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Die Wirkungsfunktion der Wurfbewegung und ihre
geometrisch-optische Bedeutung

von Hans Konig.
(25. 1. 28.)

Zusammenfassung: Die bekannte Analogie zwischen Punktmechanik
und geometrischer Optik wird fiir den schiefen Wurf und das ihm ent-
sprechende optische Problem besprochen.

Der Gedanke, die klassische Mechanik nach dem Vorbild
der Optik durch eine streng durchgefiithrte Wellentheorie zu
verallgemeinern und zu bereichern, fusst in der Mdoglichkeit,,
den analytischen Formelapparat fiir die Mechanik eines Massen-
punktes als denjenigen einer geometrischen Optik in einem in-
homogenen, isotropen Medium zu deuten. Integriert man ndmlich
den Ausdruck fiir die LAcraNGE’sche Funktion der Punktmechanik

L= (Gv)-W" 0y

langs der wirklichen Bahn von P; bis P, so folgt zunichst fir
die Wirkungsfunktion S

S* =8 =W (ty— ty)

worlin iy, — ty; die Zeit bedeutet, die der Massenpunkt M braucht,
um von P; nach P zu gelangen. Das Hawminron’sche Prinzip

l)
5 S* = adetM =0 (O(y—ty)=0,0W=0 (2
P,

legt dann in der Tat nahe, @ = S* 4 C bis auf einen konstanten
(grossen) Faktor als Phase einer Wellenausbreitung und 6@ = 02)
als Fortpflanzungsgesetz einer Wellengruppe aufzufassen, wonach
Wellen benachbarter Richtung und Frequenz in ein und dem-
selben Zeitpunkt mit gleicher Phase zusammentreffen miissen,

!) Die allgemeinen Bezeichnungen stimmen mit denjenigen des zusammen-
fassenden Berichts von L. Framm, Phys. Zeitschr. 27, 600, 1926, iiberein.

%) C sei von allen spiter auftretenden Integrationskonstanten unabhingig;
dadurch wird erreicht, dass z. Zeit f, =t,, die Gruppe den Punkt P, passiert.

15a
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um eine Gruppe zu bilden. Die zugrunde liegende Phasenwellen-
ausbreitung

P
® — konst.: S = f Gdr = W (tw — twy) (3)
P

(worin ty — ty, die Zeit bedeutet, die die Einzelwelle zur Durch-
ellung von P;P braucht), soll im folgenden am einfachen zwei-
dimensionalen Beispiel der Wurfbewegung (nicht relativistisch) im
statischen homogenen Schwerefeld ins einzelne verfolgt werden.
Fir die weiteren theoretischen Ausfiilhrungen sei auf die zitierte
Arbeit von L. Framm verwiesen. Die einfachen Zwischenrech-
nungen werden durchweg unterdriickt.

Im betrachteten Feld mit der potentiellen Energie V' = mbz
lasst der mechanische Impuls des mit der Energie W geworfenen
Massenpunktes

| & | = ]/Zm (W-mbz)
nach (8) im entsprechenden optischen Problem auf eine Wellen-
geschwindigkeit
ldr | |44 W

iy | — - T R 4
1dtw[ 4| & Vem (W -mbz) W

u = endlich firz <z,,, = wfirz=2z,,= :r:‘b ,
= 1maginar fir z > 2,
und einen Brechungsindex
C c S ——
n= Tu =3 V2m (W -mbz)

schliessen. Das nach Elimination der Zeit mit dem MaupgRrTUIS’
schen Prinzip identische FErmar’sche Prinzip

g—é—éfdtw— f—_de]:1’2 \/2m(|—mbz dz =0

(bei 6 W = 0) (5)
welches, optisch, benachbarte Strahlen gleicher Frequenz bzw.
mechanisch, Massenpunkte gleicher Energie vergleicht, bestimmt
die einparametrige Extremalenschar durch P;, d. h. alle Wurf-
parabeln gleicher Energie W durch P, (s. Fig. 1):

bm?

zo—zh——z—a (T — xo)% oder

_ ﬁ2 b?pz a, B
lz_zl+ om2b  2qf \TTTT bm2 ' (6)
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Man findet sie durch Integration der zu

P
6ff(z:ca:’)dz=0 (Ln':(;i)
PI

gehorenden EuLer’schen Differentialgleichung

d [, of

unter Einfiithrung der Integrationskonstanten P, (z; 2;) und
a, = z-Komponente des Anfangsimpulses &, als Parameter der
Schar, und der Abkiirzungen:

B bm?2

1
<0 = ‘2—77{275' (2 m W = a?) (7&)

(Diese zwei Gleichungen bestimmen den Parabelscheitel Py.)

B = z-Komponente von ©, .

G=|6,|=17d +p2 (7b)
(fiir alle Parabeln gleich).

Zur Konstruktion der Parabelschar kénnen folgende Eigen-
schaften dienen (Fig. 1):

Fig. 1.

1. Ort aller Brennpunkte F ist der Kreis um P; durch D(z;, Zmy).
2. Die Gerade z = z,,, ist Leitlinie aller Parabeln.
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3. Ort aller Scheitel P, ist demnach die Ellipse ¢ mit dem Achsen-
verhéltnis 2: 1.
4. Enveloppe aller Parabeln ist die Grenzparabel P, (Brenn-
punkt P,):
G2 m2b

~om2b 2G?

2“.21

(x - x,)* (8)

Zum Beweis all dieser Eigenschaften braucht man nur die
Bewegung im homogenen Feld als Grenzfall (Z im Unendlichen,
Kraft endlich) der am Schluss dieser Notiz kurz erwihnten
Ellipsenbewegung zu betrachten.

Wir suchen die durch das Fermat’sche Prinzip definierte
HamintoN’sche charakteristische Funlktion %ﬁ unseres Mediums:

1 ; -
tﬂ'—twlz'id/?' Se (wz,:rlzl,W), (9)

m. a. W, die Gleichung einer von P, ausgehenden HuyeHENS’schen

Elementarwelle. Fithrt man zu diesem Zwecke lings der Extremalen
(6), fiir welche

P I LU o
V2m (W —mbz) - a;’

1st, die Integration aus, so folgt

zZ

et == g 2 VRO =2 = (o OF — b2 + ) 10

Zy
fiir die Zeit, die der Strahl mit der Anfangslangsamkeit G,:a,,p

fir P, P bendtigt.!) Durch teilweise Ersetzung von z durch =z
nach (6) folgt:

(11)
/ / [2m (W —mbz)—ai]l: d
S = Sa/ — Sa —-Sfa] =W (tW_ t".l) — ay T j: L= “__3'"‘[2—6‘ —a ‘f
r, :

Die Umstandlichkeit dieser Herleitung von (11) setzt die
Eleganz der Hawminron-Jacorr’'schen Methode in helles Licht,
welche aus der Differentialgleichung der Wellenbewegung

S 2 S 2 )
G2= (—Q-S) + (g_:) = ?Z—:2m(W—mbz) (12)

or c®

1) Die mit W multiplizierte rechte Seite von (10) ist kein Integral der
Hamiltonschen partiellen Differentialgleichung, also keine Welle!
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durch Separation
08

E"Esz(x) =0

g—§=pz @) =1+VY2mW-mbz)-a

ohne weiteres zum Integral (11) fiihrt.

Nach der Theorie der partiellen Differentialgleichungen
1. Ordnung wiirde das ,,vollstindige Integral“ S, = S, + a, neben
a, die beliebige 2. Integrationskonstante a, enthalten, wihrend
die Setzung ay; = f (a;) = — S,; schon eine ,,allgemeine Integral-
mannigfaltigkeit heraushebt.

Diskussion von (11): Die Integralkurven (11) sind nach ab-
nehmenden 2 hin gedffnete NEiL’sche Parabeln mit der Spitze K
auf Hohe z, (s. Fig. 1 u. 2). Letzteres ist leicht verstidndlich,

Fig. 2.

wenn man bedenkt, dass die S,-Kurven (a,) zur Parabel (a;; z;2,)
stets senkrecht bleiben und dass ihre zeitliche Ausbreitung schein-
bar in einer Parallelverschiebung lings der z-Richtung mit der
Geschwindigkeit

Ax w

WAthaIAw....z”—sz (13)

erfolgt. Die S,-Kurven (a;) (Fig. 1) kann man daher auffassen
als Orthogonaltrajektorien aller Parabeln, welche aus der Parabel
(2;) durch horizontale Parallelverschiebung hervorgehen.

16
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Die Wellen S, — S;; = 0 durch P, lassen sich durch den
Ort (K) (Fig. 2) ihrer Spitzen K (xz) charakterisieren:

(2 — 2y

T-h==+7y F(W mbz)'h’ (14)

den man fir z = x, 2 = z = 2z, aus (6) und (11) durch Elimination
von a, findet. In Fig. 2 sind (13) und (14) zur Konstruktion von
2 S;-Kurven N; und N, im Zustand t;; und 5, T Aty (N, und

N,') herangezogen worden. (Es st A =0C~ 0 5 ai) :
1

Die Einhiillende der Schar S = konst. (11), welche gewohn-
lich zum ,,allgemeinen* Integral gerechnet wird, mdge hier, ent-
sprechend 1hrer optischen Bedeutung (9), als Elementarintegral S,
bezeichnet werden; sie ist zu bestimmen durch Elimination von
a, aus (11) und

P

ﬂ;;}sal)zoz/x S VEmW-mba-ai [ (15)

P,

(15) repréasentiert das JAcoBr'sche System ohne die Zeitgleichung.?)
Es ist die Gleichung des Ortes, lings dessen im Laufe der Wellen-
ausbreitung ein allgemeines Integral das elementare berithrt. Zu
threr Aufstellung ist, da ¢ nicht auftritt, die Beiziehung des
HamivToN’schen Prinzips nicht notig, wahrend die Zeitgleichung als
spezifische Aussage iiber die Gruppe aus dem letzteren abzuleiten
ist. Die Unsymmetrie des Jacosr'schen Systems wird dadurch
optisch ohne weiteres verstdndlich.) Fihrt man die auf P, be-
zogenen Koordinaten

X=z—x Z=2z—2z
ein, so folgt nach einiger Rechnung:
S’.,xgg(G2 R* X) =W (tw — tw,) , wWorin
a, 6 a}
X3 (16)
2 __ - " 2 — R2 2
al--2(X2+Z2)(G RZ + }/G'*-2G*RZ - R* X?),

R = m2b eingesetzt zu denken ist.

Ein qualitatives Urteil iiber diese etwas komplizierte charak-
teristische Funktion S, bildet man sich am besten durch graphi-
sche Bestimmung der orthogonalen Trajektorien der Parabelschar
in Fig. 1 und an Hand von Gl. (4). Die Elementarwelle wird an

1) Bei Flamm 1. ¢. S. 607:

08 08
“a'—a—z--‘:ﬁz und da =ﬁ.
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der Grenzparabel P, ,reflektiert’*; wir haben es also mit einem
natiirlichen Parabolspiegel zu tun. Langs P, ist die Wurzel in
a,? gleich 0, ausserhalb imaginér. In Fig. 1 sind einige aufeinander-
folgende Lagen von S, eingezeichnet; in Fig. 2 ist ein Beriihrungs-
element B von S, und S, konstruiert worden. Fig. 3 gibt quali-

Fig. 3.

tativ die raumzeitliche Gestalt einer allgemeinen und einer elemen-
taren Phasenfliche, welche sich lings der Weltlinie L des Strahles

f)l‘ﬁ, d. h. lings eines charakteristischen Streifens der Differential-
gleichung (12), beriihren. Die Weltlinie des Massenpunktes fallt
wegen iy — tyy =ty — ty nicht mit L zusammen, liegt aber
natiirlich auf dem durch P P, bestimmten vertikalen parabolischen
Zylinder.

Entwicklung von (16) in der Ndhe von P, (nach kleinen
X und Z) liefert fir das untere Zeichen die anndhernd plane
Welle w, (Fig. 1), wiahrend fiir das obere Zeichen die infinitesi-
male Kugelwelle um P, resultiert:

Semt=YX?+2%-G = WAty (G=yY2mW-mbz)) (1T
oder, wenn man P; als beliebigen Punkt betrachtet und
dX dx

Ty = dth dtw, EW = ¢+ .

SeinszWA tW . o LW:]/.’E];;%—}- ;é_ngr ¢ ]/ZM(W—me)=(®U)=W, (58-)

einfiihrt;
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wie man auch unmittelbar aus (5) entnehmen kann. Dieser infini-
tesimalen Wellenausbreitung steht gegeniiber die infinitesimale
Phaseniiberschiebung?)

S,E]1=LMAtM =1n—($3'4 + 23’,}[)—7an :l‘:M= ——@— § WG (2&)
2 dty

Sowohl (5a) wie (2a) fiilhren allgemein zu LAGRANGE’schen
Gleichungen?):
d (0Lw\ OLyp _ d (0Ly\ 0Ly
dtw(daiw)_ oz 0 P (oajM)* e 0 U8
und durch Einfiihrung der Impulse zu den HaminronN’schen
Funktionen:

Hy =(®Gu)-Ly =0 bzw,. Hy =(Gv)-Ly=W (19)

_W(P3+P3) _E_ _i 2 | M —
HW_4m(W—mbz) 5 =0 bzw.HM—zm(p,+pz)+mbz—W
Hy =0 und Hy = W besagen als zwei Formen einer und der-
selben Differentialgleichung dasselbe, solange man die zu ihnen

gehorigen charakteristischen Gleichungen

de  dz  dp,  dp, dS _
oH ~ OH  oH  9H  _oH oF — 4 @0
0p. 0p, oz 0z P52 T P70,

ohne die letzten zwei Glieder, d. h. die W- und M-Bewegung
nur rdumlich untersucht. Beiziehung dieser letzten Glieder unter
Beriicksichtigung von
Sinf=((§_')D)AtM=2(W—V)Aim=(@u)ﬁtw=WAtW

liefert fiir den Proportionalitidtsfaktor in (20), wie man leicht
nachrechnet, dty oder dt,, je nachdem man mit Hy oder Hy,
rechnet. Dementsprechend gibt es zwei Systeme von Hawmirn-
ToN’schen Gleichungen

de _ 0Hy dz  0Hy
T = D - . 1)

ZW. din TR

welche beziiglich das raumzeitliche Verhalten von Welle (W)
und Gruppe (M) beschreiben. In dieser Anpassungsfihigkeit,
d. h. der Moglichkeit, die durch (21) ausgedriickte infinitesimale
Beriihrungstransformation nach Wunsch mit Welle oder Gruppe

1) L in (1), Lagrange-Funktion fiir den Massenpunkt, fortan mit Lj,s be-
zeichnet, ist die Geschwindigkeit, mit der die Phase tiiber die Gruppe hingleitet.
%) Vgl. WarrTAKER, Analytische Dynamik, S. 310, Berlin 1924.
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laufen zu lassen, liegt ein wesentlicher Teill der Bedeutung der
kanonischen Gleichungen fiir die analytische Mechanik.

Zum Schluss sel noch kurz auf den erweiterten Fall einer
NewroN’schen Anziehungskraft hingewiesen. Er verdient be-
sondere Beachtung, weil nach BErTraND und Koenias, optisch
gesprochen,

N 2m(w+$) 22)

das einzige im Unendlichen homogene (,kriftefreie’) Medium
bestimmt, dessen Strahlen simtlich geschlossen sind.!) Zu Fig. 4:

Fig. 4.

Die den oben besprochenen Wurfparabeln entsprechenden Ellipsen
gleicher Energie (durch P,) haben bekanntlich die gleiche grosse
Achse 2a = ZP, + P,F, weshalb der zweite Brennpunkt F
auf einem Kreis (K) um P, liegen muss. Der Berithrungspunkt B
mit der Umhiillenden (U) erfiillt als Schnittpunkt benachbarter
Ellipsen mit den Brennpunkten F und F” (auf K) die Bedingungen:
ZB + BF =2a=ZB + BF';
FF’ steht demnach senkrecht auf BF, d. h. P;, F und B liegen
auf einer Geraden. Wegen
P,.F +FB + BZ = 2a + P,F = konst.
1) S. WHITTAKER, l.c. S. 92.
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ist U eine Ellipse. Das Medium (22) wirkt demnach fiir alle
monochromatischen Strahlen durch P; wie ein natiirlicher ellip-
tischer ,,Spiegel“. Uber den Verlauf einer Elementarwelle (w,,
w,) macht man sich an Hand von Fig. 1 leicht ein ungefihres
Bild. Neu tritt hinzu der Umstand, dass wegen der volligen Ent-
artung des mechanischen Problems die direkte Front (w,), bei Z
eine Schlinge bildend und wieder auflosend (w," in Iig. 4), zurtick-
kehrt und mit der nacheillenden reflektierten Iront (w,”) zur
Zewt t,, + 7 zur Interferenz gelangt. Zur Zeit t,; +2 v hat sie
sich auf P; zusammengezogen. Wihlt man, den Boden der
strengen geometrischen Optik verlassend, die Frequenz endlich

W
h b

— P =

so fihrt die Forderung der Existenz stehender Wellen ohne
welteres zur DE BroerLiE’schen Quantentheorie.

Seminar fir theoretische Physik der Universitit Bern.
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