Zeitschrift: Horizons : le magazine suisse de la recherche scientifique

Herausgeber: Fonds National Suisse de la Recherche Scientifique

Band: 25 (2013)

Heft: 99

Artikel: Chanvre et patrimoine génétique

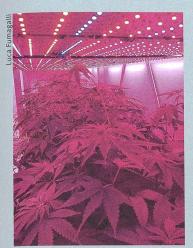
Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-554063

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation


L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Ces cultures de chanvre sont uniquement utilisées pour les analyses génétiques (2012).

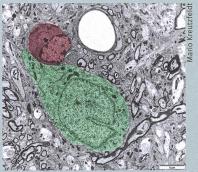
Chanvre et patrimoine génétique

ucune autre plante n'a sans doute une réputation aussi sulfureuse. Le chanvre - ou Cannabis sativa - est l'un des plus anciens végétaux cultivés dans le monde. Ses fibres de haute qualité sont appréciées depuis plus de six millénaires et servent aujourd'hui encore à la fabrication de cordes, de vêtements et de matériaux d'isolation. La plante contient toutefois aussi des substances psychoactives. D'où sa consommation sous forme de drogues comme la marijuana ou le haschich.

Qu'ils soient utilisés pour leurs fibres ou pour leurs effets psychotropes, les plants de chanvre ont le même aspect. Luca Fumagalli et Kate Ridout, de l'Université de Lausanne, ont toutefois voulu en savoir plus et se sont penchés sur leur patrimoine génétique. Pour cela, ils ont eu recours à des semences provenant d'entreprises semencières européennes. Par le biais de sites spécialisés, ils ont aussi obtenu aux Pays-Bas des variétés hybrides ou améliorées nommées «Big Skunk» ou «Northern Light». La police leur a par ailleurs fourni quelques échantillons issus de saisies.

Grâce à leurs analyses génétiques, les chercheurs ont pu montrer comment les différents modes de culture pouvaient exercer une influence sur le patrimoine génétique des plantes de cannabis. Cellesci ont pu être classées en deux catégories distinctes: les plantes utilisées pour leurs fibres et celles destinées à être consommées sous forme de drogue. Objet d'une culture intensive, ces dernières affichent une diversité génétique fortement réduite. Il arrive aussi souvent qu'elles soient clonées. «Une sélection systématique a eu lieu, laquelle a permis d'augmenter massivement la quantité des substances psychoactives», note Luca Fumagalli. ori

Une évolution différenciée


e nombreux biologistes ont une représentation trop simpliste de l'évolution qui ne correspond pas à la réalité. La diversité et la sélection naturelle ne privilégient en effet pas seulement des organismes qui s'adaptent de manière optimale à leur environnement. Celui qui y regarde de plus près apprend à avoir une vue plus différenciée. Les êtres vivants sont certes, sous nombre d'aspects, parfaitement adaptés à leur milieu. Sous d'autres, ils ressemblent en revanche toujours à leurs ancêtres, il y a des millions d'années.

Josh Van Buskirk, de l'Université de Zurich, a comparé les têtards de 21 espèces de grenouilles en Europe. Certaines d'entre elles comme la grenouille rieuse (Rana ridibunda) frayent dans des étangs permanents, d'autres, à l'image de la rainette méridionale (Hyla meridionalis), dans des flaques temporaires. Alors que les têtards doivent échapper dans les étangs à de nombreux ennemis tels que des poissons ou des larves de libellules, ceux qui se trouvent dans des flaques sont obligés de croître rapidement, avant que l'eau ne s'évapore.

Pour ses expériences, Josh Van Buskirk a placé des têtards dans des réservoirs avec des fonds tapissés de feuilles et a constaté de grandes différences de comportement. Les têtards des rainettes passaient beaucoup moins de temps dans leur cachette sous les feuilles que ceux de la grenouille rieuse. Le chercheur a ensuite placé dans les réservoirs des cages contenant des larves de libellules. Celles-ci ne pouvaient pas manger les têtards, mais marquaient leur présence aux moyens de signaux chimiques. Dans ce cas de figure, les têtards des deux espèces ont passé moins de temps à chercher de la nourriture. Le chercheur en conclut que les têtards adaptent certes leur comportement à leur environnement, mais qu'ils peuvent aussi réagir à des ennemis qu'ils n'ont plus rencontrés dans la nature depuis des millions d'années.ori

Les têtards affichent de grandes différences de comportement.

Le lymphocyte (en rouge) ne détruit pas le neurone (en vert), mais modifie sa structure.

Des neurones «mis en quarantaine»

orsque des cellules de notre corps sont infectées par des virus ou des bactéries, elles sont reconnues et détruites par les lymphocytes T cytotoxiques, les «cellules tueuses» du système immunitaire. Les cellules éliminées sont généralement remplacées par la suite. En revanche, les neurones, cellules essentielles du système nerveux central, n'ont pas cette capacité de renouvellement. C'est pourquoi ils semblent être protégés d'une manière particulière et sont donc moins souvent attaqués. Pourtant, lors de certaines infections ou maladies auto-immunes du cerveau comme la sclérose en plaques, les neurones sont détruits.

Quels sont les mécanismes impliqués dans ce processus? C'est ce qu'a essayé de comprendre l'équipe de Doron Merkler. des Hôpitaux universitaires de Genève. Les chercheurs ont découvert que chez la souris comme chez l'homme, les «cellules tueuses» ne détruisent pas immédiatement les neurones infectés, mais modifient leur structure de manière à diminuer les connexions avec les autres neurones, et ce grâce à une molécule appelée interféron-gamma (IFNγ). Cela laisserait le temps au système immunitaire d'éliminer le virus. «D'un point de vue évolutif, il s'est certainement révélé préférable de développer une «mise en quarantaine» des neurones infectés, sans les sacrifier», explique Doron Merkler. Mais ce n'est pas tout: en bloquant l'IFNγ chez la souris, les scientifigues ont empêché la neuro-dégénération dans un modèle de maladie auto-immune humaine. Ces résultats ouvrent donc de nouvelles perspectives pour les thérapies neuro-protectrices. Caroline Ronzaud

M. Kreutzfeldt, A. Bergthaler, M. Fernandez et al. (2013). Neuroprotective intervention by interferon-y blockade prevents CD8+ T cellmediated dendrite and synapse loss. J Exp Med. 210:2087-2103