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Die Wirkungsfunktion der Wurfbewegung und ihre
geometrisch-optische Bedeutung

von Hans König.

(25. I. 28.)

Zusammenfassung: Die bekannte Analogie zwischen Punktmechanik
und geometrischer Optik wird für den schiefen Wurf und das ihm
entsprechende optische Problem besprochen.

Der Gedanke, die klassische Mechanik nach dem Vorbild
der Optik durch eine streng durchgeführte Wellentheorie zu
verallgemeinern und zu bereichern, fusst in der Möglichkeit,
den analytischen Formelapparat für die Mechanik eines
Massenpunktes als denjenigen einer geometrischen Optik in einem
inhomogenen, isotropen Medium zu deuten. Integriert man nämlich
den Ausdruck für die LAGRANGE'sche Funktion der Punktmechanik

L (®v)-W1) (1)

längs der wirklichen Bahn von P, bis P, so folgt zunächst für
die Wirkungsfunktion S

S* S-W(tM-tm),
worin tM -tM1 die Zeit bedeutet, die der Massenpunkt M braucht,
um von Px nach P zu gelangen. Das HAMiLTON'sche Prinzip

i'
öS* d[LdtM 0 (6 (tM - tm) 0 ö W =b 0) (2)

p,

legt dann in der Tat nahe, 0 — S* + C bis auf einen konstanten
(grossen) Faktor als Phase einer Wellenausbreitung und 60 02)

als Fortpflanzungsgesetz einer Wellengruppe aufzufassen, wonach
Wellen benachbarter Richtung und Frequenz in ein und
demselben Zeitpunkt mit gleicher Phase zusammentreffen müssen,

1) Die allgemeinen Bezeichnungen stimmen mit denjenigen des zusammenfassenden

Berichts von L. Flamm, Phys. Zeitschr. 27, 600, 1920, überein.
2) C sei von allen später auftretenden Integrationskonstanten unabhängig;

dadurch wird erreicht, dass z. Zeit tw twl die Gruppe den Punkt Pt passiert.

ir>a
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um eine Gruppe zu bilden. Die zugrunde liegende Phasenwellen-
ausbreitung

p
0 konst.: S ftbdv W (tw - tWl) (3)

p,

(worin tw — twi die Zeit bedeutet, die die Einzelwelle zur Durcli-
eilung von P^P braucht), soll im folgenden am einfachen
zweidimensionalen Beispiel der Wurfbewegung (nicht relativistisch) im
statischen homogenen Schwerefeld ins einzelne verfolgt werden.
Für die weiteren theoretischen Ausführungen sei auf die zitierte
Arbeit von L. Flamm verwiesen. Die einfachen Zwischenrechnungen

werden durchweg unterdrückt.
Im betrachteten Feld mit der potentiellen Energie V mbz

lässt der mechanische Impuls des mit der Energie W geworfenen
Massenpunktes

j © | }/2m(W-mbz)
nach (3) im entsprechenden optischen Problem auf eine
Wellengeschwindigkeit

dr W W
u 4

|©| ^2m(W-mbz)
W
mb '

imaginär für z > zm0

dt w

u endlich für z < zm0 oo für z zm0

und einen Brechungsindex
c c

n='\~u\ =W \2™(W-mbz)

schliessen. Das nach Elimination der Zeit mit dem Maupertuis'
sehen Prinzip identische FERMAT'sche Prinzip

r r r
¦^ d /dtw öl ~ dl VTM'2 \l~2m(W -mbz dz 0

p~ p> *• (bei ö W 0) (5)

welches, optisch, benachbarte Strahlen gleicher Frequenz bzw.
mechanisch, Massenpunkte gleicher Energie vergleicht, bestimmt
die einparametrige Extremalenschar durch Pl5 d. h. alle
Wurfparabeln gleicher Energie W durch Px (s. Fig. 1):

z0 - z - - (x - x0)2 oder
Za]

ß2
_

bm* I
_ _a1ß\2z~zi+ 2m*b ~ 2a? * Xl bm*l ' <6)
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Man findet sie durch Integration der zu
p

ö ff(zxx')dz 0 (^'=^7
P,

gehörenden EuLER'schen Differentialgleichung

dz IX dx
0

unter Einführung der Integrationskonstanten Px (x1 ^1) und

at z-Komponente des Anfangsimpulses ©j als Parameter der
Schar, und der Abkürzungen:

aAß
bm2

1

(2 m W - a\)

,Tn X-i

0 2m2b

(Diese zwei Gleichungen bestimmen den Parabelscheitel P0.)

ß ^-Komponente von ©x.

(7a)

(7b)G= ©, | l/a* +/?2
(für alle Parabeln gleich).

Zur Konstruktion der Parabelschar können folgende Eigen
schaffen dienen (Fig. 1):

2 - Z.|

F* K

Kl

Fig.l.
1. Ort aller Brennpunkte F ist der Kreis um P, durch D(xlt zm0).
2. Die Gerade z zm0 ist Leitlinie aller Parabeln.
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3. Ort aller Scheitel P0 ist demnach die Ellipse e mit dem
Achsenverhältnis 2:1.

4. Enveloppe aller Parabeln ist die Grenzparabel Pg (Brennpunkt

Px):
G2 m*b

_Z h~ 2m2b 2G2 {X Xl) (ö)

Zum Beweis all dieser Eigenschaften braucht man nur die
Bewegung im homogenen Feld als Grenzfall (Z im Unendlichen,
Kraft endlich) der am Schluss dieser Notiz kurz erwähnten
Ellipsenbewegung zu betrachten.

Wir suchen die durch das FERMAT'sche Prinzip definierte
ÜAMiLTON'sche charakteristische Funktion -JA unseres Mediums:

tW ~ twi -=r • Se (xz ,X1z1,W), (9)

m. a. W. die Gleichung einer von Px ausgehenden HuYGHENs'schen
Elementarwelle. Führt man zu diesem Zwecke längs der Extremalen
(6), für welche

]/2m (W -mbz)]/l + x'2
j/2m (W -mbz)-a\

ist, die Integration aus, so folgt
z

tw-tWl - ö -^jp^j]/2m(W-mbz)-ai [m(W -mbz) + a~) /(10)
2

Sm2bWl r-'-v" ¦••"»/ ~i\-\ ' "i//
z,

für die Zeit, die der Strahl mit der Anfangslangsamkeit G1:a1,ß

für P^P benötigt.1) Durch teilweise Ersetzung von z durch x
nach (6) folgt:

<?_c /_q c- Wt, f ,_\-^[2m(W-mbz)-a'\Y»
' - o in o i
p, p,

Die Umständlichkeit dieser Herleitung von (11) setzt die
Eleganz der Hamilton-jACOBi'schen Methode in helles Licht,
welche aus der Differentialgleichung der Wellenbewegung

©,= (^y+(4«y=J^i 2m(^-mM (12)
\ dx \äz c2

*) Die mit W multiplizierte rechte Seite von (10) ist kein Integral der
Hamiltonschen partiellen Differentialgleichung, also keine Welle!
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durch Separation

öS
— px{x)=ai
öS
dz Vz ± 1/2m(W-mbz)-a\

ohne weiteres zum Integral (11) führt.
Nach der Theorie der partiellen Differentialgleichungen

1. Ordnung würde das „vollständige Integral" Sv Sa + a^ neben
ax die beliebige 2. Integrationskonstante Oj enthalten, während
die Setzung Oj / (ax) — Sal schon eine „allgemeine
Integralmannigfaltigkeit" heraushebt.

Diskussion von (11): Die Integralkurven (11) sind nach
abnehmenden z hin geöffnete NEiL'sche Parabeln mit der Spitze K
auf Höhe z0 (s. Fig. 1 u. 2). Letzteres ist leicht verständlich,

K)

J&.

\0A

Fig. 2

wenn man bedenkt, dass die Sa-Kurven (aX) zur Parabel (a1; x^X)
stets senkrecht bleiben und dass ihre zeitliche Ausbreitung scheinbar

in einer Parallelverschiebung längs der x-Richtung mit der
Geschwindigkeit

WA tw a1Ax
Ax W

w
(13)

erfolgt. Die iSa-Kurven (a,) (Fig. 1) kann man daher auffassen
als Orthogonaltrajektorien aller Parabeln, welche aus der Parabel
(a,) durch horizontale Parallelverschiebung hervorgehen.

10
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Die Wellen Sa — Sal 0 durch Px lassen sich durch den
Ort (K) (Fig. 2) ihrer Spitzen K (xz) charakterisieren:

x - z, ± -q- yb m -XX, ki7 ' (14)ö ' (W-mbz) I'

den man für x ~x, z z z0 aus (6) und (11) durch Elimination
von ax findet. In Fig. 2 sind (13) und (14) zur Konstruktion von
2 S0-Kurven N1 und N2 im Zustand twi und twi -f Atw (NX und

N2') herangezogen worden. [Es ist A x 0 C~ j
Die Einhüllende der Schar S konst. (11), welche gewöhnlich

zum „allgemeinen" Integral gerechnet wird, möge hier,
entsprechend ihrer optischen Bedeutung (9), als Elementarintegral S,
bezeichnet werden; sie ist zu bestimmen durch Elimination von
a, aus (11) und

pm^l o » Ix ± -£*- y2m(W-mbz)-a\ I (15)
d at I m2b

p,

(15) repräsentiert das JACOBi'sche System ohne die Zeitgleichung.1)
Es ist die Gleichung des Ortes, längs dessen im Laufe der
Wellenausbreitung ein allgemeines Integral das elementare berührt. Zu
ihrer Aufstellung ist, da t nicht auftritt, die Beiziehung des
HAMiLTON'schen Prinzips nicht nötig, während die Zeitgleichung als
spezifische Aussage über die Gruppe aus dem letzteren abzuleiten
ist. Die Unsymmetrie des Jacobi'sehen Systems wird dadurch
optisch ohne weiteres verständlich.) Führt man die auf P1

bezogenen Koordinaten
X x — z, Z z — z1

ein, so folgt nach einiger Rechnung:

S. =^{g2-BZ- ^r) =W(tw- twX), worin
et, \ 6 a; /

X» s
(16)

«I 2(X2 + Z2)
(G2- -R2 ± YG*-2G'RZ-R*X*),

R m2b eingesetzt zu denken ist.
Ein qualitatives Urteil über diese etwas komplizierte

charakteristische Funktion Se bildet man sich am besten durch graphische

Bestimmung der orthogonalen Trajektorien der Parabelschar
in Fig. 1 und an Hand von Gl. (4). Die Elementarwelle wird an

J) Bei Flamm 1. c. S. 607:

-r— ßt und -t— ß
da, Oa,
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der Grenzparabel P„ „reflektiert"; wir haben es also mit einem
natürlichen Parabolspiegel zu tun. Längs Pg ist die Wurzel in
aj2 gleich 0, ausserhalb imaginär. In Fig. 1 sind einige aufeinanderfolgende

Lagen von Se eingezeichnet; in Fig. 2 ist ein Berührungselement

93 von Sa und Se konstruiert worden. Fig. 3 gibt quali-

/

Fig. 3.

tativ die raumzeitliche Gestalt einer allgemeinen und einer elementaren

Phasenfläche, welche sich längs der Weltlinie L des Strahles

Pj P, d. h. längs eines charakteristischen Streifens der Differentialgleichung

(12), berühren. Die Weltlinie des Massenpunktes fällt
wegen tM — tM1 ^= tw — twi nicht mit L zusammen, liegt aber
natürlich auf dem durch PPi bestimmten vertikalen parabolischen
Zylinder.

Entwicklung von (16) in der Nähe von Px (nach kleinen
X und Z) liefert für das untere Zeichen die annähernd plane
Welle wr (Fig. 1), während für das obere Zeichen die infinitesimale

Kugelwelle um Px resultiert:

Seial =YX2T'Z2 -G WA tw (G y2m(W-mbz1))
oder, wenn man P1 als beliebigen Punkt betrachtet und

dX dx

(17)

xw
w dt w

zw — einführt:

Seml LwAtw Lw=]/x3 + zw • fäm(W-mbz)=(<5u)=W, (5a)
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wie man auch unmittelbar aus (5) entnehmen kann. Dieser
infinitesimalen WeMenausbreitung steht gegenüber die infinitesimale
Phasenüberschiebung1)

Se*a{ LM A tM =-^ (xlt + z$X)-mbz (xM= -=— j (2a)

Sowohl (5a) wie (2a) führen allgemein zu LAGRANGE'schen
Gleichungen2):

d ldLw\ dLw^ohzwd(dLK\dLE==0 (18)dtw\dxw) dx ' dtm \dxmJ dx
und durch Einführung der Impulse zu den HAMiLTON'schen
Funktionen:

Hw (<5>u)-Lw 0 bzw. HM (©p)-LM= W (19)

H^aZ{(W+JL)-1 ° b^.H«-^W+PÖ + m6.-TF

Hw 0 und HM 1F besagen als zwei Formen einer und
derselben Differentialgleichung dasselbe, solange man die zu ihnen
gehörigen charakteristischen Gleichungen

dx dz dpx dpz dS
dH ~ dH ~~ dH ' dH dH dH

V*-y- + V.

dt (20)

dpx dpz dx dz r dx rz dz

ohne die letzten zwei Glieder, d. h. die W- und M-Bewegung
nur räumlich untersucht. Beiziehung dieser letzten Glieder unter
Berücksichtigung von

SM (®t>) A tM 2 (W- V) A tu (®u) Ä tw WA tw
liefert für den Proportionalitätsfaktor in (20), wie man leicht
nachrechnet, dtw oder dtM, je nachdem man mit Hw oder HM
rochnot. Domontsprcchond gibt es zwei Systeme von
HAMiLTON'schen Gleichungen

dx dHw v dx dHM
,.-¦¦, bzw. -rr— A • • • (21)

dtw dpx dtM dpx

welche bezüglich das raumzeitliche Verhalten von Welle (W)
und Gruppe (M) beschreiben. In dieser Anpassungsfähigkeit,
d. h. der Möglichkeit, die durch (21) ausgedrückte infinitesimale
Berührungstransformation nach Wunsch mit Welle oder Gruppe

x) L in (1), Lagrange-Funktion für den Massenpunkt, fortan mit LM
bezeichnet, ist die Geschwindigkeit, mit der die Phase über die Gruppe hingleitet.

2) Vgl. Whittaker, Analytische Dynamik, S. 310, Berlin 1924.
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laufen zu lassen, liegt ein wesentlicher Teil der Bedeutung der
kanonischen Gleichungen für die analytische Mechanik.

Zum Schluss sei noch kurz auf den erweiterten Fall einer
NEWTON'schen Anziehungskraft hingewiesen. Er verdient
besondere Beachtung, weil nach Bertrand und Koenigs, optisch
gesprochen,

n Ml/2m(lF + —) (22)MlRMr)
das einzige im Unendlichen homogene („kräftefreie") Medium
bestimmt, dessen Strahlen sämtlich geschlossen sind.1) Zu Fig. 4:

Fig. 4.

Die den oben besprochenen Wurfparabeln entsprechenden Ellipsen
gleicher Energie (durch Px) haben bekanntlich die gleiche grosse
Achse 2a ZP1 -j- PXF, weshalb der zweite Brennpunkt F
auf einem Kreis (K) um Px liegen muss. Der Berührungspunkt B
mit der Umhüllenden (U) erfüllt als Schnittpunkt benachbarter
Ellipsen mit den Brennpunkten F und F' (auf K) die Bedingungen:

ZB + BF 2a ZB + BF' ;

FF' steht demnach senkrecht auf BF, d. h. P1; F und B liegen
auf einer Geraden. Wegen

PXF +FB +BZ 2a + PXF konst.
x) S. Whittakbr, 1. c. S. 92.
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ist U eine Ellipse. Das Medium (22) wirkt demnach für alle
monochromatischen Strahlen durch P2 wie ein natürlicher
elliptischer „Spiegel". Über den Verlauf einer Elementarwelle (wd,

wr) macht man sich an Hand von Fig. 1 leicht ein ungefähres
Bild. Neu tritt hinzu der Umstand, dass wegen der völligen
Entartung des mechanischen Problems die direkte Front (wd), bei Z
eine Schlinge bildend und wieder auflösend (wd' in Fig. 4), zurückkehrt

und mit der nacheilenden reflektierten Front (w/) zur
Zeit twl -f-t zur Interferenz gelangt. Zur Zeit twl +2t hat sie
sich auf P1 zusammengezogen. Wählt man, den Boden der
strengen geometrischen Optik verlassend, die Frequenz endlich

~V~ h '

so führt die Forderung der Existenz stehender Wellen ohne
weiteres zur de BROGLiE'schen Quantentheorie.

Seminar für theoretische Physik der Universität Bern.
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