
Zeitschrift: Helvetica Physica Acta

Band: 1 (1928)

Heft: I

Artikel: Streuungskoeffizient von Wasserstoff nach der Wellenmechanik

Autor: Stratton, J.A.

DOI: https://doi.org/10.5169/seals-109161

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-109161
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


47

Streuungskoeffizient von Wasserstoff nach der Wellenmechanik

von J. A. Stratton.

Inhalt : Unter Zugrundelegung der de Brogie-Schrödinger'schen
wellenmechanischen Vorstellung vom Elektron wird die Streuung für Röntgenstrahlen
am Wasserstoffatom gerechnet. Es kann gezeigt werden, dass die Intensität der
Streustrahlung mit abnehmender Wellenlänge stark abnimmt und ebenso

starke Winkelabhängigkeit zeigen muss, im Einklang mit der Erfahrung.

I. Einleitung.

1. Phänomenologisches.

Wenn ein Röntgenstrahl auf eine materielle Schicht fällt,
wird Energie absorbiert. Um diese Absorption quantitativ fassen

zu können, muss man einen Absorptionskoeffizienten definieren.
Man bezeichnet als linearen Absorptionskoeffizienten den pro
Längeneinheit der durchstrahlten Materie absorbierten Bruchteil
der Intensität I des einfallenden, parallelen Strahlenbündels,
oder also

AL §L
I dx

hierbei ist übereinstimmend mit den Beobachtungen der absorbierte

Teil der Intensität / proportional gesetzt der Dicke dx
der materiellen Schicht. Für den Fall eines homogenen Strahles
(Strahl gleicher Qualität oder Frequenz) ist /li konstant und die
Integration ergibt I I0e~flx. Der lineare Absorptionskoeffizient

pi bedeutet auch den von der Volumeneinheit des
absorbierenden Mittels aufgenommenen Bruchteil der primären Energie.

Weit häufiger spricht man vom Massenabsorptionskoeffi-
zienten. Dieser auf die Masseneinheit bezogene Äbsorptions-
koeffizient ist gleich dem linearen Koeffizienten dividiert durch
die Dichte q des Absorbers; er ist eine charakteristische Grösse
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für die absorbierende Substanz, unabhängig von ihrem
physikalischen Zustande. Interessieren wir uns endlich für den Teil
der Absorption, der dem einzelnen Atom zukommt, so führen wir
einen Atomabsorptionskoeffizienten /<„ —- ein; wobei n

—j£ die Zahl der Elektronen in der Volumeneinheit bedeutet

(L LoscHMiDT'sche Zahl, N Atomnummer, A Atomgewicht).
Fragen wir nach der Art und Weise der Energieabsorption,

so ist zwischen vier verschiedenen Erscheinungen zu
unterscheiden.

Erstens kann das Vorhandensein von Lichtelektronen
festgestellt werden. Es sind dies die durch den Primärstrahl aus ihren
Bahnen gelöst gedachten Elektronen; für die Energieumwandlung
gilt dabei nach der Quantentheorie die Beziehung:

J mv2 h v — w

In dieser Gleichung bedeutet „- v2 die kinetische Energie des

Lichtelektrons, w die Auslösungsarbeit desselben aus seiner Bahn,
und hv die Energie des einfallenden Strahles. Bei dieser licht-
elektrischen Emission wird demnach die elektromagnetische
Energie des einfallenden Strahles in die kinetische Energie eines
ß-Strahlenbündels umgesetzt. Wie die Gleichung für die
Energieumwandlung zeigt, existiert für den Primärstrahl eine Grenz-
freqnenz, unter welcher keine Lichtelektronen mehr emittiert
werden.

Neben dieser eben beschriebenen Erscheinung beobachten
wir eine zweite Art Sekundär-Strahlung, die nun wie die
Primärstrahlung ebenfalls elektromagnetischer Natur ist. Die
Frequenz dieser Strahlung ist aber im Gegensatz zu vorhin abhängig
von der absorbierenden Materie und unabhängig von der
Frequenz der primären oder anregenden Strahlung. Diese als Fluor-
es2ew,zstrahlung bezeichnete Erscheinung ist eng verknüpft mit
dem lichtelektrischen Effekt. Durch die Auslösung eines
Lichtelektrons aus seiner Bahn kommt ein Atom in einen jonisierten
Zustand und wird bei der ersten Gelegenheit versuchen, ein
freies Elektron von aussen wieder aufzunehmen, um die vom
Lichtelektron hinterlassene Lücke wieder auszufüllen. Gehörte
dabei das Lichtelektron einer innern Schale an, so wird der
neutrale Zustand gewöhnlich nicht in einem einzigen Schritt,
sondern erst nach einer Reihe von mehreren Schritten erreicht,
welche den Übergängen der Elektronen im Atominnern aus einem
Zustand in einen andern entsprechen. Ein jeder solcher Übergang

ist aber seinerseits von einer Ausstrahlung elektromagne-
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tischer Energie begleitet, wobei die Frequenz charakteristisch
sein wird für die betreffende Substanz. Für diese der emittierenden

Substanz eigentümliche Frequenz gilt die fundamentale
Beziehung der Quantentheorie

W - W
v

h ;

worin 11* die Energie eines gegebenen, stationären Zustandes
bedeutet.

Die dritte Erscheinung, die wir am absorbierenden Körper
wahrnehmen können, ist eine nach allen Richtungen mit gleicher
Qualität wie die Primärstrahlung erfolgende Ausstrahlung
elektromagnetischer Energie. Scheinbar ist demnach nur die Richtung
des einfallenden Strahles geändert worden, und man kann
deshalb von einer Streuung des einfallenden Strahles reden.

Von dieser eben beschriebenen Streustrahlung müssen wir
endlich noch eine weitere Erscheinung unterscheiden, ebenfalls
eine Streustrahlung, aber mit einer um einen kleinen Betrag
veränderten Frequenz (Compton-Effekt); die Grösse dieser Abweichung

hängt dabei ab vom Winkel zwischen dem primären und
sekundären Strahl.

Die vorliegende Arbeit beschäftigt sich mit der Streustrahlung

von unveränderter Frequenz; eine kurze Übersicht soll
die älteren Theorien aufführen.

Da die Streustrahlung von veränderter und unveränderter
Frequenz innerhalb eines gewissen Bereiches gleichzeitig
vorkommen kann, müssen wir zunächst die Bedingungen aufstellen
für das Überwiegen der einen oder andern Strahlung. Um die
Rolle, die jeder der vier Erscheinungen in der gesamten Absorption
zukommt, festzulegen, wird jeder dieser Strahlungen ein einzelner
Absorptionskoeffizient zugeordnet. So ist u xx + t2 + ff3 + <r4.

Im allgemeinen ist es experimentell unmöglich, die Grösse der

Absorption, die der lichtelektrischen Emission zukommt, von
derjenigen der Fluoreszenz zu trennen; deshalb werden die beiden
gewöhnlich zusammengefasst in r rx -\- r2. Ähnlich werden auch
die beiden Streuungsprozesse vereinigt: a a3 + <r4. Die dem
Koeffizienten t entsprechenden Energieumwandlungen werden
öfters etwas irreführend als „wahre" Absorption bezeichnet;
genau genommen müsste auch der Streuungsprozess mit
unveränderter Frequenz als wahre Absorption bezeichnet werden1).

J) Cf. F. Kohlrausch, „Probleme der y-Strahlung". Vieweg, 1927. —

A. Sommerfeld, „Atombau", und A. H. Compton, „X-rays and Electrons"
Macmillan, 1927.

4
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2. Klassische oder elektromagnetische Theorie der Streuung.

Mit dem Wort „klassisch" bezeichnen wir, wie es üblich ist.
jene Theorien, welche für die Erklärungen der Naturerscheinungen

die strenge Gültigkeit (d. h. gültig für mikro- wie für
makroskopische Erscheinungen) der Newton'schen und Maxwell-
schen Gesetze voraussetzen. Nach dieser Auffassung besteht das
Atom aus einer Anzahl von Elektronen, welche durch
quasielastische Kräfte an den Kern gebunden sind. Trifft eine
elektromagnetische Welle ein solches Atom, so erfahren die Elektronen
eine Kraft e S„(i), wobei S„(f) die elektrische Feldstärke der
einfallenden Welle ist. Die magnetische Feldstärke gibt ebenfalls
Veranlassung zu einer Kraft in Richtung des Strahles (Lichtdruck):
diese dürfen wir hier vernachlässigen. Jedes Elektron schwingt
synchron mit der elektrischen Feldstärke des störenden Lichtes.
Ein beschleunigtes Elektron strahlt aber elektromagnetische Energie

aus; die Ausstrahlung ist gegeben durch

2 p2 v28-l^r- O
Bei genügend hoher Frequenz können die elastischen Bindungskräfte

des Elektrons vernachlässigt werden gegenüber der Kraft
e<tcp(f). Wenn S^, <"t0 cos 2 ti v t, können wir die Verrückung .r
des Elektrons von seiner Ruhelage geben:

x £0 cos 2 n v t
und v — x - 4 ti2 v2 i0 cos 2 ti v t - 4 7t2 v2 x.

Damit lässt sich die durch das schwingende Elektron
ausgestrahlte Energie durch ein Dipolmoment M (t) ex ausdrücken :

*_«=£*= ,2,

Im weitern dürfen wir unter der Annahme, dass die elastischen
Kräfte vernachlässigt werden können (eine Annahme, die nur
möglich ist im Gebiete der Röntgenstrahlen), schreiben:

mv - e <&P

wodurch (1) übergeht in

2 p*
8 i -4-1 ®p W

3 m1 c3

Die Energiedichte der einfallenden Welle ist

4TI
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(3) misst die Grösse der Energie, welche von der primären Energie

aufgenommen worden ist. Diese absorbierte Energie findet
sich wieder in der Streustrahlung des schwingenden Elektrons.
Die Streuabsorption eines Elektrons ist demnach:

S 8 ^ • (5)
P 3 m2 c4 l '

Sind »-Elektronen im cm3 vorhanden, und streut jedes Elektron
unabhängig von den andern, so ist der Massen-Streuabsorptions-
koeffizient:

a iTie^n 8TieiLN A"
0,4 V (6)

q Sm2cio Sm2c*A ' A

Dieses ist die bekannte J. J. TnoMSON'sche Formel. Im Falle

von Wasserstoff ist —j gleich 1. Für andere leichte Elemente

ist i, gleich \ und (6) verlangt demnach, dass für diese Elemente

konstant, nämlich gleich o,2 sein soll, unabhängig von der
Q

Wellenlänge des gestreuten Lichtes und von der Substanz des

absorbierenden Körpers. Wie stehen nun dazu die experimentellen
Befunde

Für diese Substanzen kleinen Molekulargewichtes wird für
weiche Röntgenstrahlen der theoretische Wert tatsächlich
bestätigt. Zudem wird auf Grund dieser Theorie die Zahl der
Elektronen im Atom richtig bestimmt; ähnliche Überlegungen scheinen
befriedigend, die Brechung von Röntgenstrahlen an Kristallen
zu erklären. Im F'alle von Substanzen wie Kupfer und Silber

ist ein etwas grösserer Wert für — als 0,2 beobachtet worden.

Diese sogenannte „Extra-Streuung" konnte bis zu einem
gewissen Grade von Debye und andern erklärt werden, indem
sie zeigten, dass bei diesen schwereren Metallen, bei denen die
gegenseitigen Abstände der Elektronen nicht mehr klein sind
gegenüber der Wellenlänge des einfallenden Lichtes, die
Elektronen nicht unabhängig voneinander streuen. Wird der
absorbierende Körper andererseits mit sehr harten Röntgen- oder y-
Strahlen belichtet, so erhält man einen beträchtlich kleineren

Wert von —. Es wurde in einem Falle, bei dem das Primär-Licht
e

aus y-Strahlen von Ra-C bestand (Ishino) sogar einen Wert von
nur 0,048 gefunden. Betrachtungen, die sich rein auf die klassische

Theorie stützen, können keine befriedigende Erklärung für
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die Abweichung vom theoretisch erwarteten Resultat geben1).
Die Abweichung ist noch auffallender, wenn wir die räumliche
Verteilung des gestreuten Lichtes bei diesen sehr kleinen Wellenlängen

betrachten. Nach (6) sollte die Streustrahlung symmetrisch
verteilt sein in einer Ebene senkrecht zur Achse des Dipols M.
Tatsächlich ist diese Symmetrie nur bei weichen Röntgenstrahlen
beobachtet worden. Mit der Abnahme der Wellenlänge wird nun
aber die Intensitätsverteilung um die Dipolachse asymmetrisch
(im Falle von einer Anzahl von Atomen wird die Verteilung
asymmetrisch zu einer senkrecht zum Primär-Strahl und durch den
absorbierenden Körper gelegten Ebene). Mit anderen Worten,
betrachten wir eine durch den absorbierenden Körper gelegte
Xormalebene zum einfallenden Strahl, so wird nicht nur die totale

gestreute Energie, welche durch - gemessen wird, mit abnehmender

Wellenlänge kleiner, sondern noch viel auffallender ist es,
dass die gestreute Energie im Eintrittsraum viel schneller
abnimmt als im Austrittsraum. Für sehr kleine Wellenlängen
findet sich fast die gesamte Streustrahlung nur im Austritts-
raum. Die vorliegende Arbeit soll versuchen, diese beobachtete
Asymmetrie und die damit verbundene Abnahme des Streukoeffizienten

as bei sehr kurzen Wellenlängen auf Grund der Wellen-
mechaiiik zu erklären.

Durch eine experimentelle Untersuchung der Streuung bei
sehr harten Röntgenstrahlen wurde Compton zur Entdeckung des
oben erwähnten, vierten Phänomens geführt, nämlich der
Streustrahlung, deren Frequenz ein weniges abweicht von jener des

Primär-Strahles, wobei diese Abweichung eine Funktion des
Winkels zwischen Primär- und Sekundär-Strahl ist. Bekanntlich
erklärt die Theorie von Compton und Debye diese Erscheinung,
indem der Röntgenstrahl als ein Strom von Quanten mit der

Energie h v und dem Impulsmomente — behandelt wird. Trifft
ein Primärquant ein freies Elektron, so wird dasselbe abgelenkt.
Nach den Gesetzen der Erhaltung von Energie und Impuls muss
die ursprüngliche Energie bezw. der ursprüngliche Impuls des

Primärquants gleich sein der skalarcn Summe der Energien des

abgelenkten Quants und des Rückstosselektrons nach dem Stosse
bezw. gleich der Vektorsumme der Impulse der letzteren. Wir
erhalten dadurch zwei Gleichungen, welche die Frequenz v* des

abgelenkten Quantenstromes als eine Funktion des Ablenkungs-

l) Eine Ausnahme dieser Behauptung findet sich allerdings in den
Ausführungen, die sich auf die Annahme eines „grossen" oder „complexen" Elektrons

stützen. Cf. Compton, loc. eit.
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winkeis festlegen. Die Theorie ist nur für freie Elektronen
angewandt worden1). Wenn die Primärenergie genügt, ein Elektron
herauszulösen, so sind zwei Fälle möglich: Das primäre Lichtquant
kann entweder alle seine Energie dem Elektron abgeben, in welchem
Falle das Elektron als ein Photo-Elektron erscheint, oder das

Primärquant gibt nur ein Teil seiner Energie dem Elektron ab
und wird als Welle von veränderter Frequenz abgelenkt.
Genügt aber die Primärenergie nicht dazu, ein Elektron aus seiner
Bahn herauszulösen, kann immer noch eine Streuung (ohne
Frequenzveränderung) vorhanden sein, aber weder Photo- noch
Compton-Effekt können dabei vorkommen. Im allgemeinen
können im Röntgenstrahlgebiet alle drei Erscheinungen bis zu
einem gewissen Grade vorhanden sein. In den spektroskopischen
Untersuchungen über sekundäre Röntgenstrahlen bezeichnet man
die Streuung mit unveränderter Frequenz als die unverschobene

Linie, die Streuung mit veränderter Frequenz als die verschobene

Linie. Bei leichten Substanzen, wo alle Elektronen schwach
gebunden sind, werden schon bei verhältnismässig langen Wellenlängen

viele Elektronen ausgelöst; dementsprechend wird die
verschobene Linie bereits stark auftreten. Sind die Elektronen
wie im Falle der schweren Atome fester gebunden, erscheint die
verschobene Linie erst bei sehr kurzen Wellenlängen.

Vernachlässigen wir für den Moment den Lichteffekt, so können
wir die die Sache folgendermassen zusammenfassen. Betrachten
wir einen von Licht langer Wellenlänge beleuchteten Absorber, dann
werden keine Elektronen herausgelöst, die gesamte Streuenergie
findet sich in der unverschobenen Linie und wird erklärt sowohl
vom Standpunkt der klassischen- wie von der Quanten-Theorie
durch Annahme einer Störung der Elektronen in ihren Bahnen.
Nimmt jetzt die Wellenlänge ab, so werden eine gewisse Anzahl
von Elektronen herausgelöst, um so mehr, je kleiner die Wellenlänge

wird (zunehmende Primäreneigie), und veranlassen die
verschobene Linie. Mit der Zunahme der Intensität der verschobenen
Linie geht Hand in Hand das Abfallen der Intensität der
unverschobenen Linie, bis die gesamte Energie in der ersteren allein
vorhanden ist. Ein und dasselbe Elektron kann nicht zu beiden
Linien beitragen. Innerhalb eines gewissen Gebietes werden wir
erwarten dürfen, dass beide Linien von beobachtbarer Intensität
sind. Die Lage dieses Gebietes im Spektrum wird vom Absorber
abhängen, d. h. von der Arbeit, die nötig ist, um die Elektronen
aus ihren Bahnen zu lösen. Diese Frage wird wichtig sein bei
der Diskussion der Ergebnisse der vorliegenden Arbeit.

') Cf. Compton, loc. eit. Fussnote zu Seite 265.
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3. Quantentheorie der Dispersion.

Als die BoHR'sche Theorie der Quantenbahnen für die Erklärung

der verschiedenen Serien von Spektrallinien mit Erfolg
die klassische Theorie ersetzte, war es naheliegend, dieselbe auch
für die Erklärung der Dispersion zu Hilfe zu nehmen. Auf Grund
der Postulate der BoiiR'schen Theorie gelang es Kramers und
Heisenberg1), eine allgemeine Formel zu geben, welche in ihren
wichtigen Zügen grosse Ähnlichkeit aufweist mit der rein aus
klassischen Überlegungen erhaltenen Formel. In dem einfachen
Falle, wo der Primärstrahl linear polarisiert ist, geben die
Verfasser für das die Streustrahlung veranlassende Dipolmoment den
Ausdruck:

M(t) .—- ®0 cos 2n v t /V -/"-., - V -A,An2m \Z—I v-a - v Z_j ve-v- j
(7)

In (7) bezeichnen a resp. e die einer Absorption resp. Emission
entsprechenden Übergänge und / die Wahrscheinlichkeitskoeffizienten

für solche Übergänge. Offenbar ist die Intensität der
Streustrahlung bestimmt durch die Nenner v2- v2 und v2- v2.

Die Absorptions- und Emissionsfrequenzen sind charakteristisch
für den absorbierenden Körper; durch (7) wird auch die anomale
Dispersion in der Nachbarschaft der Eigenfrequenzen v va
bestimmt. Für harte Röntgenstrahlen und leichte Atome darf
gewöhnlich va gegenüber v vernachlässigt werden. Dies
entspricht unserer Vernachlässigung der elastischen Kräfte in der
Ableitung der J. J. TiiOMSOx'schen Formel.

Ausgangspunkt der vorliegenden Untersuchung ist die
Dispersionsformel, welche ScHRöniNGER aus den Grundgleichungen
der Wellenmechanik ableitete2). Nach derselben kann man
bekanntlich jedem vom Einfluss äusserer Kräfte freien Atom eine
allgemeine „Wellen-Gleichung" zuschreiben:

8n2m,, An im d w
Av--h* p°^ fc Tt0- ®

V0 ist das vom Kern herrührende statische Potential, ein die

1) Nature, 113, 673, 1924 und 114, 310, 1924. - Zeitschr. f. Phys. 31, 681,
1924.

2) E. SciiKÖDiNGER, Ann. d. Phys. 4, 81, 1926.
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Eigenschaften der verschiedenen Atome bezeichnender Faktor.
Die Lösung dieser „ungestörten" Probleme kann gegeben werden
durch die Formel:

¦IniEk t
ip uk(x) e i (9)

worin Ek die dem besonderen Kernpotential entsprechenden
Eigenwerte bedeuten und wo das Argument x der Eigenfunktionen
u die Gesamtheit der Konfigurationskoordinaten vertritt. Ist die
Potentialfunktion T'0 bekannt, so darf im allgemeinen das
Problem des ungestörten Atoms als gelöst betrachtet werden. Die
den verschiedenen Quantenzuständen fc entsprechenden Energie-
niveaus sind durch Ek gegeben, und nach der von Schrödinger
auf rein heuristischer Grundlage aufgestellten Hypothese besteht
Proportionalität zwischen dem Quadrate des absoluten Wertes
von ip und der Dichte der Elektrizität um den Kern. Wir werden
zunächst über die Bedeutung von y> keine Annahme machen und
nehmen die Gültigkeit der Wellengleichung nur als Mittel zur
Berechnung der Eigenschaften der Atome an.

Streuung erhalten wir, wie wir oben gesehen haben, beim
Auffallen einer Lichtwelle auf ein atomistisches System. Um
also eine Dispersionsformel zu erhalten, wird man, wie es
Schrödinger getan, die Wirkung einer kleinen Störung im Potential
F0 der Gleichung (8) untersuchen. Kommt die störende Kraft
z. B. von einem homogenen synehronschwingenden elektrischen
Feld, so wird die Potentialfunktion von (8) ersetzt durch

V V0 (x) + A(x) cos 2 ti v t, (10)

worin die Störungsfunktion A sehr klein gegen V0 angenommen
ist. Die Wcllengleichung des gestörten Problems lautet jetzt:

8Ti2mV0 An im dip 8ti2 m
\ip- __„____= .._. Aipcos2nvt. (11)

Da nun (11) homogen ist und das Störungsglied klein und zudem
über den ganzen Raum stetig und eindeutig verteilt ist, können
wir die Lösungen ip* des gestörten Problems in der unmittelbaren
Nachbarschaft jener des ungestörten Problems y> suchen1).

2 n i Et t

ip* uk(x) e h + w (x, t). (12)

l) Eine vollständige Darstellung dieser Störungsmethode ist zu finden in
Schrödinger, Ann. d. Phys. 4, 80, 1926.
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Führt man (12) in (11) ein, so gelangt man zu einer inhomogenen

Gleichung für die Bestimmung von w. Diese Gleichung
wird in der zitierten Arbeit aufgelöst durch eine Reihenentwicklung

von w nach den diskreten Eigenfunktionen uk, welche zu dein
entsprechenden ungestörten Problem gehören. Die Wellenfunktion
des gestörten Atoms ergibt sich als:

2 ti i Eu t

ip* uk(x) e
(m

-'lt(Ek+hv) ^J+ißk-hv)
1 v- \ e h + e

h

2 Z_j "" n'" \ Ek - En + h v Ek - En - hv
)!^t

Auf Grund der oben erwähnten Hypothese der elektrodynamischen
Bedeutung der ^-Funktion setzt SciiRöniNOER für die Komponente

des gesamten Dipolmomentes

M 2eyjX\ip\2 Q(x)dx (14)

Die Suinmierung ist über die Zahl der Elektronen des Atoms
zu vollziehen und die Integration über den ganzen Konhgura-
tionsraum zu erstrecken, q (x) ist die „Dichtefunktion"1).
Indem wir in (14) den mit seinem konjugierten Werte y>* multiplizierten

Wert ip* einführen, finden wir für M:

co

ir f> T.i r> j. \ V^n ~ Ek) akn bk„
M akk + 22< cos 2 n v t 2_, (gfc _ E\. _ \J~Ä ¦ (15)

Hierin bedeutet F die elektrische Feldstärke des störenden Feldes.

akn - 2e{ZiUkun q dx

bkn 2«i Di ii k ii„ Qdx

z die Polarisationsrichtung der störenden Welle und y jene Kom-

*) Für die Bedeutung von (14) vom Standpunkt der Matrizenrechnung
siehe Scbrödinger, Ann. d. Phys. 4, 79, 1926.
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ponente des streuenden Dipols, für welche wir uns gerade
interessieren. akk ist konstant und vertritt das Dipolmoment des
ungestörten Atoms. Demnach stellt das zweite Glied auf der rechten
Seite die mit derselben Frequenz wie das einfallende Licht
auftretende Streustrahlung dar.

In der Ableitung dieses Ausdruckes ist stillschweigend
angenommen, dass die Wellenlänge des störenden Feldes gross ist
verglichen zur grössten Dimension des streuenden Systems, oder
mit andern Worten, dass im störenden Potential

x
r (x,t) A(x) cos 2 n v t - '

-

der Faktor -j vernachlässigt werden darf. In der vorliegenden
Arbeit wird beabsichtigt, die eben skizzierte ScHRÖDiNGBR'sche

Behandlung der Dispersion zu erweitern bis ins Gebiet jener
Frequenzen, für welche X vergleichbar wird mit den Atomdimensionen,

und nachzusehen, wie weit es möglich sein wird, die in
diesem genannten Gebiete beobachteten Streuerscheinungen zu
erklären. Es werden sich gewisse Modifikationen und Zusätze
zur beschriebenen Methode als notwendig erweisen. Besonders
wichtig dürfte die Untersuchung eines eventuellen Einflusses des

kontinuierlichen Spektrums auf die Dispersion im Gebiete der
betrachteten Frequenzen sein. Die Berechnungen sind durchgeführt

worden für das Wasserstoffatom; dieses ist zur Zeit das

einzige Atom, für welches die zahlenmässige Berechnung auf
leichtere Art möglich ist.

Im Hinblick auf die schwerwiegenden Zweifel gegenüber der
Hypothese, die der yt-Funktion eine physikalische Bedeutung
beilegt, wollen wir vom ursprünglichen Standpunkt der Wellen-
mechanik, welche ip proportional der Elektrizitätsdichte setzt,
Abstand nehmen. Kürzlich gemachte Betrachtungen von
Heisenberg haben es als fraglich erscheinen lassen, ob die rein als
mathematisches Hilfsmittel aufgefasste Wellenglcichung, obschon
dieselbe im Falle dos ungestörten Atoms formell identisch ist
mit dem Matrizenausdruck der Born-Heisenberg-Jc-RDAN'schen
Mechanik, verwendbar bleibt für störende Kräfte, deren
Frequenzen sehr gross sind. Wir werden bei der Diskussion der
Resultate noch einmal darauf zurückkommen; die Resultate
scheinen glücklicherweise so zu sein, dass experimentelle
Untersuchungen eine endgültige Entscheidung ergeben könnten.



II. Ableitung des Streuungskoeffizientcn.

In der vorhergehenden Betrachtung über die Schrödinger-
sche Dispersionstheorie ist die Störung als von einem monochromatisch

schwingenden Skalarpotential r (x,t) — Fe cos 2 n v t
herrührend dargestellt worden (F elektrische Feldstärke des störenden

Lichtes). Es ist etwas vorteilhafter, das Vektorpotential
des störenden Feldes zu verwenden1). Die allgemeine
Wellengleichung des gestörten Atoms ist von Gordon2) gegeben.

Zd2ip 8n2m inieST dip

u 1 " « 1 "

An2-e2 V~1.2.2 / ,A«V> 0
« i

worin Aa die Komponenten des Viererpotentials bedeuten. Im
Falle des Wasserstoffproblems ist das Kernpotential F0 - e-~

Vernachlässigt man Glieder in — so reduziert sich (16) auf

8n2r?)e2 An im dip 4 n e i \ "" .dip ,„_„,v+ -wr"—r ii- itZj^tJ- (17)
A 1

Hier vertritt Ak die a;,j/,2-Komponenten der störenden Welle.
Der Einfachheit halber wollen wir annehmen, dass diese in solcher
Art polarisiert ist, dass

Q£x F0 cos 2 n | v t - y) Ax A0 sin 2 n l r t - -.

gy g, .4, - 4, 0.

Die Grundgleichung unseres gestörten Problems lautet endlich

(18)
8jr2we2 _ 4niw om* 4nie n I z\dw*

I ip* + —5-5 ip* 5 t- —; yLstn 2.T i'/ -- |-X_-y h2r r h dt hc ° ^ XJ dx

J) Siehe Fussnote, Seite 00.
2) W. Gordon, Zeitschr. f. Phys. 40, 117, 1926.
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Wird die linke Seite gleich Null gesetzt, so geht (18) über in die
ungestörte Gleichung (8), deren Lösung uns bekannt ist. Die
Lösung des gestörten Problems schreiben wir

V* -= fo -rw (x,y,z,t) (19)

wo ip° die Lösung von (8) ist. w bezw. seine ersten Ableitungen
sollen klein sein gegenüber von ip0 bezw. seiner entsprechenden
Ableitungen.

Führen wir (19) in (18) ein, so finden wir

8n2»te2 4nim äw Anie n [ z\ dip.. nnW + -Wr- "• " /M -H - - -TAT A° Sm 2iH- X) Tx (20)

2.-TC du, > '' ;- '' l
=—. An le -eh c ° dx |

Produkte von w und dem störenden Potential sind vernachlässigt
worden. Dieser Gleichung genügt:

2«t(,_ 2 ni t ,„—r-(Ek + h») -r-(Ek-hV) (21)
iv w+ e -W- e

worin W\ zu bestimmen sind aus der inhomogenen Gleichung

(22)

•
8:r2'" //' i i M 2ne * du

¦I »±+ h, (K. ± hv+ -j w± -j^^e ~ fc
-

Wie vorher wird (22) gelöst durch eine Reihenentwicklung
nach den Eigenfunktionen des ungestörten Problems. Es muss
aber daran erinnert werden, dass den Grenzbedingungen des

Wasserstoffproblems nicht nur genügt wird durch gewisse
diskrete negative Werte von der Energie Ek, sondern auch durch
alle positiven Werte E1). Dementsprechend müssen wir die
Existenz des kontinuierlichen Spektrums der positiven Werte von
E in Rechnung ziehen, indem wir unsere Reihenentwicklung

») ScHRöm.NGER, Ann. tl. Phys. 4, 79, 1926 und 4, 81, 1926. Es mag
interessant sein, zu erwähnen, dass diese Gleichung die erste ist, die entdeckt
worden ist mit Eigenfunktionen, die beiden Spektren, dem diskreten und dem
kontinuierlichen angehören.
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nach Eigenfunktionen machen, die beiden, den kontinuierlichen
und den diskreten Eigenwerten entsprechen. So setzen wir

W :.

CO ~

V 7- "n + / yHE) u (x, E) dE (23;

n 0

Das rechte Glied von (22) wird in gleicher Weise entwickelt:

Iniz co °o

e
X dA-L- V aM„ + / a±(E) u(x,E) dE (24)

n o

Indem wir (23) und (24) in (22) einführen, werden die
Entwicklungskoeffizienten ohne weiteres ermittelt durch Gleichsetzung
gleicher Terme.

+ a— A0eh
y ~ Ek-En±hv Anmc

V±(E) - a±(^
• A^L

' '' Ek -En + hv Anmc

/ + in iz
A du,

e dxk u„ dr (25)

-+2aiz Z:mA

+ /T,, lim 1 / ** duk I T„M^M^y J « -j^Ju(i,E')dE'dr.
E

Durch (23), (21) und (19) haben wir die y>-Funktion des gestörten
Wasserstoffatoms bestimmt. Um das Quadrat des absoluten
Wertes von ip*zu erhalten, multiplizieren wir ip* mit seinem
konjugierten Werte y<* und finden endlich

(26)

',,,*-2_ „s l>2eF0\S^ a uk un
_

iia(E)uku(E)
iY k 2n2m\Z-j(Ek-En)2-h2v2 J (Ek~E)2-h2v2

a "

n

Produkte und Quadrate der Störungsgiieder haben wir darin
vernachlässigt. Die Amplitude des Vektorpotentials ist ausgedrückt
in Termen des elektrischen Feldes, mittelst den Beziehungen

<? AnndA0~~-pC-- C27)
c 2 n v
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Die Koeffizienten a und a(E) sind

a I cos 2n { vt
z \ duk

n„ dr

• m-J cos 2n(vt

X dx

z \ duk
X dx

u(E) d T

(28)

Das gesamte resultierende Streumoment ist aus (14) zu berechnen;
der Summierungsindex reduziert sich im Falle von H auf eins.

Da aber die Wellenlänge des störenden Lichtes von derselben

X

iprdr

Fig. 1.

Grössenordnung sein kann wie die Atomdimensionen, ist es nötig,
im Gebiete, in welchem wir die Elementarmomente zu integrieren
haben, die Phasendifferenzen in Rechnung zu ziehen. Demnach ist
in (28) die Zeit t durch die retardierte Zeit

t* r
c

zu ersetzen, wobei r' der Abstand ist eines festen Punktes P von
einem Element der räumlichen Verteilung von ip welches Element
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Anlass gibt zur Streustrahlung. Das gesamte resultierende Moment
ist also (29j

i, e2h2F0M akk + ä-T=2nl m

ab t'
_

a(E) b(E)
(Ek - E„)2 - h2 v2

+ J ¦(Et-~E)*=Wv

worin1

b — / x uk un d t
E+A

b (E) ^ j f x uk f h(|,L") dE' -dr.
E

Dies ist offenbar die Komponente des Momentes in der x-Richtung,
tier Richtung der Polarisation des primären Lichtes.

Da wir uns für den numerischen Wert des Streuungskoeffizienten

interessieren, müssen wir den Ausdruck

CO

Zab f a(E) b(E)
(Ek -En)2-h2v2

+ .1 (Ek ~E)2-h2v2 ¦ {m
„ o

auswerten. Der Index k bezieht sich auf den Zustand, in welchem
das Atom sich gerade befindet im Augenblicke, wenn der störende
Strahl einfällt. Überall werden wir im folgenden annehmen,
dass das Atom ursprünglich im Grundzustand k — 1 war. Im
Hinblick auf

2n2me*
En " -j^^ (31)

ergibt eine einfache Rechnung, dass wenn die Wellenlänge X des

') Vergl. diesen Ausdruck mit (15), welcher erhalten wurde auf Grund
eines skalaren Stönmgspotential. Prof. Schrödinger hat gezeigt, dass

f d uk 4 ti- m ,„ „ fJ u„ -r—• dz —y-j— (Ek-E„)J xuk u„ dz

demnach ist (29) identisch mit (15), womit der Gebrauch eines skalaren, statt
eines Vektorpotentials sich rechtfertigt. Der Beweis geht folgenderinassen. Für
zwei beliebige Eigenwerte Ek und En haben wir

8 7i2m
uk H -, (Ek - e F0) Uk — 0

Un -I p— (En - e V0) Un 0

Beide Ausdrücke werden mit x multipliziert, ersterer zudem mit u«, letzterer mit
uk. Hierauf Subtraktion des zweiten vom ersten und endlich Integration der
Differenz über dx.
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primären Lichtes kleiner ist als etwa 500 A, die Grösse (Ek - E„)2
vernachlässigt werden kann gegenüber h2 v2.

Um zu zeigen, dass eine ähnliche Annäherung im Nenner des

Integrals gestattet ist, trotzdem E unendlich grosse, positive
Werte annehmen kann, benutzen wir einen assymptotischen
Ausdruck für die radiale Komponente von u(x,E). Für grosse
Werte von r haben wir

MMM\/^ cos (fc'r-a)
(32)

wo

und

2.T
fe' -^- V2mB

Sfc'
E

der Normierungsfaktor ist. Die Eigenfunktion für den Grundzustand

ist

wo

Dann wird

--^/f-.-»'. (33)

fei 4p V -2mE

b(x,E) j f f r sin 0 sin 0 uxu(x,E) r2 sin 0 dr d0 d<t>. (34)

fl
0 0 0

CO

MM'/
0

r2 e
x' cos (fc'r - a) dr (35)

fc« / 8 fc' (fc?- 3 fcfe') cos a + (3 fef fe' - fe3') sin a

n V E (fc2 + fc'2)3

1) E. Schrödinger, Ann. d. Phys. 79, 361, 1926. — G. Wentzel, Zeitschr.
f. Phys. 40, 574, 1926.

2) Cf. Wentzel, loc. eit.
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Da fc' proportional ist zu \/E, so wird das grösste Glied von
(34) proportional sein zu —jj Dasselbe gilt für a(x,E). Des-

wegen ist der Integrand von (30) proportional zu —T, ¦ Im Rönt-
E Ii

genstrahlgebiet wird für Werte von E, die genügend gross sind,
um (Ek-F)2 vergleichbar mit h2 v2 zu machen, der Integrand
sehr klein und wir dürfen im betrachteten Gebiet (Ek - E)
vernachlässigen. Mit andern Worten, wenn die Frequenz des
störenden Lichtes viel höher ist als die Eigenfrequenzen des Atoms,
dann ist der Einfluss des kontinuierlichen Spektrums auf die
Dispersion unwesentlich. Ist andererseits die primäre Wellenlänge

grösser, etwa im ultravioletten Gebiet, so kann die Grösse
(Ek - E) nicht länger unterdrückt werden und das kontinuierliche
Spektrum kann bei gewissen Wellenlängen zum bestimmenden
Faktor der Dispersion werden. Dies scheint den Resultaten von
ÜERTZFELn und Wolf zu entsprechen1). An den Dämpfen von
Na und K konnte IIarrison2) zeigen, dass das kontinuierliche
Spektrum sehr nahe der Grenze der Absorptionsserien beginnt
und dann ins ultraviolette stetig abnimmt. Im Bereiche der
optischen Frequenzen gibt die klassische Dispersionsformel manchmal

Resultate, die mit den Beobachtungen nicht übereinstimmen
und nach den vorhin erwähnten Verfassern soll diese Abweichung
von der Vernachlässigung des kontinuierlichen Spektrums
herrühren.

Nachdem wir nun den Energieparameter des Nenners von
(30) eliminiert haben, ist der Ausdruck

J y / cos 2 n I v t* - y
I - un dr ¦ x uk u„ dr + (36)

n

OO

f / cos 2n (v t* - j) ^p u(E) dr xuk u(E) dr } dE

0

auszuwerten. Für die Durchführung werden wir zuerst von einem
aus der Vollständigkeitsrelation abgeleiteten Theorem Gebrauch
machen.

Es seien / und g zwei willkürliche Funktionen, welche sich
nach einem System von normierten, orthogonalen Eigenfunk-

») K. F. Hertzfeld u. K. L. Wolf, Ann. d. Phys. 76, 71 u. 567, 1925.
2) C. B. Harrison, Proc. Nat. Acad. 8, 260, 1922.
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tionen entwickeln lassen, die beiden Spektren, dem diskreten
und dem kontinuierlichen, gehören. Es ist

f Zcnun 4 Ic (E) u(x,E) dE,

g Edm um + Ja (E') u(x,E') dE'.

Die Funktion un ist nicht nur orthogonal zu jeder andern Funktion

des diskreten Spektrums, sondern auch zu jeder Funktion,
die dem kontinuierlichen Spektrum angehört. So folgt

ffg dr EE cH dm fu„ um dr + [dr f fc(E) d(E') u(E) u(F7) dE +
J „in J JJJ

-\ — — USW.

Zcmdm + J c(E) d(E) dE

Es ist aber

c„ / / u„ dr c (E) fu (x,E) dr usw.

womit

ff g dr - Zff u mdxjg u ,„ dr+J[ ff u(E) drJg u(E) dr] dE (37)

Dies ist das gewünschte Theorem. Vergleicht man (36) mit (37),
so folgt

/ z \ ä uk
f cos 2 n I v t* - T —— g x uk

\ XJäx
d. h. (36) reduziert sich auf das Integral

.7= lcos2«fvl*-j)x^tt»dT. (38)

Die dem Grundzustand entsprechende Eigenfunktion uk ist

— r
1

«0 V^ «0
e„ "" (39)

wobei a0 der Radius der ersten Bonn/sehen Wasserstoffbahn
bedeutet. Die Berechnung von (38) ist durch die Gegenwart der
retardierten Zeit etwas umständlicher. Machen wir die gebräuchliche

Annahme, dass die Entfernung des Aufpunktes P von der
streuenden Ladung gross ist gegenüber der räumlichen Ausdehnung

der Ladung. Zudem nehmen wir an, dass der Aufpunkt
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in der Polarisationsrichtung senkrechten zy Ebene liegt (vergl.
Fig. 1).

t* t - —

;•' V ',2 + R2-2r R cos a

'oder da r « R
r' R-r cos a

Cos a kann ausgedrückt werden als Funktion der Winkel &, zp

und ß; letzterer bedeutet den Winkel zwischen R und der
primären Fortpflanzungsrichtung z und liegt, wie die Figur zeigt, in
der zy Ebene. Die Transformation auf Polarkoordinaten gibt:

x — r sin & cos xp y — r sin 0 sin 9 z r cos 0

Drehen wir die Koordinatensysteme um die .r-Achse, bis die
z-Achse in OP R hineinfällt und bezeichnen wir OP als die
z'-Achse eines neuen rechtwinkligen Koordinatensystemcs. Nach
der Figur gilt für dieses neue Koordinatensystem

z' r cos a

Demnach lautet die Gleichung für eine Transformation ins alte
System:

z z cos ß -f- y sin ß

und somit erhält man unmittelbar die gewünschte Beziehung:

r cos a r cos 0 cos xp -\- r sin 0 sin xp sin ß

Setzen wir
'o t- it

c

Für J ergibt sich:

J
oo " 2.1

0 0 0

'«0
r

+ T - cos a

2r

X

(40)

cos &) e "o r3sin3 ® cos2 99 rfr r?(9 ri</».

Die Integration von (40) nach xp würde zu einer BF.ssKL'schen
Funktion mit trigonometrischem Argument führen. Diese Funktion

könnte in der Integralform ausgedrückt werden, und hierauf

die Integration nach den noch verbleibenden Variablen aus-
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geführt werden. Es ist jedoch einfacher, (41) zunächst nach r
zu integrieren. Setzten wir

2n 2
fe q — —

X * a0

p fe sin ß sin 0 sin xp - fc (1 - cos ß) cos 0
Die erste Integration nach ?• ergibt

CO 2 TZ i v t0

Jr / cos (2rt vL + pr) c~V r9 dr VI —S 6-T (41)
/ ü ' (pi-q)*

o

2.T -2.,

l\o»2xpdxp T cos2^
./ (/»-<?)4 «/ <« + ^sni9>)4

Integriert man zunächst nach xp, so hat man

2 .t 2 n

Jw —

o o

auszuwerten, worin

a - (q + fe i vers ß cos(9) und 6 fe i sin /? sin©

Die vierte Potenz des Nenners wird leicht beseitigt durch eine
nach dem Parameter a ausgeführte Differentiation unter dem

Integralzeichen. Es ergibt sich:

2-t

J =-J X13 f cosZ,Pd<P ^ an (43)7 6 da3 J a + b sin xp (a2 _ b'ifli
0

Es bleibt jetzt
n it

/'sin3® dß /'cos © sin3@ ja (dd\~ Jf., 7 I rr - 1 fe vers /? I r- - «» • (44)° V (a2-62)5/* • V (a2-62)5'*
0 0

v '

Setzt man

.£ cos 0 h q2 -f- fe2 sin2/?, g — qk vers /3 m
2fe2 vers ß so findet man leicht

a2 -b2 =h + 2 gf ix - mx2.

Die vollzogene Integration nach x ergibt
(45)

4 q2 (g2 + m2) - fe2 vers2ft (fc2 +g2) 4 1
' '"' " "

3
"

(q2 + k2vers2ß)(mh-g2)2~
~

~8~ Tq2 +"2fesversj8J*
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Es ergibt sich also endlich für J:*n

1 / A2 \J - -jj -~ ^—ö J7j 5T- 1 COS 2 71 P t0 (46)
2 \ a2+2o-ti2(1-cos/3) /

und wir finden für das die Streustrahlung veranlassende
resultierende Moment

_ _ e'^cosa^.t. / x* y
4 7t.2mi>2 ^ X,+ 2a%n*(l-coBß)] ' '

Die Intensität des gestreuten Lichtes im Aufpunkte P ist
dem Quadrat des Moments M proportional. In der Richtung
des Primär-Strahles reduziert sich die Klammer auf eins und
es ergibt sich für den Quotienten der Intensitäten:

70 \j*+2atn*(l^cös'~ßj' ' ' lH'

worin 1 die Intensität bei einem Streuwinkel ß bedeutet und 70

die Intensität in der Richtung des Primär-Strahles.
Wie zuvor definieren wir den Atom-Streukoeffizienten als

den Bruchteil der Energie des an einem Atom gestreuten Lichtes
zur Energiedichte des einfallenden Strahles:

S
ff« p •

Nach der klassischen Elektrodynamik ist die von einem schwingenden

Dipol ausgestrahlte Energie

(£X e2i2 An3v*M2ü 47IC3r2 sin" V - csr2 sin2V ' W)

wobei y der Winkel zwischen dem Beschleunigungsvektor des
Elektrons und der Richtung des Aufpunktes ist. Die gesamte
ausgestrahlte Energie (mit unveränderter Frequenz!) ist also:

2.T .T 2-t

S —~jJ M2 sin3 ydßdy H^^-jM* dß (50)

oo o

e4®! f dß
r,m2c3J (1 +37rm2c3y (1+fcvers/?)4
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worin
2 a2 7t2

fe -jr~ •

Die Energiedichte des Primär-Strahles ist

4tc

und es ergibt sich für den Atom-Streukoeffizienten:
2.'c

4e4 f dß
11 8ro2c*./ (l + fcvers/3)4

o

2 • i

f dß 7t(2+6fc+9fe2+5fe3)
J '(V+kxeiXßf

"

(2fc+l)'/8
o v

8 7t e4 A (/« + 6 o2 Tt2 A4 + 18 a4, 7t4 X2 + 20 a» tc6)
a" ~~ 3^M4 ~

(4a27r2 -l-A2)7/,

oder für grosse Werte von X

3ne* / 8a27t2 60 ain*

(51)

(52)

3m2c4 \ X2 X

ldlich gro
auf eins und es bleibt

Für unendlich grosse Werte von X reduziert sich die Klammer

ff„ 8 je e4

A-^co _ 3 m2 C4
•

Dies ist genau die in (15) gegebene J. J. Tiiojison'scIic Formel;
(53) genügt somit der Bedingung, dass für grosse Wellenlängen
die Dispersionsformel der Quantentheorie übergehen soll in die
klassische. Da nach (6)

er 8nei n „ N
q 3 m2 c4 q

' A

und im Falle von Wasserstoff

können wir für den Massenstreukoeffizientcn schreiben:

a X (Xe + 6 a20 n2 X*+18a*0n*X2 +20a6nn6)
— ">4 tr. (53)

Q (Aaln2 + X2)/*
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III. Diskussion der Ergebnisse.

Aus (48) und (53) ergeben sich sofort zwei Grenzfälle. Wie
wir schon gesehen haben, geht erstens (53) für grosse Werte von
X über in die J. J. Tiiomson'scIio Formel (6). Zweitens wird in
der Richtung des einfallenden Strahles (ß 0) die Intensität
I — I0 unabhängig von X.

In Fig. 2 ist die Verteilung der Streustrahlung in der zy-
Ebene für verschiedene Werte von X nach Formel (48) graphisch

90

135! t5

180° B=0

Fi«. 2.

dargestellt. Der äussere Kreis stellt den Grenzfall dar, der
vollkommen symmetrischen, grossen Werten der Wellenlänge
entsprechenden Streuung. Mit der allmählichen Abnahme von X wird
ein immer grösser und grösser werdender Bruchteil von der
gesainten Sekundär-Strahlung im Räume hinter der «/y-Ebene
(Austrittsraum) auftreten, bis bei einer Wellenlänge von ungefähr
1 A die totale, beobachtete Sekundärstrahlung sich allein in
diesem Austrittsraum befindet. In Fig. 3 sind dieselben Kurven
in einer etwas gebräuchlicheren Form gegeben, -j- bedeutet den

0

Quotienten der Intensität des gestreuten Lichtes bei einem
beliebigen Winkel ß und des Maximums der Intensität bei ß 0,
Die Abhängigkeit dieses Quotienten von X ist dargestellt für
verschiedene Wellenlängen.
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Der Verlauf der Kurven von Fig. 2 und 3 ist äusserst ähnlich

jenem, den man experimentell bei der Streustrahlung an
leichten Substanzen erhält; doch bemerkt man bei genauerer
Betrachtung, dass der rasche Abfall der Intensität und die
damit verbundene Verlegung der gestreuten Strahlung in den
Austrittsraum nach den theoretischen Kurven schon bei grösseren
Wellenlängen auftreten sollten. Dies tritt besonders gut zu Tage bei
den Kurven von Fig. 4. Für die meisten leichten Substanzen ist der
Streuungskoeffizient genau gemessen worden; der fragliche Abfall
aber tritt erst im Gebiete der sehr harten Röntgenstrahlen merk-
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lieh auf. Leider scheinen keine zuverlässigen Werte des
Streuungskoeffizienten von Wasserstoff vorzuliegen, doch steht ausser
Zweifel, dass eine Streustrahlung im Gebiete von etwa 0,7 A
vorhanden ist. Nach den Kurven von Fig. 4 sollte die unver-
schobene Linie für Wellenlänge kleiner als 4 bis 5 A nur bei
äusserst kleinen Winkeln auftreten.

Es scheint aber vernünftig zu sein, zu vermuten, dass die
an Wasserstoff bei einer Wellenlänge von 1 A oder weniger
beobachtete Streuung allein vom CoMPTON-Effekt und nicht von der
Streuung, die wir hier betrachtet haben, herrührt. In einem
Wasserstoff-Atom sind die Elektronen loser gebunden als in
andern Atomen und demnach sollte, wie wir dies schon in der
Einleitung angedeutet haben, der CoMPTOx-Effekt bei einer
grösseren Wellenlänge als bei andern Atomen einsetzen. Zudem
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wird bei fallender Wellenlänge der Wert von X bei dein an Wasserstoff

die Streustrahlung der verschobenen Linie beginnt, immer
noch so gross sein, dass für schwerere Substanzen wie z. B. Kohlenstoff

die beobachtete Strahlung noch allein oder wenigstens
hauptsächlich in der unverschobenen Linie liegt. Wegen der kleinen
Zahl von Streuelektronen ist die Messung des Streuungskoeffizienten

von Wasserstoff schwierig. Somit sind die Intensitäten
zu klein, um eine spektroskopische Methode anzuwenden, welche
eine Trennung der beiden Strahlungen erlauben würde. Jedoch
scheint eine solche Trennung nicht nötig zu sein für eine vor-
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läufige Bestätigung oder Widerlegung der Theorie. Sind die
Annahmen, auf welche die Formel (50) sich stützt, richtig, dann
dürfen wir erwarten, dass innerhalb der Wellenlänge von 2 bis
ß Ä eino sehr starke Zunahme der gesamten Streustrahlung
beobachtet wird, wie dies durch die Kurven von Fig. 5 veranschaulicht

wird. Diese Untersuchung sollte keine grösseren,
experimentellen Schwierigkeiten bieten1).

') Für eine Behandlung des Compton-Effekt nach einer ähnlichen Methode,
siehe Wentzel, Zeitschr. f. Phys. 43, 1 und 779, 1927. Bei der Ausführung der
eben angedeuteten Experimente soll erinnert werden, dass die Resultate sieh
auf atomistischen Wasserstoff beziehen, den Messungen ist aber nur die molekulare

Form zugänglich. Allerdings darf man ein ähnliches Resultat erwarten,
d.h. einen plötzlichen Anstieg des Streuungskoeffizienten bei einer verhältnismässig

langen Wellenlänge.
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Die vorliegende Arbeit wurde anfänglich unternommen in
der Meinung, dass die Verteilung tier Ladung des Elektrons durch
die Funktion ip ,2 bestimmt ist. Nach dieser Auffassung müsste
beim Wasserstoff, wo die Kernkräfte klein sind, das „Elektron"
im Grundzustand einen mittleren Durchmesser von ungefähr
einem A haben und die starke Abnahme von " bei verhältnis-
massig grosser Wellenlänge würde ganz verständlich erscheinen.
Im Falle von schwereren Atomen mit entsprechend grösseren
Kernkräften würden die Elektronen der Wellenmechanik stärker
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konzentriert sein und X würde nur bei viel kleineren Werten von
derselben Grössenordnung wie die streuende Ladung.

Es scheint aber im gegenwärtigen Augenblick schwierig,
diese Auffassung zu stützen. \ip\2 wird allgemein mit der
Wahrscheinlichkeit verknüpft betrachtet, dass ein Elektron (im
klassischen Sinne) zu einer gegebenen Zeit an einem bestimmten
Orte sich befindet. Von diesem Standpunkt aus ist die
angewandte Methode immer noch anwendbar unter gewissen
Bedingungen. Diese Frage hängt ab von den relativen Frequenzen
der störenden Welle und den möglichen, kleinen unbestimmten
Schwankungen in der räumlichen und zeitlichen Lage des Elektron,

wie dies kürzlich von Heisenberg vorgebracht worden ist.
Eine experimentelle Überprüfung der vorhergehenden,
theoretischen Ergebnisse würde zeigen, wie weit die Methoden der
Wellenmechanik anwendbar sind.
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IV. Zusammenfassung.

Bei der Streuung von Röntgenstrahlen an materiellen Körpern

kann man beobachten, dass die gestreute Energie zum Teil
mit veränderter (CoMPTON-Effekt), zum Teil mit unveränderter
Frequenz auftritt. Das gesamte (veränderte und unveränderte)
gestreute Licht nimmt mit abnehmender Primärwellenlänge ab.
Die Abnahme der Intensität und der unsymmetrische Charakter
der Compton-Strahlung kann auf Grund der Quantentheorie
augenscheinlich erklärt werden. In der vorliegenden Arbeit wird
die Streuung mit unveränderter Frequenz eingehend untersucht.
Es wird darin gezeigt, dass diese unveränderte Streustrahlung
nicht nur mit abnehmender Primärwellenlänge abnimmt an
Intensität, sondern dass auch die räumliche Verteilung derselben
beherrscht wird von ähnlichen Beziehungen, wie sie in der Theorie
des CoMPTON-Effektes auftreten. Die beobachtete Abnahme an
Intensität der unverschobenen Linie kann deshalb nicht erklärt
werden durch die einfache Annahme, dass immer mehr und mehr
Elektronen am CoMPTON-Vorgang teilnehmen, und demzufolge
immer weniger und weniger Elektronen für die gewöhnliche
Strahlung übrigbleiben.

Ich möchte für das Interesse, das die Herren Professoren
Debye, Scuerrer und Wevi, dieser Arbeit entgegengebracht
haben, noch herzlich danken.

Zürich. Phys. Institut der E. T. IL, Dezember 1927.
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