarrt als
festes Wellblech, so ist nach dem früher Gesagten ohne weiteres
zu sehen, dass für TJ < a die Strümungskräfte die Wellung zu
vergrössern suchen; also Instabilität vorliegt. Für TJ > a aber
haben wir Unter- bezw. Überdrücke, die wie wir früher gesehen

haben, nur von der Neigung -J-- der Flächenelemente abhängen.
Im Punkte A also herrscht ein Unterdruck von der Grösse:

p QÄU2tgaA(~^A vergl. (25)

im Punkte B auf der gegenüberliegenden Seite ist der Unterdruck

:

p gBU2tgaB(f-
Nun ist aber

<h j (dy
dx )A \ dx ib

(x in der jeweiligen Strömungsrichtung gezählt).
Wir haben nun Indifferenz, wenn

Qa tg aA gB tg aB

ist; ausführlich geschrieben lautet diese Bedingung:

Qa Qb

U2-i 1/-2L-1
(26)

aAz V aß2

Ist beispielsweise gA gB ; aA aB so ist die Bedingung ohne
weiteres erfüllt, die Trennungsfläche ist indifferent, das
Wellblech kann seine Festigkeit verlieren, ohne dass seine Form
geändert wird. Die Relativgeschwindigkeit der beiden Gasströme
muss grösser sein als 2a da ja

U,-U2 U > a

vorausgesetzt ist.
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Wir sehen damit, dass es tatsächlich Fälle gibt, wo die
Trennungsfläche erhalten bleibt und haben dafür die Prandtl'sche
Vermutung bestätigt.

Der allgemeine Fall gÄ =|= gB ; aÄ =}= aB erfordert ziemlich
umfangreiche Betrachtungen, die wir hier nicht vorbringen wollen.

Die Photographien Fig. 8 und 9 zeigen sehr deutlich den
Unterschied im Verhalten der Trennungsflächen bei Unter- bezw.

¦ ¦ i

¦ i.: »•sv »•

; •
¦

Fig. 8. Unstabile Trennungsfläche bei geringer Geschwindigkeit.

Überschallgeschwindigkeit. Fig. 8 zeigt einen von links nach
rechts fliessenden Flüssigkeitsstrahl (durch aufgestreutes
Aluminiumpulver auf der Aufnahme weiss gefärbt), der sich von der
durch einen dicken weissen Strich angedeuteten Führungswand
loslöst und eine Diskontinuitätsfläche mit dem hinter der
Ablösungsstelle befindlichen „Totwasser" bildet. Man erkennt nun
sehr gut, wie die Trennungsfläche wellig wird und sich überschlägt.

TT-m

<y.A

W

Fig. 9. Stabile Trennungsfläche bei sehr grosser Geschwindigkeit.
(Gasstrahl aus einem Gewchrlauf.)

Durch Aufwicklung der Wirbelschicht entstehen dann die relativ
grossen diskreten Wirbel, die man ja so oft hinter eckigen Hindernissen

beobachten kann.
Ganz anders in Fig. 9 (Aufnahme von Prof. Cranz, Berlin).

Hier strömt (wieder von links nach rechts) ein Gasstrahl aus einer
Gewehrmündung. Er breitet sieh glockenförmig aus, seine
Geschwindigkeit übersteigt die Schallgeschwindigkeit wesentlich.

21
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Die Trennungslinie von ruhender Luft und Auspuffgas ist nach der
Schatten-Schlierenmethode sichtbar gemacht und zeigt nicht
die geringste Tendenz einer Wellung und Auflösung in Einzelwirbel.

Es ist natürlich klar, dass die Diskontinuitätsfläche sich
trotzdem beim Weiterströmen verwischt, da ja die innere Reibung
des Gases, die wir bisher vernachlässigt haben, in diesem Sinne
wirkt. Jedoch ist ihre Wirkung von ganz anderer Grössenordnung,
als die starke Mischung von schnellen und langsamen Teilen
durch die von den diskreten Wirbeln hervorgerufenen
Sekundärbewegungen. Die innere Reibung ist ja ein molekularer
Impulsaustausch, während die Turbulenzmischung ein makroskopischer
Vorgang ist.

Herrn Prof. PrxmdÜ, Göttingen, bin ich für mancherlei Belehrung in diesen
und ähnlichen Fragen zu herzlichstem Danke verpflichtet.


	Über Luftkräfte bei sehr grossen Geschwindigkeiten insbesondere bei ebenen Strömungen

