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Über die Beleuchtung trüber Medien
von P. Grüner.

Inhaltsangabe: Die Intensität des an einer homogenen planparallelen
Schlicht eines trüben Mediums zurückgeworfenen Lichtes wird berechnet und

disikutiert und auf die wichtigen Änderungen derselben im Vergleich zu der
dirtekten Lichtzerstreuung an einem Teilchen hingewiesen. Als Beispiel wird das

Ra;yleigh'sche Gesetz durchgerechnet.

Die optischen Erscheinungen an trüben Medien werden oft
in einfacher Weise behandelt, indem die Gesetze der Licht-
zeirstreuung an den einzelnen suspendierten Teilchen ohne weiteres
aui das gesamte Medium übertragen werden. Im folgenden sollen
diee nicht unerheblichen Änderungen dieser Erscheinungen be-
traichtet werden, die sich aus einer genaueren Berücksichtigung
deir Gesamtwirkung einer beleuchteten Schicht ergeben. Dabei
rmuss freilich immer noch mit Annäherungen gerechnet werden,
indem im folgenden nur die primäre Lichtzerstreuung an den
einizelnen Teilchen betrachtet wird.

Wir beschränken uns auf den einfachsten Spezialfall, in
welchem eine honaogene, isotrope, trübe Schicht, die von parallelen
Ebenen begrenzt wird, durch parallel-einfallendes, unpolarisiertes,
monochromatisches Licht beleuchtet wird; wir untersuchen nur
da;s in der Einfalflsebene zurückgeworfene Licht.
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Die Schicht von der Dicke A H (Fig. 1) sei durch 3

Konstante charakterisiert:
n Zahl der suspendierten Teilchen pro Volumeneinheit,
x Auslöschungskoeffizient pro Längeneinheit,
r Zerstreuungskoeffizient der einzelnen Teilchen;
r ist eine Funktion des Zerstreuungswinkels <p (zwischen der

Richtung des einfallenden Strahles OR und des zerstreuton
Strahles, der sog. Blickrichtung PQ). Es ist <p — <5 -fe,
wenn der Einfallswinkel 90 - 6, der Blickwinkel=90-e ist.

Hat das einfallende Licht beim Eintritt in die Schicht die
Intensität J0 (die 1 gesetzt wird), so wird ein in 8 einfallendes
Parallelstrahlenbündel, das an Teilchen bei T zerstreut wird, in
die Blickrichtung einen Anteil liefern, der pro Strecke d/.
derselben den Betrag dJ r. e-*(u> + x~>. n dX ausmacht1); wobei
st co, rg x, op aw, pq al.

Die Intensität J des in die Blickrichtung zerstreuten Lichtes
(in Q) ist dann:

x o

AL+AW.
was ergibt, da to + A r-p— 'L :

/A Li

J - ~xr al + aw y1
e w

Durch Einführung folgender Bezeichnungen und Abkürzungen:

AW =44, AL
AH x.AH h (2)

sin o sin e v '

y. (J L + A W) h
sm e. sin

AL
AL + AW D, i_e-xU£+ Jif)= E D.E G (4)

wird ;

T n.r „ n. F sin <5

J G — —5 (1 - e"2). (5)
* ;x sin e + sin o v '

Um die Abhängigkeit von J von 9? zu diskutieren, bildet man:

!_ §£_ 1 dr 1 ^Q
J d<p F d<p G d<p

*) Eine detaillierte Herleitung dieser Gleichung ergibt sich aus früheren
Darlegungen des Verfassers, s. Beiträge z. Physik d. freien Atmosph. 8, 120, 19*19.
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Hinfort soll e als konstanter Parameter (dessen Wert zwischen
0° und 90° Legt) betrachtet werden, so dass nur 6 als laufende
Variable angjsehen wird. Aus xp e -f ö folgt dann:

dG_ dG^

dep dd '

und es ergibt sich:
1 dG eotg öL z \ ,a\R -^ -=— sin e -. s__ i _ 6)
G df sin £ + sin d l e -1 I

Während die Maxima und Minima der Zerstreuungsfunktion jH

in Abhängigkeit von <p durch ^— 0 bestimmt sind, ist jetzt
die Lage der Maxima und Minima der Intensität J bestimmt
durch d J — 0, also durch

Sind aus diesen Beziehungen die Lagen dieser Maxima und
Minima gefunden, so können aus (5) die zugehörigen Werte von
./ ermittelt werden. Um also die Änderung zu finden, welche
die Intensität J infolge der Gesamtwirkung der Schicht gegenüber

der an einzelnen Teilchen zerstreuten Intensität F erleidet,
müssen zunächst die Funktionen G und R in ihrer Abhängigkeit
von <p (bezw. von 6 bei konstantem e) untersucht und sodann

ihre Beziehungen zu r und — besprochen werden.

Was die Variabein anbetrifft, ist festzustellen, dass £ und d

nur von 0°—90° variieren, dass also nach (3) die Ililfsvariable z

nur positive Werte hat, zwischen h (1 4-—.—) bezw. 2, und oo;1 \ ' sin e I '
h ist immer ~> 0; z ist also gross, sobald h gross ist, aber auch noch
bei kleinem h, sofern 6 oder £ oder beide sehr klein sind; sonst
wird z mit kleinem h auch klein.

1. Diskussion der Funktion G — D.E, wo

sin d „ / 1 1
D r-7,Ii=l-e-',z li -.— + 7

sin £ + sin o l sm £ sin o

a) Sowohl D wie auch JE sind immer positiv, _< 1, folglich
auch G. Für grosse z geht E dem Grenzwert 1, also G dem Grenzwert

D zu. Durch Bildung des Differentialquotienten

dD sin £ cos d

d ö (sin £ + sin 6)2'



et2 Dder immer positiv ist, sowie von Mr, der immer negativ ist,
erkennt man, dass die Kurve von D (als Funktion von <5) mit
<5 dauernd aber immer langsamer wächst, also nach unten konkav
ist (vergl. Tabelle auf S. 11 und Fig. 2, a u. b, worin D für e 90°

0,7

0.6

0,5

0,4

0,3

0.2

0,1

30° 45

Fis. 2

¦D:g-30"

D :E - 90°

0:6-30°,/» 0,01
M

• ¦ —c o
60° 75° 90°

und £ 30° berechnet ist). Für ö 0 ist D — 0, die Kurve
steigt im Nullpunkt unter einem Winkel y auf, für den tg y -.— ;

allmählich wird die Kurve immer flacher und erreicht für 6 90°

den Wert mit horizontaler Tangente. In Abhängigkeit1 + sin e

vom Parameter £ ist leicht zu sehen, dass die D-Kurve für s 90°
die kleinsten Werte hat (von 0 bis ^) und mit abnehmendem e

immer höher steigt, bis sie für e 0° in die Horizontale D 1

übergeht.
b) Solange z genügend gross, so dass E — 1, wird G D.

Mit abnehmendem z wird stets G < D (vergl. Tabelle und Fig. 2,
c u. d, worin G für £ 30°, das eine Mal mit h 1, das andere
Mal mit h 0,01 gezeichnet ist). Die G-Kurve steigt bei (5 0
in ähnlicher Weise wie die D-Kurve an, wächst aber immer
langsamer als D, ist also nach unten stärker konkav, und nimmt
einen immer flacheren, fast horizontalen Verlauf. Wenn z sehr
klein ist, so wird (allerdings nur für Werte von £ und d, die nicht
zu klein sind) G D.z — -.— d. h. die G-Kurve wird für merk-' sm £ '

liehe d zu einer horizontalen Geraden (vergl. Fig. 2, d).

2. Diskussion der Funktion R S • K, wo

eotg d ^ z ,/l 1
S sin £

sm £ + sm
K l ez-l z h

sm £ sin (5



a) Sowohl S wie auch K sind immer positiv, K < 1: für

grosse z geht K dem Grenzwert 1, also R dem Grenzwert S zu.

Durch Bildung des Differentialquotienten
d S sin £ + 2 sin <5 - sin3 d

d ö (sin £ + sin <5)2. sin2 ö '

diese immer negativ, sowie von t-j2 der immer positiv ist, erkennt

2.0 -

POrv»

cO
o

1.5

1.0

dr
dif,

dr
0,5

er.

ul

'¦P;

-ö
75 9030° 45° 60°

Fig. 3.

miam, dass die Kurve von <S mit wachsendem ö dauernd abnimmt,
albier immer langsamer, also nach unten konvex ist (vergl. Tabelle

3, a u. b, worin S für e 90° und £ 30°auuf S. 11 und Fig



berechnet ist). Für 6 0 i.st «S* oo, die Ordinatenaxe ist

Asymptote; die anfangs steil abfallende Kurve verläuft immir
flacher und trifft die Abszissenaxe für d 1)0° unter einen
Winkel y, für den

sin ftg y - t • _ •ö ' 1 + sm £

In Abhängigkeit vom Parameter e ist leicht zu erkennen, dats
die S-Kurve für e 90° die grösstcn Werte hat, mit
abnehmendem £ immer kleiner, also immer konvexer nach unttn
verläuft und für £ 0° den konstanten Wert S 0 hat.

b) Solange z genügend gross, so dass K 1, wird R ,V.

Mit abnehmendem z wird stets R < S (vergl. Tabelle und Fig. 5,

c u. d, worin R für £ 30°, das eine Mal mit h 1, das ande:e
Mal mit h 0,01 gezeichnet ist). Die R-Kurve fällt aber rascher,
also steiler als die zugehörige /S-Kurve ab und verläuft dann
flacher bis zum Wert R 0 für b 90°. Wenn z sehr klein
wird (allerdings nur für Werte von f und ö. die nicht zu klein
sind) wird

h eotg ö
R sm £ °

2 sin o

3. Diskussion von J ~ F ¦ G.

Sobald die Zerstreuungsfunktion F als Funktion von <p,

somit auch (bei gegebenem e) von b, bekannt ist, lässt sich ohne
weiteres der Verlauf der Intensität J in Abhängigkeit von b,
bezw. <p, ermitteln; da F stets positiv und im allgemeinen auch
> 0 ist, so wird J auch stets positiv, grösser als Null, sein (ausser
für ö =0°), und es handelt sich im wesentlichen darum, die
Änderungen der Maodma und Minima von J gegenüber denen
von r zu bestimmen. Dieses Verhalten ist qualitativ leicht zu
übersehen: da G im allgemeinen < 1, so werden die Werte von
J gegenüber denen von F verkleinert; für Gebiete von d, in denen
G sehr flach verläuft, tritt merklich nur diese Gesanitverkleinerung
von J auf, ohne dass der Charakter der J-Kurve und der P-Kurve
sich unterscheiden. Für die Gebiete von ö, in denen G stärker
ansteigt, bezw. stark nach unten konkav ist, speziell für sehr
kleine d, kann dagegen eine ganz erhebliche Modifikation
eintreten. Da G mit 6 zunimmt, werden Maxima zu grösseren b

verschoben, und da dort G grösser ist, wird ein solches verschobenes
Maximum weniger verkleinert, als wenn es unverseboben geblieben
wäre. Die Minima werden entsprechend zu kleineren r5 verschoben
und werden dort stärker verkleinert, die P-Kurve kann also



eine starke Verzerrung erfahren. Es kann sogar vorkommen,
dass ein zu grösseren <5 verschobenes Maximum mit einem zu
kleineren b verschobenen Minimum zusammenfällt oder letzteres
überholt; dann weist die J-Kurve nichts mehr von diesen Extrema
auf; sie zeigt vielleicht nur leichte An- und Abschwellungen an
Stelle der früheren Maxima und Minima der jP-Kurve. Für <5 0

wird immer J 0, wenn also die /"-Kurve von b 0 an mit
wachsendem c5 relativ steil zu einem Minimum abfällt, und dieses

Minimum bleibt in der J-Kurve als solches erhalten, so muss
zwischen b 0 und dem b dieses Minimums ein Maximum
entstehen, das in der /"-Kurve gar nicht vorhanden war (vergl. Fig. 5,

wo in der /"-Kurve II kein Maximum vorhanden ist, dagegen
alle 3 J-Kurven: II b, c, d ein solches zeigen). Die blosse
Schichtwirkung (•/) kann demnach ein Maximum des diffus
zurückgeworfenen Lichtes bei relativ kleinen b bedingen, auch wenn die

Zerstreuungswirkung (/) der einzelnen suspendierten Körperchen
dort keines zeigte! Allerdings wird dieses Maximum nur schwach
hervortreten.

^. •
1 dl1

4. Diskussion von —= —,— it1 def

Zu einer exakten und verhältnismässig einfachen Bestimmung
der Verschiebungen der Maxima und Minima führt die Ermitt-
lung der Schnittpunkte der Kurven - „ und R als Funktionen

von b; ihre Abszissen geben die Werte von b an, bei denen
Extrema der J-Kurven auftreten, während sie in der /"-Kurve bei
JTT"— 0 erscheinen.
a<p

a) Da R positiv ist, sind zur Diskussion nur diejenigen Äste
der /"-Kurve heranzuziehen, die mit wachsendem ö (bezw. <p)

von einem Maximum zu einem Minimum heruntergehen. In
Fig. 4 sind vier derartige Kurven mit demselben Wendepunkt
als Beispiel gezeichnet (sie könnten natürlich bei Unsymmetrien
noch wesentlich komplizierter sein), wobei die zugehörigen Werte

von - j nur ganz roh gezeichnet sind. Diese letzteren erleiden

zunächst durch den Faktor -^ noch eine Verkleinerung (wenn die

Einheiten von F so gewählt sind, dass /">!), die um so stärker
wird, je grösser F ist; somit werden die aufsteigenden Äste der

Kurven von - stärker verkleinert als die absinkenden, die
d<p

Kurven —= —,— erfahren eine Verschiebung zu grösseren b (diese



Kurven sind in Fig. 4 nicht gezeichnet; vergl. aber die exakte
Zeichnung in Fig. 3).

l drb) Je nach der Stellung dieser Kurven von --„-,-- zu den° r dcp

Ma

Ma

Mi

M

u
dr

Fig. 4.

entsprechenden B-Kurven fällt die Verzerrung der J-Kurve gegeen-
über der /"-Kurve sehr verschieden aus. In Fig. 4 sind fünf veer-
schiedene Lagen a, b, c, d, e der R-Kurven eingezeichnet: ddie
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Schnittpunkte der aufsteigenden Äste von 1, 2, 3, 4 mit diesen
ß-Kurven geben die Verschiebungen der Maxima, die der absteigenden

Aste die der Minima (vergl. Fig. 3).
Es lassen sich leicht die gleichen Regeln wie bei der

vorangehenden Diskussion, Ziff. 3, erkennen, nur dass die Beziehungen
hiter viel schärfer bestimmbar sind: Die Maxima rücken stets zu
grösseren c3, die Minima zu kleineren b, und zwar beide um so

stärker, je höher die ß-Kurve im massgebenden <5-Gebiet verläuft
unid ie schärfer das Maximum der Kurve - „ • -,— ausgebildetJ r d<p °
ist, also — bei gleichem /" — je schroffer der Übergang vom
Maximum zum Minimum ist. Bei gleichem Verhalten von -j—
werden bei grösserem /" alle Verschiebungen im allgemeinen
verstärkt, zudem sind die Verschiebungen der Maxima ceteris
paribus stärker als die der Minima.

Leicht ersichtlich ist die Bedingung dafür, dass ein Maximum
mit einem Minimum zusammenfalle: es muss die ß-Kurve gerade

1 AT1
dite-p-s—Kurve berühren (vergl. Fig. 4: P). Auch das

Auftreten neuer Maxima in J an Stellen, die in der /"-Kurve dauernd
abfallen, ist leicht aus Fig. 4 erkennbar: man denke sich etwa
dite Ordinatenaxe, (3 0, statt in OD nach O'D' verschoben,
so liegt im betrachteten Gebiet (b > 0) kein Maximum der F-
Knirve vor: wenn aber die ß-Kurve die Lage c oder d hat, so treten
sofort in der J-Kurve die den Punkten M entsprechenden Maxima
auif, d. h. das /"-Maximum ist gleichsam von den negativen S

zui den positiven b gerutscht.

5. Allgemeine Diskussion von J (Abhängigkeit von h und von e).

Bei gegebenem trüben Medium, d. h. vorgeschriebenem /",
n und x, hängt die Intensität des zurückgeworfenen Lichtes von
<5, £ und h ab. Die Grösse h x.AH ist aus dem Auslöschungs-
ko>effizienten x und der Schichtdicke AH zusammengesetzt,
ist. also bei gegebenem x direkt proportional der Schichtdicke.
Diie in (3) eingeführte Variable z ist proportional h; wir haben bereits
die Fälle unterschieden mit sehr grossem z, in denen G in D und
R in S übergeht, von denen mit mittlerem und kleinerem z. Der
einfache Spezialfall: z sehr gross, tritt einerseits immer bei kleinem £

odler kleinem ö ein, d. h. bei Licht, das sehr flach auf die Schicht
einfällt oder sie sehr flach verlässt, andrerseits bei genügend grossen
Werten von h. Letzteres bedeutet, dass bei einem bestimmten,
gemügend grossen Wert von x.AH die Absorption des eindrin-
geinden Lichtes so weit fortgeschritten ist, dass eine weitere Ver-
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mehrung der Schichtdicke A H keine Veränderung des
zurückgeworfenen Lichtes bedeutet; wir werden in diesem Falle von einer
optischen Sättigung der trüben Schicht sprechen.

Ist h von diesem „Sättigungswert" merklich verschieden,
so kommt der Einfluss von h zur Geltung, indem die Kurven D und S
die kompliziertere Form G und ß annehmen. Nach dem früher
Gesagten folgt, dass im allgemeinen mit abnehmendem h die
Intensitätswerte J abnehmen, dass bei grösseren b die Formen der
J- und der /"-Kurven immer ähnlicher werden, dass die
Verzerrungen sich zu kleineren <5 zurückziehen, und gleichzeitig die
Maxima und Minima sich immer mehr ausgleichen. Bei kleinem h

wird G -. - d. h. die bei merklichem b gleichmässige Schwächung

von J ist proportional h und nimmt mit abnehmendem £ proportional

- ab.
sin e

Bei gegebenem h ist der Verlauf der J-Kurvc als Funktion von d

noch stark von dem Parameter e abhängig, mit welchem dann auch
r(<p) r(b -f«) sich ändert. Wenn e von kleinen Werten an
wächst, d. h. das einfallende Licht immer steiler auftrifft, so senkt
sich die G-Kurve zu immer kleineren Werten, die ß-Kurve wächst
dagegen zu immer grösseren Werten; gleichzeitig aber schiebt sich

die /"-, bezw. auch die - „ ' - -Kurve, als ganzes zu immer1 dep °
kleineren Werten. Daraus folgt: Maxima und Minima, die bei
kleinem e im Gebiet grösserer b lagen und dort wenig verzerrt
waren, rücken nun mit wachsendem £ zu mittleren <5, woselbst
sie einander genähert und verkleinert werden, so, dass sie sich
immer mehr ausgleichen; Maxima und Minima, die bei mittleren
b lagen, rücken nun zu kleineren b und werden dort noch stärker
verzerrt, so dass die früher schon erwähnten Erscheinungen
eines völligen Ausgleiches von Maxima und Minima oder des
Auftretens neuer Maxima (die aus dem Gebiet negativer (5 in dasjenige
positiver b hinübergleiten) zur Auswirkung kommen.

Diese allgemeinen Bemerkungen mögen hier genügen; es

liegt auf der Hand, dass unsere Formeln noch weitgehend für
besondere Fälle diskutiert werden können, dass sie auch auf
komplizierter gebaute trübe Medien anwendbar sind, und dass
auf Grund der Gleichungen (4) und (5) auch die umgekehrte
Aufgabe zu lösen ist: aus den empirisch beobachteten J-Kurven
für verschiedene e Rückschlüsse auf die Zerstreuungsfunktion
r{(p) der suspendierten Teilchen, auf den Auslöschungskoeffizienten

x, die Zahl n der Teilchen und die Schichtdicke A H zu
ziehen — eine Aufgabe, die für die Optik kolloidaler Lösungen
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und für die Theorie der Dämmerungsfarben von grosser Bedeutung
sein kann. Wir werden darauf vielleicht später eingehen, wir fügen
vorläufig nur noch ein durchgerechnetes Beispiel zur Illustration bei.

6. Beleuchtung einer trüben Schicht mit äusserst kleinen,
suspendierten Teilchen.

Wenn die dispersen Teilchen der Schicht hinreichend klein
sind, wird nach Rayleigii (vergl. auch Blumer1)) die Zerstreuungsfunktion

F ~ (1 -f cos2 xp), unabhängig von Natur und Form
des Teilchens. Dieser einfache Fall ist im folgenden durchgerechnet:
für optische Sättigung (grosse z) bei £ 90° und £ 30°, ferner
für die beiden Fälle: h 1, h 0,01 het £

e 90» f 30» f 30°, 7i l * 30»,?i 0,01

s D S i D H G R G

00

(angenähert)

0» CO 0 OO ü oo 0

5° 10,514 0,0802 9,733 0,148 — 0,148 0,148 0,0183
10» 4,832 0,148 4,220 0,258 4,17 0,257 0,163 0,0193
15» 2,9GG 0,206 2,459 0,341 2,33 0,331 0,074 0,0194
20» 2,047 0,255 1,632 0,406 1,44 0,393 0,039 -
30° 1,155 0,333 0,866 0,500 0,671 0,459 0,017 0,0195
4.")» 0,586 0,414 0,414 0,586 0,276 0,500 0,007 —

60» 0,296 0,464 0,211 0,634 0,123 0,510 — 0,0196
75» 0,134 0,491 0,090 0,659 — 0,517 — —

90° 0,000 0,500 0,000 0,667 0,000 0,518 0,000 0,0200

6

O"

' 90° i• 30"
e 30»,

h 1
f 30»,
h 0,01

'!•
J

D{\ + caa-<p) V
J

0(l + cos2r/>)

J
(angenähert)

G(l + cos2(/>)

i

9(1" 0,000 30» 0,000 0,000 0,000
5» 95° 0,081 35» 0,248 0,248 0,032

10" 100» 0,152 40» 0,409 0,408 0,032
15» i 105» 0,219 45» 0,511 0,496 0,031
20» 110» 0.284 50° 0,571 0,553 —

30» 120° 0,417 60» 0,025 0,574 0,024
45» 135° 0,621 75" 0,625 0,534 —

60» 150» 0,812 90» 0,634 0,510 0.019
75» 165» 0,950 105» 0,703 0,553
90» 180» 1,000 120° 0,833 0,647 0,025

Bliimer, Zeitschr. f. Physik 32, 119; 38, 304, 920; 39, 195. 1925, 1926.
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1 dT

9

180°

r
1 + COS2 fjP

r dq>

— sin 2 tjp*
1 4- cos2y

0° 2,000 0,0000
5» 175° 1,9924 0,0884

10° 170° 1,9700 0,1736
15» 165° 1,9330 0,2587
20° 160» 1,8830 0,3414
30° 150° 1,7500 0,4949
35° 145° 1,6710 0,5623
40° 140° 1,5868* 0,6206
45° 135° 1,5000 0,6667
50» 130° 1,4046 0,7011
60» 120» 1,2500 0,6928
70° 110° 1,1170 0,5755
75° 105° 1,0670 0,4686
80» 100» 1,0302 0,3320
85° 95» 1,0076 0,1719
90° 90° 1,0000 0,0000

negativ für 0»< <p < 90'.

Die Resultate sind in den Tabellen zusammengestellt und
in Fig. 2, 3 und 5 aufgezeichnet. Sie bestätigen das früher Gesagte.

Aus den Kurven I und II, Fig. 5, welche F 1 4- cos2 q>

als Funktion von 6 für £ 90° und e 30° darstellen, lassen sich
durch Multiplikation mit G, bezw. D (s. Fig. 2), für die vier erwähnten
Fälle die J-Kurven Ia, IIb, IIc, Ud (Fig. 5) berechnen. Einfacher
und rascher lassen sich diese Kurven beurteilen durch Bestimmung

mit den ß- bezw. «S-Kurvender Schnittpunkte der Kurve -
(Fig. 3); der Fall f - 90», für den

1 dr
r dip

dr
dip

immer positiv ist, fällt hier
dT

wie auch -
ß- bezw

i drr dip
«S-Kurven b,

nicht in Betracht; für £ 30° ist sowohl die Kurve - -,-- sin 2 w
dip r

gezeichnet; die Schnittpunkte mit den drei
d liefern die Lage der Maxima und Minima

der J-Kurve, wie sie in Fig. 5 in IIb, IIc, lid tatsächlich erscheinen.

Hier ist ein Beispiel für das Hinüberrücken des Minimums
der Kurve II (Fig. 5) zu kleineren <5, wobei diese Verschiebung
für grosse h (IIb) am stärksten, für kleiner werdende h immer schwächer

(IIc und IId) wird; ferner ein Beispiel für das Auftreten
eines neuen Maximums, das in der /"-Kurve II bei d - 30°
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liegen würde und nun in's positive 6-Gebiet hinüberrutscht,
bei IIb bis zum Wert von b ca. 37°! allerdings in kaum merklicher

Ausprägung. — Ganz allgemein genügt ein Blick auf Fig. 5,

um die starke Verzerrung der J-Kurven gegenüber der /"-Kurve
zu erkennen.

Bern, Physikal. Institut der Universität.

Eingegangen 3. November 1927.
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