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Uber die Beleuchtung triiber Medien
von P. Gruner.

Inhaltsangabe: Die Intensitit des an einer homogenen planparallelen
Schicht eines triiben Mediums zuriickgeworfenen Lichtes wird berechnet und
dislkutiert und auf die wichtigen Anderungen derselben im Vergleich zu der
direkten Lichtzerstreuung an eimem Teiichen hingewiesen. Als Beispiel wird das
Rayyleigh’'sche Gesetz durchgerechnet.

Die optischen Erscheinungen an triilben Medien werden oft
in einfacher Weise behandelt, indem die Gesetze der Licht-
zerstreuung an den einzelnen suspendierten Teilchen ohne weiteres
auf das gesamte Medium iibertragen werden. Im folgenden sollen
die nicht unerheblichen Anderungen dieser Erscheinungen be-
trachtet werden, die sich aus einer genaueren Beriicksichtigung
der Gesamtwirkung einer beleuchteten Schicht ergeben. Dabei
muss freilich immer noch mit Ann#herungen gerechnet werden,
incdem 1m folgenden nur die primire Lichtzerstreuung an den
eimzelnen Teilchen betrachtet wird.

Wir beschriinken uns auf den einfachsten Spezialfall, in
welchem eine homaogene, isotrope, triibe Schicht, die von parallelen
Ebenen begrenzt wird, durch parallel-einfallendes, unpolarisiertes,
monochromatischies Licht beleuchtet wird; wir untersuchen nur
dass in der Einfalllsebene zuriickgeworfene Licht.
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Die Schicht von der Dicke AH (Fig. 1) sei durch 3 Kon-
stante charakterisiert:

n = Zahl der suspendierten Teilchen pro Volumeneinheit,

% = Ausloschungskoeffizient pro Léngeneinheit,

I' = Zerstreuungskoeffizient der einzelnen Teilchen;

I" ist eine Funktion des Zerstreuungswinkels ¢ (zwischen der
Richtung des einfallenden Strahles OR und des zerstreuten
Strahles, der sog. Blickrichtung P Q). Es ist ¢ = § |- ¢,
wenn der Einfallswinkel = 90 — ¢, der Blickwinkel =90—-¢ ist.

Hat das einfallende Licht beim Eintritt in die Schicht die
Intensitit J, (die = 1 gesetzt wird), so wird ein in S einfallendes
Parallelstrahlenbiindel, das an Teilchen bei 1" zerstreut wird, in
die Blickrichtung einen Anteil liefern, der pro Strecke d 2 der-
selben den Betrag d.J = I'. e+ 4 . n.d i ausmacht!); wobei
ST = w, TQ = 4, OP = AW, PQ = AL.

Die Intensitit J des in die Blickrichtung zerstreuten Lichtes
(in Q) ist dann:

A=AL
J=mn. I’fe‘”""*’” LA,
4=0
. AL+ AW
was ergibt, da o + A = == A
n.lI AL
s (1 _ p=2AL + W)
== A aw (1 ¢ ) )
Durch Einfiihrung folgender Bezeichnungen und Abkiirzungen :
/ . AH
JW:__,_LE’ AL ==—, B4 =h (2)
sin 0 sin &

A (AL +AW) —p Snetsnd 8)

sin €. sin

AL
. BT - “K(-\L+ JIV): ‘_: 2.
| ALyaw - P.1-¢ E, D.E=G @)
wird :
n. I n. I sin 0 B
== e v - @

Um die Abhéngigkeit von J von ¢ zu diskutieren, bildet man:
1dJ 14l 148G
Jde T de G dg
17) ']E»inéudetaillierte Herleitung dieser Gleichung ergibt sich aus fritheren
Darlegungen des Verfassers, s. Beitrige z. Physik d. freien Atmosph. 8, 120, 1919.
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Hinfort soll e als konstanter Parameter (dessen Wert zwischen
0° und 90° lLegt) betrachtet werden, so dass nur ¢ als laufende
Variable angsehen wird. Aus @ = ¢ -+ 4 folgt dann:

dG 4G
(l(p T dé
und es ergib: sich:
L, 1.dG . cotg o Z
B ay =™ e +sin o (1 ezjl‘)' ©)

Wiihrend die Maxima und Minima der Zerstreuungsfunktion I
~ .. d i Vil . . . .
in Abhiingigkeit von ¢ durch g‘q) = (0 bestimmt sind, ist jetzt
die Lage der Maxima und Minima der Intensitit J bestimmt
durch dJ = 0, also durch

- } ' g (7)
" de -

Sind aus diesen Beziehungen die Lagen dieser Maxima und
Minima gefunden, so kénnen aus (5) die zugehorigen Werte von
J elmlttelt werden. Um also die Anderung zu flnden welche
die Intensitdt J infolge der Gesamtwirkung der Schicht gegen-
iiber der an cinzelnen 'lellchen zerstreuten Intenntat I’ erleidet,
miissen zunichst die Funktionen & und R in ihrer Abhingigkeit
von ¢ (bezw. von 4 bei konstantem &) untersucht und sodann

: s . ar
ihre Beziehungen zu I" und pm besprochen werden.

Was die Variabeln anbetrifft, ist festzustellen, dass ¢ und 8
nur von 09—90° varieren, dass also nach (3) die Hilfsvariable 2

prree ) , bezw. 2, und o0;
J ist immer > 0; z ist also gross, sobald h gross ist, aber auch noch

bei kleinem h, sofern 6 oder & oder beide sehr klein sind; sonst
wird z mut kleinem h auch klein,

nur positive Werte hat, zwischen h( 1 -

1. Diskussion der Funktion G = D . E, wo
S1n é
Die= 1 y=1—8% z=h 71— A 1 .
' sin & + sin 0 SIN € sin 0

a) Sowohl D wie auch E sind immer positiv, <1, folglich
auch G. Fiir grosse z geht K dem Grenzwert 1, also ¢ dem Grenz-
wert D zu. Durch Bildung des Differentialquotienten

aD sin € . cos 0
dé  (sine +sin §)2’
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; b ; 2D . .
der immer positiv ist, sowie von %.“?37’ der immer negativ ist,

erkennt man, dass die Kurve von D (als Funktion von 4§) mit
4 dauernd aber immer langsamer wichst, also nach unten konkav
1st (vergl. Tabelle auf S. 11 und Fig. 2, a u. b, worin D fiir ¢ = 9(°

07 F D:E =30°
06}
05|
04 F
03}
02}
0l

d 6:6=30°h=001
0 15° 30° 45° 60° 769 90°
Fig. 2.

und ¢ = 30° berechnet ist). Fir 6 =0 st D =0, die Kurve

stelgt im Nullpunkt unter einem Winkel y auf, fiir den tg y = S_iillé ;
allméhlich wird die Kurve immer flacher und erreicht fiir § = 90°
den Wert ?ima mit horizontaler Tangente. In Abhéngigkeit

vom Parameter ¢ ist leicht zu sehen, dass die D-Kurve fiir ¢ = 90°
die kleinsten Werte hat (von 0 bis 1) und mit abnehmendem &
immer hoher steigt, bis sie fiir ¢ = 0° in die Horizontale D =
tibergeht.

b) Solange z geniigend gross, so dass £ =1, wird G = D.
Mit abnehmendem 2z wird stets G < D (vergl. Tabelle und Fig. 2,
¢ u. d, worin G fiir ¢ = 30% das eine Mal mit h = 1, das andere
Mal mit h = 0,01 gezeichnet ist). Die G-Kurve steigt bei 6 = 0
in dhnlicher Weise wie die D-Kurve an, wichst aber immer lang-
samer als D, ist also nach unten stirker konkav, und nimmt
einen immer flacheren, fast horizontalen Verlauf. Wenn z sehr
klein ist, so wird (allerdings nur fir Werte von ¢ und 6, die nicht
zu klein sind) ¢ = D.z = sﬁz_e , d. h. die G-Kurve wird fir merk-
liche ¢ zu einer horizontalen Geraden (vergl. Fig. 2, d).

2. Diskussion der Funktion R = S+ K, wo

Heoine— 087 _ p_q. 2 Lopf 1 2N
sin €& + sm o et —1 SIn & sin 0




a) Sowohl S wie auch K sind immer positiv, K <1: ftir
grrosse z geht K dem Grenzwert 1, also R dem Grenzwert S zu.
IDwurch Bildung des Differentialquotienten

dS  sine+2sind—sin?d
dd  (sinée +sin d)2.sin?d

SIn € ,

; , , dz S . e e .
dler immer negativ, sowie von ;—, , der immer positiv 1st, erkennt

20 -
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0 1 A
16° 30° 45°  60°  75°  90°

Fig. 3.

man, dass die Kurve von S mit wachsendem 6 dauernd abnimmt,

atber immer langsamer, also nach unten konvex ist (vergl. Tabelle
awf S. 11 und Fig. 3, a u. b, worin S fiir ¢ = 90° und ¢ = 30°
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berechnet ist). Idr 6 =0 ist S = co, die Ordinatenaxe it
Asymptote; die anfangs steil abfallende Kurve verliuft imme
flacher und trifft die Abszissenaxe fir 6 = 90° unter einen
Winkel y, fiir den

sin €
to P = -
1+ sine
In Abhiingigkeit vom Parameter & ist leicht zu erkennen, dass
die S-Kurve fiir ¢ = 90° die griossten Werte hat, mit abnel-
mendem & immer kleiner, also immer konvexer nach unten
verlduft und fiir ¢ = 0° den konstanten Wert S = 0 hat.

b) Solange z geniigend gross, so dass K =1, wird R = 5.
Mit abnehmendem z wird stets R << S (vergl. Tabelle und Fig. 3,
¢ u., d, worin R fiir ¢ = 309 das emne Mal mit h = 1, das andere
Mal mit h = 0,01 gezeichnet ist). Die R-Kurve fillt aber rascher,
also steiler als die zugehorige S-Kurve ab und verliuft dawn
flacher bis zum Wert R = 0 fiir 0 = 90°. Wenn z sehr klen
wird (allerdings nur fiir Werte von ¢ und 6, die nicht zu klein
sind) wird

V== 5 SInE =l

3. Diskussion von J ~1"- G.

Sobald die Zerstreuungsfunktion /" als IFunktion von g,
somit auch (bei gegebenem &) von 06, bekannt ist, lasst sich ohne
welteres der Verlauf der Intensitdt J in Abhédngigkeit von #,
bezw. ¢, ermitteln; da I stets positiv und im allgemeinen auch
> 0 ist, so wird J auch stets positiv, grosser als Null, sein (ausser
fir 6 = 0%, und es handelt sich im wesentlichen darum, die
Anderungen der Maxima und Minima von J gegeniiber denen
von I' zu bestimmen. Dieses Verhalten ist qualitativ leicht zu
tibersehen: da G im allgemeinen << 1, so werden die Werte von
J gegeniiber denen von I" verkleinert; fiir Gebiete von 6, in denen
G sehr flach verliuft, tritt merklich nur diese Gesamtverkleinerung
von J auf, ohne dass der Charakter der J-Kurve und der I'-Kurve
sich unterscheiden. Fiir die Gebiete von 9, in denen G stiirker
ansteigt, bezw. stark nach unten konkav ist, speziell fiir sehr
kleine 4, kann dagegen eine ganz crhebliche Modifikation ein-
treten. Da G mit 4 zunimmt, werden Maxima zu grosseren o
verschoben, und da dort ¢ grésser ist, wird ein solches verschobenes
Maximum weniger verkleinert, als wenn es unverschoben geblieben
wire. Die Minima werden entsprechend zu kleineren ¢ verschoben
und werden dort stirker verkleinert, die I-Kurve kann also



7
eine starke Verzerrung erfahren. Es kann sogar vorkommen,
dass ein zu grosseren 0 verschobenes Maximum mit einem zu
kleineren ¢ verschobenen Minimum zusammenfillt oder letzteres
iiberholt; dann weist die J-Kurve nichts mehr von diesen Extrema
auf; sie zeigt vielleicht nur leichte An- und Abschwellungen an
Stelle der fritheren Maxima und Minima der I-Kurve. Fiir 6 = 0
wird immer J = 0, wenn also die I~Kurve von 6 = 0 an mt
wachsendem o relativ steil zu einem Minimum abfillt, und dieses
Minimum bleibt in der J-Kurve als solches erhalten, so muss
zwischen 0 = 0 und dem 6 dieses Minimums ein Maximum ent-
stehen, das in der I™-Kurve gar nicht vorhanden war (vergl. Fig. 5,
wo In der I-Kurve II kein Maximum vorhanden ist, dagegen
alle 8 J-Kurven: II b, ¢, d ein solches zeigen). Die blosse Schicht-
wirkung (J) kann demnach ein Maximum des diffus zuriick-
geworfenen Lichtes bei relativ kleinen 6 bedingen, auch wenn die
Zerstrenungswirkung (/") der einzelnen suspendierten Korperchen
dort keines zeigte! Allerdings wird dieses Maximum nur schwach
hervortreten.
7
4. Diskussion von — —1; 4l =R,
I do
Zu einer exakten und verhiltnismdissig einfachen Bestimmung

der Verschiebungen der Maxima und Minima fithrt die Ermitt-

147" 1nd R als Funktionen
I do

von 0; ihre Abszissen geben die Werte von 6 an, bei denen Ex-
trema der J-Kurven auftreten, wiithrend sie in der I-Kurve bel

ol erscheinen.
do

lung der Schnittpunkte der Kurven —

a) Da R positiv ist, sind zur Diskussion nur diejenigen Aste
der I“Kurve heranzuziehen, die mit wachsendem 6 (bezw. ¢)
von einem Maximum zu einem Minimum heruntergehen. In
Fig. 4 sind vier derartige Kurven mit demselben Wendepunkt
als Beispiel gezeichnet (sie kénnten natiirlich bei Unsymmetrien
noch wesentlich komplizierter sein), wobei die zugehorigen Werte

i § . . ,
von — ’qu;’ nur ganz roh gezeichnet sind. Diese letzteren erleiden
" ‘ 1 . . :
zuniichst durch den Faktor - noch eine Verkleinerung (wenn die

Einheiten von I" so gewiihlt sind, dass I' > 1), die um so stirker
wird, je grosser I ist; somit werden die aufsteigenden Aste der
dar '
dg
14 ’ s N .
Kurven - Tdg erfahren eine Verschichung zu grosseren ¢ (diese

Kurven von - stirker verkleinert als die absinkenden, die
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Kurven sind in Fig. 4 nicht gezeichnet; vergl. aber die exakte
Zeichnung in Fig. 8).

: r
b) Je nach der Stellung dieser Kurven von — d-

T 'a‘q—)- VAN den

Fig. 4.

entsprechenden R-Kurven fallt die Verzerrung der J-Kurve gegeen-
tiber der I-Kurve sehr verschieden aus. In Fig. 4 sind fiinf veer-
schiedene Lagen a, b, ¢, d, e der R-Kurven eingezeichnet: ddie
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Schnittpunkte der aufsteigenden Aste von 1, 2, 3, 4 mit diesen
R-Kurven geben die Verschiebungen der Maxima, die der absteigen-
den Aste die der Minima (vergl. Fig. 3).

Es lassen sich leicht die gleichen Regeln wie bei der voran-
gehenden Diskussion, Ziff. 3, erkennen, nur dass die Beziehungen
hier viel schirfer bestimmbar sind: Die Maxima riicken stets zu
griosseren 0, die Minima zu kleineren 6, und zwar beide um so

stiirker, je hoher die R-Kurve im massgebenden 6-Gebiet verlauft

und je scharfer das Maximum der Kurve - }, -fig ausgebildet

ist, also — bei gleichem I' — je schroffer der Ubergang vom

Maximum zum Minimum ist. Bei gleichem Verhalten von 3

werden ber grosserem I' alle Verschiebungen im allgemeinen
verstarkt, zudem sind die Verschiebungen der Maxima ceteris
paribus stérker als die der Minima.

Leicht ersichtlich ist die Bedingung dafiir, dass ein Maximum
mit einem Minimum zusammenfalle: es muss die R-Kurve gerade

die ——%—Z—é -Kurve beriihren (vergl. Fig. 4: P). Auch das Auf-

treten neuer Maxima in J an Stellen, die in der I'-Kurve dauernd
abfallen, ist leicht aus Fig. 4 erkennbar: man denke sich etwa
die Ordinatenaxe, é = 0, statt in OD nach O'D’ verschoben,
so liegt im betrachteten Gebiet (6 > 0) kein Maximum der I*-
Kwrve vor: wenn aber die B-Kurve die Lage ¢ oder d hat, so treten
sofort in der J-Kurve die den Punkten M entsprechenden Maxima
awf, d. h. das I-Maximum ist gleichsam von den negativen &
zu den positiven 6 gerutscht.

5. Allgemeine Diskussion von J (Abhiingigkeit von h und von ).

Bei gegebenem triiben Medium, d. h. vorgeschriebenem I,
n und x, hingt die Intensitit des zuriickgeworfenen Lichtes von
d, e und h ab. Die Grosse h = 2. AH 1st aus dem Ausléschungs-
koeffizienten x» wund der Schichtdicke AH zusammengesetzt,
ist. also bei gegebenem x direkt proportional der Schichtdicke.
Diie in (3) eingefiihrte Variable z ist proportional k; wir haben bereits
die Fille unterschieden mit sehr grossem z, in denen G in D und
R in S iibergeht, von denen mit mittlerem und kleinerem z. Der
eimfache Spezialfall: z sehr gross, tritt einerseits immer bei kleinem &
odler kleinem 6 ein, d. h. bei Licht, das sehr flach auf die Schicht
einfallt oder sie sehr flach verldsst, andrerseits bei geniigend grossen
Werten von h. Letzteres bedeutet, dass bel einem bestimmten,
gemiigend grossen Wert von ».A4H die Absorption des eindrin-
gemden Lichtes so weit fortgeschritten ist, dass eine weitere Ver-
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mehrung der Schichtdicke AH keine Verinderung des zuriick-
geworfenen Lichtes bedeutet; wir werden in diesem Falle von einer
optischen Siittigung der triiben Schicht sprechen.

Ist b von diesem ,,Sattigungswert” merklich verschieden,
so kommt der Einfluss von k zur Geltung, indem die Kurven Dund S
die kompliziertere Form G und R annehmen. Nach dem friiher
Gesagten folgt, dass 1m allgemeinen mit abnehmendem h die
Intensitatswerte J abnehmen, dass bel griosseren o die Formen der
J- und der I-Kurven immer #“hnlicher werden, dass die Ver-
zerrungen sich zu kleineren 6 zurtickziehen, und gleichzeitig die
Maxima und Minima sich immer mehr ausgleichen. Bei kleinem h

wird G = si'ti*.é’ d. h. die bel merklichem o gleichmissige Schwéchung

von J ist proportional £ und nimmt mit abnehmendem & propor-
tional .- ab.
Sl €

Be1 gegebenem h 1st der Verlauf der J-Kurve als Funktion von 8
noch stark von dem Parameter ¢ abhingig, mit welchem dann auch
I'(p) = I'(6 +¢) sich andert. Wenn ¢ von kleinen Werten an
wiachst, d. h. das einfallende Licht immer steiler auftrifft, so senkt
sich die G-Kurve zu immer kleineren Werten, die R-Kurve wichst

dagegen zu immer griosseren Werten; gleichzeitig aber schiebt sich
die I-, bezw. auch die —-111 zg ~Kurve, als ganzes zu immer
kleineren Werten. Daraus folgt: Maxima und Minima, die bei
kleinem & im Gebiet grosserer ¢ lagen und dort wenig verzerrt
waren, riicken nun mit wachsendem & zu mittleren 6, woselbst
sie einander gendhert und verkleinert werden, so, dass sie sich
immer mehr ausgleichen; Maxima und Minima, die bei mittleren
0 lagen, riicken nun zu kleineren 6 und werden dort noch stirker
verzerrt, so dass die frither schon erwihnten Erscheinungen
eines volligen Ausgleiches von Maxima und Minima oder des Auf-
tretens neuer Maxima (die aus dem Gebiet negativer 0 in dasjenige
positiver 0 hiniibergleiten) zur Auswirkung kommen.

Diese allgemeinen Bemerkungen mégen hier geniigen; es
liegt auf der Hand, dass unsere Formeln noch weitgehend fiir
besondere Fille diskutiert werden kénnen, dass sie auch auf
komplizierter gebaute triibe Medien anwendbar sind, und dass
auf Grund der Gleichungen (4) und (5) auch die umgekehrte
Aufgabe zu losen ist: aus den empirisch beobachteten J-Kurven
fiir verschiedene & Riickschliisse auf die Zerstreuungsfunktion
I'(p) der suspendierten Teilchen, auf den Ausloschungskoeffi-
zienten », die Zahl n der Teilchen und die Schichtdicke 4 H zu
ziehen — eine Aufgabe, die fir die Optik kollovdaler Lésungen



und fiir die Theorie der Dimmerungsfarben von grosser Bedeutung
sein kann. Wir werden darauf vielleicht spéter eingehen, wir fiigen
vorliufig nur noch ein durchgerechnetes Beispiel zur Illustration bei.

6. Beleuchtung ewner triiben Schicht mat dusserst kleinen, sus-

pendierten Teilchen.

Wenn die dispersen Teilchen der Schicht hinreichend klein
sind, wird nach RayrLeicn (vergl. auch BLumeRr?)) die Zerstreuungs-
funktion I"~ (1 -~ cos? ¢), unabhingig von Natur und Form
des Teilchens. Dieser einfache Fall ist im folgenden durchgerechnet :
fiir optische Sattigung (grosse z) bei & == 90° und & = 30°, ferner

11

fiir die beiden Fille: h =1, h = 0,01 be1 ¢ = 300,
e — 900 e = 300 I,e,mﬂ h=1 |&e=309h=0,01
4 S | D S | D ' R | 6 | R | G
- I | i !(angenihe.lj)ﬂ
00 | | 0 o Y 0 | 0 | o 0
50 10,514 |0,0802) 9,733 | 0,148 — | 0,148 0,148 0,0183
100 4,83210,148 | 4,220 0,258 4,17 | 0,257 | 0,163 0,0193
15° 2,966 0,206 | 2,459 | 0,341 | 2,33 | 0,331 0,074 | 0,0194
200 2,047 0,255 | 1,632| 0,406 | 1,44 | 0,393 | 0,039 —
300 1,155 0,333 | 0,866 | 0,500 0,671 | 0,459 0,017 0,0195
43 0,58610,414 | 0,414 0,586 | 0,276 0,500| 0,007 —
60° | 0,296 0,464 | 0,211 0,634 0,123 0,510| — | 0,0196
750 | 0,134 0,491 | 0,090| 0,659 — | 0,517 — -
90° | 0,000 0,500 | 0,000 0,667 0,000 0,518| 0,000 0,0200
T w | w2 il
‘| | | e Il I T
) 7 D(l—I—ms-(p) ¢ iD(l—}—(()s (p)lG(l-l cos* q))(,(g?g_;_n&?:fté;)
il I I
o “ 900 0,000 [ 300 o | 0,000 [ 0,000 | 0,000
50 9350 0,081 | 850 0,248 | 0,248 0,032
100 | 1000 0,152 | 400 | 0,409 | 0,08 0,032
150 | 1050 0,219 450 0511 | 0,496 0,031
200 | 1100 0,284 500 0,570 | 0,553
300 ‘ 1200 0,417 | 60° 0,625 : 0,574 0,024
450 | 1350 | 0621 | 750 0625 | 0,534 -
600 | 1500 | 0,812 ; 9()0 0,634 | 0,510 0,019
73001650 | 0,950 | 1050 0,703 | 0,553
900 || 1800 ] 1,000 1200 0833 | 0,647 0,025
1) BuuMEeR, Zeitschr. f. Physik 32, 119; 38, 304, : 39, 195. 1925, 192

6.
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| I — | 7 '&;=

& 1+ cos®p | - sin2g¢*

i 1+ cos2g
0° 180° | 2,000 |  0,0000
50 1750 1,9924 | 0,0884
10 170 | 1,9700 | 0,1736
15°  165° 1,9330 | 0,2587
200 160° 1,8830 | 0,3414
300 1500 1,7500 | 0,4949
350 145° | 1,6710 ; 0,5623
40° 140°  1,5868 | 0,6206
45° 135°  1,5000 | 0,6667
500 130° | 14046 | 0,7011
60° 120° | 1,2500 | 0,6928
700 110° | 1,1170 | 0,5755
75  105° | 1,0670 | 0,4686
800  100° I 1,0302 l 0,3320
85°  95° | 1,0076 0,1719
90°  90° | 1,0000 0,0000

* negativ fir 00< ¢ < 90",

Die Resultate sind in den Tabellen zusammengestellt und
in Fig. 2, 3 und 5 aufgezeichnet. Sie bestatigen das frither Gesagte.

Aus den Kurven I und II, Fig. 5, welche I' = 1+ cos? ¢
als Funktion von d fiir ¢ = 90° und ¢ = 30° darstellen, lassen sich
durch Multiplikation mit G, bezw. D (s. Fig. 2), fiir die vier erwahnten
Falle die J-Kurven Ia, IIb, IIe, IId (Fig. 5) berechnen. Einfacher

und rascher lassen sich diese Kurven beurteilen durch Bestimmung
31, %5 mit den R- bezw. S-Kurven
(Fig. 8); der Fall £ = 90°, fiir den %—g immer positivist, fillt hier
nicht in Betracht; fiir e = 30 ist sowohl die Kurve — ¢£' — sin2 ¢

de
wie auch —11,% gezeichnet; die Schnittpunkte mit den drei

der Schnittpunkte der Kurve —

R- bezw. S-Kurven b, ¢, d liefern die Lage der Maxima und Minima
der J-Kurve, wie sie in Fig. 5 in ITh, Ile, I1d tatséchlich erscheinen.

Hier ist ein Beispiel fiir das Hintberriicken des Minimums
der Kurve II (Fig. 5) zu kleineren 6, wobei diese Verschiebung
fir grosse h (I1Ib) am stérksten, fiir kleiner werdende h immer schwié-
cher (IT¢c und IId) wird; ferner ein Beispiel fiir das Auftreten
eines neuen Maximums, das in der I-Kurve II bei 6 = —30°
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liegen wiirde und nun in’s positive 6-Gebiet hiniiberrutscht,
bei IIb bis zum Wert von ¢ = ca. 37°! allerdings in kaum merk-
licher Auspriigung. — Ganz allgemein geniigt ein Blick auf Iig. 5,
um die starke Verzerrung der J-Kurven gegeniiber der /I'-Kurve
zu erkennen.
' Bern, Physikal. Institut der Universitét.

Eingegangen 3. November 1927.
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