Zeitschrift: Helvetica Physica Acta

Band: 1 (1928)

Heft: IV

Artikel: Die Wirkungsfunktion der Wurfbewegung und ihre geometrisch-optische

Bedeutung

Autor: König, Hans

DOI: https://doi.org/10.5169/seals-109169

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Wirkungsfunktion der Wurfbewegung und ihre geometrisch-optische Bedeutung

von Hans König.

(25. I. 28.)

Zusammenfassung: Die bekannte Analogie zwischen Punktmechanik und geometrischer Optik wird für den schiefen Wurf und das ihm entsprechende optische Problem besprochen.

Der Gedanke, die klassische Mechanik nach dem Vorbild der Optik durch eine streng durchgeführte Wellentheorie zu verallgemeinern und zu bereichern, fusst in der Möglichkeit, den analytischen Formelapparat für die Mechanik eines Massenpunktes als denjenigen einer geometrischen Optik in einem inhomogenen, isotropen Medium zu deuten. Integriert man nämlich den Ausdruck für die Lagrange'sche Funktion der Punktmechanik

$$L = (\mathfrak{G} \mathfrak{v}) - W^1 \tag{1}$$

längs der wirklichen Bahn von $P_{\mathbf{1}}$ bis P,so folgt zunächst für die Wirkungsfunktion S

$$S^* = S - W (t_M - t_{M1})$$
,

worin $t_M-t_{M\,1}$ die Zeit bedeutet, die der Massenpunkt M braucht, um von P_1 nach P zu gelangen. Das Hamilton'sche Prinzip

$$\delta S^* = \delta \int_{P_1}^{P} L \, dt_M = 0 \quad (\delta (t_M - t_{M1}) = 0, \, \delta W \neq 0)$$
 (2)

legt dann in der Tat nahe, $\Phi = S^* + C$ bis auf einen konstanten (grossen) Faktor als *Phase einer Wellenausbreitung* und $\delta \Phi = 0^2$) als Fortpflanzungsgesetz einer *Wellengruppe* aufzufassen, wonach Wellen benachbarter Richtung und Frequenz in ein und demselben Zeitpunkt mit *gleicher* Phase zusammentreffen müssen,

¹) Die allgemeinen Bezeichnungen stimmen mit denjenigen des zusammenfassenden Berichts von L. Flamm, Phys. Zeitschr. 27, 600, 1926, überein.

²) C sei von allen später auftretenden Integrationskonstanten unabhängig; dadurch wird erreicht, dass z. Zeit $t_w = t_{w1}$ die Gruppe den Punkt P_1 passiert.

um eine Gruppe zu bilden. Die zugrunde liegende Phasenwellenausbreitung

$$\Phi = \text{konst.: } S = \int_{P_1}^{P} \mathfrak{G} d\mathfrak{r} = W \left(t_W - t_{W_1} \right)$$
 (3)

(worin $t_W - t_{W1}$ die Zeit bedeutet, die die Einzelwelle zur Durcheilung von P_1P braucht), soll im folgenden am einfachen zweidimensionalen Beispiel der Wurfbewegung (nicht relativistisch) im statischen homogenen Schwerefeld ins einzelne verfolgt werden. Für die weiteren theoretischen Ausführungen sei auf die zitierte Arbeit von L. Flamm verwiesen. Die einfachen Zwischenrechnungen werden durchweg unterdrückt.

Im betrachteten Feld mit der potentiellen Energie V=mbzlässt der mechanische Impuls des mit der Energie W geworfenen Massenpunktes

$$|\mathfrak{G}| = \sqrt{2 m (W - m b z)}$$

nach (3) im entsprechenden optischen Problem auf eine Wellengeschwindigkeit

$$\left| \frac{d\mathbf{r}}{dt_{W}} \right| = |\mathbf{u}| = \frac{W}{|\mathfrak{G}|} = \frac{W}{\sqrt{2 m (W - mbz)}}$$

$$\mathbf{u} = \text{endlich für } z < z_{m0}, = \infty \text{ für } z = z_{m0} = \frac{W}{mb} ,$$

$$= \text{imaginär für } z > z_{m0}$$

$$(4)$$

und einen Brechungsindex

$$n = \frac{c}{\mid \mathfrak{u} \mid} = \frac{c}{W} \sqrt{2 m (W - m b z)}$$

schliessen. Das nach Elimination der Zeit mit dem Maupertuis' schen Prinzip identische Fermat'sche Prinzip

$$\frac{\delta S}{W} = \delta \int_{P_1}^{P} dt_W = \delta \int_{P_1}^{P} \frac{ds}{|\mathfrak{u}|} = d \int_{P_1}^{P} \sqrt{1 + x'^2} \sqrt{2 m (W - m b z)} dz = 0$$
(bei $\delta W = 0$) (5)

welches, optisch, benachbarte Strahlen gleicher Frequenz bzw. mechanisch, Massenpunkte gleicher Energie vergleicht, bestimmt die einparametrige Extremalenschar durch P_1 , d. h. alle Wurfparabeln gleicher Energie W durch P_1 (s. Fig. 1):

$$\begin{cases} z_0 - z = \frac{b \, m^2}{2 \, \alpha_1^2} \, (x - x_0)^2 & \text{oder} \\ z = z_1 + \frac{\beta^2}{2 \, m^2 \, b} - \frac{b \, m^2}{2 \, \alpha_1^2} \left(x - x_1 - \frac{\alpha_1 \, \beta}{b \, m^2} \right)^2. \end{cases}$$
 (6)

Man findet sie durch Integration der zu

$$\delta \int_{P_1}^{P} f(z x x') dz = 0 \quad \left(x' = \frac{dx}{dz} \right)$$

gehörenden Euler'schen Differentialgleichung

$$\frac{d}{dz}\left(f'_{x'}\right) - \frac{\partial f}{\partial x} = 0$$

unter Einführung der Integrationskonstanten $P_1(x_1 z_1)$ und $a_1 = x$ -Komponente des Anfangsimpulses \mathfrak{G}_1 als Parameter der Schar, und der Abkürzungen:

$$z_0 - x_1 = \frac{a_1 \beta}{b m^2}$$

$$z_0 = \frac{1}{2 m^2 b} (2 m W - a_1^2)$$
 (7a)

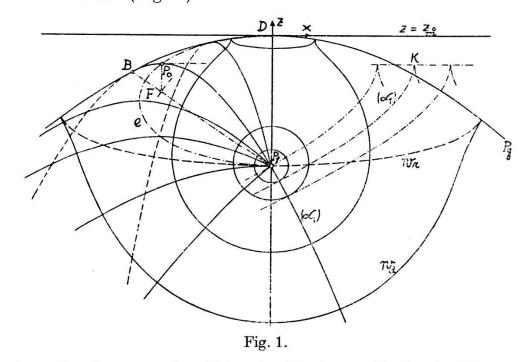
(Diese zwei Gleichungen bestimmen den Parabelscheitel Po.)

 $\beta = z$ -Komponente von \mathfrak{G}_1 .

$$G = |\mathfrak{S}_1| = \sqrt{a_1^2 + \beta^2} \tag{7b}$$

(für alle Parabeln gleich).

Zur Konstruktion der Parabelschar können folgende Eigenschaften dienen (Fig. 1):



- 1. Ort aller Brennpunkte F ist der Kreis um P_1 durch $D(x_1, z_{m0})$.
- 2. Die Gerade $z = z_{m0}$ ist Leitlinie aller Parabeln.

- 3. Ort aller Scheitel P_0 ist demnach die Ellipse e mit dem Achsenverhältnis 2:1.
- 4. Enveloppe aller Parabeln ist die Grenzparabel P_g (Brennpunkt P_1):

$$z - z_1 = \frac{G^2}{2 m^2 b} - \frac{m^2 b}{2 G^2} (x - x_1)^2$$
 (8)

Zum Beweis all dieser Eigenschaften braucht man nur die Bewegung im homogenen Feld als Grenzfall (Z im Unendlichen, Kraft endlich) der am Schluss dieser Notiz kurz erwähnten Ellipsenbewegung zu betrachten.

Wir suchen die durch das Fermat'sche Prinzip definierte Hamilton'sche charakteristische Funktion $\frac{Se}{W}$ unseres Mediums:

$$t_{W} - t_{W_{1}} = \frac{1}{W} \cdot S_{e} (xz, x_{1}z_{1}, W), \qquad (9)$$

m. a. W. die Gleichung einer von P_1 ausgehenden Huyghens'schen Elementarwelle. Führt man zu diesem Zwecke längs der Extremalen (6), für welche

$$\sqrt{1 + x'^2} = \frac{\sqrt{2 m (W - m b z)}}{\sqrt{2 m (W - m b z) - \alpha_1^2}}$$

ist, die Integration aus, so folgt

$$t_W - t_{W_1} = -\frac{2}{3 m^2 b W} / \sqrt{2 m (W - m b z) - \alpha_1^2} (m (W - m b z) + \alpha_1^2) / (10)$$

für die Zeit, die der Strahl mit der Anfangslangsamkeit $G_1:\alpha_1,\beta$ für $\widehat{P_1P}$ benötigt.¹) Durch teilweise Ersetzung von z durch x nach (6) folgt:

$$S = S_a / = S_a - S_{a1} = W(t_W - t_{W1}) = \left/ a_1 x \mp \frac{\left[2 m (W - mbz) - a_1^2 \right]^{3/2}}{3 m^2 b} \right/ P_1$$

Die Umständlichkeit dieser Herleitung von (11) setzt die Eleganz der Hamilton-Jacobi'schen Methode in helles Licht, welche aus der Differentialgleichung der Wellenbewegung

$$\mathfrak{S}^{2} = \left(\frac{\partial S}{\partial x}\right)^{2} + \left(\frac{\partial S}{\partial z}\right)^{2} = \frac{W^{2} n^{2}}{c^{2}} = 2 m (W - m b z)$$
 (12)

¹) Die mit W multiplizierte rechte Seite von (10) ist kein Integral der Hamiltonschen partiellen Differentialgleichung, also keine Welle!

durch Separation

$$\frac{\partial S}{\partial x} = p_x(x) = \alpha_1$$

$$\frac{\partial S}{\partial z} = p_z(z) = \pm \sqrt{2 m (W - mbz) - \alpha_1^2}$$

ohne weiteres zum Integral (11) führt.

Nach der Theorie der partiellen Differentialgleichungen 1. Ordnung würde das "vollständige Integral" $S_v = S_a + a_2$ neben a_1 die beliebige 2. Integrationskonstante a_2 enthalten, während die Setzung $a_2 = f(a_1) = -S_{a1}$ schon eine "allgemeine Integralmannigfaltigkeit" heraushebt.

Diskussion von (11): Die Integralkurven (11) sind nach abnehmenden z hin geöffnete Neil'sche Parabeln mit der Spitze K auf Höhe z_0 (s. Fig. 1 u. 2). Letzteres ist leicht verständlich,

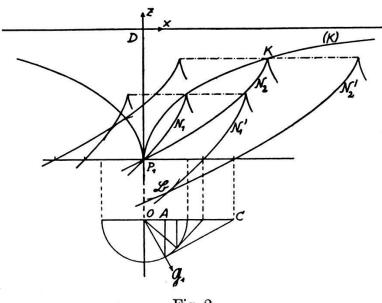


Fig. 2.

wenn man bedenkt, dass die S_a -Kurven (a_1) zur Parabel $(a_1; x_1z_1)$ stets senkrecht bleiben und dass ihre zeitliche Ausbreitung scheinbar in einer Parallelverschiebung längs der x-Richtung mit der Geschwindigkeit

$$W \Delta t_W = \alpha_1 \Delta x \dots \frac{\Delta x}{\Delta t_W} = \frac{W}{\alpha_1}$$
 (13)

erfolgt. Die S_a -Kurven (a_1) (Fig. 1) kann man daher auffassen als Orthogonaltrajektorien aller Parabeln, welche aus der Parabel (a_1) durch horizontale Parallelverschiebung hervorgehen.

Die Wellen $S_a - S_{a1} = 0$ durch P_1 lassen sich durch den Ort (K) (Fig. 2) ihrer Spitzen $K(\bar{x}\bar{z})$ charakterisieren:

$$\overline{x} - x_1 = \pm \frac{2}{3} \sqrt{b \, m} \, \frac{(\overline{z} - z_1)^{3/2}}{(W - m \, b \, \overline{z})^{1/2}} \,,$$
 (14)

den man für $x=\overline{x}$, $z=\overline{z}=z_0$ aus (6) und (11) durch Elimination von a_1 findet. In Fig. 2 sind (13) und (14) zur Konstruktion von 2 S_a -Kurven N_1 und N_2 im Zustand t_{W1} und $t_{W1}+\Delta t_W$ (N_1 ' und N_2 ') herangezogen worden. (Es ist $\Delta x=0$ $C\sim \frac{1}{0}$ $\Delta x=0$).

Die Einhüllende der Schar S = konst. (11), welche gewöhnlich zum "allgemeinen" Integral gerechnet wird, möge hier, entsprechend ihrer optischen Bedeutung (9), als Elementarintegral S_{ϵ} bezeichnet werden; sie ist zu bestimmen durch Elimination von a_1 aus (11) und

$$\frac{\partial (S_a - S_{a1})}{\partial \alpha_1} = 0 = /x \pm \frac{\alpha_1}{m^2 b} \sqrt{2 m (W - m b z) - \alpha_1^2} / P_1$$
 (15)

(15) repräsentiert das Jacobi'sche System ohne die Zeitgleichung. 1) Es ist die Gleichung des Ortes, längs dessen im Laufe der Wellenausbreitung ein allgemeines Integral das elementare berührt. Zu ihrer Aufstellung ist, dat nicht auftritt, die Beiziehung des Hamilton'schen Prinzips nicht nötig, während die Zeitgleichung als spezifische Aussage über die Gruppe aus dem letzteren abzuleiten ist. Die Unsymmetrie des Jacobi'schen Systems wird dadurch optisch ohne weiteres verständlich.) Führt man die auf P_1 bezogenen Koordinaten

$$X = x - x_1 \qquad \qquad Z = z - z_1$$

ein, so folgt nach einiger Rechnung:

$$\begin{cases} S_e = \frac{X}{a_1} \left(G^2 - RZ - \frac{R^2 X^2}{6 a_1^2} \right) = W \left(t_W - t_{W_1} \right), \text{ worin} \\ a_1^2 = \frac{X^2}{2 \left(X^2 + Z^2 \right)} \left(G^2 - RZ \pm \sqrt{G^4 - 2 G^2 RZ - R^2 X^2} \right), \end{cases}$$
(16)

 $R = m^2 b$ eingesetzt zu denken ist.

Ein qualitatives Urteil über diese etwas komplizierte charakteristische Funktion S_e bildet man sich am besten durch graphische Bestimmung der orthogonalen Trajektorien der Parabelschar in Fig. 1 und an Hand von Gl. (4). Die Elementarwelle wird an

$$\frac{\partial S}{\partial a_2} = \beta_2 \text{ und } \frac{\partial S}{\partial a_3} = \beta.$$

¹⁾ Bei Flamm l. c. S. 607:

der Grenzparabel P_{σ} , "reflektiert"; wir haben es also mit einem natürlichen Parabolspiegel zu tun. Längs P_{σ} ist die Wurzel in α_1^2 gleich 0, ausserhalb imaginär. In Fig. 1 sind einige aufeinanderfolgende Lagen von S_e eingezeichnet; in Fig. 2 ist ein Berührungselement \mathfrak{V} von S_a und S_e konstruiert worden. Fig. 3 gibt quali-

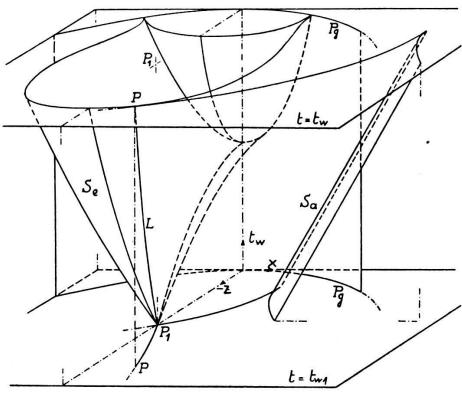


Fig. 3.

tativ die raumzeitliche Gestalt einer allgemeinen und einer elementaren Phasenfläche, welche sich längs der Weltlinie L des Strahles $\widehat{P_1P}$, d. h. längs eines charakteristischen Streifens der Differentialgleichung (12), berühren. Die Weltlinie des Massenpunktes fällt wegen $t_M - t_{M1} = t_W - t_{W1}$ nicht mit L zusammen, liegt aber natürlich auf dem durch PP_1 bestimmten vertikalen parabolischen Zylinder.

Entwicklung von (16) in der Nähe von P_1 (nach kleinen X und Z) liefert für das untere Zeichen die annähernd plane Welle w_r (Fig. 1), während für das obere Zeichen die infinitesimale Kugelwelle um P_1 resultiert:

 $S_{einf} = \sqrt{X^2 + Z^2} \cdot G = W \Delta t_W \quad (G = \sqrt{2 m (W - m b z_1)})$ oder, wenn man P_1 als beliebigen Punkt betrachtet und

$$\dot{x}_{w} = \frac{dX}{dt_{w}} = \frac{dx}{dt_{w}}$$
, $\dot{z}_{w} = \dots$ einführt:

$$S_{\text{einf}} = L_W \Delta t_W \dots L_W = \sqrt{x_W^2 + z_W^2 \cdot \sqrt{2 m (W - m b z)}} = (\mathfrak{S} \mathfrak{u}) = W, (5a)$$

wie man auch unmittelbar aus (5) entnehmen kann. Dieser infinitesimalen Wellenausbreitung steht gegenüber die infinitesimale Phasenüberschiebung¹)

$$S_{\text{einf}}^{*} = L_M \Delta t_M = \frac{m}{2} (\dot{x}_M^2 + \dot{z}_M^2) - m b z \quad \left(\dot{x}_M = \frac{d x}{d t_M}, \ldots \right)$$
 (2a)

Sowohl (5a) wie (2a) führen allgemein zu Lagrange'schen Gleichungen²):

$$\frac{d}{dt_{\mathbf{W}}} \left(\frac{\partial L_{\mathbf{W}}}{\partial \dot{x}_{\mathbf{W}}} \right) - \frac{\partial L_{\mathbf{W}}}{\partial x} = 0 \quad \text{bzw.} \quad \frac{d}{dt_{\mathbf{M}}} \left(\frac{\partial L_{\mathbf{M}}}{\partial \dot{x}_{\mathbf{M}}} \right) - \frac{\partial L_{\mathbf{M}}}{\partial x} = 0 \quad (18)$$

und durch Einführung der Impulse zu den Hamilton'schen Funktionen:

$$\begin{cases} H_{W} = (\mathfrak{G}\mathfrak{u}) - L_{W} = 0 & \text{bzw. } H_{M} = (\mathfrak{G}\mathfrak{v}) - L_{M} = W \\ H_{W} = \frac{W(p_{x}^{2} + p_{z}^{2})}{4 m (W - mbz)} - \frac{W}{2} = 0 & \text{bzw. } H_{M} = \frac{1}{2 m} (p_{x}^{2} + p_{z}^{2}) + mbz = W \end{cases}$$
(19)

 $H_W = 0$ und $H_M = W$ besagen als zwei Formen einer und derselben Differentialgleichung dasselbe, solange man die zu ihnen gehörigen charakteristischen Gleichungen

$$\frac{dx}{\frac{\partial H}{\partial p_x}} = \frac{dz}{\frac{\partial H}{\partial p_z}} = -\frac{dp_x}{\frac{\partial H}{\partial x}} = -\frac{dp_z}{\frac{\partial H}{\partial z}} = \frac{dS}{p_x \frac{\partial H}{\partial x} + p_z \frac{\partial H}{\partial z}} = dt \quad (20)$$

ohne die letzten zwei Glieder, d. h. die W- und M-Bewegung nur $r\"{a}umlich$ untersucht. Beiziehung dieser letzten Glieder unter Ber\"{u}cksichtigung von

 $S_{\inf} = (\mathfrak{S} \mathfrak{v}) \, \Delta t_{M} = 2 \, (W - V) \, \Delta t_{M} = (\mathfrak{S} \mathfrak{u}) \, \Delta t_{W} = W \Delta t_{W}$ liefert für den Proportionalitätsfaktor in (20), wie man leicht nachrechnet, dt_{W} oder dt_{M} , je nachdem man mit H_{W} oder H_{M} rechnet. Dementsprechend gibt es zwei Systeme von Hamilton'schen Gleichungen

$$\frac{dx}{dt_{\mathbf{W}}} = \frac{\partial H_{\mathbf{W}}}{\partial p_x}, \dots \quad \text{bzw.} \quad \frac{dx}{dt_{\mathbf{M}}} = \frac{\partial H_{\mathbf{M}}}{\partial p_x}, \dots \qquad (21)$$

welche bezüglich das raumzeitliche Verhalten von Welle (W) und Gruppe (M) beschreiben. In dieser Anpassungsfähigkeit, d. h. der Möglichkeit, die durch (21) ausgedrückte infinitesimale Berührungstransformation nach Wunsch mit Welle oder Gruppe

2) Vgl. Whittaker, Analytische Dynamik, S. 310, Berlin 1924.

 $^{^{1}}$) L in (1), Lagrange-Funktion für den Massenpunkt, fortan mit L_{M} bezeichnet, ist die Geschwindigkeit, mit der die Phase über die Gruppe hingleitet.

laufen zu lassen, liegt ein wesentlicher Teil der Bedeutung der kanonischen Gleichungen für die analytische Mechanik.

Zum Schluss sei noch kurz auf den erweiterten Fall einer Newton'schen Anziehungskraft hingewiesen. Er verdient besondere Beachtung, weil nach Bertrand und Koenigs, optisch gesprochen,

$$n = \frac{c}{W} \sqrt{2 m \left(W + \frac{K^2}{r}\right)} \tag{22}$$

das einzige im Unendlichen homogene ("kräftefreie") Medium bestimmt, dessen Strahlen sämtlich geschlossen sind.¹) Zu Fig. 4:

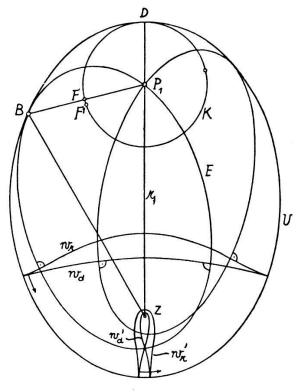


Fig. 4.

Die den oben besprochenen Wurfparabeln entsprechenden Ellipsen gleicher Energie (durch P_1) haben bekanntlich die gleiche grosse Achse $2a = ZP_1 + P_1F$, weshalb der zweite Brennpunkt F auf einem Kreis (K) um P_1 liegen muss. Der Berührungspunkt B mit der Umhüllenden (U) erfüllt als Schnittpunkt benachbarter Ellipsen mit den Brennpunkten F und F' (auf K) die Bedingungen:

$$ZB + BF = 2a = ZB + BF'$$
;

FF' steht demnach senkrecht auf BF, d. h. P_1 , F und B liegen auf einer Geraden. Wegen

$$P_1F + FB + BZ = 2a + P_1F = \text{konst.}$$

¹⁾ S. Whittaker, l. c. S. 92.

ist U eine Ellipse. Das Medium (22) wirkt demnach für alle monochromatischen Strahlen durch P_1 wie ein natürlicher elliptischer "Spiegel". Über den Verlauf einer Elementarwelle (w_d, w_r) macht man sich an Hand von Fig. 1 leicht ein ungefähres Bild. Neu tritt hinzu der Umstand, dass wegen der völligen Entartung des mechanischen Problems die direkte Front (w_d) , bei Z eine Schlinge bildend und wieder auflösend (w_d) in Fig. 4), zurückkehrt und mit der nacheilenden reflektierten Front (w_r) zur Zeit $t_{w1} + \tau$ zur Interferenz gelangt. Zur Zeit $t_{w1} + 2\tau$ hat sie sich auf P_1 zusammengezogen. Wählt man, den Boden der strengen geometrischen Optik verlassend, die Frequenz endlich

$$= v = \frac{W}{h} ,$$

so führt die Forderung der Existenz stehender Wellen ohne weiteres zur de Broglie'schen Quantentheorie.

Seminar für theoretische Physik der Universität Bern.