Zeitschrift: Horizonte : Schweizer Forschungsmagazin

Herausgeber: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen

Forschung

Band: 26 (2014)

Heft: 101

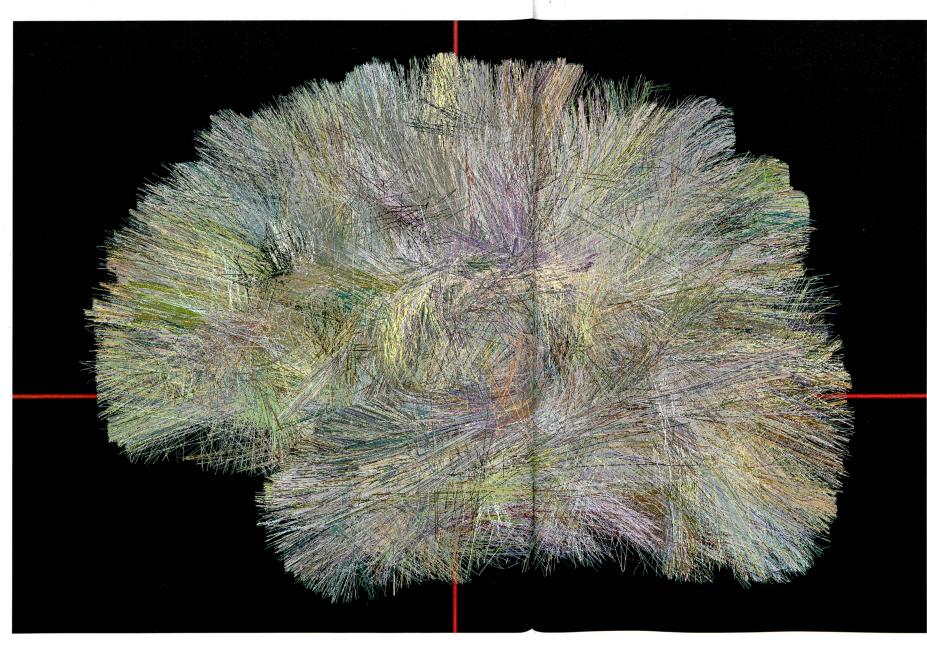
Artikel: Gewichtige Fadenknäuel
Autor: Ehlert, Anna-Katharina

DOI: https://doi.org/10.5169/seals-967977

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation


L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Gewichtige Fadenknäuel

Was wie ein Gewirr von bunten Fäden wirkt, ist eine Abbildung der Nervenverbindungen in der weissen Substanz des menschlichen Gehirns eines sechsjährigen Kinds. Die Substanz besteht - im Unterschied zu der aus Nervenzellkörpern zusammengesetzten grauen Substanz – hauptsächlich aus Nervenfasern. Das Bild haben Forschende um Petra Hüppi vom Universitätsspital Genf mit einem nichtinvasiven Verfahren erstellt: Sie verfolgen die Diffusionsbewegungen von Wassermolekülen und ziehen daraus Rückschlüsse über den Verlauf der Nervenfaserbündel. So hat das Team um Hüppi nun nachgewiesen, dass die Gehirne von Kindern, die deutlich zu früh geboren wurden, anders verkabelt sind als die von Kindern, die nach der 28. Schwangerschaftswoche zur Welt kamen. Normalerweise optimiert das Gehirn während seiner Ausreifung die Kommunikationswege zwischen den sich spezialisierenden Gehirnregionen. Diese Tendenz ist bei den Gehirnen der zu früh geborenen Kinder weniger ausgeprägt: Die Nervenfaserbündel sind weniger effizient verlegt, ihr Gehirn ist schlechter organisiert. Die strukturellen Unterschiede könnten laut den Forschenden die im späteren Leben vieler extremer Frühchen häufig auftretenden kognitiven und motorischen Schwächen sowie sozialen Defizite erklären. Anna-Katharina Ehlert

Literatur

E. Fischi Gomez et al. (2014): Structural brain connectivity in school age preterm infants provides evidence for impaired networks relevant for higher-order cognitive skills and social cognition. Cerebral Cortex online (doi 10.1093/cercor/bhu073).

Bild: Laura Gul, Cyril Poupon, Petra Hüppi

6 Schweizerischer Nationalfonds - Akademien Schweiz: Horizonte Nr. 101 7