Zeitschrift: Horizons : le magazine suisse de la recherche scientifique

Herausgeber: Fonds National Suisse de la Recherche Scientifique

Band: 32 (2020)

Heft: 127: L'alimentation du futur est déjà là

Rubrik: Comment ça marche : la cellule vivante devient un hologramme

Nutzungsbedingungen

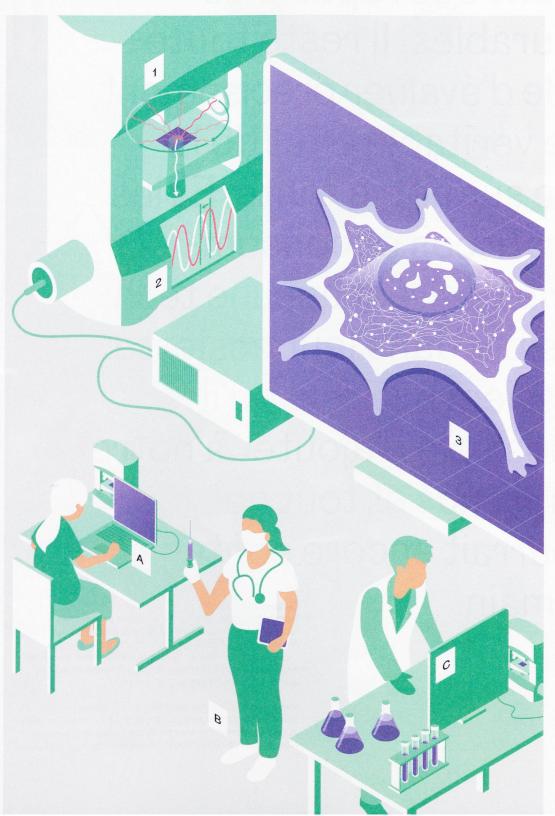
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more


Download PDF: 19.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

La cellule vivante devient un hologramme

Les microscopes ont de tout temps contribué aux progrès scientifiques. Une spin-off de l'EPFL permet désormais de voir en profondeur dans les cellules et d'en produire une image en 3D.

Texte Florian Fisch Illustration Ikonaut

Déphasage d'un rayon laser

Les microscopes optiques atteignent rapidement leurs limites: on ne distingue que les grandes structures à l'intérieur des cellules, le rayonnement détériore le matériel vivant et l'image n'est que bidimensionnelle. Un nouveau microscope de Nanolive, une spin-off de l'EPFL, va plus loin.

- (1) L'instrument dirige un faible laser sur les cellules vivantes. Un miroir rotatif assure que la lumière éclaire l'échantillon sous tous les angles.
- (2) La plupart des cellules sont transparentes et présentent peu de contrastes. Il est donc nécessaire de recourir à une astuce: les divers éléments de la cellule freinent différemment les oscillations du faisceau lumineux (déphasage). On obtient des informations en superposant les ondes lumineuses avant et après leur passage dans l'échantillon.
- (3) Un programme calcule alors un hologramme qui présente les fines structures de l'intérieur d'une cellule en 3D. Les cellules continuant à vivre dans le microscope, il permet aussi de saisir leurs mouvements.

Différentes utilisations

(A) A l'école: il n'est pas nécessaire de préparer les cellules et l'appareil est simple d'utilisation.

- (B) Pour les diagnostics: sans rayonnement offensif ni colorant chimique, ces microscopes permettent par exemple d'examiner l'état de santé d'embryons issus de la fécondation in vitro
- (C) Dans la recherche: les cellules peuvent être observées sur le long terme sans en pâtir. Il est notamment possible de suivre leur division, leur manière de communiquer avec leurs voisines et leurs réactions aux médicaments.