Zeitschrift: Horizons : le magazine suisse de la recherche scientifique

Herausgeber: Fonds National Suisse de la Recherche Scientifique

Band: 28 (2016)

Heft: 110

Artikel: In vitro en 3D

Autor: Saraga, Daniel

DOI: https://doi.org/10.5169/seals-772068

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

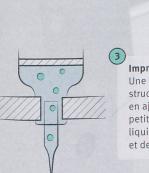
Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

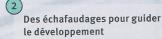
Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

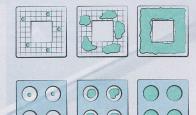
In vitro en 3D


Des startups helvétiques développent des tissus cellulaires en trois dimensions. Comparés aux cultures standard en 2D, ils permettent de réaliser des tests plus fiables pour les médicaments et matériaux biocompatibles.

Texte: Daniel Saraga Infographie: Ikonaut

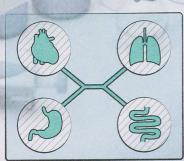

Le bon mélange

Des hormones telles que les stéroïdes stimulent la croissance de cellules souches pluripotentes extraites d'un organe. D'autres hormones peuvent ensuite guider la différenciation des cellules en divers tissus afin de créer un «organe» miniature rudimentaire, ou organoïde. La rotation ou l'agitation de l'échantillon permet de répartir les cellules pour créer une structure 3D.



Impression 3D

Une imprimante 3D façonne la structure couche par couche en ajoutant des cellules petit à petit, en combinaison avec un liquide qui fournit de l'oxygène et des nutriments.



La croissance des cellules peut être encouragée grâce à des échafaudages ou des matériaux comme de l'hydrogel contenant de nombreuses cavités. Pour les tissus devant être réimplantés, ces structures doivent être composées de matériaux biodégradables ou directement fabriqués par les cellules, à l'image du cartilage.

Organes sur puces

Les défis

Le contrôle de qualité est difficile à assurer, selon la spécialiste en ingénierie tissulaire Stephanie Mathes de la Haute école des sciences appliquées de Zurich (ZHAW): «Il est difficile de caractériser des structures dynamiques tridimensionnelles de façon non destructive. On ne peut simplement reprendre les méthodes standard utilisées avec les cultures 2D.» Comme les vaisseaux sanguins font généralement défaut, la croissance est limitée par l'accumulation de déchets au cœur de la structure et par le manque d'oxygène et de nutriments. Créer des vaisseaux sanguins artificiels ou les imiter au moyen de la microfluidique pourrait offir une solution.

Startups helvétiques Neurix (GE, 2011): mini-cerveaux InSphero (ZH, 2009): gouttelettes suspendues pour organoïdes Elanix (VD, 2012): tissus conjonctifs pour transplantation Cellec Biotek (BS, 2011): bioréacteurs CellSpring (ZH, 2015): composants pour la synthèse d'échafaudages Sun Bioscience (VD, 2016): échafaudages d'hydrogel Qgel (VD, 2009): tumeurs 3D Regenhu (FR, 2007): bio-imprimantes 3D