Zeitschrift: Helvetica Physica Acta

Band: 1(1928)

Heft: I

Artikel: Streuungskoeffizient von Wasserstoff nach der Wellenmechanik
Autor: Stratton, J.A.

DOl: https://doi.org/10.5169/seals-109161

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-109161
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Streuungskoeffizient von Wasserstoff nach der Wellenmechanik

von J. A. Stratton.

Inhalt: Unter Zugrundelegung der de Brogie-Schridinger’schen wellen-
mechanischen Vorstellung vom Elektron wird die Streuung fiir Rontgenstrahlen
am Wasserstoffatom gerechnet. Es kann gezeigt werden, dass die Intensitat der
Streustrahlung mit abnehmender Wellenlange stark abnimmt und ebenso
starke Winkelabhingigkeit zeigen muss, im Einklang mit der Erfahrung.

I. Einleitung.

1. Phinomenologisches.

Wenn ein Rontgenstrahl auf eine materielle Schicht fallt,
wird Energie absorbiert. Um diese Absorption quantitativ fassen
zu konnen, muss man einen Absorptionskoeffizienten definieren.
Man bezeichnet als linearen Absorptionskoeffizienten den pro
Lingeneinheit der durchstrahlten Materie absorbierten Bruchteil
der Intensitit I des einfallenden, parallelen Strahlenbiindels,
oder also

po=-

~|
=~y

hierber 1st iibereinstimmend mit den Beobachtungen der absor-
bierte Teil der Intensitit I proportional gesetzt der Dicke dx
der materiellen Schicht. Fiir den Fall eines homogenen Strahles
(Strahl gleicher Qualitiit oder Frequenz) ist u konstant und die
Integration ergibt I = I,e**. Der lineare Absorptionskoeffi-
zient u bedeutet auch den von der Volumeneinheit des absor-
bierenden Mittels aufgenommenen Bruchteil der priméren Ener-
gle. Weit héufiger spricht man vom Massenabsorptionskoeffi-
zienten. Dieser auf die Masseneinheit bezogene Absorptions-
koeffizient ist gleich dem linearen Koeffizienten dividiert durch
die Dichte p des Absorbers; er ist eine charakteristische Grosse
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fir die absorbierende Substanz, unabhéngig von ihrem physi-
kalischen Zustande. Interessieren wir uns endlich fir den Teil
der Absorption, der dem einzelnen Atom zukommt, so fithren wir

einen Atomabsorptionskoeffizienten p, = ‘: ein; wobel n =
L—i\;-@ die Zahl der Elektronen in der Volumeneinheit bedeutet
(L Loscumipt’sche Zahl, N Atomnummer, 4 Atomgewicht).

Fragen wir nach der Art und Weise der Energieabsorption,
so 1st zwischen vier verschiedenen Erscheinungen zu unter-
scheiden.

Erstens kann das Vorhandensein von Lichtelektronen fest-
gestellt werden. Es sind dies die durch den Primérstrahl aus ihren
Bahnen gelost gedachten Elektronen; fiir die Energieumwandlung
oilt dabei nach der Quantentheorie die Beziehung:

tmov2=hv-w.

In dieser Gleichung bhedeutet "3 v? die kinetische Energie des
Lichtelektrons, w die Auslosungsarbeit desselben aus seiner Bahn,
und hv die Energie des einfallenden Strahles. Bei dieser licht-
elektrischen Emission wird demnach die elektromagnetische
Energie des einfallenden Strahles in die kinetische Energie eines
p-Strahlenbiindels umgesetzt. Wie die Gleichung fiir die Energie-
umwandlung zeigt, existiert fiir den Primérstrahl eine Grenz-
frequenz, unter welcher keine Lichtelektronen mehr emittiert
werden.

Neben dieser eben beschriebenen Erscheinung beobachten
wir eine zweite Art Sekundér-Strahlung, die nun wie die Pri-
mérstrahlung ebenfalls elektromagnetischer Natur ist. Die Fre-
quenz dieser Strahlung ist aber im Gegensatz zu vorhin abhingig
von der absorbierenden Materie und unabh#éngig von der Fre-
quenz der primaren oder anregenden Strahlung. Diese als IFluor-
eszenzstrahlung bezeichnete Erscheinung i1st eng verkniipft mit
dem lichtelektrischen Effekt. Durch die Auslosung eines Licht-
elektrons aus seiner Bahn kommt ein Atom 1n einen JOH]HILItLIl
Zustand und wird bei der ersten Gelegenheit versuchen, ein
freies Elektron wvon aussen wieder aufzunchmen, um die vom
Lichtelektron hinterlassene Liicke wieder auszufiillen. Gehorte
dabel das Lichtelektron einer innern Schale an, so wird der neu-
trale Zustand gewohnlich nicht in einem einzigen Schritt, son-
dern erst nach einer Reithe von mehreren Schritten erreicht,
welche den Ubergingen der Elektronen im Atominnern aus einem
Zustand in einen andern entsprechen. Ein jeder solcher Uber-
gang 1st aber seinerseits von einer Ausstrahlung elektromagne-



— 49 —

tischer Energie begleitet, wobei die Frequenz charakteristisch
sein wird fiir die betreffende Substanz. Fir diese der emittieren-
den Substanz eigentiimliche Frequenz gilt die fundamentale Be-
ziechung der Quantentheorie

worin W die Energie eines gegebenen, stationdren Zustandes
hedeutet.

Die dritte Erscheinung, die wir am absorbierenden Koérper
wahrnehmen konnen, ist eine nach allen Richtungen mit gleicher
Qualitiit wie die Primirstrahlung erfolgende Ausstrahlung elektro-
magnetischer Energie. Scheinbar ist demnach nur die Richtung
des einfallenden Strahles gedndert worden, und man kann des-
halb von einer Streuung des einfallenden Strahles reden.

Von dieser eben beschriebenen Streustrahlung miissen wir
endlich noch eine weitere Erscheinung unterscheiden, ebenfalls
eine Streustrahlung, aber mit einer um einen kleinen Betrag ver-
inderten Frequenz (Compton-Effekt); die Grosse dieser Abwei-
chung héngt dabei ab vom Winkel zwischen dem priméren und
sekundéren Strahl.

Die vorliegende Arbeit beschiftigt sich mit der Streustrah-
lung von unverinderter Frequenz; eine kurze Ubersicht soll
die dlteren Theorien auffiihren.

Da die Streustrahlung von verdnderter und unverdnderter
Frequenz innerhalb eines gewissen Bereiches gleichzeitig vor-
kommen kann, miissen wir zundchst die Bedingungen aufstellen
fir das Uberwiegen der einen oder andern Strahlung. Um die
Rolle, die jeder der vier Erscheinungen in der gesamten Absorption
zukommt, festzulegen, wird jeder dieser Strahlungen ein einzelner
Absorptionskoeffizient zugeordnet. So ist u = 7, + 7, + 03 + 4.
Im allgemeinen ist es experimentell unméglich, die Grosse der
Absorption, die der lichtelektrischen Emission zukommt, von
derjenigen der Fluoreszenz zu trennen; deshalb werden die beiden
gewohnlich zusammengefasst in T = 7; +7,. Ahnlich werden auch
die beiden Streuungsprozesse vereinigt: ¢ = o3 + 04, Die dem
Koeffizienten v entsprechenden Energieumwandlungen werden
ofters etwas irrefiilhrend als ,,wahre Absorption bezeichnet;
genau genommen miisste auch der Streuungsprozess mit unver-
dnderter Frequenz als wahre Absorption bezeichnet werden?).

1) Cf. F. KonrrauscH, ,,Probleme der y-Strahlung“. Vieweg, 1927. —
A. SOMMERFELD, ,,Atombau‘‘, und A. H. ComprON, ,,X-rays and Electrons*
Macmillan, 1927.
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2. Klassische oder elektromagnetische Theorte der Streuung.

Mit dem Wort ,klassisch®® bezeichnen wir, wie es iblich ist,
jene Theorien, welche fir die Erklarungen der Naturerschei-
nungen die strenge Giltigkeit (d. h. giiltig fiir mikro- wie fiir
makroskopische Erscheinungen) der Newton’schen und Maxwell-
schen Gesetze voraussetzen. Nach dieser Auffassung besteht das
Atom aus einer Anzahl von Elektronen, welche durch quasi-
elastische Krifte an den Kern gebunden sind. Trifft eine elektro-
magnetische Welle ein solches Atom, so erfahren die Elektronen
eine Kraft e €,(t), wober €,(t) die elektrische Feldstarke der ein-
fallenden Welle 1st. Die magnetische Feldstirke gibt ebenfalls
Veranlassung zu einer Kraft in Richtung des Strahles (Lichtdruck):
diese diirfen wir hier vernachlassigen. Jedes Elektron schwingt
synchron mit der elektrischen Feldstirke des stérenden Lichtes.
Ein beschleunigtes Elektron strahlt aber elektromagnetische Ener-
gie aus; die Ausstrahlung ist gegeben durch

B=g—5 (1)

Bei geniigend hoher Irequenz konnen die elastischen Bindungs-
krafte des Elektrons vernachléssigt werden gegeniiber der Kraft
e &, (). Wenn €, = €, cos 2z vt, konnen wir die Verriickung r
des Elektrons von seiner Ruhelage geben:
x==E&cos2mvt
und v =2 =-4a2v2 & cos2n vt =-4n%v:a.
Damit lasst sich die durch das schwingende Elektron ausge-
strahlte Energie durch ein Dipolmoment M (t) = ex ausdriicken :
324 vt M2 "
8 s HJ_S_ (2)
¢
Im weitern diirfen wir unter der Annahme, dass die elastischen
Krafte vernachldassigt werden konnen (eine Annahme, die nur
moglich ist im Gebiete der Rontgenstrahlen), schreiben:

my =—-e€,,
wodurch (1) iibergeht in
y 2 64 2 ¢
lS == 3‘ m:—a Cf;} (3)

Die Energiedichte der einfallenden Welle ist

C
dm

P =

€; (4)
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(3) misst die Grosse der Energie, welche von der priméaren Ener-
oie aufgenommen worden ist. Diese absorbierte Energie findet
sich wieder in der Streustrahlung des schwingenden Elektrons.
Die Streuabsorption eines Elektrons ist demnach:

S 8 met "
P =S mic )
P 3 m2e

Sind n-Elektronen im cm? vorhanden, und streut jedes Elektron
unabhingig von den andern, so 1st der Massen-Streuabsorptions-
koeffizient:

8metn 8n et LN OLL\' (6)
L R DA -

3m2ecto 3mietA ™4

g
0
-

Dieses 1st die bekannte J. J. TonomsonN’sche Formel. Im Falle

v

von Wasserstoff 1st _: eleich 1. Fiir andere leichte Elemente

ist : gleich § und {6) verlangt demnach, dass fiir diese Elemente

;— konstant, namlich gleich 0,2 sein soll, unabhingig von der

Wellenldnge des gestreuten Lichtes und von der Substanz des
absorbierenden Korpers. Wie stehen nun dazu die experimentellen
Befunde ?

Fir diese Substanzen kleinen Molekulargewichtes wird fiir
weiche Roéntgenstrahlen der theoretische Wert tatsidchlich be-
stitigt. Zudem wird auf Grund dieser Theorie die Zahl der Elek-
tronen im Atom richtig bestimmt ; dhnliche Uberlegungen scheinen
befriedigend, die Brechung von Rontgenstrahlen an Kristallen

zu erklaren. Im FKalle von Substanzen wie Kupfer und Silber

1st ein etwas grosserer Wert fiir % als 0,2 beobachtet worden.

Diese sogenannte ,,Extra-Streuun{:{“ konnte bis zu einem ge-
wissen Grade von DEBYE und andern erklirt werden, indem
sie zeigten, dass bei diesen schwereren Metallen, ber denen die
ogegenseitigen Abstinde der Elektronen nicht mehr klein sind
gegeniiber der Wellenliinge des einfallenden Lichtes, die Elek-
tronen nicht unabhéngig voneinander streuen. Wird der absor-
bierende Korper andererseits mit sehr harten Rontgen- oder y-
Strahlen belichtet, so erhilt man einen betriachtlich kleineren

Wert von ->. Es wurde in einem Falle, bei dem das Primér-Licht

aus y-Strahlen von Ra-C bestand (Ismino) sogar einen Wert von
nur 0,048 gefunden. Betrachtungen, die sich rein auf die klassi-
sche Theorie stiitzen, kénnen keine befriedigende Erklarung fiir
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die Abweichung vom theoretisch erwarteten Resultat geben?).
Die Abweichung ist noch auffallender, wenn wir die raumliche
Verteilung des gestreuten Lichtes bei diesen sehr kleinen Wellen-
langen betrachten. Nach (6) sollte die Streustrahlung symmetrisch
verteilt sein in einer Ebene senkrecht zur Achse des Dipols M.
Tatsichlich 1st diese Symmetrie nur hei weichen Rontgenstrahlen
beobachtet worden. Mit der Abnahme der Wellenlinge wird nun
aber die Intensitatsvertellung um die Dipolachse asymmetrisch
(im Ifalle von einer Anzahl von Atomen wird die Verteillung asym-
metrisch zu einer senkrecht zum Primar-Strahl und durch den
absorbierenden Korper gelegten Ebene). Mit anderen Worten,
betrachten wir eine durch den absorbierenden Korper gelegte
Normalebene zum einfallenden Strahl, so wird nicht nur die totale

. o - .
gestreute Energie, welche durch - gemessen wird, mit abnehmen-

der Wellenldnge kleiner, sondern noch viel auffallender ist es,
dass die gestreute Energie im Eintrittsraum viel schneller ab-
nimmt als im Austrittsraum. I'ir sehr kleine Wellenlingen
findet sich fast die gesamte Streustrahlung nur im Austritts-
raum. Die vorliegende Arbeit soll versuchen, diese beobachtete
Asymmetrie und die damit verbundene Abnahme des Streukoef-
fizienten o3 bei sehr kurzen Wellenlingen auf Grund der Wellen-
mechanik zu erklédren.

Durch eine experimentelle Untersuchung der Streuung bei
sehr harten Rontgenstrahlen wurde CompTOoN zur Entdeckung des
oben erwidhnten, vierten Phéanomens gefiihrt, namlich der Streu-
strahlung, deren Frequenz ein weniges abweicht von jener des
Primér-Strahles, wobei diese Abweichung eine Funktion des
Winkels zwischen Primér- und Sekundiar-Strahl ist. Bekanntlich
erklart die Theorie von ComproN und DeBYE diese Erscheinung,
indem der Rontgenstrahl als ein Strom von Quanten mit der

Energie h » und dem Impulsmomente —h?'” behandelt wird. Trifft

ein Primérquant ein freies Elektron, so wird dasselbe abgelenkt.
Nach den Gesetzen der Erhaltung von Energie und Impuls muss
die urspriingliche Energie bezw. der urspriingliche Impuls des
Primirquants gleich sein der skalaren Summe der Energien des
abgelenkten Quants und des Riickstosselektrons nach dem Stosse
bezw. gleich der Vektorsumme der Impulse der letzteren. Wir
erhalten dadurch zwei Gleichungen, welche die Frequenz »* des
abgelenkten Quantenstromes als eine Funktion des Ablenkungs-

1) IXine Ausnahme dieser Behauptung findet sich allerdings in den Aus-
fithrungen, die sich auf die Annahme eines ,,grossen oder ,,complexen* KElek-
trons stiitzen. Cf. Compton, loc. cit.



— 53 —

winkels festlegen. Die Theorie 1st nur fiir freie Elektronen ange-
wandt worden!). Wenn die Primérenergie geniigt, ein Elektron
herauszulésen, so sind zwei Falle moglich: Das priméare Lichtquant
kann entweder alle seine Energie dem Elektron abgeben, in welchem
Falle das Elektron als ein Photo-Elektron erscheint, oder das
Primidrquant gibt nur ein Teil seiner Energie dem Elektron ab
und wird als Welle von verdnderter Frequenz abgelenkt. Ge-
niigt aber die Primédrenergie nicht dazu, ein Elektron aus seiner
Bahn herauszulosen, kann immer noch eine Streuung (ohne
Frequenzverdnderung) vorhanden sein, aber weder Photo- noch
Compton-Effekt konnen dabei vorkommen. Im allgemeinen
konnen im Rontgenstrahlgebiet alle drei Erscheinungen bis zu
einem gewissen Grade vorhanden sein. In den spektroskopischen
Untersuchungen tiber sekundiare Rontgenstrahlen bezeichnet man
die Streuung mit unverénderter Frequenz als die wnverschobene
Linie, die Streuung mit veranderter Frequenz als die verschobene
Linte. Bel leichten Substanzen, wo alle Elektronen schwach
gebunden sind, werden schon bei verhéltnisméssig langen Wellen-
lingen viele Elektronen ausgelost; dementsprechend wird die
verschobene Linie bereits stark auftreten. Sind die Elektronen
wie im Falle der schweren Atome fester gebunden, erscheint die
verschobene Linie erst bei sehr kurzen Wellenldngen.

Vernachlassigen wir fiir den Moment den Lichteffekt, so konnen
wir die die Sache folgendermassen zusammenfassen. Betrachten
wir einen von Licht langer Wellenldnge beleuchteten Absorber, dann
werden keine Elektronen herausgelost, die gesamte Streuenergie
findet sich in der unverschobenen Linie und wird erklirt sowohl
vom Standpunkt der klassischen- wie von der Quanten-Theorie
durch Annahme einer Storung der Elektronen in ihren Bahnen.
Nimmt jetzt die Wellenldnge ab, so werden eine gewisse Anzahl
von Elektronen herausgelost, um so mehr, je kleiner die Wellen-
lange wird (zunehmende Primérenergie), und veranlassen die ver-
schobene Linie. Mit der Zunahme der Intensitdt der verschobenen
Linie geht Hand in Hand das Abfallen der Intensitit der unver-
schobenen Linie, bis die gesamte Energie in der ersteren allein
vorhanden 1st. Ein und dasselbe Elektron kann nicht zu beiden
Linien beitragen. Innerhalb eines gewissen Gebietes werden wir
erwarten diirfen, dass beide Linien von beobachtbarer Intensitit
sind. Die Lage dieses Gebietes im Spektrum wird vom Absorber
abhdngen, d. h. von der Arbeit, die notig ist, um die Elektronen
aus ithren Bahnen zu lgsen. Diese Frage wird wichtig sein bei
der Diskussion der Ergebnisse der vorliegenden Arbeit.

1) Cf. Compton, loc. cit. Fussnote zu Seite 265.



3. Quantentheorie der Dispersion.

Als die Bour’sche Theorie der Quantenbahnen fiir die Erkli-
rung der verschiedenen Serien von Spektrallinien mit Erfolg
die klassische Theorie ersetzte, war es naheliegend, dieselbe auch
fiir die Erklarung der Dispersion zu Hilfe zu nehmen. Auf Grund
der Postulate der Bomr’schen Theorie gelang es KraMERs und
HesenBErG!), eine allgemeine Formel zu geben, welche in ihren
wichtigen Ziigen grosse Ahnlichkeit aufweist mit der rein aus
klassischen Uberlegungen erhaltenen Formel. In dem einfachen
Falle, wo der Primérstrahl linear polarisiert ist, geben die Ver-
fasser fiir das die Streustrahlung veranlassende Dipolmoment den
Ausdruck:

e? Ta fe \
J\’I (t) = 4'7':—2—’"; @0 coSs 2 vt Z ﬁ?}{:— V"’ e Z 1’3 -——1’2 ) (7)

a €

In (7) bezeichnen a resp. e die einer Absorption resp. Emission
entsprechenden Ubergéinge und f die Wahrscheinlichkeitskoeffi-
zienten fiir solche Uberginge. Offenbar ist die Intensitit der
Streustrahlung bestimmt durch die Nenner v,2— %% und »,2- »2,
Die Absorptions- und Emissionsfrequenzen sind charakteristisch
fiir den absorbierenden Korper; durch (7) wird auch die anomale
Dispersion in der Nachbarschaft der Eigenfrequenzen » = »,
bestimmt. Fiir harte Rontgenstrahlen und leichte Atome darf
gewohnlich », gegeniiber » vernachldssigt werden. Dies ent-
spricht unserer Vernachlidssigung der elastischen Krafte in der
Ableitung der J. J. THomsox’schen Formel.

Ausgangspunkt der vorliegenden Untersuchung ist die Dis-
persionsformel, welche ScHRODINGER aus den Grundgleichungen
der Wellenmechanik ableitete?). Nach derselben kann man
bekanntlich jedem vom Einfluss dusserer Krifte freien Atom eine
allgemeine ,, Wellen-Gleichung** zuschreiben:

8a2m dxim oy

dy-BT Ty SBBIP g ®

Vo ist das vom Kern herrithrende statische Potential, ein die

1) Nature, 113, 673, 1924 und 114, 310, 1924. — Zeitschr. f. Phys. 31, 681,
1924, '

%) E. ScurODpINGER, Ann. d. Phys. 4, 81, 1926.



Eigenschaften der verschiedenen Atome bezeichnender Faktor.
Die Losung dieser ,,ungestorten’ Probleme kann gegeben werden
durch die Formel:

2tk t

p = u(x) e h , (9)

worin £, die dem besonderen Kernpotential entsprechenden
Eigenwerte bedeuten und wo das Argument z der Eigenfunktionen
w die Gesamtheit der Konfigurationskoordinaten vertritt. Ist die
Potentialfunktion V|, bekannt, so darf im allgemeinen das Pro-
blem des ungestorten Atoms als gelost betrachtet werden. Die
den verschiedenen Quantenzusténden k entsprechenden Energie-
nmveaus sind durch E, gegeben, und nach der von SCHRODINGER
auf rein heuristischer Grundlage aufgestellten Ilypothese besteht
Proportionalitit zwischen dem Quadrate des absoluten Wertes
von y und der Dichte der Elektrizitit um den Kern. Wir werden
zunichst iiber die Bedeutung von y keine Annahme machen und
nehmen die Giltigkeit der Wellengleichung nur als Mittel zur
Berechnung der Eigenschaften der Atome an.

Streuung erhalten wir, wie wir oben gesehen haben, beim
Auffallen einer Lichtwelle auf ein atomistisches System. Um
also eine Dispersionsformel zu erhalten, wird man, wie es SCHRO-
pINGER getan, die Wirkung einer kleinen Stérung im Potential
Iy der Gleichung (8) untersuchen. Kommt die stérende Kraft
z. B. von emnem homogenen synchronschwingenden elektrischen
Feld, so wird die Potentialfunktion von (8) ersetzt durch

V= "Vy(r) + A(x)cos2art, (10)

worin die Storungsfunktion A4 sehr klein gegen 17, angenommen
ist. Die Wellengleichung des gestirten Problems lautet jetzt:
8n?m ¥, dximoy 8azm

] ) — —— Y — - —— = ——— OS ) ) % (
y e 2 7} B Aycos2avt. (11)

Da nun (11) homogen ist und das Storungsglied klein und zudem
tiber den ganzen Raum stetig und eindeutig verteilt ist, konnen
wir die Losungen p* des gestorten Problems in der unmittelbaren
Nachbarschaft jener des ungestorten Problems ¢ suchen?).

2 l Ek t
* =@ e o+ w(x, . (12)

1) Eine vollstindige Darstellung dieser Storungsmethode ist zu finden in
Schrodinger, Ann. d. Phys. 4, 80, 1926.



Fihrt man (12) in (11) ein, so gelangt man zu einer inhomo-
genen Gleichung fiir die Bestimmung von w. Diese Gleichung
w1rd in der zitierten Arbeit aufgelost durch eine Reihenentwick-
lung von w nach den diskreten Eigenfunktionen w;, welche zu dem
entsprechenden ungestdrten Problem gehoren. Die Wellenfunktion
des gestorten Atoms ergibt sich als:

2rv Bt

- (13)

[ omit 3 _'z.'l b
i —}— (Ex+ hv) —— (Er - hv)

1 ( e + e -
—]'_ 2 Z yn un( ) ] . h‘n + hov Pf‘.’.‘ — ]fjn — h;,_ﬁ

n=1

Auf Grund der oben erwithnten Hypothese der elektrodynamischen
Bedeutung der y-Funktion setzt ScuropiNcer fiir die Kompo-
nente des gesamten Dipolmomentes

M = fE e; y: |y|?ol@)dx . (14)

Die Summierung ist iiber die Zahl der Elektronen des Atoms
zu vollziehen und die Integration tiber den ganzen Konfigura-
tionsraum zu erstrecken. p (x) ist die ,,Dichtefunktion®!), In-
dem wir in (14) den mit seinem konjugierten Werte »* multipli-
zierten Wert y* einfithren, finden wir fir M:

M=a;;, +2F cos2x vt Z L Ii’—)—(i’f-'il-’"" (15)
PJI 'n) h

n=1

Hierin bedeutet I die elektrische Feldstiarke des storenden Feldes.

By = fé] e; 2; Uy Uy o dr
i

bkn = fEei Yi; Uy Uy, O dx 5
i

z die Polarisationsrichtung der storenden Welle und y jene Kom-

1) Fiir die Bedeutung von (14) vom Standpunkt der Matrizenrechnung
siehe Schriodinger, Ann. d. Phys. 4, 79, 1926.
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ponente des streuenden Dipols, fiir welche wir uns gerade inter-
essieren. @ 1st konstant und vertritt das Dipolmoment des unge-
storten Atoms. Demnach stellt das zweite Glied auf der rechten
Seite die mit derselben Frequenz wie das einfallende Licht auf-
tretende Streustrahlung dar.

In der Ableitung dieses Ausdruckes ist stillschweigend an-
genommen, dass die Wellenlinge des storenden Feldes gross ist
verglichen zur griossten Dimension des streuenden Systems, oder
mit andern Worten, dass im stérenden Potential

r(z,t) = A(x) cos 2 x (v t— ;)

I . o .
der Faktor - vernachlissigt werden darf. In der vorliegenden Ar-

beit wird beabsichtigt, die eben skizzierte SCHRODINGER'sche
Behandlung der Dispersion zu erweitern bis ins Gebiet jener
Frequenzen, fiir welche 4 vergleichbar wird mit den Atomdimen-
sionen, und nachzusehen, wie weit es moglich sein wird, die in
diesem genannten Gebiete beobachteten Streuerscheinungen zu
erklaren. KEs werden sich gewisse Modifikationen und Zusitze
zur beschriebenen Methode als notwendig erweisen. Besonders
wichtig diirfte die Untersuchung eines eventuellen Einflusses des
kontinuierlichen Spektrums auf die Dispersion im Gebiete der
betrachteten Frequenzen sein. Die Berechnungen sind durchge-
fithrt worden fiir das Wasserstoffatom; dieses ist zur Zeit das
einzige Atom, fir welches die zahlenméssige Berechnung auf
leichtere Art moglich ist.

Im Hinblick auf die schwerwiegenden Zweifel gegentiber der
[lypothese, die der y-Funktion eine physikalische Bedeutung bei-
legt, wollen wir vom urspriinglichen Standpunkt der Wellen-
mechanik, welche w proportional der Elektrizitatsdichte setzt,
Abstand nehmen. Kiirzlich gemachte Betrachtungen von Hur-
SENBERG haben es als fraglich erscheinen lassen, ob die rein als
mathematisches Hilfsmittel aufgefasste Wellengleichung, obschon
dieselbe im Falle des ungestorten Atoms formell identisch ist
mit dem Matrizenausdruck der BorN-HEISENBERG-JORDAN'schen
Mechanik, verwendbar bleibt fiir stérende Krifte, deren Fre-
quenzen sehr gross sind. Wir werden bei der Diskussion der
Resultate noch einmal darauf zurtickkommen; die Resultate
scheinen glicklicherweise so zu sein, dass experimentelle Unter-
suchungen eine endgiiltige Entscheidung ergeben konnten.
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I1. Ableitung des Streuungskoeffizienten.

In der vorhergehenden Betrachtung iiber die ScHRODINGER-
sche Dispersionstheorie ist die Stérung als von einem monochro-
matisch schwingenden Skalarpotential » (z,t) = Fe cos 2 & vt her-
rithrend dargestellt worden (I elektrische Feldstidrke des storen-
den Lichtes). Es ist etwas vorteilhafter, das Vektorpotential
des storenden Feldes zu verwenden!). Die allgemeine Wellen-
gleichung des gestorten Atoms ist von Gorpon2) gegeben.

oty 8a2m e oy
Bl SRRSO AT E A 16
ZJ or 2 ( 0) ¥ h e “ ox ( )
@1 « =1 L
4 2 2 -
n?-e 2 : ,
- hzcrid Auw:U:
=1

worin 4, die Komponenten des Viererpotentials bedeuten. Im
Falle des Wasserstoffproblems ist das Kernpotential Vj = — e) i

Vernachlissigt man Glieder in L, so reduziert sich (16) aut

5} "
c? H

3
872 m e? 4xim oy 4:58‘172 : 0y _
; } e — — —_—- = — A 3 " ¢
LR T I h 0t he oa, (17)

Hier vertritt 4, die x,y,z-Komponenten der stérenden Welle.
Der Einfachheit halber wollen wir annehmen, dass diese in solcher
Art polarisiert 1st, dass

)
€ —C A, ~ A4, 0.

€, = Fycos2m (vi-— E A, = Aysin2=x rf—::
| 2.

Die Grundgleichung unseres gestorten Problems lautet endlich

' (18)

8m2me? drim oy¥ 4daie : Z\oy*

APE 4 —a—— gi¥ — , Aysin 2=z (vt —- |-
T TR YT T ot he 0“'“27(’ .)(Jz '

1) Siehe Fussnote, Seite 00.
*) W. Goroox, Zeitschr. f. Phys. 40, 117, 1926.
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Wird die linke Seite gleich Null gesetst, so geht (18) iiber in die
ungestorte Gleichung (8), deren Losung uns bekannt ist. Die
Losung des gestorten Problems schreiben wir

p* =y, +w(r,y,2,1), (19)

wo p° die Losung von (8) ist. w bezw. seine ersten Ableitungen
sollen klein semn gegeniiber von , bezw. seiner entsprechenden
Ableitungen.

Fihren wir (19) mm (18) ein, so finden wir

8x?me* dram ow 4dmie . z\ oy
Wt ———W— ——— —— = —— Aosin 2o vi- | —> (20
h2» h ot he ©°° 7;) oz =0
2m 2wz 2w 212
l --’)ff-‘ (Bp - ho) - 3}' ’;’ kL o v Bl “}‘
2z e ou,, . ' ! :
" he Ao OTL l ‘ - J

Produkte von w und dem stérenden Potential sind vernachléssigt
worden. Dieser Gleichung geniigt:
2t 2t
bkl o W) =By~ k%
o Byt hy) o F ) (21)
w =1, e —w_ e

worin w zu bestimmen sind aus der inhomogenen Gleichung

(22)

A wt%'-

8azm [, B2 Qe A ou
2 E, + hv4+ o w, = e

Wie vorher wird (22) gelést durch eine Reihenentwicklung
nach den Eigenfunktionen des ungestorten Problems. Es muss
aber daran erinnert werden, dass den Grenzbedingungen des
Wasserstoffproblems nicht nur geniigt wird durch gewisse dis-
krete negative Werte von der Energie F,, sondern auch durch
alle positiven Werte I'). Dementsprechend miissen wir die Exi-
stenz des kontinuerlichen Spektrums der positiven Werte von
E in Rechnung ziehen, indem wir unsere Reihenentwicklung

1) SCHRODINGER, Ann. d. Phys. 4, 79, 1926 und 4, 81, 1926. lis mag in-
teressant sein, zu erwihnen, dass diese Gleichung die erste ist, die entdeckt
worden ist mit Eigenfunktionen, die beiden Spektren, dem diskreten und dem
kontinuierlichen angehéren.
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nach Eigenfunktionen machen, die beiden, den kontinuierlichen
und den diskreten Eigenwerten entsprechen. So setzen wir

o0 v o]
wy = Zf— u, + f yEEB) u(x, E) dE . 23)
n 0

Das rechte Glied von (22) wird in gleicher Weise entwickelt:

2mriz @0 -
S ; ) ; ) J ¥ Al
- A f)f_l_l_._ E at u, + fai(E) wn (:C,E) adr . (24’
(13 |
n 0

Indem wir (23) und (24) in (22) einfithren, werden die Entwick-
lungskoeffizienten ohne weiteres ermittelt durch Gleichsetzung
gleicher Terme.

+ a% L dgeh
YT E.—E,“hy dmme
v (B) = GE (E) - ,AO '?__}f,

E.,-E,+hy 4ame

+2m1z .

a—(l) = Z%‘ y fe (()I;" ./u(é',h)dh dr .
E

Durch (23), (21) und (19) haben wir die p-Funktion des gestirten
Wasserstoffatoms bestimmt. Um das Quadrat des absoluten
Wertes von p*zu erhalten, multiplizieren wir »* mit semem kon-
jugierten Werte »* und finden endlich

(26)

> P ] U P~ Al . .J
p* el t h2el, 2 : U Uy 1 l a‘(L_)_ lf]‘o" (K) in
272m (B, - E,)2-h%v2 [ (E.—FK)2-h??

n

Produkte und Quadrate der Storungsglieder haben wir darin ver-
nachldssigt. Die Amplitude des Vektorpotentials 1st ausgedriickt
in Termen des elektrischen Feldes, mittelst den Beziehungen

== & und 4, = - Foc . (27)

% Qv
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Die Koeffizienten a und a(FE) sind:

o , Z\ ouy :
u;‘jan:z(vt—-z—) e und-(’
) . Loz oy
a (F) :J COs 22(1 f 7—) o w(l)dr .

Das gesamte resultierende Streumoment ist aus (14) zu berechnen;
der Summierungsindex reduziert sich im Falle von H aut eins.
Da aber die Wellenlinge des storenden Lichtes von derselben

(28)

X

Grossenordnung sein kann wie die Atomdimensionen, ist es notig,
im Gebiete, in welchem wir die Elementarmomente zu integrieren
haben, die Phasendifferenzen in Rechnung zu ziehen. Demnach ist
in (28) die Zeit t durch die retardierte Zeit

t*—_w_t_f_
c

zu ersetzen, wobel 7" der Abstand ist eines festen Punktes P von
einem Element der rdumlichen Verteilung von y , welches Element



Anlass gibt zur Streustrahlung. Das gesamte resultierende Moment

18t also (29)
<«

g T Y C aB b |

M = W + = 2771 IZ “h" 2 'f‘J —(—I —I) — h2p2 l
o

worin?t)

-

b :j Tupu, dr,

b(F) = ll'_’io 1/ “"f ) dE -

Dies 1st offenbar die Komponente des Momentes in der z-Richtung,
der Richtung der Polarisation des priméren Lichtes.

Da wir uns fiir den numerischen Wert des Streuungskoeffi-
zienten 1nteressieren, miissen wir den Ausdruck

0

ab / oL |
Z (h,\ F) 3 J2 0 +. (F,— B)2—h? RUIE (30)

n 0

auswerten. Der Index k bezieht sich auf den Zustand, in welchem

das Atom sich gerade befindet im Augenblicke, wenn der stérende

Strahl einfallt. Uberall werden wir im folgenden annehmen,

dass das Atom urspriinglich im Grundzustand & =1 war. Im

Hinblick auf

2 2 met
h® 3

E, =- (31)

erglbt eine einfache Rechnung, dass wenn die Wellenlinge 1 des
1) Velgl diesen Ausdruck mit (15), welcher erhalten wurde auf Grund
eines skalaren Storungspotential. Prof. Schrodinger hat gezeigt, dass

0 ug 4 2%m
fun %(lr—— 'q;’a* (FL .En)’/-ﬂ:ul Un (lf.

demnach ist (29) identisch mit (15), womit der Gebrauch eines skalaren, statt
eines Vektorpotentials sich rechtfertigt. Der Beweis geht folgendermassen. Fiir
zwei beliebige Eigenwerte Ex und Ep haben wir

87: m

uk + —(FL eVy) up = 0.

Un + — (En ) un = 0.

Beide Ausdriicke werden mit z multlphzlert, ersterer zudem mit wuy, letzterer mit

uk. Hierauf Subtraktion des zweiten vom ersten und endlich Integration der
Differenz iiber dr.



priméren Lichtes kleiner ist als etwa 500 A, die Grosse (E; - IJ,)?
vernachlidssigt werden kann gegentiiber h? »2

Um zu zeigen, dass eine ahnliche Annéherung im Nenner des
Integrals gestattet i1st, trotzdem [ unendlich grosse, positive
Werte annehmen kann, benutzen wir einen assymptotischen
Ausdruck fiir die radiale Komponente von w (z,E). Fir grosse
Werte von r haben wir?)

j3 k" cos(k'r-a)

w(r, ) = B ” , (32)
WO
, 2x
K =2 EmE
und

\/ 3K
E

der Normierungsfaktor ist. Die Eigenfunktion fiir den Grundzu-
stand 1st

Y
A

Uy = ’ (38)
WO
ky = %1— ’\/— 2mE .
h
Dann wird
oo T 2
b(z, E) = f f rsin @ sin @ wu(x,E) r?2sin @ drdO d® . (34)
b 00
o _ ~ >8]
.3 o 5 i
\/ % \/_3; , /,,.2 . kT os k'r —a)dr = (35)
0
2 2 \/"? \/3 K (k-8 kK) cosa + (3 k3 k' —k¥) sin
P B (k2 + k'2)3

1) E. ScHRODINGER, Ann. d. Phys. 79, 361, 1926. —G. WeNTZEL, Zeitschr.
f. Phys. 40, 574, 1926.
%) Cf. WEeNTZEL, loc. cit.
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Da k" proportional ist zu VE, so wird das grosste Glied von

(34) proportional sein zu —7 Dasselbe gilt fur a (z,E). Des-
4

1

wegen 1st der Integrand von (30) proportional zu = Im Ront-

genstrahlgebiet wird fiir Werte von E, die geniigend gross sind,
um (K, -F)? vergleichbar mit h2 »2 zu machen, der Integrand
sehr klein und wir diirfen im betrachteten Gebiet (F; - FE) ver-
nachldssigen. Mit andern Worten, wenn die Frequenz des sto-
renden Lichtes viel hoher 1st als die Eigenfrequenzen des Atoms,
dann 1st der Einfluss des kontinulerlichen Spektrums auf die
Dispersion unwesentlich. Ist andererseits die primire Wellen-
lange grosser, etwa 1m ultravioletten Gebiet, so kann die Grosse
(Ex - E) nicht langer unterdriickt werden und das kontinuierliche
Spektrum kann bei gewissen Wellenlingen zum bestimmenden
Faktor der Dispersion werden. Dies scheint den Resultaten von
HertzFELD und WoLr zu entsprechen?!). An den Dampfen von
Na und K konnte ITarrison?2) zeigen, dass das kontinuierliche
Spektrum sehr nahe der Grenze der Absorptionsserien beginnt
und dann ins ultraviolette stetig abnimmt. Im Bereiche der
optischen Frequenzen gibt die klassische Dispersionsformel manch-
mal Resultate, die mit den Beobachtungen nicht {ibereinstimmen
und nach den vorhin erwahnten Verfassern soll diese Abweichung
von der Vernachléssigung des kontinuierlichen Spektrums her-
rithren.

Nachdem wir nun den Energieparameter des Nenners von
(30) eliminiert haben, i1st der Ausdruck

J —2[005275 (v t*——) Qui dr-fa:ukundr + (36)
f fcos2n(vt*—z)—u(I“)drfa:uku(E)dr}dE.

auszuwerten. Fiir die Durchfithrung werden wir zuerst von einem
aus der Vollstindigkeitsrelation abgeleiteten Theorem Gebrauch
machen.

Es seien f und g zwel willkiirliche Funktionen, welche sich
nach einem System von normierten, orthogonalen Eigenfunk-

) K F HerrzreLp u. K. L. Worr, Ann. d. Phys. 76, 71 u. 567, 1925.
2) C. B. Harrison, Proc. Nat. Acad. 8, 260, 1922.
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tionen entwickeln lassen, die beiden Spektren, dem diskreten
und dem kontinuierlichen, gehoren. Es ist

fﬁZ(‘n u, '- f (F) “( )dB,
g =Zdyu, + [d(E)uF) b

Die Funktion u, 1st nicht nur orthogonal zu jeder andern Funk-
tion des diskreten Spektrums, sondern auch zu jeder Funktion,
die dem kontinuierlichen Spektrum angehort. So folgt

f/f}dr—Z‘chdmfw“  dt I—fdrff E) d(E) w(E) w(E') dE +

"o

-+ —— — usw.

- Z ey f ¢(E) A(E) dE .

Iis 1st aber

e, —_f fu,dr , c(E) mffu (z,E) dr, usw.

womit
f/ G = f u ,,,(?Tj g, dr. |f{ // u(l) (h'fq u(l) (l‘r} dls  (37)

- Dies 1st das g‘ewﬁnschte Theorem. Vergleicht man (36) mit (37),
so folgt

: 0u
f=cos2m (1' t* — —A_) —{5—;— , = Tuy

d. h. (36) reduziert sich auf das Integral

o == J cos 27 (r * — ;:) x ()()Nq; updr . (38)

Die dem Grundzustand entsprechende Eigenfunktion u, ist

- ™ (39)

wobel a, der Radius der ersten Bonr’schen Wasserstoffbahn be-
deutet. Die Berechnung von (38) i1st durch die Gegenwart der
retardierten Zeit etwas umstandlicher. Machen wir die gebriauch-
liche Annahme, dass die Entfernung des Aufpunktes P von der
streuenden Ladung gross i1st gegeniiber der rdumlichen Ausdeh-
nung der Ladung. Zudem nehmen wir an, dass der Aufpunkt
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in der Polarisationsrichtung senkrechten zy Ebene liegt (vergl.
Fig. 1).

p  — ¢ "
(' i
¥ =N1r2 4+ R2-27r R cos a
‘oder da r« R,
r = R-rcosa.

Cos a kann ausgedriickt werden als Funktion der Winkel &, ¢
und f#; letzterer bedeutet den Winkel zwischen R und der pri-
miren Fortpflanzungsrichtung z und liegt, wie die Figur zeigt, in
der zy Ebene. Die Transformation auf Polarkoordinaten gibt:

r=rsindcosg , y=rsmO@sing , z— rcosO,

Drehen wir die Koordinatensysteme um die x-Achse, bis die
z-Achse in OP = R hineinfiallt und bezeichnen wir OP als die
2'-Achse eines neuen rechtwinkligen Koordinatensystemes. Nach
der Figur gilt fiir dieses neue Koordinatensystem

2 = rcosa.

Demnach lautet die Gleichung fiir eine Transformation ins alte
System:
¢ ==zcosfB +ysinpg,

und somit erhdlt man unmittelbar die gewiinschte Beziehung:
rcosa = rcos @ cos ¢ +rsin @ sin @sin B

Setzen wir

I
o=t~
Fir J ergibt sich:
o, maA AT

,

J = - prrem J j J cos 27 (v 1y + S cosa -~ (40)
000
-2r
;;,,, cos @) e “ 333 O cos?@drd@dd .

Die Integration von (40) nach ¢ wiirde zu einer BesseL’schen
Funktion mit trigonometrischem Argument fiithren. Diese Funk-
tion konnte in der Integralform ausgedriickt werden, und hier-
auf die Integration nach den noch verbleibenden Variablen aus-
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oefithrt werden. Es ist jedoch einfacher, (41) zun#chst nach r
zu 1ntegrieren. Setzten wir
27 2

i q——ao’

k
p =Iksinfsm@sing-~k(1-cosf)cos®.

Die erste Integration nach r ergibt

w0 2rivi,
’ : ~gr o be :
J, = | cos Baviy+pre r3dr = R———— . (41)
pr—=q
0
Integriert man zunichst nach ¢, so hat man

2 T
o [eostedy " costody 42)
) pi—qgt ) (a+bsin ) \
0 0

auszuwerten, worin

ol

a=—(q +kv vers fcos@) und b = k1 sin fsn@ .

Die vierte Potenz des Nenners wird leicht beseitigt durch eine
nach dem Parameter a ausgefiihrte Differentiation unter dem
Integralzeichen. Es ergibt sich:

oo

, 1 d3 cosp dg wm :
%“adwjurmma—@twm =

0
s bleibt jetat

P12
2]

S o |
~Jg= qug —ik versﬂj 806 Ol B g (44)
(a% - b2)°) : (a2 — b2)"s

Setzt man
x=cosO, h=q®-+k*sin?f, g =qkvers f, m =
2k vers f, so findet man leicht
a’-b* =h +2gix— ma?,

Die vollzogene Integration nach x ergibt
(45)
4 Q% (g®+ m® — k® vers? (h®+¢%) 4 1

Je — BN e o e e
# 3 (q%+k? vers?f)(mh — g2 3 (g% + 2k%versB)®
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Es ergibt sich also endlich fir J:

. 1 AL ¢ 3
=]:“2(;L2+ 2a2 72 (1 — cos f) )Cobzn] o .

und wir finden fir das die Streustrahlung veranlassende resul-
tierende Moment

_ etFycos 2n v, A2 2 -
M = - 472 m p? ( J2 4 2(1'(2):12(1 "C()Sﬁ)) (4[)

Die Intensitat des gestreuten Lichtes im Aufpunkte P ist
dem Quadrat des Moments M proportional. In der Richtung
des Primér-Strahles reduziert sich die Klammer auf eins und
es ergibt sich fiir den Quotienten der Intensitéten:

1 ( 22 a |
I, -\ ¥ eaa - cosp)) (18)

worin [ die Intensitit bei einem Streuwinkel g bedeutet und I,
die Intensitit in der Richtung des Primér-Strahles.

Wie zuvor definieren wir den Atom-Streukoeffizienten als

den Bruchteil der Energie des an einem Atom gestreuten Lichtes
zur Energiedichte des einfallenden Strahles:

Nach der klassischen Elektrodynamik ist die von einem schwingen-
den Dipol ausgestrahlte Energie

-~/ 252 4 304 )2
@ = Z% sin®y = ﬂc3r2 — sin?y, (49)

wobei 3 der Winkel zwischen dem Beschleunigungsvektor des
Elektrons und der Richtung des Aufpunktes ist. Die gesamte
ausgestrahlte Energie (mit unverdnderter Frequenz!) ist also:

2T 25

3 4
4” : ff M2sin3y df dy = —&f-l-fzuzdﬁ = (50)

et €, dp
3azm2c® | (1+Fkvers f)*
0




— 69 -

worin
T — 2agm*
A2
Die Energiedichte des Primir-Strahles ist
¢ &
4n
und es ergibt sich fiir den Atom-Streukoeffizienten:
2
4t f dp X
TeT gmrel) A4k vers )t pll
0
Jomlt o E O
(1+ kversp)* Qk+1)7

0

Smet A(AS 4 6a] 7% A% 418 a; 7t A2 + 20 o =f)

O = =
* 8 mbpe (4 a2 22+ 22)")s

. (52)

oder fir grosse Werte von 4,

37 el (1— Baia®  60ajn? __u)

e e +
3 m? ¢t A2 Al

Fir unendlich grosse Werte von 24 reduziert sich die Klammer
auf eins und es bleibt
O, 8w et

A 3mEet
Dies ist genau die in (15) gegebene J. J. Tuomsox'sche Formel;
(53) geniigt somit der Bedingung, dass fiir grosse Wellenlingen
die Dispersionsformel der Quantentheorie iibergehen soll in die
klassische. Da nach (6)

o Bmret n N
o 3micto =047
und 1m Falle von Wasserstoff
N
N = 1,
kionnen wir fir den Massenstreukoeffizienten schreiben:
o A(AS+ 6a) w2 A%+ 18ag 7wt A% + 20 af 76) (53)

— = 0}4 N
0 (4adn%+22)



I11. Diskussion der Ergebnisse.

Aus (48) und (53) ergeben sich sofort zwer Grenzfille. Wie
wir schon gesehen haben, geht erstens (53) fiir grosse Werte von
A tber m die J. J. Tmomsox’sche Formel (6). Zweitens wird in
der Richtung des einfallenden Strahles (f = 0) die Intensitit
I = I, unabhingig von A.

In Fig. 2 ist die Verteilung der Streustrahlung in der zy-
Ebene fiir verschiedene Werte von 4 nach Formel (48) graphisch

135° NIt 45°

1a0° 7

J

Tig. 2.
dargestellt. Der dussere Kreis stellt den Grenzfall dar, der voll-
kommen symmetrischen, grossen Werten der Wellenlinge ent-
sprechenden Streuung. Mit der allméahlichen Abnahme von 2 wird
ein immer grosser und grosser werdender Bruchteil von der ge-
samten Sekundar-Strahlung im Raume hinter der yy-Kbene
(Austrittsraum) auftreten, bis bei einer Wellenlinge von ungefihr
1A die totale, beobachtete Sekundirstrahlung sich allein in
diesem Austrittsraum befindet. In Fig. 3 sind dieselben Kurven

. ) . . 1
mn emner etwas gebriduchlicheren Form gegeben. - bedeutet den

0
Quotienten der Intensitdt des gestreuten Lichtes bel einem be-
liebigen Winkel B und des Maximums der Intensitit bei g = 0.

Die Abhiingigkeit dieses Quotienten von 2 ist dargestellt fir
verschiedene Wellenldngen.
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Der Verlaut der Kurven von IFfig. 2 und 3 ist &usserst éhn-
lich jenem, den man experimentell beir der Streustrahlung an
leichten Substanzen erhilt; doch bemerkt man bel genauerer
Betrachtung, dass der rasche Abfall der Intensitit und die
damit verbundene Verlegung der gestreuten Strahlung in den
Austrittsraum nach den theoretischen Kurven schon bei grosseren
Wellenlingen auftreten sollten. Dies tritt besonders gut zu Tage bei
den Kurven von Fig. 4. Fir die meisten leichten Substanzen 1st der
Streuungskoeffizient genau gemessen worden; der fragliche Abfall
aber tritt erst im Gebiete der sehr harten Riéntgenstrahlen merk-

1

10| L.

A:20

08

)

=10

02 N
_ A=2
) 450 90° 1359 180° B—

Fig. 3.
lich auf. Leider scheinen keine zuverlissigen Werte des Strenungs-
koeffizienten von Wasserstoff vorzuliegen, doch steht ausser
Zweifel, dass eine Streustrahlung im Gebiete von etwa 0,7 A
vorhanden ist. Nach den Kurven von Fig. 4 sollte die unver-
schobene Linie fir Wellenliinge kleiner als 4 bis 5 A nur bei
dusserst kleinen Winkeln auftreten.

Es scheint aber verniinftig zu sein, zu vermuten, dass die
an Wasserstoff bei einer Wellenliinge von 1 A oder weniger beob-
achtete Streuung allein vom Compro~-Effekt und nicht von der
Streuung, die wir hier betrachtet haben, herriihrt. In einem
Wasserstoff-Atom sind die Elektronen loser gebunden als in
andern Atomen und demnach sollte, wie wir dies schon in der
Einleitung angedeutet haben, der Compron-Effekt bei einer
grosseren Wellenldange als bei andern Atomen einsetzen. Zudem
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wird bei fallender Wellenlange der Wert von 2 bei dem an Wasser-
stoff die Streustrahlung der verschobenen Linie l)egmn‘r immer
noch so gross sein, dass fur schwerere Substanzen wie z. B. Kohlen-
stoff die beobachtete Strahlung noch allein oder wenigstens haupt-
siichlich in der unverschobenen Linie liegt. Wegen der kleinen
Zahl von Streuelektronen ist die Messung des Streuungskoeffi-
zienten von Wasserstoff schwierig. Somit sind die Intensititen
zu klein, um eine spektroskopische Methode anzuwenden, welche
eine Trennung der beiden Strahlungen erlauben wiirde. Jedoch
scheint eine solche Trennung nicht notig zu sein fir eine vor-
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liufige Bestiitigung oder Widerlegung der Theorie. Sind die An-
nahmen, auf welche die Formel (50) sich stitzt, richtig, dann
diirfen wir erwarten, dass innerhalb der Wellenlange von 2 bis
5 A ecine schr starke Zunahme der gesamten Streustrahlung beob-
achtet wird, wie dies durch die Kurven von Iig.5 veranschau-
licht wird. Diese Untersuchung sollte keine grosseren, experi-
mentﬂllen %hwwmakon‘en blet(‘n)

l) Fiir eine Behandlung des Compton-1iffekt nach einer @ihnlichen Methode,
siehe WENTzEL, Zeitschr. f. Phys. 43, 1 und 779, 1927. Bei der Ausfithrung der
eben angedeuteten lixperimente soll erinnert werden, dass die Resultate sich
auf atomistischen Wasserstoff beziehen, den Messungen ist aber nur die moleku-
lare Form zuginglich. Allerdings darf man ein idbhnliches Resultat erwarten,
d. h. einen plotzlichen Anstieg des Streuungskoeffizienten bei einer verhiltnis-
missig langen Wellenlinge.



Die vorhegende Arbeit wurde anfanglich unternommen in
der Meinung, dass die Verteilung der Ladung des Elektrons durch
die Funktion |  |* bestimmt ist. Nach dieser Auffassung miisste
beim Wasserstoff, wo die Kernkriifte klein sind, das ,,Elektron‘
im Grundzustand einen mittleren Durchmesser von ungefihr
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einem A haben und die starke Abnahme von 0 bel verhiltnis-
missig grosser Wellenlange wiirde ganz verstandlich erscheinen.
Im Falle von schwereren Atomen mit entsprechend grosseren
Kernkraften wiirden die Elektronen der Wellenmechanik stirker
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konzentriert sein und A wiirde nur beir viel kleineren Werten von
derselben Grossenordnung wie die streuende Ladung.

Es scheint aber im gegenwirtigen Augenblick schwierig,
diese Auffassung zu stiitzen. |y [ wird allgemein mit der Wahr-
scheinlichkeit verkniipft betrachtet, dass ein Elektron (im klas-
sischen Sinne) zu einer gegebenen Zeit an einem bestimmten
Orte sich befindet. Von diesem Standpunkt aus 1st die ange-
wandte Methode immer noch anwendbar unter gewissen Be-
dingungen. Diese Frage hingt ab von den relativen Frequenzen
der storenden Welle und den miglichen, kleinen unbestimmten
Schwankungen in der riumlichen und zeitlichen Lage des Elek-
tron, wie dies kiirzlich von HeiseNBERG vorgebracht worden ist.
Eine experimentelle Uberpriifung der vorhergehenden, theore-
tischen Ergebnisse wiirde zeigen, wie weit die Methoden der
Wellenmechanik anwendbar sind.



IV. Zusammenfassungy.

Bei der Streuung von Rontgenstrahlen an materiellen Kor-
pern kann man beobachten, dass die gestreute Energie zum Teil
mit verdnderter (Compron-Effekt), zum Teil mit unverdnderter
Frequenz auftritt. Das gesamte (verdinderte und unverinderte)
gestreute Licht nimmt mit abnehmender Primérwellenlinge ab.
Die Abnahme der Intensitdt und der unsymmetrische Charakter
der Compron-Strahlung kann auf Grund der Quantentheorie
augenscheinlich erklirt werden. In der vorliegenden Arbeit wird
die Streuung mit wnverinderter Frequenz eingehend untersucht.
Es wird darin gezeigt, dass diese unverinderte Streustrahlung
nicht nur mit abnehmender Primirwellenlinge abnimmt an In-
tensitat, sondern dass auch die réaumliche Verteillung derselben
beherrscht wird von #hnlichen Beziehungen, wie sie in der Theorie
des Compron-Effektes auftreten. Die beobachtete Abnahme an
Intensitit der unverschobenen Linie kann deshalb nicht erklirt
werden durch die einfache Annahme, dass immer mehr und mehr
Elektronen am Compron-Vorgang teilnehmen, und demzufolge
mmmer weniger und weniger Elektronen fiir die gewdohnliche
Strahlung tibrigbleiben.

Ich mochte fiir das Interesse, das die Herren Professoren
DeBve, Scuerrer und WEevL dieser Arbeit entgegengebracht
haben, noch herzlich danken.

Zirich, Phys. Institut der E. T. ., Dezember 1927,
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